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Abstract

Recent studies have achieved inspiring suc-001
cess in unsupervised grammar induction us-002
ing masked language modeling (MLM) as the003
proxy task. Despite their high accuracy in004
identifying low-level structures, prior arts tend005
to struggle in capturing high-level structures006
like clauses, since the MLM task usually only007
requires information from local context. In008
this work, we revisit LM-based constituency009
parsing from a phrase-centered perspective. In-010
spired by the natural reading process of hu-011
man readers, we propose to regularize the012
parser with phrases extracted by an unsuper-013
vised phrase tagger to help the LM model014
quickly manage low-level structures. For a bet-015
ter understanding of high-level structures, we016
propose a phrase-guided masking strategy for017
LM to emphasize more on reconstructing non-018
phrase words. We show that the initial phrase019
regularization serves as an effective bootstrap,020
and phrase-guided masking improves the iden-021
tification of high-level structures. Experiments022
on the public benchmark with two different023
backbone models demonstrate the effective-024
ness and generality of our method.025

1 Introduction026

The hierarchical structure of natural language plays027

a key role in accurate language understanding,028

but can be unfortunately overlooked when text is029

treated as a plain sequence. To this end, consider-030

able efforts have been made in integrating structural031

inductive bias into neural language models (LM)032

(Shen et al., 2018b; Wang et al., 2019; Shen et al.,033

2020). Despite different implementations, the gen-034

eral idea is to first apply a parsing module to in-035

duce the soft grammar tree of the input text, and036

then incorporate the induced tree into an encoding037

model (e.g., Transformer (Vaswani et al., 2017)).038

The model is optimized in an unsupervised manner039

with masked language modeling (MLM) (Devlin040

et al., 2019) as a common proxy task.041

These models have shown inspiring success in 042

inducing meaningful parsing trees without human 043

annotation, but still face two challenging problems. 044

Firstly, the parsing module is randomly initialized 045

at the beginning of the training process. Subopti- 046

mal initial parsing accuracy can lead to problematic 047

structural constraints in the encoder model, and 048

further influence the training process and final per- 049

formance (Gimpel and Smith, 2012). Secondly, 050

the token-level language modeling task encourages 051

the model to focus on local structures, since the 052

reconstruction of a masked word mainly relies on 053

its local context. As a result, the learned model 054

achieves high accuracy in local constituents, like 055

noun phrases (NP), but significantly worse accu- 056

racy in high-level, long-distance structures, such 057

as subordinate clauses (SBAR) and prepositional 058

phrases (PP). On the PTB dataset, the most recent 059

structured language model (Shen et al., 2020) still 060

falls behind neural probabilistic context-free gram- 061

mar models (e.g., Kim et al. (2019b)) by over 4% 062

in average SBAR and PP recall. 063

In this work, we revisit the LM-based unsu- 064

pervised parsing models by providing a phrase- 065

centered perspective. We get inspiration from the 066

natural reading process of human readers. When 067

we try to parse a sentence, instead of handling each 068

individual word, we first recognize the obvious 069

phrases, for instance, names, concepts, slogans, 070

etc. Some phrases are known beforehand, while 071

some are learned from the current context. We 072

then treat each phrase as a complete unit, and only 073

need to figure out the high-level structures that con- 074

nect these phrases. Following this intuition, we 075

mimic the natural reading process with a three- 076

stage learning framework. In the first stage, we 077

identify the multigram phrases with the help of 078

an unsupervised phrase tagging model. The ex- 079

tracted phrase set guides the parsing module to 080

quickly manage the pattern of short constituents at 081

the early training stage. The “warm-up” process 082
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Step 1: “longest” + “river” → [C1]
Step 2: “the” + “world” → [C2]
Step 3: “the” + [C1] → [C3]
Step 4: “in” + [C2] → [C4]
Step 5: [C3] + [C4] → [C5]
Step 6: “is” + [C5] → [C6]
Step 7: “what” + [C6] → [C7]

the worldinlongest rivertheisWhat

Induced Parse Tree

[C1] [C2]

[C3] [C4]
[C5]

[C6]
[C7]

mlm loss

Figure 1: Illustration of LM-based unsupervised con-
stituency parsing. The parse tree is induced from a dis-
tance sequence generated by the distance estimator dθ,
which is jointly optimized with a distance-guided en-
coder from the masked language modeling task.

does not require any external resource, and effec-083

tively improves and stabilizes the initial parsing084

accuracy. In the second stage, the model is opti-085

mized through the original MLM task. After this086

stage, the model is good at capturing local struc-087

tures, as stated above. In the third stage, to push the088

model out of its comfort zone and force it to learn089

about high-level structures, we apply a simple and090

effective phrase-guided masked language modeling091

task. Specifically, we extract short phrases in the092

training sentences as the local constituents identi-093

fied by the model, which are relatively “easy cases”094

for the model. We then sample a part of the phrases,095

and exclude them from the MLM task, so we are096

basically downsampling intra-phrase words in the097

reconstruction task, and emphasizing non-phrase098

words that connect phrases. The proposed method099

is general and can be applied to arbitrary LM-based100

parsers in a plug-and-play manner.101

Contributions. The major contributions of this pa-102

per are summarized as follows: (1) We point out103

the major challenges faced by LM-based unsuper-104

vised constituency parsing, and revisit the problem105

with a phrase-centered perspective; (2) We propose106

a novel framework with phrase-regularized warm-107

up and phrase-guided mask language modeling,108

that can be applied to general LM-based parsers109

for improvement; (3) Experiments on the public110

benchmark with two different base models demon-111

strate the effectiveness of our method. Code and112

data will be published for further research study.113

2 Preliminary114

In this section, we present our problem formula-115

tion and briefly review the general framework of116

LM-based unsupervised constituency parsing, as117

illustrated in Figure 1.118

Parsing as Distance Estimation. Constituency 119

parsing aims to assign an undirected constituency 120

tree to the input sentence, which illustrates how 121

different parts are hierarchically combined in the 122

sentence (Jurafsky, 2000). To enable end-to-end 123

model learning, following prior works (Wang et al., 124

2019; Shen et al., 2020), the discrete parsing tree 125

is represented as a distance sequence dθ(s) = 126

{d1, d2, ..., dn−1}, where di is the distance score 127

between adjacent words wi and wi+1, parameter- 128

ized by model θ. Given the distance sequence, the 129

tree structure can be induced in a greedy manner: 130

starting from each single token as a leaf constituent, 131

we recursively merge two constituents with the min- 132

imum distance score into a large constituent. The 133

tree structure is hence uniquely determined by the 134

relative order of the distance sequence. Figure 1 135

shows a concrete example of the parse tree induc- 136

tion process from an estimated distance sequence. 137

Our goal is to learn a high-quality distance esti- 138

mator dθ from unlabeled text corpus that induces 139

accurate parsing trees. 140

Distance-guided Model Learning. For model 141

learning, the generated distance sequence is in- 142

jected into an encoding model (e.g., Transformer) 143

as structural bias to control information exchange 144

between words. Intuitively, two adjacent words 145

with smaller distance score are more likely to be- 146

long to the same constituent, and will exchange 147

more information to each other. The distance es- 148

timator dθ is jointly optimized with the distance- 149

guided encoder from the masked language model- 150

ing (MLM) task as a proxy. Formally, given a mask- 151

ing rate µ and a sentence s = {w1, w2, ..., wn}, a 152

mask sequence is sampled from uniform Bernoulli 153

sampling, where mi is a binary variable with 154

p(mi = 1) = µ. We then get the masked sentence 155

ŝ = {ŵ1, ..., ŵn} by replacing wi with a mask to- 156

ken where mi = 1. The MLM loss is computed 157

as: 158

`mlm(s) =

∑
wi∈Xmask

log p(wi|ŝ)
|Xmask|

, 159

where Xmask is the set of masked tokens. The en- 160

coding model is trained to minimize `mlm based on 161

the distance-constrained information aggregation. 162

We will introduce more details about the distance- 163

aware encoders in Section 4. 164

3 Framework Overview 165

In this work, we recognize and examine two ma- 166

jor challenges of LM-based grammar induction: 167
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Stage 2: Standard Masked LM Training Stage 3: Phrase-guided Masked LM Training
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the longest river

in the world

What [M] the [M] river in [M] world

Distance Estimator
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Sequence

Masked 
Sequence

Distance d6d6d1d1 d2d2 d3d3 d4d4 d5d5 d7d7

Distance-guided Encoder

Output

Training
Loss

What [M] the [M] river in [M] world

Distance Estimator

What is the longest river in the world

Distance-guided Encoder

the worldinlongest rivertheisWhat

Currently Induced Parse Tree

[C1] [C2]
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[C6]
[C7]

What [M] the longest river in [M] world

Distance Estimator

What is the longest river in the world

Distance-guided Encoder
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Graph Legends
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Figure 2: An overview of the proposed framework. Given the training corpus, the training process consists of three
stages. Stage 1: phrase-regularized warm-up using the initial phrase set extracted by an off-the-shelf unsupervised
phrase mining module (Section 5); Stage 2: standard masked language model learning; Stage 3: extract a new
phrase set with the local constituents identified by the model itself, and apply phrase-guided masked language
model learning (Section 6).

(1) the randomly initialized distance estimator can168

yield a suboptimal information exchange network169

in the encoder in the cold start phase, which may170

further lead to suboptimal parsing accuracy due to171

error accumulation. (2) the token reconstruction172

task mainly relies on the aggregation of local infor-173

mation, thus can hardly guide the model to manage174

high-level structures across long distances.175

To tackle the challenges, we revisit LM-based176

unsupervised constituency parsing from a phrase-177

centered perspective. We propose a three-stage178

training framework, as shown in Figure 2. In the179

first stage, we extract an initial phrase set using180

an off-the-shelf unsupervised phrase tagger. The181

extracted phrases serve as effective guidance to182

help warm up the distance estimator to boost its183

initial accuracy in the cold start phase. The model184

then gradually gets rid of the help from the initial185

phrase set and learns about local structures from the186

original MLM task in the second stage. In the third187

stage, we try to push the model out of its comfort188

zone by moving the focus from local structures to189

high-level structures. We extract a new phrase set190

from the local constituents identified by the model191

itself, which consists of “easy cases” for the model.192

We then downsample the intra-phrase words for193

the reconstruction task, and emphasize more on194

the relatively harder reconstruction of non-phrase195

words, which connect local constituents into high-196

level structures. In following sections, we first197

introduce the base encoding models we experiment 198

with, and then present more details of the proposed 199

framework. 200

4 Distance-guided Encoders 201

Our method can be applied to any encoder with 202

a distance estimator and distance-constrained in- 203

formation aggregation. In this work, we exam- 204

ine our method on two recently developed models, 205

TreeTransformer (Wang et al., 2019) and Struct- 206

Former (Shen et al., 2020), as our base models. 207

Both models extend the original Transformer en- 208

coder (Vaswani et al., 2017) by adding a structure- 209

aware attention term. Specifically, the original 210

Transformer computes the attention matrix A as 211

A = softmax(
QK>√
dhead

), 212

where aij ∈ A is the attention score between word 213

wi and wordwj ,Q is the query matrix,K is the key 214

matrix, and dhead is the attention head size. The 215

extended attention score in a structure-constrained 216

encoder is written as a′ij = qij · aij , where qij is 217

the structure-based attention score determined by 218

the distance sequence. 219

The two base encoders differ in their ways to 220

parameterize the distance function dθ and to define 221

the structure-based attention score qij . 222

TreeTransformer parameterizes the distance se- 223

quence with an additional attention module. The 224

3



structure-based attention score qij represents the225

probability that two words belong to the same con-226

stituent, and is defined as227

qij =

j−1∏
k=i

(1− dk).228

Intuitively, words within a closer distance have229

more information exchange in TreeTransformer.230

Structformer parameterizes the distance sequence231

with a Convolutional Neural Network. Struct-232

Former uses a more complicated structure con-233

straint: each constituent has a head word, and in-234

formation can only be exchanged between the head235

word and remaining child words in the constituent.236

The structure-based attention score qij stands for237

the probability that wi and wj can exchange in-238

formation, which means wi is the head word of239

any constituent containing wj , or vice versa. qij240

is jointly determined by the distance sequence and241

a syntacic height sequence. Ideally, the height of242

each child word in a constituent should not exceed243

the boundary distances. More details can be found244

in the original paper (Shen et al., 2020).245

To summarize, the distance estimator dθ deter-246

mines the attention matrix in the encoder. Through247

the MLM task, the model learns to optimize dθ248

for more effective information aggregation. We249

then induce the parse tree from the distance se-250

quence generated by dθ in the parsing process. In251

following sections, we introduce details about the252

proposed phrase-regularized warm-up and phrase-253

guided masked language modeling, which jointly254

help train a better dθ.255

5 Phrase-regularized Warm-up256

Given a target sentence, we first extract spans that257

are likely to be phrases. By definition, we seek258

word sequences that consistently occur “consecu-259

tively in the text, forming a complete semantic unit260

in certain contexts” (Finch, 2016). The extracted261

phrases are used as additional guidance for the dis-262

tance estimator at the very beginning of the training263

process. Specifically, we encourage the distance264

estimator to assign smaller intra-phrase distances265

than phrase boundary distances to draw a clear gap266

on the phrase boundaries. Figure 3 shows a con-267

crete example of intra-phrase and phrase boundary268

distances. Here we introduce more details about the269

unsupervised phrase extraction process and phrase270

regularization for warm-up.271

What is the longest river in the world

d1d1

w1w1 w2w2 w3w3 w4w4 w5w5 w6w6 w7w7 w8w8

d2d2 d3d3 d4d4 d5d5 d6d6 d7d7

ℓphrase = 1
4 ⋅ (max(0, d3 − d2) + max(0, d3 − d5)

+max(0, d4 − d2) + max(0, d4 − d5))
ℓphrase = 1

4 ⋅ (max(0, d3 − d2) + max(0, d3 − d5)
+max(0, d4 − d2) + max(0, d4 − d5))

Intra-phrase distances: {d3, d4}{d3, d4}
Boundary distances:

Phrase: “the longest river”
Unsupervised 

Phrase 
Mining {d2, d5}{d2, d5}

Figure 3: An example of phrase-regularized warm-
up. Given the example sentence with the tagged initial
phrase “the longest river”, we try to encourage the aver-
age intra-phrase distance to be smaller than the average
phrase boundary distance through a margin loss.

Phrase Extraction. Without introducing any ex- 272

ogenous resource, we apply the core phrase min- 273

ing module of the UCPhrase model (Gu et al., 274

2021), which does not require any complicated 275

model training. Specifically, within each docu- 276

ment D, its core phrase PD is defined as the set 277

of max frequent n-grams in D. For each phrase 278

wi:j = {wi, ..., wj} ∈ PD, “frequent” means it 279

has to occur in the document for at least τ times. 280

“max” means there does not exist any “super phrase” 281

w′ ⊇ wi:j in the same document. Such document- 282

level max frequent n-grams are shown to have rea- 283

sonably high quality and preserve contextual com- 284

pleteness. Uninformative sequences are filtered by 285

a corpus-oriented stopword list generated by TF- 286

IDF ranking. The extracted phrase set serves as 287

effective regularization for the randomly initialized 288

parsing model in early training steps. Note that 289

the phrase extraction module can be replaced by 290

any phrase tagger. Here we show that even phrases 291

extracted by this simple heuristic tagger can bring 292

clear improvement. 293

Phrase Regularization. Given the target sentence 294

s = {w1, w2, ..., wn} and its initial phrase set Ps, 295

we encourage the parser to generate smaller dis- 296

tance scores between intra-phrase words than the 297

distance scores on the phrase boundaries. For- 298

mally, we compute the phrase distance loss for 299

each phrase wi:j = {wi, ..., wj} ∈ Ps as the av- 300

erage margin loss between intra-phrase distance 301

scores and phrase boundary distance scores: 302

`phrase(wi:j) =

1

|wi:j |

j−1∑
k=i

max(0, dk − di−1) + max(0, dk − dj)

2
.

303
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The phrase distance loss for the entire sentence is304

`phrase(s) =
1

|Ps|
∑

wi:j∈Ps

`phrase(wi:j).305

For StructFormer, we replace the intra-phrase dis-306

tances into the intra-phrase heights to satisfy its307

structure constraint as introduced in Section 4.308

The overall loss function at training step t is309

formed as:310

`(s) = `mlm(s) + λt · `phrase(s),311

which is basically the original masked language312

modeling loss `mlm regularized by the phrase dis-313

tance loss `phrase with coefficient λt. For smooth314

transition, we apply a step-wise linear coefficient315

decay. At training step t, we have λt = λ0 · (1−316

t/T1), so that we apply full regularization at the317

very beginning, and then gradually remove the reg-318

ularization until the model learns completely from319

the MLM task. In experiments, we set T1 to the320

number of steps in one training epoch by default.321

6 Phrase-guided Masked Language322

Modeling323

The masked language modeling task mainly re-324

lies on the aggregation of local context information325

around the masked word. For instance, in the exam-326

ple sentence presented in Figure 2, the prediction of327

“longest” mainly depends on its neighbor “river”.328

Hence, the parser can quickly manage the structure329

of short phrases as they are closely related to the330

optimization proxy. High-level long constituents,331

however, can hardly be captured in this process.332

From this perspective, the sentence parsing task can333

then be divided into two parts: parsing the struc-334

tures of short phrases, and capturing high-level335

long structures that connect short phrases. The336

former can be learned from the intra-phrase word337

reconstruction task, and the latter depends on the338

modeling of other non-phrase words.339

Following this intuition, we propose simple and340

effective phrase-guided masked language modeling341

to emphasize the reconstruction of words outside of342

local constituents. Specifically, we parse the train-343

ing sentences with the learned model, and treat all344

local constituents (e.g., with fewer than 4 tokens)345

from the generated parsing trees. Given a sentence346

with tagged local phrases, we first apply uniform347

Bernoulli sampling on the phrases with probability348

µp. The sampled phrases are excluded from the349

MLM task: words inside of the sampled phrases 350

will not be masked. All rest words are sampled 351

for masking with the original masking rate µ. For- 352

mally, given a sentence s with the tagged phrase 353

set Ps, the probability of word wi being masked in 354

the MLM task is computed as: 355

P (mi = 1) =

{
µp · µ, ∃w ∈ Ps, wi ∈ w
µ, otherwise.

356

By doing so, we try to push the model out of its 357

comfort zone of local structure learning, and en- 358

courage it to focus more on how the local con- 359

stituents are connected. 360

Discussion. Another natural idea to achieve simi- 361

lar intuition is to apply phrase-level reconstruction 362

through whole-phrase masking. Namely, we mask 363

the entire phrase so that the model cannot make 364

prediction merely based on information aggregated 365

through local structures, but can only rely on cross- 366

phrase structures to gather information. We test 367

this intuition in two ways: (1) replace each token in 368

the phrase with a mask token, and apply standard 369

MLM; (2) replace the entire phrase with one mask 370

token, and apply autoregressive phrase reconstruc- 371

tion with a decoder similar to Raffel et al. (2020). 372

Interestingly, results from both implementations 373

show that whole-phrase masking can hurt the accu- 374

racy of unsupervised parsing. A possible reason is 375

that reconstructing the entire masked phrase relies 376

on deep semantic knowledge rather than just syn- 377

tactic structures. We list this finding here and leave 378

it as a potential research problem. 379

7 Experiments 380

Dataset and Evaluation. Following prior studies 381

(Shen et al., 2018b; Wang et al., 2019; Shen et al., 382

2020), we train all models on the plain text of the 383

PTB corpus (Mikolov et al., 2010) and evaluate 384

them on the WSJ test set (Taylor et al., 2003), in 385

which punctuations are removed. 386

We follow the standard evaluation for unsuper- 387

vised parsing: given a predicted parsing tree, we 388

fetch all of its subtrees (nested constituents), and 389

compare with those from the gold tree to com- 390

pute the F1 score. We also report recall scores 391

of the typed constituents in gold trees, including 392

noun (NP), verb (VP), prepositional (PP), adjec- 393

tive (ADJ), adverb (ADV) phrases and subordinate 394

clauses (SBAR). The precision score for each type 395

is not available in the unsupervised setting since 396

the predicted constituents do not have types. 397
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Methods F1 (%)

PRPN (Shen et al., 2018a) 37.4
ON-LSTM (Shen et al., 2018b) 47.7
URNNG (Kim et al., 2019c) 52.4
C-PCFG (Kim et al., 2019b) 55.2
Neural L-PCFGs (Zhu et al., 2020) 55.3

TreeTransformer (Wang et al., 2019) 47.9
+ PMLM 48.7
+ PRW 49.0
+ PRW + PMLM 49.3

StructFormer (Shen et al., 2020) 54.0
+ PMLM 54.1
+ PRW 55.3
+ PRW + PMLM 55.7

Table 1: Unlabeled F1 score (%) for unsupervised con-
stituency parsing on WSJ test set.

Method NP VP ADJ ADV SBA PP

PRPN 59.2 46.7 44.3 32.8 50.0 57.2
ON-LSTM 64.5 41.0 38.1 31.6 52.5 54.4
C-PCFG 74.7 41.7 40.4 52.5 56.1 68.8

TreeTransformer 63.7 37.1 32.3 56.8 37.0 49.7
+ PMLM 63.5 37.9 31.7 56.8 38.0 50.4
+ PRW 64.2 36.3 27.9 53.8 36.2 53.0
+ PRW + PMLM 64.2 37.2 29.6 53.7 35.9 53.3

StructFormer 73.7 43.2 53.4 70.5 51.8 64.5
+ PMLM 73.6 43.7 53.4 69.3 51.9 64.6
+ PRW 74.0 44.9 52.9 69.9 52.7 69.4
+ PRW + PMLM 74.2 45.1 53.2 69.3 53.9 70.1

Table 2: Recall scores (%) of typed gold constituents.

Compared Models. Our baseline methods include398

three major types of unsupervised parsing method.399

PRPN (Shen et al., 2018a), ON-LSTM (Shen400

et al., 2018b) and URNNG (Kim et al., 2019c)401

are recurrent neural network based methods. They402

are trained by recurrent language modeling loss,403

where the model is asked to predict the next token404

given the previous context. C-PCFG (Kim et al.,405

2019b) and Neural L-PCFGs (Zhu et al., 2020)406

are neural network augmented methods based on407

the traditional probabilistic context-free grammar408

framework, where a set of weighted linguistic409

rules are learned for tree generation. TreeTrans-410

former (Wang et al., 2019) and StructFormer (Shen411

et al., 2020) are the backbone models we apply412

in our study, as introduced in Section 4. For our413

method, we report performances of three variants414

based on each base model: the performance with415

phrase-regularized warm-up (+PRW), the perfor-416

mance with the phrase-guided masked language417

modeling (+PMLM), and the performance with418

both (+PRW+PMLM).419

Figure 4: Illustration of how the F1 score grows with
more training steps in the first epoch. We present the
curves of the original TreeTransformer (base, dashed
lines) and the curves with phrase-regularized warm-up
(base+PRW, solid lines) under different masking rates.

Reproduction Details. We use the published 420

StructFormer and TreeTransformer implementa- 421

tions with their default hyperparameters and op- 422

timizers as our backbone models. The learning 423

rate is controlled with a linear scheduler for both 424

models, which starts from the original learning 425

rate, and applies a linear learning rate decay until 426

it reaches 0.0 at the last training step. The initial 427

coefficient λ0 for PRW is set to 0.02 for both mod- 428

els. The phrase masking rate µp for PMLM is set 429

to 0.9. The total number of training steps is fixed, 430

and PMLM is included after 80% of training steps. 431

Training and evaluation are conducted on NVIDIA 432

RTX A6000 GPUs. We report average results from 433

four random seeds (1, 11, 111, 1111). Results from 434

both backbone models are reproduced in the same 435

machine as variants with our methods for fair com- 436

parison. Results from other baseline models are 437

taken from Shen et al. (2020). 438

7.1 Performance Comparison 439

Table 1 shows average F1 scores for the com- 440

pared methods on the WSJ test set. Both PRW 441

and PMLM bring improvements in the F1 score. 442

Specifically, PRW increases the F1 score by +1.1% 443

and +1.3% on TreeTransformer and StructFormer 444

respectively; PMLM increases the F1 score by 445

+0.8% and +0.1% respectively; When applied to- 446

gether, PRW and PMLM bring improvement on F1 447

score by 1.4% and 1.7% respectively. Compared 448

with other parsing models, the enhanced models 449

have very competitive performances. The proposed 450

method helps StructFormer achieve at least compa- 451

rable F1 score with the state-of-the-art model based 452

on neural linguistic rule learning (C-PCFG). 453
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Ground Truth

StructFormer

+PRW

+PRW
+PMLM

Figure 5: Comparison between the parsing trees generated by different models on the same input sentence.

Table 2 provides a more in-depth view of the454

performance change of each type of constituents.455

Consistent with our intuition, PRW improves the456

recall of local constituents like NP, and PMLM457

improves the recall of compositional constituents458

like VP, SBA and PP. To our surprise, PRW also459

brings strong improvement in PP, which means460

the better accuracy in local structure parsing may461

have a positive impact on high-level structures as462

well. StructFormer achieves state-of-the-art PP463

recall with the help of PRW and PMLM.464

7.2 How does phrase-regularized warm-up465

help initialization?466

PRM brings strong performance gain, and we are467

curious about whether the strength of such enhance-468

ment, if any, starts from the initial training steps as469

our design, and how the strength changes with dif-470

ferent masking rates. Intuitively, a larger masking471

rate may make the initial parsing task even harder,472

since there is less information available. Figure 4 473

shows the F1 curves of the base TreeTransformer 474

model and the enhanced variant with PRW under 475

different masking rates. We observe that, PRW al- 476

ways brings significant improvement in the initial 477

parsing performance. Different masking rates do 478

not bring very clear differences in the initial perfor- 479

mance of the base model. However, the strength of 480

enhancement from PRW becomes more significant 481

as the masking rate gets higher, which verifies our 482

intuition, that the guidance from the initial phrase 483

set may be more valuable with less information 484

available to the initial parser. 485

7.3 Case Study 486

To better understand the effectiveness of PRW and 487

PMLM, we conduct case study of the generated 488

parsing trees, as shown in Figure 5. Consider the 489

subtree in the green square. The real noun phrase 490

in the ground truth is “takeover candidates”, while 491

7



StructFormer mistakenly merges “spotting” and492

“takeover” first. The model with PRW identifies the493

correct noun phrase. The improved initialization494

with phrase regularization does enhance the parser495

in its ability to identify short phrases.496

The subtree in the blue square shows an ex-497

ample of high-level constituent structure, where498

“takeovers aren’t totally gone” forms a clause to-499

gether with “that”. StructFormer merges “that”500

with “takeovers” and breaks the clause. The origi-501

nal MLM task mainly focuses on local structures,502

and may prioritize potential local constituents503

(“that takeovers” can form a noun phrase from a504

local view). PRW cannot fix this issue, but PMLM505

helps make the right decision. This verifies our in-506

tuition, that PMLM encourages the model to learn507

about the structure of non-phrase words, and to508

capture better high-level structures.509

Limitations. Note that in Figure 5, all models510

cannot resolve the structure ambiguity between511

“Mario Gabelli an expert” and “an expert at ...”.512

It indicates that the current unsupervised methods513

may have little understanding of semantic and com-514

monsense knowledge. Both structures make sense515

to the model. Weakly-supervised, or knowledge-516

enhanced learning may alleviate the problem.517

8 Related Work518

The study of unsupervised constituency parsing can519

be traced back to 50 years ago (Booth, 1969; Salo-520

maa, 1969). We highlight some recent progresses521

that are closely related to our work:522

1) Adding syntactic inductive bias into modern523

neural network models. ON-LSTM (Shen et al.,524

2018b) allows hidden neurons to learn long-term525

or short-term information by a novel gating mech-526

anism and activation function. In URNNG (Kim527

et al., 2019c), amortized variational inference was528

applied between a recurrent neural network gram-529

mar (RNNG) (Dyer et al., 2016) decoder and a530

tree structure inference network, which encourages531

the decoder to generate reasonable tree structures.532

TreeTransformer (Wang et al., 2019) adds extra533

locality constraints to the Transformer encoder’s534

self-attention to encourage the attention heads to535

follow a tree structure such that each token can536

only attend on nearby neighbors in lower layers537

and gradually extend the attention field to further to-538

kens when climbing to higher layers. StructFormer539

(Shen et al., 2020) propose a joint dependency and540

constituency parser, then uses the dependency adja-541

cency matrix to constraint the self-attention heads 542

in transformer models. 543

2) Using neural network to parameterize linguis- 544

tic models. The compound PCFG (Kim et al., 545

2019b) achieves grammar induction by maximizing 546

the marginal likelihood of the sentences which are 547

generated by a probabilistic context-free grammar 548

(PCFG). Neural L-PCFG (Zhu et al., 2020) demon- 549

strated that PCFG can benefit from modeling lexi- 550

cal dependencies. NBL-PCFG (Yang et al., 2021) 551

took a step further by directly modeling bilexical 552

dependencies and reducing both learning and repre- 553

sentation complexities of LPCFGs. DIORA (Droz- 554

dov et al., 2019) proposed using inside-outside dy- 555

namic programming to compose latent representa- 556

tions from all possible binary trees. The represen- 557

tations of inside and outside passes from the same 558

sentences are optimized to be close to each other. 559

3) Extracting syntactic structure from pretrained 560

language models. Kim et al. (2019a) extract trees 561

from pretrained transformers. Using the model’s 562

representations for each word in the sentence, 563

they score fenceposts (positions between words) 564

by computing distance between the two adjacent 565

words. They parse by recursively splitting the tree 566

at the fencepost with the largest distance. 567

4) Leveraging statistic features to identify con- 568

stituents. Cao et al. (2020) use constituency tests, 569

that specify a set of transformations and use an 570

unsupervised neural acceptability model to make 571

grammaticality decisions. Clark (2001) proposed 572

to identify constituents based on their span statis- 573

tics, e.g. mutual information between left and right 574

contexts of the span. 575

9 Conclusion 576

In this work, we study the role of phrases in 577

language model-based unsupervised constituency 578

parsing. We propose a phrase-centered framework 579

with novel phrase-regularized warm-up and phrase- 580

aware masked language modeling. Experiments 581

with two different base models demonstrate the 582

effectiveness of the proposed methods. Compre- 583

hensive case study is conducted for straightforward 584

understanding of the advantages of our model. Al- 585

though this work mainly focuses on the task of 586

unsupervised parsing, the presented idea and obser- 587

vation can be valuable in more general context. We 588

plan to follow this line of work and further incorpo- 589

rate our method in long-range structured language 590

model learning in the future. 591
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