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Abstract

We study the problem of time series imputation in multivariate neural recordings.
Compared to standard time series imputation settings, new challenges for imputing
neural recordings include the lack of adjacent timestamps for electrodes missing
over days, and generalization across days and participants with different electrode
configurations. Due to these challenges, the standard practice in neuroscience is
to discard electrodes with missing data, even if only a part of the recording is
corrupted, significantly reducing the already limited and difficult-to-obtain data. In
this paper, we establish Deep Neural Imputation (DNI), a framework to recover
missing electrode recordings by learning across sessions, spatial locations, and
participants. We first instantiate DNI with natural linear baselines, then develop
encoder-decoder approaches based on masked electrode modeling. We evaluate
DNI on 12 multielectrode, human neural datasets with naturalistic behavior. We
demonstrate DNI’s data imputation ability across a broad range of metrics as well
as integrate DNI into an existing neural data analysis pipeline.

1 Introduction

Multielectrode recordings measure the dynamic activation of large networks of neurons in the brain
and are a key enabling tool in studying neural function at scale [1, 2, 3, 4]. In humans, implanting
such electrode arrays is an invasive neurosurgery procedure, and individual electrode implants can fail
at any time. Therefore, there are almost always missing electrode values in these difficult-to-acquire
and highly precious datasets. The current standard practice is to discard electrodes with missing
data, excluding potentially useful information from analysis and limiting model generalizability
across days and individuals [5, 2, 6]. To address this challenge, we study the problem of imputing
missing values from multielectrode data using recordings collected across multiple days in 12 human
datasets (Figure 1). While related to the generic problem of time-series imputation (e.g., [7, 8], more
discussion in Section D), previous works are not directly applicable due to additional challenges
associated with multielectrode recordings including: (1) electrodes are often missing for entire
sessions with no adjacent recorded timestamps, and (2) existing methods do not handle data across
participants who have completely different sets of electrodes.

Our contributions are summarized as follows:

∗Equal contribution.

Workshop on Learning from Time Series for Health, 36th Conference on Neural Information Processing Systems
(NeurIPS 2022).



P
a
r
ti

c
ip

a
n

t

The Neural Imputation Problem

Day

V
o
lt

a
g

e

Time

Local Field Potential Signal

On-Brain Electrode Coordinates

P1 Pi PNP

Joint-Participant Electrode Coordinate Space

Participant-Specific Electrode Locations

PNP

D1 D4

Neural Time Series P1: Tensor & On-Brain Locations

Data Tensors

Imputed ElectrodesPresent Electrodes

P1

D1 D3

E
le

c
tr

o
d

e

Day
In

st
ance

E
le

c
tr

o
d

e

Day In
st

ance

Day

E
le

c
tr

o
d

e

In
st

ance

Figure 1: Overview of Neural Imputation. Neural imputation recovers missing electrode signals
(yellow) across days and participants given non-corrupted data (blue). Each dataset contains data
from a separate participant (NP datasets total). Top left: Observed multielectrode data from each
dataset/participant is a ragged tensor, because participants have different sets of electrodes that may
be missing in different days. Note that electrodes may be missing for an entire session, which is
atypical in standard time series imputation. In a typical neuroscience study, a few hours from a single
day in a single participant are treated as an independent dataset for analysis (see [9, 2, 10], among
many others). Bottom left: A time series instance from a single electrode in a specific brain location
measures a voltage trace across time. Right: An additional challenge in imputation is variation in
brain morphology and spatial electrode locations across participants.

• We propose the Deep Neural Imputation (DNI) Framework, a method for recovering fully
missing multivariate electrode time series recordings across sessions and human participants.
Additionally, we evaluate DNI’s performance in 12 distinct human datasets where each
participant performs naturalistic behavior with large inter-participant and inter-day variability
[11, 12]. Canonically in neuroscience, only a few hours of a single participant’s recordings
would be treated as a distinct dataset and analyzed separately [9, 2, 10].

• We instantiate DNI using multiple linear and nonlinear imputation methods. The linear
methods can be viewed as natural baseline approaches. The nonlinear DNI methods use
a self-supervised task based on mask-filling during training, which we call masked elec-
trode modeling. Masked electrode modeling is inspired by masking approaches in other
domains [13, 7]. We then extend our learning approach to a multi-task setting to jointly
model all participants across all 12 datasets.

• We provide experimental evidence of DNI’s direct utility in downstream scientific analyses:
(1) DNI reconstructs not only time series content but also frequency based power-spectral
content (highly significant to the neuroscience community [14, 15, 16]), and (2) DNI’s
spatiotemporal reconstructions directly improve a brain decoder’s classification accuracy
when missing data is present.

2 The DNI Framework

In our problem formulation, participants are indexed by i, recording days are indexed by j, Ēi,j
represents the set of observed electrodes on day j for participant i, and Ei,j represents the full set
of active electrodes on day j for participant i (more discussion in Section A). The goal of DNI is to
learn an imputation function f : Ēi,j → Ei,j , as depicted in Figure 2 (Left). f may be either linear or
nonlinear, and we study both instantiations. In the dataset-specific (participant-specific) case, we learn
a function f (i) for each dataset (participant) i (Figure 2). We test these models on a held-out recording
day, making them day-generalizable. In the across-dataset (joint-participant) case, we learn a single
function f across all datasets (participants) (Figure 5). We call this model DOPE-generalizable,
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Figure 2: DNI with Linear Nearest Neighbor Baseline and CNNAE Instantiations. Left: In the
participant-specific setting, we impute missing electrode recordings using data across days in the
same participant. The goal is to map observed electrodes Ē to the full set E . Top Right: DNI with the
linear NN baseline. Bottom Right: DNI with the CNNAE trained via masked electrode modeling.

Day-with-jOint-Participant-Embeddings-generalizable. By necessity, DOPE-generalizable models
are also day-generalizable.

High-Level Approach. Since the neural imputation problem is not well-explored, a key design
goal is to identify the simplest approach that works well for this domain. Two salient desiderata
for imputation methods are (1) the recovery of missing data without adjacent timestamps using
observations from different days; and (2) robustness to variations in brain morphology and physical
electrode placement across participants. Day-generalizable participant-specific modeling addresses
(1) but not (2), while DOPE-generalizable joint-participant modeling addresses both (1) and (2).

To create day-generalizable models that address (1), the key idea is to learn conserved relationships
between electrodes across recording days. Conceptually straightforward methods are either the linear
all electrode method or the linear nearest neighbors method, which we develop leveraging neuro-
science domain knowledge. Either model is a natural baseline since no other baselines exist. We also
study a nonlinear deep autoencoder model, Convolutional Neural Network AutoEncoder (CNNAE),
that we later extend to train jointly over all participants, Multihead CNNAE (M-CNNAE). The
M-CNNAE model is DOPE-generalizable and additionally addresses (2) (futher detail in Section B).

3 Experiments

We study DNI with a linear all electrode baseline model, linear nearest neighbors baseline model,
CNNAE, and M-CNNAE on real-world multielectrode recordings from 12 human datasets where
participants perform naturalistic behavior across multiple recording days. We summarize model
comparisons (Section 3.1) and demonstrate that DNI recovers significant neural decoding performance
with our imputations (Section 3.2). Additional details and results are presented in the Appendix,
including dataset descriptions ( C.1), training and evaluation setups ( C.2), additional results ( C.3),
and frequency content evaluations ( C.4), k-NN hyperparameter sweep ( G.5), MSE metrics ( G.6),
and the linear all electrode performance( G.1).

3.1 Benchmark Results

Our models perform three categories of signal recovery: reconstruction (compared to observed signal),
artificially induced imputation (we mask observed signal for evaluation), and natural imputation (the
original signal was missing). We can perform direct quantitative evaluation of DNI’s signal recovery
capabilites with reconstruction and artificially induced imputation (i.e. imputation). Since there
is no ground truth for naturally missing data, we do not evaluate natural imputation. Time series
correlations comparisons between the linear NN, CNNAE, and M-CNNAE demonstrates that deep
learning approaches generally have higher correlation (Figure 3). Prior approaches for imputing
missing data in the neuroscience community use zero-filling, resulting in a correlation value of zero.
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Figure 3: Comparing Time Series Correlation Across DNI Methods. We compare the CNNAE (top
row) and M-CNNAE (bottom row) to the Linear Nearest Neighbor Baseline. Each point corresponds
to a evaluation setting for one participant (mean of 9 runs - 3 runs of each model with 3 sets of
missing electrodes).

Move/Rest Neural Decoding Performance

Figure 4: Recovering Neural Decoding Performance When Missing Data is Present. Background
shading indicates (with 1 std. dev. of certainty) when the CNNAE-filled model outperforms (green),
performs similarly to (light blue), or underperforms (yellow) compared to the zero-filled model. Each
point corresponds to an experimental setting for one participant; results are averaged over 5 runs and
the error bars represent 1 std. dev.

3.2 Downstream Task: Neural Imputation + Neural Decoding

Given neural decoding’s significance in the neuroengineering community[4, 2, 3, 17], we study
DNI’s ability to directly improve neural decoding performance (Figure 4). We use the movement
neural decoder from [18], which intakes neural time series data and predicts whether the neural data
corresponds to either an arm movement event or rest. After recreating the random forest decoding
performance for the original data, we randomly zero-filled either 50%, 70%, or 90% of the data for
five random sets of missing electrodes and then computed the resulting performance. We purposefully
chose these proportions to test DNI’s limits on downstream applications with highly corrupted or
missing data. Out of the 36 distinct experiments across 12 datasets, our CNNAE-filled data either
increased or maintained decoding accuracy in 34/36 experiments (94.44% of the time). These results
suggest that there is value in adopting DNI in the neuroscience and neuroengineering communities.

4 Conclusions

We presented DNI, a framework for imputing missing values in multivariate time series data tailored
to the challenges in neuroscience data. By recovering previously unusable data, this line of work
can amplify the strength of existing neuroscience analysis workflows. Future work includes pushing
towards more powerful unified representations that can further enable joint-participant analysis.
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Appendix

A Background & Problem Setup

Data Modality & Format. Our data, further described in Section C.1, consists of participants
(indexed by i), recording days (indexed by j),2 electrodes corresponding to spatial locations (indexed
by k), and time series instances (indexed by t). In other words, an observation Ei,j,k,t corresponds
to time series instance t from electrode k on day j for participant i. Indices that follow others
demonstrate dependence; for example, time series instance t depends on the specific electrode k, the
specific day j, and the specific participant i. Here we define generalizable as being able to perform on
previously unseen data. When our models impute data across dimensions j, k, t they generalize across
time series instances, spatial locations, and days (Figure 1) and we call them day-generalizable. When
our models impute data across dimension i as well as dimensions j, k, t they additionally share a joint
participant embedding space; we call them Day-with-jOint-Participant-Embeddings-generalizable,
or DOPE-generalizable. By necessity, DOPE-generalizable models are also day-generalizable.

Challenges in Modeling Electrode Recordings. Due to significant inter-participant and inter-day
variability, data analysis methods in neuroscience commonly treat a few hours from single participants
as individual datasets [9, 2, 10] to be analyzed separately. Figure 1’s right panel demonstrates the
stark electrode configuration variability in our participants, illustrating a common phenomenon in this
data type. Further sources of this variability include movement artifacts, insurmountable experimental
noise, and electrode recording failure. For example, in a neuropixel single-unit electrophysiology
mouse study, only 55.4% of the data could be used for downstream analyses, because of “recording
failure[s],” “low yield,” and “noise/artifact[s]” [5]. In this ECoG LFP human speech decoding study,
electrode recordings were discarded from a majority of the participants due to “bad signal quality”
[2]. The pervasiveness of missing data is exemplified by the standard data storage file format in
neuroscience, Neurodata Without Borders, which explicitly emphasizes its support for “dense ragged
arrays” that permit “missing fields” [6].

These ragged data tensors result from the lack of consistency across the dimensions i, j, k, t (Top Left
Figure 1). Since ragged data are difficult to jointly analyze, they are most commonly broken up into
smaller, non-ragged tensors. This procedure leads to more manageable data for neuroscience analysis
pipelines, meaning that discarding data remains a common practice despite its inefficiency. Because
neuroscience data processing pipelines seldom handle variation in the expected data structure, these
pipelines fundamentally limit the generalization capability of neuroscience models.

Formal Imputation Goals. To address the above challenges, our goal is to impute missing electrode
values by learning from multielectrode time series data across spatial locations, days, and participants.

Let Ei,j = {Ei,j,k | k ∈ Ki} be the full set of active electrodes on day j for participant i. Ki
represents the full set of electrodes for participant i, which remains consistent across days. Let
Mi,j ⊂ Ki represent the set of missing electrodes on day j for participant i. Let Ēi,j = {Ei,j,k | k ∈
Ki \Mi,j} represent the set of observed electrodes.

Formally, DNI seeks to recover Ei,j given Ēi,j . Previous work for multivariate time series impu-
tation [7, 19, 8] studies missing data at the level of sequences {t1, t2, ..., tT }, where there may be
missing observations for a set of timestamps (e.g. {t5, t6, t7}). However, these methods could not
impute when a feature was missing for all timestamps (e.g. {t1, t2, ..., tT }); in other words, each
feature required at least one observed timestamp. Therefore, these methods are not directly applicable
to ours because an entire time series instance Ei,j,k,t = {t1, t2, ..., tT } may be missing and have no
adjacent timestamps.

B The Deep Neural Imputation Framework - Additional Details

Linear All Electrode Baseline. We trained a linear all electrode model, with the details as follows:
let ne denote the total number of electrodes of a participant. The linear all electrode baseline learns a
single set of weights W ∈ Rne×ne and biases b ∈ Rne for each participant. Suppose that x ∈ Rne
represents the measured values (missing values are zeroed out) of all of a participant’s electrodes at

2Most often, a neuroscience recording session is less than or equal to a few hours. However, for simplicity of
exposition we use 24-hr days since that is how our data is organized.
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some time step. Then, this baseline outputs x̂ = Wx+ b. If xi = 0, then x̂i represents the imputed
electrode value. We also set the diagonal values of W to be 0 since we cannot use an electrode’s
own value as a feature for imputation during inference. We train on MSE loss and models were
trained until convergence by reconstructing present electrode values and were evaluated by imputing
values we randomly zeroed out. The values we zeroed are the same across all previous models (i.e.
NN-baseline, CNNAE, M-CNNAE) for comparison consistency.

Linear Nearest Neighbors Baseline. In the absence of appropriate existing baselines, we looked to
known properties of neural signals for inspiration. Correlations exist across spatially close electrode
neighbors; this well known observation motivated us to impute missing electrodes with linear
combinations of observed, neighboring electrodes. In particular, we compute time series correlations
from the N nearest neighbors of an electrode on observed days (e.g. “training days”). Then, we use
these correlations as weights to linearly combine the time series from missing electrode neighbors on
the held out “test day.” These weighted, linearly combined time series compilations constitute our
reconstructed neural signal and form our day-generalizable baseline model.

CNNAE. In our Convolutional Neural Network AutoEncoder (CNNAE) learning approach (Figure 2
Bottom Right), the encoder f

(i)
θ maps Ēi,j with zero-filled missing electrodes to an embedded

representation zi,j . The decoder f (i)
ψ then maps zi,j to Êi,j , which is either a reconstruction or an

imputation (which we distinguish below) of the full set of electrodes Ei,j . For k ∈ Ki \Mi,j = E i,j ,
Êi,j,k corresponds to a reconstruction of observed electrode data. For k ∈ Mi,j , Êi,j,k corresponds to
an imputation of unobserved electrode data. Imputation is a more challenging task than reconstruction,
since in imputation, the decoding target is not an input to the model. The CNNAE is trained using
the self-supervised objective described in Section B.1. Specific architecture design choices are
discussed in Section C.2 – the key criterion is to effectively encode and decode multivariate electrode
time series data. The CNNAE is a day-generalizable model, but it forms the backbone for the
DOPE-generalizable model class described below.

P1

Incomplete

Data

Inner CNNAE

Imputed

Data

Pi

NPP

Joint-Participant Model: M-CNNAE

Participant-Speci�c

Outer Layers

M-CNNAE Architecture

Figure 5: Joint-Participant Deep Neural
Imputation. We extend our framework to
jointly model many human participants, with
different electrode spatial configurations, using
participant-specific encoding and decoding lay-
ers and a shared CNNAE backbone.

M-CNNAE. For joint-participant imputation, the
Multihead CNNAE model (M-CNNAE) learns a
single function f for all participants, instead of
one f (i) for each participant. When extending
the CNNAE to jointly model different participants
(Figure 5), we first used a participant-specific en-
coding layer to map input electrodes to a shared
embedding space. This shared space is necessary
because each participant has a different number
of electrodes arranged in highly varied configu-
rations. The encoder, fθ, and decoder, fψ, are
then trained using the CNNAE’s learning proce-
dure. To map the representation from the shared
embedding space back to the participant-specific
electrode configuration, we also train a participant-
specific decoding layer. Components are trained
jointly with data from all participants via a self-
supervised objective (Section B.1). Unlike the
CNNAE, the M-CNNAE trains a shared represen-
tation across all participants, making it DOPE-
generalizable.

B.1 Training Objective

We train our CNNAE and M-CNNAE models with
self-supervision using masked electrode modeling, where we randomly mask l observed electrodes
during training. Let Ẽi,j represent the observed electrodes with random masking. Then, we train the
autoencoder to simultaneously impute the masked values as well as reconstruct the observed values.
This task is similar to masking used in previous time series imputation approaches [7], except we
mask entire time series from an electrode, instead of a subset of timestamps. The autoencoder is
trained with the following objective: LNLL

i,j = − log
(
p
f
(i)
ψ

(
Ēi,j |f (i)

θ (Ẽi,j)
))

.
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C Experiments Continued

C.1 Datasets for Deep Neural Imputation

To study Deep Neural Imputation we utilize recently released data from all 12 AJILE12 [11]
participants, each with ∼100 electrodes recorded across multiple days. Each participant has a wide
range of naturalistic behaviors during recording, making reconstruction/imputation more difficult
than if explored with canonical task-based neural data [20]. In the past, deep learning models have
been used, often on subsets of the AJILE12 participants. However, these models have explored
more classical neural decoding tasks, namely binary prediction and binary classification of arm
movement [21, 18, 22].

Please see the table below for more details on each dataset, where each participant’s data is one
dataset. With each participant, days 1-2 are never used, as participants are still under heavy drug
usage given their recent brain surgery. Days 6, 7, 7, 5-6 are discarded in participants 1, 2, 3, 5
respectively for other medical reasons. Days 3-7 are fully present in participants 4, 6, 7, 8, 9, 10, 11,
12. In the table, Pt is an abbreviation for participant.

Participant # 1 2 3 4 5 6 7 8 9 10 11 12
Total # of Days per Pt 4 4 4 5 3 5 5 5 5 5 5 5

Specific Recording Days 3-5, 7 3-6 3-6 3-7 3,4,7 3-7 3-7 3-7 3-7 3-7 3-7 3-7

Data Processing Pipelines. Using the same training split as [18] where the last day is held out as the
test day, we define two different data processing pipelines:

• Procedure A: lower frequency content data used in Section C.3
• Procedure B: higher frequency content data used in Sections C.4, 3.2

We use Procedure A to study our models’ ability to reconstruct time series data. We perform
standardization on a 50,000 sample segment, corresponding to a 100sec length time series, on a
per electrode, per day, per participant basis. We divide the 100sec into 20sec and 80sec sections,
calculate the mean (µ20) and standard deviation (σ20) of the 20sec segment, and for each time step in
the 80sec segment compute TimeStep−µ20

σ20
. As typically done in neuroscience studies without task

labels, performing local standardization on each time segment allows us to account for neural data
distribution changes such as spatial electrode shifts, neural drift, habituation to external stimuli, etc.
We then downsample this data by a factor of 100, resulting in 400 time steps of data at a frequency of
5Hz.

Using Procedure B, we study the performance of our imputation model with two downstream tasks:
frequency content preservation, and a scientifically-relevant neural decoding task. We follow the data
processing pipeline outlined in [18], consisting of band-pass filtering, downsampling, and trimming,
resulting in ∼1000 time steps of data at a frequency of 250Hz.

Our main goal with DNI is to reconstruct the neural time series; therefore, with Procedure A we
aggressively downsampled to reduce the high temporal resolution of the original data. When using
Procedure A, the frequency content of the reconstructions was recovered in the limited frequency
bands available for analysis (i.e. lower frequency bands due to downsampling). The purpose of
Procedure B was to (1) test our models in a regime that featured different time series lengths and
frequency content in the training data, (2) verify the frequency content recovery property in higher
frequency bands, (3) use our reconstructions in a downstream neural decoding task.

C.2 Training and Evaluation Setup

Our train and test split follows [18], where each participant’s last day is held out as the test day. For
the linear baseline model, we use 3 nearest neighbors to compute the correlation weights on the train
days. We then apply these weights to the time series from the 3 nearest neighbors on the test day
and combined them to reconstruct/impute the missing electrode’s neural signal. For the CNNAE
and M-CNNAE, we built the encoder with strided temporal convolutions and we based the decoder
on [23]; together these comprise the shared backbone architecture (see Appendix for more modeling
details). During the CNNAE and M-CNNAE training, we use our self-supervised training objective
to perform masked electrode modeling. Masked electrode modeling (Figure 2) consists of creating
a random electrode mask where 5-10% of the electrodes in each batch update are zero-filled. We
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then train the models to decode the full set of input electrodes; decoded electrode values are either
reconstructed or imputed.

For evaluation, we use Pearson’s Correlation between the original time series and recon-
structed/imputed time series. We explore our model in 3 missing data regimes: 10% missing,
20% missing, and 50% missing. Within each missing data regime, we average our correlation re-
sults over all time series instances, electrodes, and 3 distinct randomly generated sets of missing
electrodes. A crucial step in evaluating our models’ decoding capabilities is comparing our recon-
structions/imputations against the ground truth data that is unseen by the model. It is worth noting
that the 12 participants’ original data does have naturally missing electrodes. In these cases we cannot
compare our imputations because ground truth does not exist. This motivated us to create zero-filled
masked electrode modeling because it allows us to evaluate not only our decoded reconstructions, but
also our decoded imputations.

C.3 Benchmark Results Continued

We find that Deep Neural Imputation’s linear baseline performs moderately well, validating our
intuition behind shared information between neighboring electrodes. As the percentage of missing
electrodes increases, the baseline performance understandably falls because there are fewer neigh-
boring electrodes available. At the same time, the performance of both the CNNAE and M-CNNAE
holds across our missing data regimes and improves over the baseline. For 0% missing data the
CNNAE outperforms the baseline for 9 participants, and in the most challenging evaluation regime
(50% missing data) the CNNAE outperforms the baseline for all 12 participants in both reconstruction
and imputation. The M-CNNAE model shares the same trend as the CNNAE when compared to
the baseline, and in the most difficult evaluation regime (50% missing data) also outperforms the
baseline for all 12 participants in both reconstruction and imputation.

When studying the differences between the M-CNNAE and CNNAE, we found that participant 1
had the greatest performance improvement when using the M-CNNAE. Despite the fact that there
are 12 trained CNNAE models (one for each participant) and 1 jointly-trained M-CNNAE model,
there are more cases where the M-CNNAE to baseline performance is better than CNNAE to baseline
performance. To decipher the M-CNNAE and CNNAE differences we decided to explore the M-
CNNAE joint-participant representation space and CNNAE’s participant-specific representation
spaces. For a similar comparison, we . For a similar comparison, we stacked all 12 of the CNNAE’s
participant-specific representation spaces and analyzed the concatenation. The M-CNNAE’s joint-
participant embedding had more samples mapped to a shared space, when compared to the CNNAE’s
concatenated embedding space which had far more participant-specific clusters. For a table of the
results please see G.

C.4 Frequency Correlation Analysis

In Figure 6, we explore the relationship between frequency correlation and time series correlation
across two proportions of missing data (0% & 50%) because of frequency content’s significance to
the neuroscience community [15, 16]. We observe a positive relationship between these correlations,
despite the fact that our models were not trained to perform reconstruction or imputation in the
frequency domain. In particular, we note that the points for both reconstruction (0% & 50%) and
imputation (50%) form a curve (Figure 6 Left), suggesting that time series correlation is predictive of
frequency correlation.

We additionally visualize the original time series and corresponding spectrogram as well as the
CNNAE decoded time series and corresponding spectrogram for both a typical and performant
example. A visual inspection shows that our CNNAE produces frequency reconstructions resembling
the ground truth spectrograms even for low frequency correlation values. It is possible that alternative
metrics for spectrogram evaluation, such as mutual information in frequency space [24] [25], could
lead to stronger quantitative correlation metrics compared to the Pearson’s Correlation metric that we
used for evaluation. For a table of the results please see G.
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Figure 6: Relationship between Frequency and Time Series Correlations. Left: For participant 3
we plot the frequency vs. time series correlations along with two time series examples. Results for
all patients can be found in the Appendix. Right: Spectrogram examples corresponding to the time
series examples on the left for a typical example and a performant example.

D Related Work

Multielectrode Neuroscience Experiments. Elucidating scientific questions in neuroengineering,
neural mechanism discovery, and systems neuroscience has been critically enabled by advances
in multielectrode array technology. Different electrode recording modalities (EEG, ECoG, Utah
arrays, Neuropixels [26, 1]) have specific trade-offs, such as varying signal attenuation or difficulty of
implantation, to name a few. However, they all share the commonality that when individual electrodes
are corrupted or fail from faulty manufacturing, electrical noise, scar tissue formation, etc., the signal
is lost and cannot be experimentally recovered. Previous approaches address neural drift through
alignment [27, 28], but not neural imputation. In this paper, we recover high-value incomplete brain
recordings via our Deep Neural Imputation Framework.

Time Series Imputation. Our work relates to time series imputation, which aims to recover missing
timestamps from time series data. In particular, multivariate time series modeling, where more than
one feature is observed at each timestamp, has been studied using statistical methods [29, 30, 31]
as well as deep generative machine learning models [7, 32, 19, 33]. Our linear model baseline falls
under statistical approaches using nearest-neighbors, while our CNNAE and M-CNNAE approaches
are based on generative modeling. A few common model setups include directly regressing missing
values [19, 33], adversarial training (such as GANs) [32, 34, 8, 35], as well as autoencoders [7, 35].
Our CNNAE architecture is based on [36], a model recently developed for time series representation
learning, which we adapted for time series imputation via masked electrode modeling. Methods for
generic time series imputation typically cannot impute when a feature is missing for all timestamps.
These methods are orthogonal to our main contribution, which is a framework for multivariate
electrode imputation in both day-generalizable and DOPE-generalizable regimes.

E Discussion

In multielectrode recordings, signals from corrupted electrodes are commonly discarded and treated
as missing. To fill these gaps, we propose Deep Neural Imputation: a framework to recover missing
values using neural data across days and individuals. DNI is compatible with linear and nonlinear
models, such as deep generative autoencoders, and can be easily be incorporated into existing
neuroscience analysis pipelines and downstream tasks.

Key Observations. We find that our nearest neighbor linear baseline reconstructs and imputes missing
electrode data well when there is a small percentage of data missing (e.g. 10%). Further, both the
CNNAE and M-CNNAE models recover neural data in day-generalizable and DOPE-generalizable
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manners respectively when there are large percentages of data missing (e.g. 50%). These results
may inspire neuroscientists to adjust neural electrode placement or enable novel experimental design.
Moreover, there is a positive relationship between frequency correlation and time-series correlation,
indicating that without training explicitly for frequency content, we can reconstruct and impute it.
Finally, DNI is practical in downstream neuroscience tasks, which we validate based on significant
improvement on a neural decoding task in the presence of missing data.

Limitations and Future Directions. There are many directions for future work stemming from
the neural imputation problem. For joint-participant experiments, our method currently requires
a participant-specific layer to be trained for each spatial configuration. Further explorations into
transfer learning and meta-learning could eliminate this requirement. The joint-participant model
offers an intriguing possibility of studying the joint embedding of neural representations to, for
instance, understand individual variability in neural correlates of similar behaviors [20]. Additionally,
our models cannot currently impute data gathered from unobserved spatial locations. Graph neural
networks are one possible architecture that could develop this capability. Furthermore, these models
may be improved by exploring multimodal fusion of neural, kinematic, and other measurement
modalities [37, 22]. Since no prior work has conducted a rigorous study of how to recover missing
electrode recordings across days and participants (see an early attempt [38]), establishing multi-
participant, multi-day benchmark of DNI methods would be valuable.

Significance and Broader impacts. Participants’ neural activity is deeply personal; therefore, we
need to be thoughtful in our use of technology to analyze this information. The ethical considerations
include issues of data management to guard the subjects’ privacy and security. At the same time,
we need to consider this technology’s assistive potential in improving participants’ lives, because
recovering missing data from incomplete brain recordings has the potential to transform the design
and analysis of a wide range of neuroscience and neuroengineering studies. Further discussion and
information on the data collection process can be found in the original dataset release paper [11].

F Implementation Details

We provide additional details on the data processing and the model implementation. Model hyperpa-
rameters are in Table 1.

F.1 Data Processing

We will start by providing more intuition behind the type of neural time series that is collected from
the participants. Each electrode in the ECoG array that participants are implanted with generates a
local field potential (LFP) voltage trace. Each LFP trace comes from the bulk voltage activity of a
few tens-of-thousands to hundreds-of-thousands of neurons in the brain. These LFP voltage traces
the comprise the AJILE12 dataset are stored in the common neuroscience data file format, NWB,
which is specifically designed to handle ragged data, missing values, and non-task-dependent (i.e.
naturalistic) neural data [6].

In the AJILE12 dataset there are 12 human participants; each participant has roughly 100 ECoG
electrodes implanted in their brain based on clinically determined locations. Before pre-processing,
the data is collected at 500Hz and in most cases continuously recorded for several days. Given the
multitude of goals in our paper we created two data processing pipelines to explore our models:
Procedure A, and Procedure B. In Procedure A, we standardize 50,000 sample segments of the
AJILE12 dataset and downsample the data to 5Hz to study our ability to perform time series
reconstruction. In Procedure B, we following the data processing pipeline in [18], producing 250Hz
data that allows us to study our frequency reconstruction ability, and our model’s capability at
restoring move/rest neural decoding performance.

F.2 Model Details

Linear Baseline Model. In our linear baseline, we first break the patients’ recording days into "train"
days and a "test" day. This data split follows the dataset split in [18], where the last day is held out as
the test day. We then use the full set of electrodes for each patient to create a distance matrix which
allows us to calculate each electrode’s nearest neighbors by euclidean distance. The main idea is to
linearly combine the time series correlation of the nearest neighbors to impute missing electrodes.
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For every electrode on the test day, we compute the time series correlations between the target
electrode and its three nearest neighbors averaged across observed training days. Then on the test
day, the nearest neighbors are combined linearly using the train day correlations. Step-by-step, this
corresponds to: (1) select a test day target electrode, (2) find one of its three nearest neighbors, (3)
get the previously calculated time series correlation value that was averaged across all training days
and all time series for that target electrode and the specific nearest neighbor, (4) take the time series
from this nearest neighbor on the test day and weight the time series (multiply it) by the training time
series correlation, (5) repeat 2-4 for all 3 nearest neighbors [if a neighbor is not observed on the test
day, we use only the correlation from observed neighbors], (6) take the sum of the three weighted
time series as the baseline reconstruction.

For evaluation, we (1) calculate the correlation between this baseline reconstruction and the time
series of the actual target electrode recordings, (2) after calculating the correlations for all the time
series off of an electrode we can average across all our time series to get the per electrode correlation.

CNNAE. The CNNAE model is trained for each participant. The model architecture is based on the
encoder-decoder setup in [36], with strided temporal convolutions for encoding layers, an upsampling
network, and a WaveNet decoder [23]. Our model hyperparameters are not tuned to AJILE12 and
doing a hyperparameter search on the validation set can likely further improve performance. The
model is trained to convergence of the train loss at epoch 100.

We input the time series data for the full set of electrodes for each participant (with missing electrodes
zero-filled) to the model. At the input layer, we input both the electrode time series data as well
as the time derivative of the data (change in time series value across 1 timestamp). The encoder
downsamples the time series by a factor of 8 with the current kernel and stride configurations 1. We
then upsample the encoding by a factor of 8 using the upsampling network before input to the decoder.
The WaveNet decoder preserves the sequence length, and the output of WaveNet is fed into the final
shallow temporal convolution layers to output the electrode reconstruction and imputation. There are
four sets of shallow networks, outputting the mean and variance of the time series data and the time
derivative. During evaluation, we use the output mean of the time series data.

Our CNNAE models are trained on either Amazon EC2 using p2 instances with a single Tesla K80
GPU, or a single NVIDIA GeForce RTX 2080Ti GPU. In addition to maximizing the log-likelihood
of reconstruction and imputation during training, we also use the margin loss and slowness penalty
proposed in [36] to regularize the embeddings.

M-CNNAE. The M-CNNAE model is trained jointly for all participants, with a similar architecture
to the CNNAE. Our M-CNNAE model hyperparameters are not tuned to AJILE12 and doing a
hyperparameter search on the validation set can likely further improve performance. The model is
trained to epoch 45. The main difference for the M-CNNAE compared to the CNNAE is participant-
specific encoding and decoding layers, with shared layers across participants similar to the CNNAE
in between.

Given input time series data, the data is mapped by a participant-specific encoding layer before
feeding into the CNNAE encoder, which is a set of strided convolutions. Then similar to the CNNAE,
the encodings are upsampled, then fed into the WaveNet decoder. The decoder outputs are used as
inputs to the final participant-specific decoding layers, which are shallow networks that map decoder
outputs to the mean and variance of the time series data and the time derivative. During evaluation,
we use the output mean of the time series data.

Our M-CNNAE models are trained on Amazon EC2 using p2 instances with a single Tesla K80 GPU.
In addition to maximizing the log-likelihood of reconstruction and imputation during training, we
also use the margin loss and slowness penalty proposed in [36] to regularize the embeddings.

G Additional Results

G.1 Linear All Electrode Results

See the table 2 for a comparison of the linear all electrode baseline, the nearest neighbors baseline,
CNNAE, and M-CNNAE. Low MSE values are better. We find that the linear all electrode model
performs worse than the 3-NN baseline across all conditions (10%, 20%, 50% missing) for participants
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Model Batch size Learning Rate z-dim Upsampling Num units Encoder Decoder
CNNAE 16 0.0001 64 8x 256 Kernel: [4,4,4] Layers: 2

Stride: [2,2,2] Blocks: 2
M-CNNAE 2 0.0001 64 8x 256 Kernel: [4,4,4] Layers: 2

(per pt) Stride: [2,2,2] Blocks: 2

Table 1: Hyperparameters for CNNAE and M-CNNAE. The encoder is a set of strided convolutions
with the specific kernel and stride parameters at each layer. The decoder is based on WaveNet [23].
The number of units is for both the encoder and decoder. The M-CNNAE has the same architecture
as the CNNAE, except for shallow participant-specific encoding and decoding layers at the input and
output respectively.

1, 2, 3, 5, 6, 8, 9, 10. For participants 4, 7, 11, 12 the learned linear baseline performance is most
often similar to the 3-NN baseline.

G.2 Benchmark Results with Standard Deviation

The mean and standard deviation from the correlation comparison in Figure 3 of the main paper
is shown in Tables 3, 4. At 0% missing electrodes, both the CNNAE and M-CNNAE generally
outperform the baseline. In addition, the M-CNNAE performs better than the CNNAE for participant
1, and similarly to the CNNAE for the other participants. The gap between the machine learning
models and the baseline increases as the amount of missing electrode increases - in particular, there
is a significant improvement using the CNNAE and M-CNNAE across all participants at 50% of
missing electrodes. Similar to Figure 3, the CNNAE and M-CNNAE generally has higher correlation
compared to the baseline at imputation as well as reconstruction.

G.3 Frequency Analysis for All Participants

Here we expand on the participant 3 results presented in the paper, Figure 6, by showing the results
for all participants. For participants 1, 2, 4 we show not only the time series and frequency correlation
plots but also some example time series and spectrograms (Figures 7, 8, 9 respectively). In addition,
for the other participants 5, 6, 7, 8, 9, 10, 11, 12 we show the time series and frequency correlation
plots, Figure 10. Results for all patients are shown across two proportions of missing data, 10% and
50%.

We observed that there was a positive relationship between time series correlation and frequency
correlation, despite not having trained our model on frequency reconstruction. This trend between
time series correlation and frequency correlation can been seen strongest in participants 1, 2, 3, 6, 7,
8, 10, 11, and 12.

G.4 Neural Decoding Results

Table 5 expands on the results presented in Figure 4. In Table 5, we include the performance of the
random forest neural decoder across 50%, 70%, and 90% of electrodes missing. We report the mean
performance across 5 random seeds for the zero-filled data, and CNNAE-filled data. In addition, we
include the mean and standard deviation for the pairwise relative accuracy between the CNNAE-filled
data and zero-filled data. Positive mean relative accuracy values indicate that the CNNAE-filled data
outperforms the zero-filled data on the move/rest neural decoding task.

G.5 k-Nearest Neighbors Hyperparameter Sweep

In the figures ( 11, 12) and tables ( 6, 7, 8, 9) below we see that the baseline performance plateaus
as we add more neighbors across both conditions (0%, 10%, 20%, and 50% missing) as well as
participants (1-12). This is in line with the brain’s spatial pattern of correlation, a well-studied
neuroscience phenomenon. The 3-Nearest Neighbors performance is very similar to the plateaued
7-Nearest Neighbors performance, as evidenced by Figure 12 (which is the Figure 3 recreation with
7NN baseline). The trend we observed in the main paper (3NN Linear Baseline - Figure 3) that
our CNNAE or M-CNNAE model outperforms the linear baseline as the percent of missing data
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Figure 7: Relationship between Frequency and Time Series Correlation. Left: We show the
frequency and time-series correlation from the CNNAE for participant 1, where each outlined point
corresponds to one electrode. Two samples of reconstructed time series relative to the original are
depicted. Right: Spectrogram examples corresponding to the time series examples on the left for a
typical example and a performant example.

increases stays true with the 7NN Linear Baseline model (Figure 12). We want to emphasize that
the state of the art in neuroscience is a correlation of 0 for imputation, because current practice
discards fully-missing electrode time series. Therefore any of our linear baseline models (let alone
our CNNAE and MCNNAE models) is a dramatic improvement above current practice.

G.6 Mean Squared Error (MSE) Metric

We compute the MSE as an additional metric to time series correlation. In general, we found that
the models’ rankings using MSE are similar to those using the correlation metric (Figure 3). In the
table we present, lower MSE values are better. We also additionally report a Relative Imput. MSE
value (which is the imputation minus the reconstruction value) so that one can directly compare
reconstruction with imputation. Positive values mean that reconstructions outperform imputations.
See tables 10 and 11 for details.
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% Electrodes Missing

10% 20% 50%

Pt 1

3-NN Baseline .153 ± .007 .189 ± .010 .202 ± .010
Learned Linear Baseline .331 ± .028 .381 ± .062 .455 ± .076

CNNAE .173 ± .006 .184 ± .010 .210 ± .008
M-CNNAE Baseline .147 ± .005 .161 ± .012 .186 ± .007

Pt 2

3-NN Baseline .531 ± .067 .502 ± .038 .502 ± .031
Learned Linear Baseline .977 ± .263 1.20 ± .284 1.59 ± .197

CNNAE .292 ± .028 .319 ± .027 .328 ± .010
M-CNNAE Baseline .283 ± .034 .314 ± .031 .351 ± .006

Pt 3

3-NN Baseline .691 ± .393 .537 ± .212 .748 ± .319
Learned Linear Baseline .802 ± .113 .712 ± .050 .904 ± .228

CNNAE .212 ± .006 .233 ± .008 .542 ± .360
M-CNNAE Baseline .212 ± .007 .232 ± .009 .542 ± .355

Pt 4

3-NN Baseline .308 ± .026 .306 ± .036 .338 ± .006
Learned Linear Baseline .225 ± .027 .247 ± .029 .313 ± .003

CNNAE .249 ± .016 .269 ± .030 .303 ± .004
M-CNNAE Baseline .244 ± .018 .269 ± .029 .301 ± .004

Pt 5

3-NN Baseline 3.54 ± 4.20 3.39 ± 2.28 2.68 ± .520
Learned Linear Baseline 9.73 ± 5.27 7.61 ± 1.63 6.69 ± 1.78

CNNAE 3.45 ± 4.18 2.72 ± 2.61 1.57 ± .966
M-CNNAE Baseline 3.43 ± 4.16 2.69 ± 2.60 1.55 ± .964

Pt 6

3-NN Baseline 7.29 ± 3.06 7.00 ± 3.94 6.83 ± 1.10
Learned Linear Baseline 10.6 ± 3.26 9.37 ± 2.75 7.98 ± .619

CNNAE 3.93 ± 2.70 6.10 ± 4.57 6.29 ± 1.87
M-CNNAE Baseline 3.94 ± 2.71 6.08 ± 4.57 6.27 ± 1.88

Pt 7

3-NN Baseline .326 ± .035 .339 ± .017 .353 ± .014
Learned Linear Baseline .301 ± .006 .306 ± .020 .350 ± .006

CNNAE .312 ± .047 .305 ± .021 .302 ± .019
M-CNNAE Baseline .279 ± .048 .276 ± .014 .292 ± .011

Pt 8

3-NN Baseline .386 ± .026 .411 ± .022 .441 ± .011
Learned Linear Baseline .490 ± .138 .431 ± .060 .475 ± .021

CNNAE .366 ± .021 .372 ± .018 .392 ± .008
M-CNNAE Baseline .376 ± .026 .384 ± .019 .398 ± .006

Pt 9

3-NN Baseline .538 ± .060 .483 ± .060 .495 ± .044
Learned Linear Baseline .599 ± .065 .761 ± .055 .946 ± .103

CNNAE .401 ± .042 .364 ± .027 .403 ± .034
M-CNNAE Baseline .396 ± .038 .366 ± .024 .427 ± .035

Pt 10

3-NN Baseline .433 ± .007 .582 ± .033 .410 ± .015
Learned Linear Baseline .557 ± .051 .801 ± .104 .940 ± .065

CNNAE .372 ± .022 .364 ± .015 .341 ± .014
M-CNNAE Baseline .362 ± .017 .393 ± .013 .338 ± .013

Pt 11

3-NN Baseline .558 ± .024 .582 ± .030 .565 ± .022
Learned Linear Baseline .393 ± .049 .541 ± .073 .746 ± .114

CNNAE .385 ± .017 .364 ± .008 .394 ± .008
M-CNNAE Baseline .408 ± .013 .393 ± .008 .457 ± .015

Pt 12

3-NN Baseline .354 ± .014 .370 ± .007 .388 ± .008
Learned Linear Baseline .246 ± .010 .292 ± .010 .389 ± .010

CNNAE .272 ± .019 .299 ± .006 .319 ± .005
M-CNNAE Baseline .280 ± .020 .307 ± .004 .337 ± .007

Table 2: Imputation MSE Values for Learned Linear Baseline. We compare imputation perfor-
mance on the MSE metric between the NN baseline, new learned linear baseline (LLB), CNNAE,
and M-CNNAE. Old performance values are copied from Table 10, 11 for convenience. The LLB
performs worse than the 3-NN baseline across all conditions for Pt 1, 2, 3, 5, 6, 8, 9, 10. For Pt 4, 7,
11, 12 the LLB performance is most often similar to the 3-NN baseline. Low MSE values are better.
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% Electrodes Missing

0% 10% 20% 50%

Pt 1

Baseline .536 .503± .007 .486± .012 .375± .027
- .585± .010 .480± .023 .356± .020

CNNAE .521± .005 .516± .005 .519± .011 .542± .014
- .497± .033 .461± .024 .411± .016

M-CNNAE .569± .008 .565± .009 .566± .015 .579± .019
- .534± .034 .492± .021 .434± .023

Pt 2

Baseline .662 .641± .006 .624± .014 .484± .031
- .661± .067 .604± .045 .488± .031

CNNAE .700± .002 .691± .005 .690± .005 .653± .013
- .731± .048 .688± .0029 .674± .014

M-CNNAE .710± .007 .700± .008 .697± .008 .645± .014
- .741± .053 .696± .033 .667± .012

Pt 3

Baseline .622 .583± .013 .545± .006 .448± .031
- .677± .009 .619± .038 .425± .033

CNNAE .621± .001 .609± .003 .604± .003 .617± .018
- .682± .010 .634± .019 .510± .022

M-CNNAE .632± .008 .620± .009 .615± .010 .624± .021
- .679± .010 .634± .019 .503± .021

Pt 4

Baseline .451 .419± .007 .396± .016 .294± .011
- .505± .044 .464± .05 .327± .011

CNNAE .559± .003 .551± .007 .551± .013 .534± .014
- .573± .035 .524± .046 .466± .009

M-CNNAE .550± .008 .543± .011 .541± .015 .516± .010
- .565± .039 .509± .041 .458± .011

Pt 5

Baseline .549 .532± .004 .500± .015 .402± .015
- .494± .042 .475± .035 .376± .025

CNNAE .581± .012 .577± .014 .574± .016 .556± .021
- .543± .035 .540± .035 .518± .017

M-CNNAE .573± .006 .573± .007 .570± .011 .550± .015
- .538± .039 .539± .034 .514± .014

Pt 6

Baseline .453 .436± .002 .408± .009 .274± .024
- .425± .025 .411± .020 .311± .031

CNNAE .483± .013 .483± .017 .487± .016 .492± .019
- .420± .019 .406± .029 .366± .016

M-CNNAE .499± .007 .500± .008 .502± .007 .495± .015
- .421± .009 .408± .024 .364± .007

Table 3: Correlation of Deep Neural Imputation Methods. We show the time series correlation
for the linear model baseline, CNNAE, and M-CNNAE. The top row for each method represents
reconstruction, and the bottom row represents imputation. The mean and standard deviation is from 9
runs (3 runs of each model with 3 sets of missing data). Note that virtually all prior methods ignore
missing data, therefore the conventional baseline approach would get 0 correlation. Participants 1 to
6 is shown, and due to space, participants 7 to 12 is in Table 4.
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% Electrodes Missing

0% 10% 20% 50%

Pt 7

Baseline .577 .561± .007 .540± .015 .373± .032
- .487± .052 .465± .023 .395± .016

CNNAE .639± .016 .659± .007 .658± .006 .611± .016
- .531± .063 .564± .011 .570± .027

M-CNNAE .664± .010 .668± .012 .662± .011 .616± .015
- .553± .068 .584± .008 .569± .025

Pt 8

Baseline .483 .461± .006 .444± .019 .332± .026
- .478± .024 .418± .047 .313± .045

CNNAE .588± .002 .590± .002 .592± .005 .575± .028
- .511± .016 .509± .016 .476± .005

M-CNNAE .570± .007 .569± .006 .569± .008 .535± .028
- .487± .025 .480± .016 .454± .005

Pt 9

Baseline .637 .616± .006 .566± .011 .436± .038
- .608± .080 .646± .054 .457± .013

CNNAE .582± .001 .585± .006 .573± .009 .532± .016
- .533± .054 .587± .044 .568± .029

M-CNNAE .583± .006 .584± .008 .570± .012 .521± .011
- .537± .056 .584± .045 .557± .032

Pt 10

Baseline .552 .529± .015 .508± .020 .406± .015
- .480± .110 .490± .076 .378± .014

CNNAE .526± .002 .529± .004 .529± .008 .501± .014
- .480± .020 .490± .018 .503± .019

M-CNNAE .532± .006 .533± .006 .532± .010 .502± .018
- .483± .024 .494± .019 .506± .020

Pt 11

Baseline .617 .590± .004 .553± .007 .444± .074
- .594± .028 .575± .038 .401± .054

CNNAE .701± .001 .699± .005 .700± .005 .700± .024
- .671± .044 .661± .018 .613± .024

M-CNNAE .678± .009 .676± .011 .675± .011 .669± .024
- .648± .047 .636± .020 .587± .025

Pt 12

Baseline .485 .461± .005 .442± .008 .352± .031
- .496± .031 .427± .015 .33± .023

CNNAE .549± .002 .536± .002 .535± .006 .515± .008
- .600± .027 .547± .018 .507± .009

M-CNNAE .535± .007 .522± .007 .520± .009 .494± .013
- .585± .027 .532± .019 .479± .011

Table 4: Correlation of Deep Neural Imputation Methods. We show the time series correlation
for the linear model baseline, CNNAE, and M-CNNAE. The top row for each method represents
reconstruction, and the bottom row represents imputation. The mean and standard deviation is from 9
runs (3 runs of each model with 3 sets of missing data). Note that virtually all prior methods ignore
missing data, therefore the conventional baseline approach would get 0 correlation. Participants 7 to
12 is shown, and due to space, participants 1 to 6 is in Table 3.
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% Electrodes Missing

50% 70% 90%

Pt 1
Zero-Filled 0.7597 0.7430 0.5652

CNNAE-Filled 0.7615 0.7412 0.5633
Pairwise Relative Accuracy 0.0018± 0.0034 −0.0018± 0.0044 −0.0020± 0.0039

Pt 2
Zero-Filled 0.5726 0.5437 0.5126

CNNAE-Filled 0.5593 0.5489 0.5156
Pairwise Relative Accuracy −0.0133± 0.0127 0.0052± 0.0217 0.0030± 0.0108

Pt 3
Zero-Filled 0.6062 0.5271 0.4997

CNNAE-Filled 0.6487 0.5748 0.5359
Pairwise Relative Accuracy 0.0425± 0.0266 0.0477± 0.0291 0.0363± 0.0426

Pt 4
Zero-Filled 0.5128 0.4948 0.5000

CNNAE-Filled 0.5629 0.5614 0.5151
Pairwise Relative Accuracy 0.0501± 0.0240 0.0667± 0.0181 0.0151± 0.0149

Pt 5
Zero-Filled 0.5331 0.5044 0.5000

CNNAE-Filled 0.5576 0.5357 0.5181
Pairwise Relative Accuracy 0.0245± 0.0130 0.0313± 0.0028 0.0181± 0.0088

Pt 6
Zero-Filled 0.6370 0.5893 0.5343

CNNAE-Filled 0.6613 0.6070 0.5624
Pairwise Relative Accuracy 0.0243± 0.0237 0.0178± 0.0156 0.0281± 0.0133

Pt 7
Zero-Filled 0.6728 0.5353 0.5000

CNNAE-Filled 0.7682 0.6699 0.5669
Pairwise Relative Accuracy 0.0954± 0.0477 0.1347± 0.0305 0.0669± 0.0163

Pt 8
Zero-Filled 0.5957 0.5395 0.5009

CNNAE-Filled 0.6015 0.5699 0.5187
Pairwise Relative Accuracy 0.0058± 0.0242 0.0303± 0.0600 0.0178± 0.0047

Pt 9
Zero-Filled 0.6333 0.5429 0.5000

CNNAE-Filled 0.5762 0.5508 0.5095
Pairwise Relative Accuracy −0.0571± 0.0184 0.0079± 0.0201 0.0095± 0.0117

Pt 10
Zero-Filled 0.5656 0.5074 0.5000

CNNAE-Filled 0.6680 0.5548 0.5069
Pairwise Relative Accuracy 0.1024± 0.1269 0.0474± 0.0557 0.0069± 0.0131

Pt 11
Zero-Filled 0.6966 0.5601 0.5127

CNNAE-Filled 0.7668 0.6777 0.6141
Pairwise Relative Accuracy 0.0703± 0.0697 0.1176± 0.0559 0.1014± 0.0789

Pt 12
Zero-Filled 0.5845 0.5262 0.5120

CNNAE-Filled 0.6199 0.5749 0.5286
Pairwise Relative Accuracy 0.0354± 0.0165 0.0487± 0.0084 0.0166± 0.0120

Table 5: CNNAE Recovers Neural Decoding Performance (corresponding to Figure 6). Move/rest
neural decoding performance absolute means, and pairwise relative accuracy means & standard
deviations. The results for each percent missing (50%, 70%, and 90%) were calculated across 5
seeds. There are only two instances where the zero-filled accuracy outperformed the CNNAE-filled
accuracy, corresponding to the yellow shading in Figure 6. All other cases correspond to where the
CNNAE-filled accuracy was equal to or outperformed the zero-filled accuracy.
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Figure 8: Relationship between Frequency and Time Series Correlation. Left: We show the
frequency and time-series correlation from the CNNAE for participant 2, where each outlined point
corresponds to one electrode. Two samples of reconstructed time series relative to the original are
depicted. Right: Spectrogram examples corresponding to the time series examples on the left for a
typical example and a performant example.
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Figure 9: Relationship between Frequency and Time Series Correlation. Left: We show the
frequency and time-series correlation from the CNNAE for participant 4, where each outlined point
corresponds to one electrode. Two samples of reconstructed time series relative to the original are
depicted. Right: Spectrogram examples corresponding to the time series examples on the left for a
typical example and a performant example.
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Figure 10: Relationship between Frequency and Time Series Correlation. Left: We show the
frequency and time-series correlation from the CNNAE for participant 5, 6, 7, 8, 9, 10, 11, 12, where
each outlined point corresponds to one electrode.

Figure 11: Nearest Neighbor Hyperparameter Sweep. We see that the baseline performance
plateaus as we add more neighbors across both conditions (0%, 10%, 20%, and 50% missing) as well
as participants (1-12). The 3NN linear baseline (model we use in Figure 3) is similar to the results
for the plateaued 7NN model. Both of which are much better than the Neuroscience SOTA (State
Of The Art) for imputation, which gives a 0 correlation. Here we report our time series correlation
metric between our ground truth and reconstructed time series as a function of neighbor number. We
average across time series instances, electrodes, days, and reconstruction/imputation conditions. Each
participant is a different color. See tables below for the specific values presented in the figure.
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Pt Number of Nearest Neighbors
0 1 2 3 4 5 6 7

1 0 .386 .486 .536 .554 .567 .576 .575
2 0 .500 .604 .662 .681 .696 .698 .699
3 0 .421 .566 .622 .644 .641 .641 .642
4 0 .305 .396 .451 .493 .503 .514 .523
5 0 .372 .507 .549 .564 .573 .578 .581
6 0 .292 .399 .453 .469 .476 .480 .480
7 0 .367 .517 .577 .609 .608 .611 .611
8 0 .279 .386 .484 .512 .547 .553 .557
9 0 .482 .595 .637 .677 .686 .683 .684

10 0 .403 .507 .552 .571 .580 .581 .585
11 0 .454 .577 .617 .646 .648 .650 .649
12 0 .305 .434 .484 .510 .530 .545 .560

Table 6: k-NN Hyperparameter Sweep - 0% Missing. Time series correlations for the k-nearest
neighbor baseline as a function of k for all 12 participants (higher is better). 0 neighbors (i.e.
discarding data) is standard practice in the field of neuroscience, and always yields 0 correlation for
imputation. Performance improves and quickly saturates as k increases.

Pt Number of Nearest Neighbors
0 1 2 3 4 5 6 7

1 0 .340 ± .011 .455 ± .006 .511 ± .005 .532 ± .006 .548 ± .007 .556 ± .005 .557 ± .005
2 0 .435 ± 0.015 .577 ± .004 .643 ± .002 .665 ± .002 .684 ± .003 .686 ± .003 .688 ± .003
3 0 .371 ± .024 .528 ± .013 .593 ± .012 .620 ± .007 .623 ± .004 .628 ± .003 .630 ± .004
4 0 .271 ± .015 .364 ± .011 .428 ± .005 .475 ± .005 .488 ± .003 .500 ± .004 .511 ± .003
5 0 .350 ± .007 .484 ± .003 .529 ± .001 .546 ± .002 .556 ± .000 .564 ± .001 .568 ± .002
6 0 .256 ± .005 .374 ± .006 .435 ± .000 .452 ± .001 .461 ± .001 .467 ± .000 .468 ± .000
7 0 .331 ± .006 .499 ± .001 .554 ± .002 .588 ± .002 .592 ± .002 .595 ± .001 .597 ± .001
8 0 .243 ± .005 .356 ± .006 .463 ± .005 .493 ± .002 .530 ± .002 .537 ± .003 .543 ± .003
9 0 .424 ± .006 .564 ± .005 .615 ± .004 .656 ± .000 .667 ± .002 .668 ± .002 .670 ± .002

10 0 .362 ± .003 .478 ± .003 .524 ± .002 .546 ± .004 .557 ± .004 .560 ± .003 .565 ± .002
11 0 .402 ± .007 .539 ± .001 .591 ± .002 .628 ± .003 .632 ± .001 .636 ± .001 .636 ± .001
12 0 .272 ± .002 .409 ± .002 .464 ± .004 .494 ± .003 .516 ± .004 .531 ± .005 .545 ± .005

Table 7: k-NN Hyperparameter Sweep - 10% Missing. Mean time series correlations ±1 standard
deviation for the k-nearest neighbor baseline as a function of k for all 12 participants (higher is
better). 0 neighbors (i.e. discarding data) is standard practice in the field of neuroscience, and always
yields 0 correlation for imputation. Performance improves and quickly saturates as k increases.

Pt Number of Nearest Neighbors
0 1 2 3 4 5 6 7

1 0 .318 ± .005 .426 ± .010 .485 ± .014 .510 ± .013 .526 ± .014 .536 ± .011 .538 ± .009
2 0 .404 ± .014 .545 ± .011 .620 ± .011 .645 ± .003 .666 ± .005 .670 ± .004 .672 ± .003
3 0 .330 ± .019 .491 ± .015 .560 ± .006 .591 ± .003 .601 ± .007 .610 ± .002 .613 ± .002
4 0 .250 ± 0.015 .343 ± .007 .409 ± .006 .456 ± .007 .473 ± .006 .484 ± .003 .497 ± .002
5 0 .315 ± .012 .448 ± .008 .495 ± .005 .519 ± .003 .536 ± .004 .546 ± .006 .553 ± .004
6 0 .228 ± .011 .349 ± .008 .409 ± .007 .431 ± .006 .441 ± .006 .448 ± .004 .451 ± .002
7 0 .289 ± .017 .459 ± .009 .526 ± .008 .562 ± .005 .570 ± .001 .576 ± .003 .580 ± .003
8 0 .212 ± .001 .323 ± .006 .439 ± .005 .474 ± .004 .530 ± .002 .519 ± .003 .525 ± .002
9 0 .375 ± 0.005 .527 ± .009 .582 ± .003 .630 ± .008 .648 ± .002 .653 ± .003 .656 ± .003

10 0 .322 ± .005 .455 ± .004 .504 ± .004 .525 ± .009 .539 ± .007 .543 ± .006 .547 ± .006
11 0 .364 ± .010 .500 ± .002 .558 ± .006 .603 ± .008 .610 ± .005 .619 ± .002 .622 ± .002
12 0 .252 ± .004 .391 ± .006 .439 ± .005 .471 ± .002 .496 ± .003 .512 ± .004 .526 ± .007

Table 8: k-NN Hyperparameter Sweep - 20% Missing. Mean time series correlations ±1 standard
deviation for the k-nearest neighbor baseline as a function of k for all 12 participants (higher is
better). 0 neighbors (i.e. discarding data) is standard practice in the field of neuroscience, and always
yields 0 correlation for imputation. Performance improves and quickly saturates as k increases.
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Pt Number of Nearest Neighbors
0 1 2 3 4 5 6 7

1 0 .205 ± .009 .304 ± .009 .366 ± .009 .397 ± .009 .422 ± .008 .444 ± .006 .455 ± .006
2 0 .255 ± .032 .387 ± .008 .486 ± .009 .545 ± .009 .586 ± .003 .595 ± .004 .613 ± .007
3 0 .212 ± .014 .357 ± .017 .436 ± .002 .478 ± .003 .498 ± .000 .511 ± .003 .524 ± .004
4 0 .152 ± .020 .236 ± .005 .311 ± .002 .367 ± .007 .393 ± .012 .409 ± .007 .427 ± .009
5 0 .204 ± .003 .313 ± .008 .389 ± .010 .421 ± .011 .448 ± .015 .464 ± .007 .475 ± .006
6 0 .137 ± .019 .239 ± .009 .293 ± .005 .333 ± .003 .352 ± .001 .368 ± .006 .375 ± .004
7 0 .182 ± .019 .306 ± .011 .384 ± .010 .433 ± .001 .454 ± .002 .468 ± .002 .482 ± .002
8 0 .145 ± .009 .251 ± .019 .322 ± .011 .369 ± .014 .411 ± .014 .421 ± .010 .430 ± .011
9 0 .239 ± .017 .353 ± .019 .447 ± .021 .497 ± .009 .523 ± .003 .537 ± .008 .545 ± .008

10 0 .204 ± .002 .322 ± .004 .392 ± .006 .420 ± .003 .444 ± .007 .450 ± .007 .463 ± .002
11 0 .222 ± .016 .354 ± .021 .422 ± .023 .485 ± .013 .505 ± .010 .527 ± .013 .538 ± .013
12 0 .150 ± .005 .280 ± .008 .344 ± .012 .376 ± .014 .408 ± .011 .425 ± .009 .442 ± .010

Table 9: k-NN Hyperparameter Sweep - 50% Missing. Mean time series correlations ±1 standard
deviation for the k-nearest neighbor baseline as a function of k for all 12 participants (higher is
better). 0 neighbors (i.e. discarding data) is standard practice in the field of neuroscience, and always
yields 0 correlation for imputation. Performance improves and quickly saturates as k increases.
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Figure 12: Fig. 3 Using 7NN Linear Baseline. The top row compares time series correlation for
the 7NN linear model and CNNAE while the bottom row compares time series correlation for the
7NN linear model and M-CNNAE. The shaded triangle above the diagonal shows where the CNNAE
and M-CNNAE outperforms the baseline. Each point corresponds to a evaluation setting for one
participant; the mean over 9 runs are shown (3 runs of each model with 3 sets of missing data). Note
that virtually all prior methods ignore missing data and thus conventional approaches correspond
to 0 correlation. Observe that the trend of the CNNAE and M-CNNAE models outperforming the
baseline with greater fractions of missing data holds even when we increase the number of nearest
neighbors in the baseline model from 3 (Figure 3 in main paper) to 7 (this figure).
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% Electrodes Missing

0% 10% 20% 50%

Pt 1

Baseline
Recon. MSE .188 .193 ± .002 .187 ± .002 .192 ± .003
Imput. MSE - .153 ± .007 .189 ± .010 .202 ± .010

Relative Imput. MSE - −0.040 ± .007 .002 ± .010 .010 ± .010

CNNAE
Recon. MSE .176 ± .000 .179 ± .001 .179 ± .002 .173 ± .006
Imput. MSE - .173 ± .006 .184 ± .010 .210 ± .008

Relative Imput. MSE - −.006 ± .006 .005 ± .010 .037 ± .010

M-CNNAE
Recon. MSE .145 ± .003 .148 ± .003 .149 ± .003 .148 ± .005
Imput. MSE - .147 ± .005 .161 ± .012 .186 ± .007

Relative Imput. MSE - −.001 ± .006 .012 ± .012 .038 ± .009

Pt 2

Baseline
Recon. MSE .581 .539 ± .037 .536 ± .056 .511 ± .031
Imput. MSE - .531 ± .067 .502 ± .038 .502 ± .031

Relative Imput. MSE - −.008 ± .077 −.034 ± .068 −.009 ± .044

CNNAE
Recon. MSE .306 ± .002 .312 ± .003 .312 ± .005 .345 ± .012
Imput. MSE - .292 ± .028 .319 ± .027 .328 ± .010

Relative Imput. MSE - −.020 ± .028 .007 ± .027 −.017 ± .016

M-CNNAE
Recon. MSE .294 ± .006 .303 ± .006 .309 ± .007 .364 ± .012
Imput. MSE - .283 ± .034 .314 ± .031 .351 ± .006

Relative Imput. MSE - −.020 ± .035 .005 ± .032 −.014 ± .013

Pt 3

Baseline
Recon. MSE 1.05 1.09 ± .049 1.19 ± .054 1.24 ± .591
Imput. MSE - .691 ± .393 .537 ± .212 .748 ± .319

Relative Imput. MSE - −.397 ± .396 −.652 ± .219 −.488 ± .671

CNNAE
Recon. MSE .674 ± .001 .729 ± .001 .795 ± .001 .878 ± .379
Imput. MSE - .212 ± .006 .233 ± .008 .542 ± .360

Relative Imput. MSE - −.517 ± .006 −.562 ± .008 −.335 ± .523

M-CNNAE
Recon. MSE .663 ± .003 .719 ± .004 .786 ± .003 .869 ± .374
Imput. MSE - .212 ± .007 .232 ± .009 .542 ± .355

Relative Imput. MSE - −.507 ± .008 −.554 ± .009 −.327 ± .516

Pt 4

Baseline
Recon. MSE .328 .329 ± .002 .332 ± .009 .333 ± .006
Imput. MSE - .308 ± .026 .306 ± .036 .338 ± .006

Relative Imput. MSE - −.021 ± .026 −.026 ± .037 .006 ± .008

CNNAE
Recon. MSE .250 ± .001 .254 ± .004 .254 ± .007 .255 ± .006
Imput. MSE - .249 ± .016 .269 ± .030 .303 ± .004

Relative Imput. MSE - −.005 ± .016 .015 ± .031 .048 ± .007

M-CNNAE
Recon. MSE .250 ± .003 .253 ± .005 .254 ± .008 .260 ± .003
Imput. MSE - .244 ± .018 .269 ± .029 .301 ± .004

Relative Imput. MSE - −.008 ± .019 .014 ± .030 .041 ± .005

Pt 5

Baseline
Recon. MSE 3.51 3.12 ± 1.02 2.95 ± 1.33 3.34 ± 1.55
Imput. MSE - 3.54 ± 4.20 3.39 ± 2.28 2.68 ± .520

Relative Imput. MSE - .425 ± 4.32 .439 ± 2.63 −.662 ± 1.63

CNNAE
Recon. MSE 1.92 ± .012 1.75 ± .467 1.74 ± .656 2.38 ± .987
Imput. MSE - 3.45 ± 4.18 2.72 ± 2.61 1.57 ± .966

Relative Imput. MSE - .170 ± 4.20 .988 ± 2.69 −.811 ± 1.38

M-CNNAE
Recon. MSE 1.89 ± .005 1.73 ± .465 1.72 ± .654 2.36 ± .990
Imput. MSE - 3.43 ± 4.16 2.69 ± 2.60 1.55 ± .964

Relative Imput. MSE - 1.70 ± 4.18 .969 ± 2.68 −.818 ± 1.38

Pt 6

Baseline
Recon. MSE 7.92 7.59 ± .598 6.95 ± 1.84 6.35 ± 1.72
Imput. MSE - 7.29 ± 3.06 7.00 ± 3.94 6.83 ± 1.10

Relative Imput. MSE - −.345 ± 3.11 .046 ± 4.35 .479 ± 2.04

CNNAE
Recon. MSE 6.13 ± .006 6.39 ± .300 6.17 ± 1.14 6.14 ± 1.88
Imput. MSE - 3.93 ± 2.70 6.10 ± 4.57 6.29 ± 1.87

Relative Imput. MSE - −2.46 ± 2.71 −.077 ± 4.71 .151 ± 2.65

M-CNNAE
Recon. MSE 6.10 ± .016 6.35 ± .299 6.14 ± 1.14 6.10 ± 1.88
Imput. MSE - 3.94 ± 2.71 6.08 ± 4.57 6.27 ± 1.88

Relative Imput. MSE - −2.41 ± 2.72 −.059 ± 4.71 .166 ± 2.65

Table 10: MSE of Deep Neural Imputation Methods (Pt. 1-6). We show the time series mean
squared error for the baseline, CNNAE, and M-CNNAE. The top row for each method represents
reconstruction, the middle row imputation, and the bottom row imputation minus reconstruction. The
mean is over 9 runs (3 runs of each model with 3 sets of missing data). Due to space, results for
participants 7 to 12 are in Table 11. Lower MSE values are better.
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% Electrodes Missing

0% 10% 20% 50%

Pt 7

Baseline
Recon. MSE .326 .331 ± .002 .327 ± .017 .373 ± .016
Imput. MSE - .326 ± .035 .339 ± .017 .353 ± .014

Relative Imput. MSE - −.005 ± .035 .012 ± .024 −.020 ± .021

CNNAE
Recon. MSE .264 ± .014 .262 ± .014 .263 ± .015 .296 ± .019
Imput. MSE - .312 ± .047 .305 ± .021 .302 ± .019

Relative Imput. MSE - .050 ± .049 .042 ± .026 .005 ± .027

M-CNNAE
Recon. MSE .240 ± .006 .242 ± .009 .245 ± .008 .282 ± .010
Imput. MSE - .279 ± .048 .276 ± .014 .292 ± .011

Relative Imput. MSE - .037 ± .049 .030 ± .016 .010 ± .015

Pt 8

Baseline
Recon. MSE .386 .397 ± .001 .403 ± .009 .449 ± .005
Imput. MSE - .386 ± .026 .411 ± .022 .441 ± .011

Relative Imput. MSE - −.011 ± .026 .008 ± .024 −.008 ± .012

CNNAE
Recon. MSE .322 ± .001 .322 ± .002 .320 ± .005 .342 ± .021
Imput. MSE - .366 ± .021 .372 ± .018 .392 ± .008

Relative Imput. MSE - .044 ± .021 .052 ± .019 .050 ± .022

M-CNNAE
Recon. MSE .333 ± .001 .336 ± .002 .335 ± .006 .366 ± .014
Imput. MSE - .376 ± .026 .384 ± .019 .398 ± .006

Relative Imput. MSE - .040 ± .026 .049 ± .020 .032 ± .015

Pt 9

Baseline
Recon. MSE .589 .577 ± .004 .546 ± .025 .523 ± .004
Imput. MSE - .538 ± .060 .483 ± .060 .495 ± .044

Relative Imput. MSE - −.039 ± .060 −.063 ± .065 −.028 ± .059

CNNAE
Recon. MSE .388 ± .001 .389 ± .005 .401 ± .006 .431 ± .021
Imput. MSE - .401 ± .042 .364 ± .027 .403 ± .034

Relative Imput. MSE - .012 ± .042 −.037 ± .028 −.028 ± .040

M-CNNAE
Recon. MSE .385 ± .004 .387 ± .006 .403 ± .008 .448 ± .017
Imput. MSE - .396 ± .038 .366 ± .024 .427 ± .035

Relative Imput. MSE - .008 ± .038 −.037 ± .025 −.021 ± .039

Pt 10

Baseline
Recon. MSE .447 .451 ± .002 .407 ± .022 .392 ± .014
Imput. MSE - .433 ± .007 .582 ± .033 .410 ± .015

Relative Imput. MSE - −.018 ± .007 .069 ± .040 .018 ± .021

CNNAE
Recon. MSE .325 ± .003 .321 ± .003 .323 ± .005 .340 ± .010
Imput. MSE - .372 ± .022 .364 ± .015 .341 ± .014

Relative Imput. MSE - .051 ± .022 .025 ± .016 .001 ± .017

M-CNNAE
Recon. MSE .314 ± .004 .312 ± .004 .316 ± .005 .335 ± .013
Imput. MSE - .362 ± .017 .393 ± .013 .338 ± .013

Relative Imput. MSE - .050 ± .017 .026 ± .014 .003 ± .018

Pt 11

Baseline
Recon. MSE .561 .554 ± .015 .550 ± .019 .572 ± .025
Imput. MSE - .558 ± .024 .582 ± .030 .565 ± .022

Relative Imput. MSE - .004 ± .028 .032 ± .036 −.007 ± .033

CNNAE
Recon. MSE .315 ± .002 .312 ± .003 .313 ± .004 .314 ± .013
Imput. MSE - .385 ± .017 .364 ± .008 .394 ± .008

Relative Imput. MSE - .073 ± .017 .051 ± .009 .080 ± .015

M-CNNAE
Recon. MSE .328 ± .007 .329 ± .008 .339 ± .010 .391 ± .014
Imput. MSE - .408 ± .013 .393 ± .008 .457 ± .015

Relative Imput. MSE - .079 ± .015 .053 ± .013 .065 ± .021

Pt 12

Baseline
Recon. MSE .357 .359 ± .001 .366 ± .006 .374 ± .006
Imput. MSE - .354 ± .014 .370 ± .007 .388 ± .008

Relative Imput. MSE - −.005 ± .014 .004 ± .009 .014 ± .010

CNNAE
Recon. MSE .294 ± .001 .299 ± .002 .299 ± .003 .304 ± .003
Imput. MSE - .272 ± .019 .299 ± .006 .319 ± .005

Relative Imput. MSE - −.027 ± .019 .000 ± .007 .015 ± .006

M-CNNAE
Recon. MSE .299 ± .003 .306 ± .004 .306 ± .004 .318 ± .002
Imput. MSE - .280 ± .020 .307 ± .004 .337 ± .007

Relative Imput. MSE - −.026 ± .020 .001 ± .006 .019 ± .007

Table 11: MSE of Deep Neural Imputation Methods (Pt. 7-12). We show the time series mean
squared error for the baseline, CNNAE, and M-CNNAE. The top row for each method represents
reconstruction, the middle row imputation, and the bottom row imputation minus reconstruction. The
mean is over 9 runs (3 runs of each model with 3 sets of missing data). Due to space, results for
participants 1 to 6 are in Table 10. Lower MSE values are better.
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