
Published as a conference paper at ICLR 2023

FISHER-LEGENDRE (FISHLEG) OPTIMIZATION OF
DEEP NEURAL NETWORKS

Jezabel R Garcia1?, Federica Freddi1?, Stathi Fotiadis1, Maolin Li1, Sattar Vakili1,
Alberto Bernacchia1? & Guillaume Hennequin1,2,?

1. MediaTek Research, Cambourne Business Park, CB23 6DW, UK
first.last@mtkresearch.com

2. Computational and Biological Learning Lab, Department of Engineering,
University of Cambridge, Cambridge CB2 1PZ, UK
g.hennequin@eng.cam.ac.uk

? Equal first/senior authors contributions

ABSTRACT

Incorporating second-order gradient information (curvature) into optimization can
dramatically reduce the number of iterations required to train machine learning
models. In natural gradient descent, such information comes from the Fisher in-
formation matrix which yields a number of desirable properties. As exact nat-
ural gradient updates are intractable for large models, successful methods such
as KFAC and sequels approximate the Fisher in a structured form that can easily
be inverted. However, this requires model/layer-specific tensor algebra and cer-
tain approximations that are often difficult to justify. Here, we use ideas from
Legendre-Fenchel duality to learn a direct and efficiently evaluated model for the
product of the inverse Fisher with any vector, in an online manner, leading to
natural gradient steps that get more accurate over time despite noisy gradients.
We prove that the resulting “Fisher-Legendre” (FishLeg) optimizer converges to a
(global) minimum of non-convex functions satisfying the PL condition, which ap-
plies in particular to deep linear networks. On standard auto-encoder benchmarks,
we show empirically that FishLeg outperforms standard first-order optimization
methods, and performs on par with or better than other second-order methods,
especially when using small batches. Thanks to its generality, we expect our ap-
proach to facilitate the handling of a variety neural network layers in future work.

1 INTRODUCTION & SUMMARY OF CONTRIBUTIONS

The optimization of machine learning models often benefits from the use of second-order gradient
(curvature) information, which can dramatically increase the per-iteration progress on the training
loss. However, second-order optimizers for machine learning face a number of key challenges:

1. ML models tend to have many parameters, such that estimating the curvature along all dimen-
sions is intractable. There are normally two ways around this: (i) using iterative methods where
each iteration only exploits curvature information along a single dimension (“Hessian-free”
methods; Martens et al., 2010), and (ii) developing custom curvature approximations that can
be efficiently inverted to obtain parameter updates (Martens & Grosse, 2015; Grosse & Martens,
2016; Botev et al., 2017; George et al., 2018; Bahamou et al., 2022; Soori et al., 2022). The latter
yields state-of-the-art performance in the optimization of deep networks (Goldfarb et al., 2020).
However, development of structured curvature approximations must be done on a case-by-case
basis for each architecture (e.g. fully-connected or convolutional layer) and requires mathemati-
cal assumptions that are difficult to justify.

2. ML datasets tend to be large as well, such that the loss, its gradients, and its curvature can be
only stochastically estimated from mini-batches. While noise can be mitigated by a combination
of large mini-batches and momentum, estimating the various components of the curvature ma-
trix before inverting it (as opposed to estimating the inverse directly) introduces a bias that can
potentially be detrimental.

1

Published as a conference paper at ICLR 2023

Here, we focus primarily on the Fisher information matrix (FIM) as a notoriously effective source
of curvature information for training ML models. For probabilistic models, preconditioning the
gradient by the inverse FIM yields so-called natural gradient updates (Amari, 1998). We introduce
a novel framework for second-order optimization of high-dimensional probabilistic models in the
presence of gradient noise. Instead of approximating the FIM in a way that can easily be inverted
(e.g. as in KFAC; Martens & Grosse, 2015 and related approaches), we directly parameterize the
inverse FIM. We make the following contributions:

• We show that the inverse FIM can be computed through the Legendre-Fenchel conjugate of a
cross entropy between model distributions.

• We provide an algorithm (FishLeg) which meta-learns the inverse FIM in an online fashion, and
we prove convergence of the corresponding parameter updates.

• We first study its application to deep linear networks, an example of non-convex and pathologi-
cally curved loss functions with a Fisher matrix known in closed form (Bernacchia et al., 2018,
Huh, 2020), and find that convergence occurs much faster than SGD with momentum or Adam.

• We then show that, in standard auto-encoders benchmarks, FishLeg operating on a block-
diagonal Kronecker parameterization of the inverse Fisher performs similarly to – and sometimes
outperforms – previous approximate natural gradient methods (Goldfarb et al., 2020), whilst be-
ing only twice slower than SGD with momentum in wall-clock time per iteration.

Similar to Amortized Proximal Optimization (Bae et al., 2022), FishLeg can accommodate arbitrary
parameterizations of the inverse Fisher, thus facilitating future applications of the natural gradient to
a broad range of network architectures where manually approximating the FIM in an easily invertible
form is otherwise difficult.

2 BACKGROUND

2.1 FISHER INFORMATION AND THE NATURAL GRADIENT

We consider a probabilistic model parameterized by a vector θ, which attributes a negative log-
likelihood `(θ,D) = − log p(D|θ) to any collectionD of data points drawn from a data distribution
p?(D). This covers a broad range of models, including discriminative models for regression or
classification, as well as generative models for density modelling. The goal is to find parameters θ?
to approximate the true data distribution p?(D) by the model distribution p(D|θ?).

The Fisher information matrix (FIM) measures how much information can be obtained about pa-
rameters θ after observing data D under the model p(D|θ), and captures redundancies between
parameters (Rao, 1992). The FIM is defined as

I(θ) = ED∼p(D|θ)∇θ`(θ,D)∇θ`(θ,D)
>
. (1)

By this definition, the FIM is a positive semi-definite matrix. It can be shown that under certain
regularity conditions, and if ` is twice differentiable w.r.t. θ, then the FIM can also be computed as

I(θ) = ED∼p(D|θ)∇2
θ`(θ,D) (2)

It is important to note that the average is computed over the model distribution p(D|θ), not the data
distribution p?(D). Averaging Eq. 1 over p?(D) results in the empirical Fisher matrix (Kunstner
et al., 2019), while averaging Eq. 2 over p?(D) results in the Hessian of the loss. The FIM, the
empirical Fisher and the Hessian are all different and sometimes confused (Thomas et al., 2020).

We consider cases in which parameters θ are obtained by maximum likelihood:

θ? = arg min
θ
L(θ) (3)

where the population loss function is defined as

L(θ) = ED∼p?`(θ,D) (4)

which is in general non-convex, in particular when the model distribution is parameterised by deep
neural networks. The natural gradient update takes the form

θt+1 = θt − η I(θ)−1g(θ) with g(θ) = ∇θL(θ) (5)

2

Published as a conference paper at ICLR 2023

where η is a learning rate and g is the gradient of the loss. In practice, the true distribution of data
p?(D) is unknown and we have only access to the empirical loss and a stochastic estimate ĝ of the
gradient based on a finite sample of data D ∼ p?. Similarly, while the FIM may be sometimes
computed exactly (Bernacchia et al., 2018, Huh, 2020), in most circumstances it is also estimated
from a mini-batch D ∼ p. To guarantee invertibility of the FIM, a small amount of “damping”
can be added to it when it is nearly singular. Note that Eq. 5 is identical to gradient descent when
the FIM equals the identity matrix. The natural gradient has several nice properties that make it an
efficient optimizer (Amari, 1998), but computing and inverting the FIM is usually costly.

2.2 THE LEGENDRE-FENCHEL CONJUGATE

The Legendre-Fenchel (LF) conjugate is a useful tool in optimization theory to map pairs of prob-
lems via duality (Boyd & Vandenberghe, 2004) and was introduced in the context of mechanics and
thermodynamics (Zia et al., 2009). In the following, we deviate from the standard textbook notation
to avoid conflicts with the rest of the paper and to facilitate the translation of these classical results
to our problem. Consider a twice differentiable function H(δ) of a vector δ, generally non-convex
and assume a minimum ofH exists. The LF conjugate is equal to

H?(u) = minδ H(δ)− uT δ. (6)
The LF conjugate, also known as the convex conjugate, is defined also for non-differentiable func-
tions and is always convex. We summarize here two properties of the convex conjugate H? that
we use in our derivations (see chapter 3.3 of Boyd & Vandenberghe, 2004 and Zia et al., 2009 for
details):

Property 1 The gradient of the conjugate is equal to

∇uH?(u) = δ̃(u) where δ̃(u) = argminδ H(δ)− uT δ. (7)

The minimizer δ̃(u) also satisfies ∇δH(δ̃(u)) = u, implying that ∇uH? is a (local) inverse func-
tion of ∇δH. The inverse is global when the functionH is strictly convex:

∇uH?(u) = (∇δH)
−1

(u). (8)

Property 2 The Hessian matrix of the conjugate is equal to the inverse (if it exists) of the Hessian
matrix ofH, computed at δ̃(u):

∇2
uH?(u) =

(
∇2
δH(δ̃(u))

)−1
. (9)

3 RELATED WORK

Natural gradient The Hessian of non-convex losses is not positive definite, and second-order
methods such as Newton’s update typically do not converge to a minimum (Dauphin et al., 2014).
The natural gradient method substitutes the Hessian with the FIM, which is positive (semi)definite
(Amari, 1998). The natural gradient has been applied to deep learning in recent years (Martens
& Grosse, 2015, Bernacchia et al., 2018, Huh, 2020, Kerekes et al., 2021), and has been proved
approximately equivalent to local loss optimization (Benzing, 2022, Meulemans et al., 2020, Amid
et al., 2022). Previous work on natural gradient approximately estimated and inverted the FIM
analytically (Martens & Grosse, 2015; Martens et al., 2018). Instead, we use an exact formulation
of the inverse FIM as the Hessian of the LF conjugate of the cross entropy, and we provide an
algorithm to meta-learn an approximation to the inverse FIM during training.

Legendre-Fenchel conjugate For convex losses, Eq. 8 implies that the parameter update ∆θ =
−∇gL? (g(θ)) + ∇gL? (0) converges to a minimum in one step (Maddison et al., 2021; Chraibi
et al., 2019). However, this update is not practical because finding L? is at least as hard as finding
a minimum of the loss. Chraibi et al. (2019) propose to learn L? by a neural network, and similar
“amortized duality” approaches have recently been developed for optimal transport (Nhan Dam
et al., 2019; Korotin et al., 2019; Makkuva et al., 2020; Amos, 2022). Maddison et al. (2021) prove
that, if a surrogate for L? satisfies relative smoothness in dual space, then linear convergence rates
can be proven for non-Lipschitz or non-strongly convex losses. Here we consider non-convex losses
and we use the LF conjugate of the cross entropy for meta-learning the natural gradient update.

3

Published as a conference paper at ICLR 2023

Meta-learning optimizers Many standard optimizers have comparable performance when appro-
priately tuning a handful of static hyperparameters (Schmidt et al., 2021). Learned optimizers often
outperform well-tuned standard ones by tuning a larger number of hyperparameters online during
training (Chen et al., 2021; Hospedales et al., 2021; Bae et al., 2022). Different methods for learn-
ing optimizers have been proposed, including hypergradients (Maclaurin et al., 2015; Andrychowicz
et al., 2016; Franceschi et al., 2017; Wichrowska et al., 2017; Wu et al., 2018; Park & Oliva, 2019;
Micaelli & Storkey, 2021), reinforcement learning (Li & Malik, 2016; Bello et al., 2017), evolution
strategies (Metz et al., 2019; Vicol et al., 2021), and implicit gradients (Lorraine et al., 2020; Ra-
jeswaran et al., 2019; Clarke et al., 2021). In our work, hyperparameters do not minimize the loss,
instead they minimize an auxiliary loss designed to learn the natural gradient update.

4 FISHER-LEGENDRE OPTIMIZATION

4.1 COMPUTATION OF THE NATURAL GRADIENT VIA THE LEGENDRE-FENCHEL CONJUGATE

We use the properties of the LF conjugate, in particular Eq. 9, to directly learn the inverse of the
(damped) FIM, and use it in the natural gradient update of Eq. 5. This is different from previous
work on natural gradient, which aimed at approximating the FIM analytically and then inverting it.
We prove the following:

Theorem 1. Assume that the negative log-likelihood `(θ,D) = − log p(D|θ) is twice differentiable.
Let γ > 0 be a small damping parameter. Define the regularized cross entropy between p(D|θ) and
p(D|θ + δ)

Hγ(θ, δ) = ED∼p(D|θ)`(θ + δ,D) +
γ

2
‖δ‖2 (10)

and the function
δ̃γ(θ,u) = argminδ Hγ(θ, δ)− uT δ. (11)

Then, the inverse damped Fisher information matrix exists and is equal to

(I(θ) + γI)−1 = ∇uδ̃γ(θ,0). (12)

Proof. Here we provide a sketch of the proof, see Appendix A.2 for the full proof. Lemma 1 proves
that the regularized cross-entropy in Eq. 10 has a unique minimum at δ = 0, therefore δ̃γ(θ,0) = 0.
The proof continues by expressing the damped FIM as the Hessian of the regularized cross-entropy,
which is done by reparameterizing Eq. 2. Next, we use Eq. 9 to express the inverse damped FIM
as the Hessian of the LF conjugate of the regularized cross-entropy (seen as a function of δ). From
there, the theorem follows from Eq. 7.

To clarify the connection with the LF conjugate, we note that Eq. 11 represents the gradient of the
LF conjugate of the regularized cross-entropy, while Eq. 12 is the Hessian of the LF conjugate –
see Appendix A.2 for details, and Appendix A.3 for an informal mathematical argument that helps
understanding Theorem 1.

Our goal is to compute the damped natural gradient update by solving the optimization problem in
Eq. 11, and substituting the inverse damped FIM computed by equation 12 into the definition of the
natural gradient step in Eq. 5, yielding

θt+1 = θt − η ∇uδ̃γ(θt,0)g(θt). (13)

Importantly, note that Eq. 11 does not need to be solved for all possible pairs of θ and u. Indeed,
given the current value of parameters θt, it is sufficient to compute δ̃γ(θt,u) (i) at small values of u,
because∇uδ̃γ is evaluated at u = 0 in Eq. 12, and (ii) along the direction u ∝ g(θt), because∇uδ̃γ
is multiplied by g(θt) in Eq. 13 such that knowing the slope of δ̃γ(θt,u) along any other direction
would be irrelevant. Nevertheless, computing Eq. 11 for such restricted (θ,u) pairs may still not
be easier than computing the FIM by standard methods, e.g. by computing Eq. 1 and inverting the
resulting matrix. In section 4.2, we therefore propose a practical instantiation of the ideas developed
in this section, which yields an online algorithm with provable convergence guarantees.

4

Published as a conference paper at ICLR 2023

4.2 ONLINE META-LEARNING OF NATURAL GRADIENT UPDATES

In principle, Theorem 1 provides an exact implementation of natural gradient by solving the op-
timization problem in Eq. 11 and then applying the update of Eq. 13. However, this approach is
impractical due to the complexity of solving Eq. 11. To make it practical, we propose learning an
approximation δγ(θ,u,λ) of the true δ̃γ(θ,u), through a set of auxiliary parameters λ. The auxil-
iary parameters λ are updated online, during optimization, to push δγ towards a solution of Eq. 11
but without requiring convergence. This is akin to a meta-learning approach whereby only one or a
few steps are taken towards a desired solution for meta-parameters λ, which are optimized concur-
rently with parameters θ in an inner loop (Hospedales et al., 2021). Here we choose gradient-based
meta-learning updates (Finn et al., 2017), but other choices are possible, e.g. implicit differentiation
(Lorraine et al., 2020, Rajeswaran et al., 2019) or evolutionary strategies (Metz et al., 2019,Gao &
Sener, 2022).

For the auxiliary parameterization, we choose a linear function of u,

δγ(θ,u,λ) = Q(λ)u, (14)

where Q(λ) is a positive definite matrix which will thus effectively estimate the inverse damped
FIM (see equation 12). Appropriate choices for Q should take into account the architecture of the
model, as discussed further below. Although the r.h.s. of Eq. 14 does not depend on θ explicitly,
an implicit dependence will arise from us learning the parameters λ in a way that depends on the
momentary model parameters θ. Indeed, for learning λ, we perform gradient descent using Adam
on the following auxiliary loss A, a choice justified by Eq. 11:

Aγ(θ,u,λ) = Hγ (θ, Q(λ)u))− uTQ(λ)u. (15)

In summary, we alternate between updating λ to minimize the auxiliary loss in Eq. 15, and updating
θ according to Eq. 13 to minimize the main loss,

λt+1 = λt − α AdamUpdate (∇λAγ(θt, εg(θt),λt)) , (16)
θt+1 = θt − η Q(λt+1)g(θt), (17)

where α is a learning rate for the auxiliary parameters and ε is a small scalar (both are hyperpa-
rameters). Note that the auxiliary loss is computed at εg(θ) because, as argued in section 4.1, it is
sufficient to compute δ at small values of u in the direction of u ∝ g(θt). In Appendix A.9, we
provide an analysis of these coupled dynamics in a simple linear-Gaussian model.

We parameterize Q(λ) as a positive definite Kronecker-factored block-diagonal matrix, with block
sizes reflecting the layer structure of deep fully-connected neural networks (section A.5). Although
this is similar to parameterizations used in previous studies of natural gradient (Martens & Grosse,
2015), we stress that our approach is more flexible since it learns the inverse FIM rather than ap-
proximating and inverting the FIM analytically. In fact, we show in the appendix A.6 that alternative
forms of the matrix Q, different from those used before, may provide a better approximation of the
inverse FIM (see Fig. 4).

4.3 CONVERGENCE OF ONLINE NATURAL GRADIENT

In this section we prove that the update of Eq. 17 converges to a minimum of the loss for the class
of PL functions (Polyak-Lojasiewicz), which are generally non-convex. Charles & Papailiopoulos
(2018) proved that deep linear networks, which are non-convex (Saxe et al., 2013), are PL almost
everywhere. We study deep linear networks empirically in section 5.1. We stress that the goal of
this section is to prove convergence, rather than to obtain tight bounds on the convergence rate.

We provide convergence guarantees for both the true gradient g and stochastic gradients ĝ. The-
orem 2 is a special case of Theorem 1 in Radhakrishnan et al. (2020), while Theorem 3 is new to
our knowledge. In both cases, the crucial assumption is that Q is a positive definite matrix, which
holds for our chosen parameterization (see section A.5). For details on definitions and proofs, see
appendix A.4.
Theorem 2. Assume the loss function L is ξ-smooth and µ-PL. Let θ∗ ∈ arg minθ L(θ). Assume
that the eigenvalues of Q(λt) are lower- and upper-bounded uniformly in time by λmin > 0 and

5

Published as a conference paper at ICLR 2023

λmax, respectively. We have the following rate of convergence for optimization using the update rule
of Eq. 17 with η = 1

ξλmax
:

L(θt)− L(θ∗) ≤
(

1− µλmin

2ξλmax

)t
(L(θ0)− L(θ∗)). (18)

Theorem 3. Let the same assumptions as in Theorem 2 hold. In addition, assume that E[‖ĝ(θ)‖2] ≤
G2. We have the following rate for optimization using update rule 17 with ηt = 2

µλmin(t+1) :

L(θt)− L(θ∗) ≤ A

t+ 1
where A = max

{
2ξλ2maxG

2

µ2λ2min

,L(θ0)− L(θ∗)

}
. (19)

4.4 DETAILS OF THE ALGORITHM AND FURTHER REMARKS

Here we detail our practical implementation of the online FishLeg algorithm presented in section 4.2,
also summarized in Algorithm 1. Our code is available here on GitHub.

Auxiliary optimization SinceHγ is evaluated on a model-sampled mini-batch, it is a noisy quan-
tity whose variance depends on the hyperparameter ε. While this variance could be reduced e.g. by
using an antithetic estimator (Gao & Sener, 2022), we opted instead for analytically taking the small
ε limit of the auxiliary loss. By Taylor expanding equation 15 (use equations 23, 24), and dropping
terms that are constant in λ, we arrive at

Ãγ(θ,u,λ) ≡ uT
[

1

2
Q(λ)∇2

δHγ(θ,0)Q(λ)−Q(λ)

]
u. (20)

The auxiliary update of Eq. 16 thus becomes λt+1 = λt − αAdamUpdate(∇λÃγ(θt,g/‖g‖,λt))
where the normalization of g is important for continuing to learn about curvature even when gra-
dients are small. In order to avoid differentiating through the Hessian-vector product in Eq. 20, we
note that the gradient of Ã w.r.t. λ can be written as

∇λÃ(θ,u,λ) =
(
∇2
δH(θ,0)Q(λ)u− u

)>∇λ [Q(λ)u] . (21)

Algorithm 1 in the appendix shows how to implement this efficiently using automatic differentiation
tools. As a side note, Eq. 21 makes it clear that Q will get to approximate the inverse of I(θ) + γI
(which is also the Hessian of the regularized cross-entropy, see equation 24) at least in the relevant
subspace occupied by u = g/‖g‖ over iterations. Moreover, note that the noise in Hγ simply adds
stochasticity to the auxiliary loss but does not bias its gradient w.r.t. λ. Finally, Eq. 20 reveals a
connection with Hessian-free optimization which we discuss in Appendix A.8.

Damping Practitioners of second-order optimization in deep learning have consistently found
it critical to apply damping when the FIM becomes near-singular. Although adaptive damping
schemes exist and could be incorporated in FishLeg, here we followed Goldfarb et al. (2020) and
used static damping; specifically, we used a fixed γ in Eq. 10, treated as a tuned hyperparameter.

Momentum We have found useful to use momentum as many other optimizers do (e.g. KFAC,
KBFGS). In most of our experiments, we implemented momentum on g (as per line 16 of Algo-
rithm 1). For our wall-clock time results (Fig. 3), however, we applied momentum to our natural
gradient estimate Q(λ)g instead, in order to preserve the low-rank structure of g at each layer of
the neural network. This enabled us to substantially speed up the computation of Q(λ)g on small
mini-batches, but did not affect training and test errors noticeably.

Initialization of λ We find it useful to initialize λ such that Q(λ0) = ηSGDm
η × I , where ηSGDm

is a learning rate that is known to give good results with SGD-with-momentum. With such an
initialization, FishLeg therefore initially behaves like SGDm. Future work could investigate smarter
initialization / warm-starting schemes, e.g. starting Q(λ) in an Adam-like diagonal approximation
of the empirical Fisher.

6

https://github.com/mtkresearch/fishleg

Published as a conference paper at ICLR 2023

−6

−4

−2

0

2

10−3

10−1

101

103

105

107

0 100 200 300 0 100 200 300

-6

-4

-2

0

2

0 60 120 0 60 120

p
ri
m
ar
y
lo
ss

(s
o
lid
:
tr
a
in
/
d
a
sh
ed
:
te
st
)

teacher
SGDm
Adam
FishLeg

large data regime small data regime

a
u
xi
lia
ry
lo
ss

training epochs training epochs (/100)

p
ri
m
ar
y
lo
ss

(s
o
lid
:
tr
a
in
/
d
a
sh
ed
:
te
st
)

wall clock time [s] wall clock time [s]

A

B

C

Figure 1: Application to deep lin-
ear networks. A deep linear network
(20 layers of size 20 each) with Gaus-
sian output likelihood is trained on a
number of data samples (left: 4000;
right: 40) generated by a noisy teacher
in the same model class. (A) Loss eval-
uated on the training (solid) and test-
ing set (dashed), as a function of train-
ing epoch. The gray line shows the
noise floor, i.e. the test loss evaluated
on the teacher network. Lines show
mean across 10 independent experi-
ments (teacher, initial conditions, etc),
shadings show ±1 stdev. (B) Evolu-
tion of the auxiliary loss during training
(black), with Fisher-matrix-vector prod-
ucts evaluated exactly according to the
analytical expression given in (Bernac-
chia et al., 2018). To assess how well
the auxiliary optimization steps mini-
mize the auxiliary loss – a moving target
when θ changes –, the auxiliary param-
eters λ are frozen every 500 iterations
and subsequently used to re-evaluate the
auxiliary loss (colored lines). (C) Same
as (A), here as a function of wall-clock
time. Parameters: minibatch size = 40,
η = 0.04, α = 0.001, β = 0.9,
ηSGDm = 0.002, ηAdam = 0.0002.

5 EMPIRICAL EVALUATION

5.1 DEEP LINEAR NETWORKS

We first studied FishLeg in the context of deep linear networks, whose loss function is non-convex,
pathologically curved, and for which the Fisher matrix is known analytically (Bernacchia et al.,
2018, Huh, 2020). The results presented in Fig. 1 were obtained with a network of 20 (linear) layers
of size n = 20 each. We generated data by instantiating a teacher network with random Gaussian
weights N (0, 1/n) in each layer and a predictive density with mean equal to the activation of the
last layer and isotropic Gaussian noise with variance σ2

0 = 0.0012. Input samples were drawn from
a standard normal distribution, and the teacher’s predictive distribution was sampled accordingly to
obtain output labels. We investigated the behaviour of FishLeg both in the large data regime (4000
training samples) and the small data regime (40 training samples).

In both regimes, FishLeg very rapidly drove the training loss to the minimum set by the noise (σ0),
a minimum which was attained by neither manually-tuned SGD-m nor Adam (Fig. 1A). This is
consistent with previous such comparisons in similar settings (Bernacchia et al., 2018). In the small
data regime, FishLeg displays some overfitting but continues to compare favourably against first-
order methods on test error. In wall-clock time, FishLeg was about 5 times slower than SGDm per
training iteration in this case (Fig. 1C), but we show that a significant speed up can be obtained by
updating λ every 10 iterations at little performance cost (see Fig. 3).

We used this simple experiment to assess the effectiveness of auxiliary loss optimization during the
course of training. The lower the auxiliary loss, the closer it is from the Legendre conjugate of the
cross-entropy at g, and therefore the closer Q(λ)g is from the natural gradient. We assessed how
much progress was made on the auxiliary loss, relative to how it would evolve ifλwas held constant,
as θ is being optimized (Fig. 1B). This revealed two distinct phases of learning. At first, θ (and

7

Published as a conference paper at ICLR 2023

Figure 2: Comparison between FishLeg and other optimizers on standard auto-encoders bench-
marks (batch size 100). Top: Training loss and test error as a function of training epochs on the
3 datasets, averaged over 10 different seeds. Middle: reliability of FishLeg across runs. For each
optimizer and dataset, the fraction of runs (estimated from 10 runs) that converged properly (i.e.
where the loss did not run out to ‘nan’) is shown; error bars show ±1 s.e.m. Bottom: variability
(standard deviation) of the training loss across runs, averaged over epochs (discarding any epochs
where the loss might have exploded). See supplementary Fig. 5 for results on batch size 1000.

therefore the FIM) changes rapidly, but λ rapidly adapts to keep the auxiliary loss in check (compare
black and dark purple curves) – we speculate that this mostly reflects adaptation to the overall scale
of the (inverse) FIM. Later on, as θ changes less rapidly, λ begins to learn the more subtle geometry
of the FIM, giving rise to rather modest improvements on the auxiliary loss (compare black and
lighter purple curves).

5.2 SECOND-ORDER OPTIMIZATION BENCHMARK

We applied FishLeg to the auto-encoders benchmarks previously used to compare second-order
optimization methods – the details of these experiments (model architectures, datasets, etc) can be
found in (Goldfarb et al., 2020), and hyperparameters specific to FishLeg are Table 1 (Appendix).
To compare FishLeg to other optimizers, we used the code provided by Goldfarb et al. which
implemented Adam, RMSprop, KFAC and KBFGS.

These autoencoder benchmarks are difficult problems on which the family of second-order methods
has been shown to improve substantially over first-order optimizers (e.g. SGDm) and optimizers that
exploit second-order information in diagonal form (Adam, RMSprop). Yet, no clear differences in
performance has emerged within second-order methods. As far as training loss and test errors are
concerned, our results confirmed this trend: FishLeg performed similarly to KFAC and KBFGS on
the FACES and MNIST datasets, although it did converge within fewer iterations on the CURVES
dataset (Fig. 2, top).

8

https://github.com/renyiryry/kbfgs_neurips2020_public

Published as a conference paper at ICLR 2023

0.004

0.008

0.016

0.032

0 10 20 30 40 50

M
N
IS
T

0 5 10 15 20

0.2

0.4

0.8

0 10 20 30

F
A
C
E
S

0 20 40

te
st
er
ro
r

training epochs

SGDm
KFAC
FishLeg

wall-clock time [ks]

te
st
er
ro
r

training epochs wall-clock time [ks]

Figure 3: Wall-clock time comparisons
on MNIST and FACES, with optimiz-
ers all implemented in the same way
on CPU (Intel Xeon Platinum 8380H
@ 2.90GHz) with OpenBLAS compiled
for that architecture and multi-threaded
with OpenMP (8 threads). Within each
dataset, all curves show the same num-
ber of epochs to facilitate comparisons
of CPU time-per-iteration. In FishLeg,
the auxiliary parameters were updated
only every 10 iterations, with no notice-
able drop in performance but large wall-
clock speedup. Similarly, KFAC’s pre-
conditioning matrices were inverted at
each layer every 20 iterations only.

Interestingly, however, we found FishLeg to be consistently more robust than other methods, espe-
cially when using relatively small batch sizes. In particular, it converged more reliably over repeated
runs with different random initializations (Fig. 2, middle). This is perhaps due to other methods
achieving their best performance in a near-critical hyperparameter regime in which optimization
tends to fail half of the time (these failed runs are often discarded when averaging). In contrast,
FishLeg achieved similar or better performance in a more stable hyperparameter regime, and did not
fail a single of the 10 runs we performed. Similarly, FishLeg was also more consistent than other
methods, i.e. displayed a lower variance in training loss across runs (Fig. 2, bottom).

Given the heterogeneity of software systems in which the various methods were implemented (e.g.
JAX vs PyTorch), we ran a clean wallclock-time comparison between SGDm, KFAC and FishLeg
using a unified CPU-only implementation applied to the FACES and MNIST benchmarks. This en-
sured e.g. that the loss and its gradients were computed in exactly the same way across methods.
Overall, one iteration of vanilla FishLeg was ∼ 5 times slower than one iteration of SGDm. How-
ever, we were able to bring this down to only twice slower by updating λ every 10 iterations, which
did not significantly affect performance. Combined with FishLeg’s faster progress per-iteration, this
meant that FishLeg retained a significant advantage in wall-clock time over SGD (Fig.3), similar to
KFAC. In practice we think that it might make sense to update λ more frequently at the beginning
of training, and let these updates become sparser as optimization progresses.

6 DISCUSSION

We provided a general framework for approximating the natural gradient through online meta-
learning of the LF conjugate of a specific cross-entropy. Our framework is general: different choices
can be made for how to meta-learn the LF conjugate (Eq. 11), parameterize its gradient (Eq. 14) and
evaluate/differentiate the auxiliary loss (Eq. 15). Beyond our specific implementation, future work
will study alternative choices that may be more efficient. For example, implicit differentiation (Lor-
raine et al., 2020, Rajeswaran et al., 2019), or evolution strategies (Metz et al., 2019,Gao & Sener,
2022) may be used to meta-learn the LF conjugate. The auxiliary loss could also be evaluated with-
out taking the small ε limit but using antithetic estimators to reduce variance (Gao & Sener, 2022).
Alternative parameterizations could be used for δ or Q. Indeed, preliminary results show that more
expressive choices for Q yield better approximations of the inverse FIM (Appendix A.6).

Previous work on natural gradient aimed at computing and inverting analytically an approximation
to the FIM, which was done on a case-by-case basis for dense (Martens & Grosse, 2015) and convo-
lutional (Grosse & Martens, 2016) layers, and standard recurrent networks (Martens et al., 2018). By
parameterizing the inverse FIM directly, our approach allows the user to express their assumptions
about the structure of parameter precisions, which is typically easier to reason about than the struc-
ture of parameter covariances. We therefore expect that FishLeg will facilitate future applications
of natural gradient optimization to a broader range of network architectures.

9

Published as a conference paper at ICLR 2023

REFERENCES

Shun-ichi Amari. Natural Gradient Works Efficiently in Learning. Neural Computation, 10(2):251–
276, February 1998. ISSN 0899-7667, 1530-888X. doi: 10.1162/089976698300017746. URL
http://www.mitpressjournals.org/doi/10.1162/089976698300017746.

Ehsan Amid, Rohan Anil, and Manfred Warmuth. Locoprop: Enhancing backprop via local loss
optimization. In International Conference on Artificial Intelligence and Statistics, pp. 9626–9642.
PMLR, 2022.

Brandon Amos. On amortizing convex conjugates for optimal transport, 2022. URL https:
//arxiv.org/abs/2210.12153.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. Advances in neural information processing systems, 29, 2016.

Juhan Bae, Paul Vicol, Jeff Z. HaoChen, and Roger Grosse. Amortized proximal optimization, 2022.
URL https://arxiv.org/abs/2203.00089.

Achraf Bahamou, Donald Goldfarb, and Yi Ren. An Adaptive Mini-Block Fisher Method
for Deep Neural Networks, July 2022. URL http://arxiv.org/abs/2202.04124.
arXiv:2202.04124 [cs].

Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V Le. Neural optimizer search with rein-
forcement learning. In International Conference on Machine Learning, pp. 459–468. PMLR,
2017.

Frederik Benzing. Gradient Descent on Neurons and its Link to Approximate Second-order
Optimization. In Proceedings of the 39th International Conference on Machine Learning,
pp. 1817–1853. PMLR, June 2022. URL https://proceedings.mlr.press/v162/
benzing22a.html. ISSN: 2640-3498.

Alberto Bernacchia, Máté Lengyel, and Guillaume Hennequin. Exact natural gradient in deep linear
networks and its application to the nonlinear case. Advances in Neural Information Processing
Systems, 31, 2018.

Aleksandar Botev, Hippolyt Ritter, and David Barber. Practical Gauss-Newton optimisation for deep
learning. In International Conference on Machine Learning, pp. 557–565, 2017.

Stephen P. Boyd and Lieven Vandenberghe. Convex optimization. Cambridge University Press,
Cambridge, UK ; New York, 2004. ISBN 978-0-521-83378-3.

Richard H Byrd, Gillian M Chin, Will Neveitt, and Jorge Nocedal. On the use of stochastic Hessian
information in optimization methods for machine learning. SIAM Journal on Optimization, 21
(3):977–995, 2011.

Zachary Charles and Dimitris Papailiopoulos. Stability and Generalization of Learning Algorithms
that Converge to Global Optima. In Proceedings of the 35th International Conference on Machine
Learning, pp. 745–754. PMLR, July 2018. URL https://proceedings.mlr.press/
v80/charles18a.html. ISSN: 2640-3498.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
Wotao Yin. Learning to Optimize: A Primer and A Benchmark. arXiv:2103.12828 [cs, math,
stat], July 2021. URL http://arxiv.org/abs/2103.12828. arXiv: 2103.12828.

Sélim Chraibi, Adil Salim, Samuel Horváth, Filip Hanzely, and Peter Richtárik. Learning to Opti-
mize via Dual space Preconditioning. December 2019. URL https://openreview.net/
forum?id=rklx-gSYPS.

Ross M Clarke, Elre T Oldewage, and José Miguel Hernández-Lobato. Scalable one-pass opti-
misation of high-dimensional weight-update hyperparameters by implicit differentiation. arXiv
preprint arXiv:2110.10461, 2021.

10

http://www.mitpressjournals.org/doi/10.1162/089976698300017746
https://arxiv.org/abs/2210.12153
https://arxiv.org/abs/2210.12153
https://arxiv.org/abs/2203.00089
http://arxiv.org/abs/2202.04124
https://proceedings.mlr.press/v162/benzing22a.html
https://proceedings.mlr.press/v162/benzing22a.html
https://proceedings.mlr.press/v80/charles18a.html
https://proceedings.mlr.press/v80/charles18a.html
http://arxiv.org/abs/2103.12828
https://openreview.net/forum?id=rklx-gSYPS
https://openreview.net/forum?id=rklx-gSYPS

Published as a conference paper at ICLR 2023

Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex op-
timization. Advances in neural information processing systems, 27, 2014.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In International Conference on Machine Learning,
pp. 1165–1173. PMLR, 2017.

Katelyn Gao and Ozan Sener. Generalizing Gaussian smoothing for random search. In International
Conference on Machine Learning, pp. 7077–7101. PMLR, 2022.

Thomas George, César Laurent, Xavier Bouthillier, Nicolas Ballas, and Pascal Vincent. Fast ap-
proximate natural gradient descent in a Kronecker factored eigenbasis. Advances in Neural Infor-
mation Processing Systems, 31, 2018.

Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practical quasi-newton methods for training deep
neural networks. Advances in Neural Information Processing Systems, 33:2386–2396, 2020.

Roger Grosse and James Martens. A Kronecker-factored approximate Fisher matrix for convolution
layers. In International Conference on Machine Learning, pp. 573–582. PMLR, 2016.

Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. Meta-learning in neural
networks: A survey. IEEE transactions on pattern analysis and machine intelligence, 44(9):
5149–5169, 2021.

Dongsung Huh. Curvature-corrected learning dynamics in deep neural networks. ICML, pp. 9,
2020.

Anna Kerekes, Anna Mészáros, and Ferenc Huszár. Depth Without the Magic: Inductive Bias
of Natural Gradient Descent. arXiv:2111.11542 [cs, stat], November 2021. URL http://
arxiv.org/abs/2111.11542. arXiv: 2111.11542.

Alexander Korotin, Vage Egiazarian, Arip Asadulaev, Alexander Safin, and Evgeny Burnaev.
Wasserstein-2 generative networks. arXiv, 2019. URL https://arxiv.org/abs/1909.
13082.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher approx-
imation for natural gradient descent. Advances in neural information processing systems, 32,
2019.

Ke Li and Jitendra Malik. Learning to Optimize. arXiv:1606.01885 [cs, math, stat], June 2016.
URL http://arxiv.org/abs/1606.01885. arXiv: 1606.01885.

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by
implicit differentiation. In International Conference on Artificial Intelligence and Statistics, pp.
1540–1552. PMLR, 2020.

David JC MacKay, David JC Mac Kay, et al. Information theory, inference and learning algorithms.
Cambridge university press, 2003.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In International conference on machine learning, pp. 2113–2122.
PMLR, 2015.

Chris J Maddison, Daniel Paulin, Yee Whye Teh, and Arnaud Doucet. Dual space preconditioning
for gradient descent. SIAM Journal on Optimization, 31(1):991–1016, 2021.

Ashok Makkuva, Amirhossein Taghvaei, Sewoong Oh, and Jason Lee. Optimal transport mapping
via input convex neural networks. In International Conference on Machine Learning, pp. 6672–
6681, 2020.

11

http://arxiv.org/abs/2111.11542
http://arxiv.org/abs/2111.11542
https://arxiv.org/abs/1909.13082
https://arxiv.org/abs/1909.13082
http://arxiv.org/abs/1606.01885

Published as a conference paper at ICLR 2023

James Martens and Roger Grosse. Optimizing neural networks with Kronecker-factored approxi-
mate curvature. In International conference on machine learning, pp. 2408–2417. PMLR, 2015.

James Martens, Jimmy Ba, and Matt Johnson. Kronecker-factored curvature approximations for
recurrent neural networks. In International Conference on Learning Representations, 2018.

James Martens et al. Deep learning via Hessian-free optimization. In ICML, volume 27, pp. 735–
742, 2010.

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein.
Understanding and correcting pathologies in the training of learned optimizers. In Proceedings
of the 36th International Conference on Machine Learning, pp. 4556–4565. PMLR, May 2019.
URL https://proceedings.mlr.press/v97/metz19a.html. ISSN: 2640-3498.

Alexander Meulemans, Francesco Carzaniga, Johan Suykens, João Sacramento, and Benjamin F
Grewe. A theoretical framework for target propagation. Advances in Neural Information Pro-
cessing Systems, 33:20024–20036, 2020.

Paul Micaelli and Amos J Storkey. Gradient-based hyperparameter optimization over long horizons.
Advances in Neural Information Processing Systems, 34:10798–10809, 2021.

Quan Hoang Nhan Dam, Trung Le, Tu Dinh Nguyen, Hung Bui, and Dinh Phung. Three-player
Wasserstein GAN via amortised duality. In Proc. of the 28th Int. Joint Conf. on Artificial Intelli-
gence (IJCAI), pp. 1–11, 2019.

Eunbyung Park and Junier B Oliva. Meta-curvature. Advances in Neural Information Processing
Systems, 32, 2019.

Adityanarayanan Radhakrishnan, Mikhail Belkin, and Caroline Uhler. Linear convergence of gen-
eralized mirror descent with time-dependent mirrors. arXiv preprint arXiv:2009.08574, 2020.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with im-
plicit gradients. Advances in neural information processing systems, 32, 2019.

C Radhakrishna Rao. Information and the accuracy attainable in the estimation of statistical param-
eters. In Breakthroughs in statistics, pp. 235–247. Springer, 1992.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013.

Robin M. Schmidt, Frank Schneider, and Philipp Hennig. Descending through a Crowded Valley -
Benchmarking Deep Learning Optimizers. In Proceedings of the 38th International Conference
on Machine Learning, pp. 9367–9376. PMLR, July 2021. URL https://proceedings.
mlr.press/v139/schmidt21a.html. ISSN: 2640-3498.

Saeed Soori, Bugra Can, Baourun Mu, Mert Gürbüzbalaban, and Maryam Mehri Dehnavi. TEN-
GraD: Time-Efficient Natural Gradient Descent with Exact Fisher-Block Inversion, March 2022.
URL http://arxiv.org/abs/2106.03947. arXiv:2106.03947 [cs].

Valentin Thomas, Fabian Pedregosa, Bart Merriënboer, Pierre-Antoine Manzagol, Yoshua Bengio,
and Nicolas Le Roux. On the interplay between noise and curvature and its effect on optimization
and generalization. In International Conference on Artificial Intelligence and Statistics, pp. 3503–
3513. PMLR, 2020.

Paul Vicol, Luke Metz, and Jascha Sohl-Dickstein. Unbiased Gradient Estimation in Unrolled
Computation Graphs with Persistent Evolution Strategies. In Proceedings of the 38th Interna-
tional Conference on Machine Learning, pp. 10553–10563. PMLR, July 2021. URL https:
//proceedings.mlr.press/v139/vicol21a.html. ISSN: 2640-3498.

Olga Wichrowska, Niru Maheswaranathan, Matthew W. Hoffman, Sergio Gómez Colmenarejo,
Misha Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned Optimizers that Scale
and Generalize. In International Conference on Machine Learning, pp. 3751–3760. PMLR,
July 2017. URL https://proceedings.mlr.press/v70/wichrowska17a.html.
ISSN: 2640-3498.

12

https://proceedings.mlr.press/v97/metz19a.html
https://proceedings.mlr.press/v139/schmidt21a.html
https://proceedings.mlr.press/v139/schmidt21a.html
http://arxiv.org/abs/2106.03947
https://proceedings.mlr.press/v139/vicol21a.html
https://proceedings.mlr.press/v139/vicol21a.html
https://proceedings.mlr.press/v70/wichrowska17a.html

Published as a conference paper at ICLR 2023

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding Short-Horizon Bias
in Stochastic Meta-Optimization. arXiv:1803.02021 [cs, stat], March 2018. URL http:
//arxiv.org/abs/1803.02021. arXiv: 1803.02021.

Royce KP Zia, Edward F Redish, and Susan R McKay. Making sense of the legendre transform.
American Journal of Physics, 77(7):614–622, 2009.

13

http://arxiv.org/abs/1803.02021
http://arxiv.org/abs/1803.02021

Published as a conference paper at ICLR 2023

A APPENDIX

A.1 ALGORITHM

Algorithm 1 FishLeg algorithm (online setting)
1: function UPDATE AUX(θ, g, λ, Adam state)
2: g̃← g/‖g‖ . normalize gradient
3: initialize the adjoint of λ to prepare for automatic differentiation reverse pass (c.f. line 9).
4: δ̄ ← Q(λ)g̃ . can exploit fast matrix-vector products without forming Q
5: . Hessian-vector product on the regularized cross-entropyH (with δ̄ taken off the auto-

matic differentiation tape!) evaluated on a mini-batch different from the one used to
obtain g. /

6: h← Hess vec prod(fun δ 7→ H(θ, δ), at δ = 0, along v =stop gradient(δ̄))
7: d← h− g̃
8: aux loss← 1

2 (d− g̃)>stop gradient(δ̄) . log the value of the auxiliary loss
9: ∆λ ← adjoint of λ after completion of reverse pass on surrogate auxiliary loss d>δ̄

10: λ,Adam state← Adam update(λ,∆λ, α,Adam state) . α is the learning rate
11: return aux loss, λ, Adam state
12:
13: t← 0, initialize θ0 and λ0

14: while not converged do
15: L,g← value and gradient of negative log likelihood evaluated at θt on a minibatch
16: ḡ← βḡ + (1− β)g . momentum
17: . Note: the following step needs not be performed at every iteration – wall-clock time

speedups can be obtained by running this every 10 iterations, though this might depend
on the problem. /

18: aux loss, λt+1, Adam state← UPDATE AUX(θt, ḡ,λt,Adam state)
19: θt+1 ← θt − ηQ(λt+1)ḡ
20: t← t+ 1

A.2 PROOF OF THEOREM 1

We start by stating the following Lemma, which is a modified version of Gibbs’ inequality (see e.g.
Chapter 2.6 of MacKay et al., 2003)
Lemma 1. For a fixed θ, the regularized cross entropy between p(D|θ) and p(D|θ + δ)

Hγ(θ, δ) = ED∼p(D|θ)`(θ + δ,D) +
γ

2
‖δ‖2 (22)

has a unique global minimum at δ = 0.

Proof of Theorem 1. We start by computing the gradient and Hessian of the regularized cross-
entropyHγ(θ, δ) with respect to δ, computed at δ = 0.

∇δHγ(θ,0) = ED∼p(D|θ)∇θ`(θ,D) + 0 = 0 (23)

∇2
δHγ(θ,0) = ED∼p(D|θ)∇2

θ`(θ,D) + γI = I(θ) + γI. (24)

The gradient is equal to the expectation of the score function, which is known to be equal to zero (as
also implied by Lemma 1). The Hessian is equal to the damped FIM, as expressed by equation 2.
Note that the damped FIM is positive definite and so its inverse exists.

Using property 9 of the LF conjugate, we express the inverse damped Fisher matrix as the Hessian
of the LF conjugate of Hγ . We denote by H?γ(θ,u) the LF conjugate of Hγ(θ, δ), as a function of
its second argument δ. Using the definition of LF conjugate 6, that is equal to

H?γ(θ,u) = minδ Hγ(θ, δ)− uT δ (25)

We denote by δ̃γ(θ,u) the minimizer of this expression, i.e.

δ̃γ(θ,u) = argminδ Hγ(θ, δ)− uT δ (26)

14

Published as a conference paper at ICLR 2023

Using the property of LF conjugate, equation 9, we have that

∇2
uH?γ(θ,u) =

(
∇2
δHγ(θ, δ̃γ(θ,u))

)−1
(27)

Comparing with the expression 24 of the damped FIM, the right hand side of this equation is equal
to the inverse damped FIM when δ̃γ(θ,u) is equal to zero. By Lemma 1, we have that δ̃γ(θ,0) = 0
and therefore

(I(θ) + γI)−1 = ∇2
uH?γ(θ,0). (28)

Finally, using the properties of LF conjugate (Eq. 7), we have that δ̃γ(θ,u) = ∇uH?γ(θ,u) and the
inverse FIM is equal to

(I(θ) + γI)−1 = ∇uδ̃γ(θ,0). (29)

A.3 INFORMAL ARGUMENT FOR THEOREM 1

Theorem 1 suggests that computation of the inverse damped FIM requires computing δ̃γ(θ,u) near
u = 0. By Lemma 1, we have that δ̃γ(θ,0) = 0, therefore we may hypothesize that δ̃(θ,u) is
near zero when u is also near zero. Under this assumption, and using equations 23, 24, we may
approximate the regularized cross entropyHγ(θ, δ) by a second order Taylor expansion in δ:

Hγ(θ, δ)− uT δ ' Hγ(θ,0) +
1

2
δT (I(θ) + γI)δ − uT δ (30)

Minimizing this expression with respect to δ results in

δ̃γ(θ,u) = (I(θ) + γI)−1u (31)

which implies the statement of the theorem, (I(θ) + γI)−1 = ∇uδ̃γ(θ,0).

A.4 PROOFS OF CONVERGENCE

Definition 1 (PL Condition). We say that a function satisfies the PL condition with parameter µ ∈
R>0, if the following holds

‖∇L(θ)‖2 ≥ µ(L(θ)− L(θ?)), ∀θ (32)

We use the notation µ-PL to denote the class of functions satisfying the PL condition with parameter
µ.

This condition implies that every stationary point is a global minimum. It however does not imply
either uniqueness of the global minimum nor convexity.

Definition 2 (Smoothness). We say that a function is smooth with parameter ξ, if the following holds

L(θ′) ≤ L(θ) +∇L(θ)T (θ′ − θ) +
ξ

2
‖θ′ − θ‖2, ∀θ,θ′ (33)

We use the notation ξ-smooth to denote the class of smooth functions with parameter ξ.

Proof of theorem 2. We show that the error at each iteration t + 1 is linearly related to the error at
iteration t.

15

Published as a conference paper at ICLR 2023

L(θt+1)− L(θt)

≤ −ηg(θt)
>Qg(θt) +

ξη2

2
g(θt)

>Q2g(θt) (34)

≤ −ηg(θt)
>Qg(θt) +

ξλmaxη
2

2
g(θt)

>Qg(θt) (35)

= −η(1− ξλmaxη

2
)g(θt)

>Qg(θt) (36)

≤ −ηλmin

2
‖g(θt)‖2 (37)

≤ −ηµλmin

2
(L(θt)− L(θ∗)) (38)

= − µλmin

2ξλmax
(L(θt)− L(θ∗)) (39)

The first line is a result of smoothness assumption and the update rule 17. The second line follows
from the definition of λmax. The third line is only a rearrangement of terms. The fourth line follows
from the definition of λmin and the choice of η = 1

ξλmax
. The fifth line holds by PL condition. The

last line follows from replacing the value of η = 1
ξλmax

.

We thus have

L(θt+1)− L(θ∗) ≤ (1− µλmin

2ξλmax
) (L(θt)− L(θ∗)) .

Applying this recursive relation over t, starting from θ0, we arrive at

L(θt)− L(θ∗) ≤ (1− µλmin

2ξλmax
)t (L(θ0)− L(θ∗)) .

Proof of theorem 3. We show that the error at each iteration t + 1 is related to the error at iteration
t as follows.

E [L(θt+1)− L(θt)|θt]

≤ E
[
−ηtg(θt)

>Qĝ(θt) +
ξη2t
2

ĝ(θt)
>Q2ĝ(θt)|θt

]
(40)

≤ −ηtg(θt)
>Qg(θt) + E

[
ξλ2maxη

2
t

2
‖ĝ(θt)‖2|θt

]
(41)

≤ −ηtλmin‖g(θt)‖2 +
ξη2t λ

2
maxG

2

2
(42)

≤ −ηtµλmin(L(θt)− L(θ∗)) +
ξη2t λ

2
maxG

2

2
(43)

The first line is a result of smoothness assumption and the update rule 17. The second line follows
from the definition of λmax. The third line follows from the upper bound assumption on the norm
of gradient. The fourth line holds by PL condition.

We thus have

L(θt+1)− L(θ∗) ≤ (1− ηtµλmin)(L(θt)− L(θ∗)) +
ξη2t λ

2
maxG

2

2

16

Published as a conference paper at ICLR 2023

Recall the choice of ηt = 2
µλmin(t+1) . By definition of A, we have L(θt) − L(θ∗) ≤ A

t+1 when
t = 0. Using induction, we prove the same for L(θt+1)− L(θ∗).

L(θt+1)− L(θ∗) ≤ (1− 2

t+ 1
)

A

(t+ 1)
+

2ξλ2maxG
2

µ2λ2min(t+ 1)2
(44)

≤ A

t+ 1
− A

(t+ 1)2
(45)

= A(
1

t+ 1
− 1

(t+ 1)2
) (46)

≤ A

t+ 2
. (47)

That completes the proof.

A.5 PARAMETERIZATION OF THE MATRIX Q

Consider a multi-layer perceptron (MLP) neural network with L layers. The activation a`i of neuron
i at layer ` is equal to

a`i = σ`

N`−1+1∑
j=1

W `
ija

`−1
j

 for 1 ≤ i ≤ N` (48)

(49)

where layer ` has N` neurons and ` = 1, . . . , L. The symbol W ` denotes the weight matrix from
layer `− 1 to layer `, and has size N` × (N`−1 + 1). This weight matrix includes a bias, by setting
the N` + 1 activation at each layer equal to one:

a`N`+1 = 1 (50)

The function σ` can be any nonlinearity such as ReLU or a Softmax in case of the last layer. The
output of the neural network is defined as the activation in the last layer, aL. For convenience of
notation, the input to the neural network, denoted by x and of dimension N0, is defined as activation
at layer 0:

a0i = xi for 1 ≤ i ≤ N0 (51)

a0N0+1 = 1 (52)

We structure the matrix Q as block-diagonal, each block corresponds to one layer and has the same
number of rows and columns, equal toN`(N`−1+1). For layer l, We parameterize the corresponding
block, denoted by Ql as

Q` = (R`R
T
` ⊗ L`LT`) (53)

where the matrix R` has size (N`−1 + 1) × (N`−1 + 1) while the matrix L` has size N` × N`.
Both matrices L`, R` are lower triangular. This parameterization ensures that the matrix Q is pos-
itive definite. The auxiliary parameters λ are represented by the matrices L`, R` for all layers
` = 1, . . . , L, for a total of 1

2

∑L
`=1 [N`(N` + 1) + (N`−1 + 1)(N`−1 + 2)] auxiliary parameters.

This number is much smaller than the total number of entries of the matrix Q, which is equal to(∑L
`=1N`(N`−1 + 1)

)2
A.6 PRELIMINARY INVESTIGATIONS OF MORE FLEXIBLE APPROXIMATIONS OF THE INVERSE

FIM

Directly parameterizing and learning the inverse FIM lends more flexibility than parameterizing and
learning the FIM in an easy-to-invert form. We conducted preliminary experiments with alternative
parameterizations Q(λ) of the inverse FIM (i.e. beyond the one described in Appendix A.5), all
constrained to afford fast Q(λ)g products. In particular, we experimented with:

17

Published as a conference paper at ICLR 2023

• a simple diagonal matrix Q (constrained to be positive definite), mostly included as a useful
baseline

• the block Kronecker used in the paper and described in Appendix A.5, known to perform much
better than a diagonal matrix;

• a modification of the block Kronecker form that introduces full inner and outer diagonal rescal-
ing: at each layer `, we took

Q` = A`(R` ⊗ L`)B2
` (RT` ⊗ LT`)A`

where A` and B` are two diagonal matrices of the appropriate size. The presence of B` makes
this similar to EKFAC (George et al., 2018), but A` makes it even more general;

• a sum of block Kronecker approximations: at each layer `, we took

Q` = (R
(1)
` R

(1)
`

T
)⊗ (L

(1)
` L

(1)
`

T
) + (R

(2)
` R

(2)
`

T
)⊗ (L

(2)
` L

(2)
`

T
)

All these approximations lend themselves to efficientQg products (e.g. by exploiting standard prop-
erties of the Kronecker product).

To assess how well these approximations could approximate the inverse FIM at a point in op-
timization where high-quality curvature information matters, we pre-trained an MLP with layer
sizes [784, 300, 100, 30, 100, 300, 784] for 200 iterations on MNIST autoencoding using SGD-with-
momentum. The resulting model parameters θ were subsequently frozen, and the auxiliary loss was
minimized to convergence (asymptotic value shown here) under each of the four different parame-
terizations of Q(λ) described above. We found that diagonal rescaling improved only slightly over
the vanilla block Kronecker approximation. However, there was a larger improvement going from
the block Kronecker approximation to the sum-of-block-Kronecker approximation – indeed, the im-
provement on the auxiliary loss was a sizeable fraction of the improvement going from a diagonal
approximation to single block-Kronecker terms. The latter is known to be highly consequential for
training, and so we speculate that sum-of-Kronecker approximations might improve natural gradient
descent in future work.

−0.02
−0.016
−0.012
−0.008

a
u
xi
lia
ry
lo
ss

diag.

block Kron.

block Kron.
with diag.

sum of
block Kron.

Figure 4: Comparison of various forms of Q(λ). See text in Appendix A.6 for details.

A.7 FISHLEG COMPLEXITY

In this section, we provide an analysis of the complexity of FishLeg for a deep fully connected
network with L layers of size N each, processing data in mini-batches of size K. We assume
that Q has the block-diagonal Kronecker form of Eq. 53. The complexity of the forward pass is
O(LKN2), and with automatic differentiation the backward pass has the same complexity. At each
layer, the gradient of the loss w.r.t. the weight matrix has rank R = min(N,K), such that com-
puting the Qg product required for the FishLeg update step (Eq. 17) using Kronecker identities has
complexityO(LKN2) orO(LN3), whichever is smallest. Finally, the inner update step (Eq. 16) is
dominated by (i) the Qg̃ product (line 4 of Algorithm 1) and (ii) the Hessian-vector product (line 6)
which has the sameO(LKN2) complexity as the forward pass. Altogether, FishLeg has complexity
O(LKN2).

In contrast, KFAC has complexity O(LN2 max(K,N)), as the N3 cost of inverting the Kronecker
factors is unavoidable even when the batch size is small.

18

Published as a conference paper at ICLR 2023

A.8 FISHLEG AS AMORTIZATION OF CG STEPS IN HESSIAN-FREE OPTIMIZATION

FishLeg can be thought as a way of gradually amortizing the conjugate gradients (CG)-based inner
loop in Hessian-free optimization. Looking back at Eq. 20, one might wonder: why not directly
optimize over the product v = Q(λ)g, instead of optimizing over λ? Treating v as free parameters,
this would entail minimizing 1

2v
>(I(θ) + γI)v − v>g, which is in fact exactly what Hessian-

free optimization does using CG (Byrd et al., 2011; Martens et al., 2010; though I is sometimes
replaced by the Gauss-Newton approximation to the Hessian). Although each step of CG has a cost
comparable to the computation of g, in practice several iterations are required which tends to remove
any advantage on wallclock time. By learning Q(λ) instead of Q(λ)g, FishLeg learns to amortize
those CG steps over a progressively growing subspace of noisy gradients.

A.9 ANALYTICAL RESULTS IN A SIMPLE LINEAR-GAUSSIAN SYSTEM

Here, we provide an analytical derivation of the behaviour of FishLeg in a simple one-layer linear
network with a Gaussian likelihood, and draw some insights. Consider a regression model of the
form p(y|x) = N (y;θTx, 1), and a teacher in the same model class with θ = 0. Let the input
distribution be x ∼ N (0,Σ). The log likelihood – in the limit of large data batches sampled from
the teacher network – is given by `(θ) = 1

2θ
TΣθ. For analytical convenience, we will work in the

continuous time limit. In this limit, the standard gradient flow is given by
dθ

dt
= −Σθ. (54)

This flow is easily seen to converge to the correct solution (the teacher parameter θ = 0), but to do
so slowly along the eigenvectors of Σ associated with small eigenvalues. Indeed, writing θ = Ua
where the columns of U are the orthonormal eigenvectors of Σ, Eq. 54 implies ai(t) = ai(0)e−λit

where λi > 0 is the ith eigenvalue of Σ. Thus, when Σ is poorly conditioned, convergence is very
slow in its bottom subspace. The question arises: how well does FishLeg mitigate this problem?

For this simple model, the Fisher matrix is I = Σ, and the cross-entropy of Eq. 10 (unregularized, as
it is not necessary here) is given byH(·, δ) = 1

2δ
TΣδ. To simplify our analytical derivations, instead

of using Adam for optimizing the auxiliary loss as we do in our experiments, here we consider simple
gradient descent in continuous time:

dQ

dt
= −α∇QA

(
θ,u =

Σθ

‖Σθ‖
, Q

)
(55)

which is evaluated at u = g/‖g‖ where g = Σθ is the momentary gradient of the primary loss (the
model’s negative log likelihood). Expanding the auxiliary loss of Eq. 20, we obtain

dQ

dt
= − α

‖Σθ‖2
∇Q

[
θTΣ

(
1

2
QΣQ−Q

)
Σθ

]
(56)

= − α

‖Σθ‖2
∇QTrace

[(
1

2
QΣQ−Q

)
ΣθθTΣ

]
(57)

Letting z = QΣθ, and after some algebra, the auxiliary flow of Q in Eq. 57 implies the following
flow for z:

dz

dt
= αΣ(θ − z). (58)

With the same notation, the primary FishLeg flow is
dθ

dt
= −QΣθ = −z. (59)

Thus, in this simple linear-Gaussian setup, FishLeg boils down to a pair of coupled linear ODEs.
One can already see that, assuming a separation of timescales with α � 1 such that θ changes
much more slowly than Q (i.e. than z), then the FishLeg flow becomes dθ/dt = −θ which implies
exponential decay of the loss irrespective of Σ – and indeed, for this model it is exactly natural
gradient descent. To drive the point home, we rewrite these coupled ODEs in the orthonormal
eigenbasis of Σ = UΛUT , which yields

d

dt

(
θ̂
ẑ

)
=

(
0 −I
αΛ −αΛ

)(
θ̂
ẑ

)
(60)

19

Published as a conference paper at ICLR 2023

where we have defined θ = U θ̂ and z = U ẑ, and Λ is a diagonal matrix containing the eigenvalues
{λi} of the input covariance. The eigenvalues {βi} of this state matrix are then easily shown to
satisfy

αλi(1 + βi) = −β2
i (61)

assuming the correct ordering of the βi’s w.r.t. the λi’s. For each λi, as α grows large (i.e. good
separation of timescales between θ and Q), there are only two ways for βi to satisfy Eq. 61. Either
βi remains finite (O(α0)), implying that (1 + βi) must be O(1/α), which in turn implies βi → −1.
Or βi grows large and real, in which case (1 + βi) must be negative because −β2

i is, and more
specifically βi must grow as −O(α). These qualitative arguments can be confirmed by writing
down the closed-form solution of the quadratic Eq. 61. In summary, with sufficient separation of
timescales between the primary and auxiliary parameter updates, FishLeg converges uniformly in
all directions in parameter space, with a uniform dominant timescale that does not depend on the
condition number of Σ. This is contrast with standard gradient descent which is slowed down by
small negative eigenvalues in the spectrum of Σ.

Note that in the above derivations, the transition from Eq. 57 to Eq. 58 made the implicit assumption
that Q was unconstrained – in particular, it could lose symmetry. In this case, the derivation shows
that unless the auxiliary flow is substantially faster than the primary flow, FishLeg can suffer from
oscillations / poor damping especially in the bottom subspace of Σ (c.f. solutions of Eq. 61 for small
α). In practice however, one would normally write Q = LLT with a positivity constraint on the
diagonal of L, and formulated the auxiliary flow in terms of dL/dt instead. This would guarantee
Q � 0 throughout optimization. Although analytical derivations become more tedious in this case,
we speculate based on numerical simulations that this parameterization mitigates the problem of
oscillatory optimization dynamics.

20

Published as a conference paper at ICLR 2023

FACES CURVES MNIST
100 1000 100 1000 100 1000

Damping γ 1.0 1e-3 1e-2 1.0 3e-1 3e-2
η 5e-2 5e-2 1e-2 1e-1 7e-2 5e-2
α 1e-4 1e-4 1e-5 5e-4 1e-4 1e-4

ηSGDm 1e-2 1e-2 3e-2 1e-2 1e-2 1e-3

Table 1: Optimal hyperparameter values for FishLeg, identified as the result of a grid search over
the space shown in Table 2. These hyperparameters were chosen to minimise the training loss.

FACES CURVES MNIST
100 1000 100 1000 100 1000

Damping γ 1e-2, 1e-1,
1.0, 10,

100

1e-3, 1e-2,
1e-1, 1.0,
10, 100

1e-4, 1e-3,
3e-2, 1e-2,
3e-1, 1.0,

10

1e-4, 1e-3,
1e-2, 1e-1,

1.0

1e-4, 1e-2,
1e-1, 3e-1,

1.0, 100

1e-4, 1e-2,
3e-2, 1.0,

100

η 1e-3, 5e-3,
1e-2, 5e-2

5e-4, 5e-3,
1e-3, 1e-2,

5e-2

1e-3, 5e-3,
1e-2, 5e-2,
7e-2, 1e-1,
2e-1, 5e-1

1e-3, 1e-2,
2e-2, 5e-2,

1e-1

1e-3, 5e-3,
1e-2, 5e-2,
7e-2, 1e-1,
2e-1, 5e-1

1e-3, 5e-3,
1e-2, 2e-2,
5e-2, 7e-2,
1e-1, 5e-1

α 5e-5, 8e-5,
1e-4, 5e-4,
1e-3, 5e-3

5e-5, 1e-4,
5e-4, 1e-3,
1e-2, 1e-1

1e-5, 5e-5,
1e-4, 5e-4,
1e-3, 5e-3

1e-5, 1e-4,
5e-4, 1e-3,

1e-2

1e-5, 5e-5,
1e-4, 5e-4,
1e-3, 5e-3

5e-5, 1e-4,
5e-4, 1e-3

Table 2: Entire space of hyperparameters explored to optimize the training loss for each task. All
combinations were explored, in a grid fashion, and each combination was run three times with dif-
ferent seeds. Finally, the combination of hyperparameters with the lowest training loss was selected.

21

Published as a conference paper at ICLR 2023

Figure 5: Same as Fig. 2 with a batch size of 1000.

22

	Introduction & summary of contributions
	Background
	Fisher information and the natural gradient
	The Legendre-Fenchel conjugate

	Related work
	Fisher-Legendre optimization
	Computation of the natural gradient via the Legendre-Fenchel conjugate
	Online meta-learning of natural gradient updates
	Convergence of online natural gradient
	Details of the algorithm and further remarks

	Empirical evaluation
	Deep linear networks
	Second-order optimization benchmark

	Discussion
	Appendix
	Algorithm
	Proof of theorem 1
	Informal argument for theorem 1
	Proofs of convergence
	Parameterization of the matrix Q
	Preliminary investigations of more flexible approximations of the inverse FIM
	FishLeg complexity
	FishLeg as amortization of CG steps in Hessian-free optimization
	Analytical results in a simple linear-Gaussian system

