
Extended Abstract Track
Under Review - Extended Abstract Track 1–19, 2023 Symmetry and Geometry in Neural Representations

RelWire: Metric Based Graph Rewiring

Editors: List of editors’ names

Abstract

Oversquashing is a major hurdle to the application of geometric deep learning and
graph neural networks to real applications. Recent work has found connections between
oversquashing and commute times, effective resistance, and the eigengap of the underly-
ing graph. Graph rewiring is the most promising technique to alleviate this issue. Some
prior work adds edges locally to highly negatively curved subgraphs. These local changes,
however, have a small effect on global statistics such as commute times and the eigengap.
Other prior work uses the spectrum of the graph Laplacian to target rewiring to increase
the eigengap. These approaches, however, make large structural and topological changes
to the underlying graph. We use ideas from geometric group theory to present RelWire,
a rewiring technique based on the geometry of the graph. We derive topological connec-
tions for RelWire. We then rewire different real world molecule datasets and show that
RelWire is Pareto optimal: it has the best balance between improvement in eigengap and
commute times and minimizing changes in the topology of the underlying graph.

1. Introduction

Graph neural networks (GNNs) are a promising generalization of (deep) neural networks
based upon the premise that many real world data sets exhibit graphical structure. That is,
data points are related to one another in complex ways that are best captured by relations
on a graph, with vertices being the data points and edges the relations between those
points. Hence, GNNs are methods for aggregating information across the relation graph
and then propagating those updates. All of these methods, however, seem to suffer from
two structural problems: oversquashing and over-smoothing.

Oversquashing has been a challenging problem to define. The problem was initially
observed in [1], where the authors setup the neighbors match problem whose task is to
match a target subgraph with a template subgraph. They noticed that the feature vectors
cannot store enough information, a problem which they called oversquashing. However,
since then oversquashing has been defined in a different manner. Influenced by [38], who
defined the influence of a node on another as the magnitude of the relative derivative, the
perspective on oversquashing has shifted. Since then a variety of papers [8, 14, 26, 34] have
defined oversquashing to be the problem of having nodes having small influence on each
other (i.e., small Jacobian), including theoretical connections between oversquashing and
structural properties like commute time [14] and eigengaps.

As a result of these deficiencies, many recent works have introduced the notion of
“rewiring” a graph, adding edges or relations amongst the data points so as to improve the
performance of GNNs. These methods leverage notions from spectral graph theory (e.g.,
effective resistance, spectral or eigengap), discrete graph geometry (e.g., graph curvature),
and random walks (via commute time). All of these methods make large structural changes
to the underlying graph, some more effective than others, which are aimed at affecting one
or more of the above quantities.

© 2023 .

Extended Abstract Track
In this paper, we present a new graph rewiring regime by importing techniques from

coarse geometry. We use the geometry of the underlying graph to define two relations
between the graph’s edges, one which roughly encodes local negative curvature and the other
flat curvature. Our rewiring algorithm, called RelWire, utilizes this notion of curvature
to rewire the underlying graph by targeting certain structural features while minimally
affecting the topology of the underlying graph. We develop a framework for analyzing this
balancing act of effective rewiring with minimal topological disturbance.

Contributions The main contributions of this paper are as follows:

• We define a new topological distance called the rank distance that can be used to measure
the structural changes to a graph after rewiring.

• We present a new method for rewiring graphs RelWire. Our method uses new ideas
and concepts that have not been applied to the field of geometric deep learning before.
Specifically, it introduces a global notion of curvature.

• We present topological differences between RelWire and prior rewiring techniques.
• We extensively test on real data to show that RelWire is Pareto optimal for the graph

statistics. That is, it performs the best at improving eigengap and commute times, while
simultaneously preserving the graph topology. We also show that it helps for graph
regression.

1.1. Background and Problem Setup

Prior work has shown that the norm of Jacobian (which controls oversquashing) can be
bounded by various different graph properties such as the spectral gap, the commute times,
the curvature, and the effect resistance of the graph. However, the initial motivation of
GNNs was that the structure of the graph had important information. The process of
graph rewiring changes this structure. Hence we are interested in quantifying this change
and keeping it to a minimum.

In this paper, we are interested in the problem of graph rewiring. That is given a graph
G, we want to add k edges to the graph to improve various graph statistics mentioned above
while preserving as much structural information. To do this, in the following section we
develop the relevant background. We start by setting up notation for the paper. Throughout
the paper G = (V,E) will refer to a graph on vertex set V with edges E. We shall have
that G has n nodes and m edges. Let A denote the adjacency matrix of the graph and let
D denote the degree matrix of the graph.

2. Capturing topological distortion: Distances from persistent homology

In this paper, we consider two notions of distances between graphs using topological in-
formation. The first is based on comparing 1-dimensional information, which is already
quite powerful in the context of graphs. The second is based on techniques from topological
data analysis, which takes into account higher dimensional features of the graphs. This
latter machinery is called persistence homology (see e.g., [30]), as it attempts to capture
“persistent” homological features as one takes larger samples of the space.

In this paper, we consider the following two notions of topological distancces. More
details can be found in Appendix D. The persistence distance between two persistence

2

Extended Abstract Track
RelWire

diagrams is the L2 norm of the difference between their respective Betti curves. Given two
graphs G,G′, we will call the persistence distance between their respective Vietoris-Rips
filtrations {V Rr(G)}r∈R+ and {V Rr(G′)}r∈R+ the Betti distance between G,G′.

We use the Betti and rank distances to measure of how much a given rewiring procedure
changes the topology of the graph. For GNNs, the structure of the base graph encodes crucial
information. Hence we can use these two distances to measure how much a given graph
rewiring procedure preserves the underlying graph structure. We explore the topological
differences between our method and prior work in Appendix F.

3. RelWire: relations on graphs

We draw inspiration from the notion of Hierarchical Hyperbolic Spaces (HHSes) from coarse
geometry. More details on the connection can be found in Appendix E. In our setting, the
ambient space X = G is a simplicial graph and this philosophy becomes quite simple: the
spaces in the hierarchy are the edges, and a projection of a vertex of G to an edge E is a
some collection of its endpoints. Specifically, given a vertex v ∈ G(0) and an edge E of G,
the projection πE(v) ⊂ E(0) of v to E is the endpoint of E which is closest in G to v. When
both endpoints are equidistant to v, then we set πE(v) = E(0) to be both endpoints. With
these projections defined, we define our (simplified) relations.

The first relation, called orthogonal, encodes flat curvature. In the setting of an HHS X,
when two hyperbolic spaces U, V in the hierarchy are orthogonal, the product map πU×πV :
X → U ×V is surjective, and there is a coarsely isometrically embedded flat subspace of X
(see e.g. Subsection 5B of [5]). For instance, R2 is an HHS where the hyperbolic spaces are
the coordinate axes (i.e., copies of R), and the flat subspace corresponding to their product
is the whole ambient space R × R = R2. In our graphical setting, we will say two edges

E1, E2 are independent when πE1 × πE2 : G → E
(0)
1 × E(0)

2 is surjective. Otherwise, we
will say that E1, E2 are transverse. Roughly, this notion of transversality encodes negative
curvature (see e.g. [7]). While the connection between independence/transversality and
flat/negative curvature is not exact, the connection is more than moral:

Lemma 1 Let E1, E2 be edges of a simplicial graph G. If for E1, E2 we have that they

1. are contained in a clique subgraph of G, then E1, E2 are independent;
2. are separated by vertex v with πE1(v), πE2(v) both singletons, then E1, E2 are transverse.

As every pair of edges in a graph satisfies one of our two relations, they are both capable
of capturing local and global properties of the graph. While item (2) of Lemma 15 says that
independence is frequently more locally focused, transversality captures negative curvature
in a fundamentally different way than existing notions of graph curvature.

3.1. RelWire

We present our new rewiring technique RelWire. The pseudocode for the method can be
seen in Algorithm 2. The basic idea is to eliminate negative curvature by adding edges,
so the main task is to identify pairs of vertices which belong to the most transverse edge
pairs, weighted by their distance in the graph. We begin by determining for each pair of
edges if they are independent or transverse. Then for each pair of nodes u, a, we consider
all neighboring edges of the form (u, v) and (a, b) for all v ∈ N (u) and b ∈ N (a). Then

3

Extended Abstract Track
we define r(u, a) = d(u, a)

∑
v∈N (u)
b∈N (a)

1{(u, v) 6⊥ (a, b)}. We then connect the k node pairs

that are not adjacent in the graph that have the highest r values, where k is our rewiring
parameter. That is, for a pair of nodes, we count the number of transverse edge pairs that
the two nodes are in. We then weight this count by the distance between the two nodes,
and connect the pairs of nodes with the highest weighted r value.

Algorithm 1 RelWire

1: function RelWire(G - Graph, k - number
of edges added)

2: Compute shortest distance d(u, v) between
all pairs of nodes u, v.

3: Compute T : E × E → {0, 1} such that
T (e1, e2) = 1 if and only if e1 6⊥ e2.

4: Compute r(u, a) =
d(u, a)

∑
v∈N (u)

∑
b∈N (a) T

(
(u, v), (a, b)

)
.

5: Connect the k non-adjacent node pairs with
largest r value.

6: return Rewired Graph
7: end function

As discussed above, tranversality cap-
tures some notion of negative curvature, at
both the local and global scale of the graph.
Hence connecting a highly transverse dis-
tant pair morally helps remove negative cur-
vature at a global level.

4. Experiments

To validate our method on real data1, we
took ten different datasets with roughly
∼ 27, 000 graphs for rewiring (see the Ap-
pendix B for more details). We rewired
these datasets by adding three edges using
RelWire, FOSR, GTR, and SDRF. We then computed the spectral gap for each of the
graphs in the dataset and took the average spectral gap for each dataset. Similarly, we
computed the average commute times for each of the graphs and then averaged that as
well. Note that for three of the datasets (Lipo, Tox21, and Enzymes) we had disconnected
graphs post rewiring, hence we did not compute the commute times for these datasets.
Finally, we computed the Betti and rank distances. Table 2 shows the spectral gap and the
Betti distance, while Table 4 displays the commute times. This is also visualized in Figure
1.

0 10 20 30 40 50 60
1
2

1

2

3

4

5

6

Be
tti

 D
ist

an
ce

RelWire
GTR
FOSR
SDRF

Figure 1: Betti distance versus 1/λ2. The
closer the points are to the origin the better.

Here we can see there is a give-and-take
between the eigengap and commute times
with the Betti distance. In particular, GTR
greatly decreases the eigengap and commute
times at the expense of transforming the
topology, as measured by large Betti distance.
On the other hand, SDRF relatively pre-
serves the topology as well as the eigengap
and commute times. Hence if we are to reduce
oversquashing while preserving the graph, we
must find a balance. In this regard, we see
that RelWire is Pareto optimal, in that
we have the second best eigengap, commute
times, and Betti distance.

1. All code can be found anonymized at Github

4

https://anonymous.4open.science/r/RelWire-620B/Copy_of_GNN_Graph_Prediction.ipynb

Extended Abstract Track
RelWire

5. Conclusion

References

[1] Uri Alon and Eran Yahav. “On the Bottleneck of Graph Neural Networks and its
Practical Implications”. In: International Conference on Learning Representations.
2021. url: https://openreview.net/forum?id=i80OPhOCVH2 (cit. on p. 1).

[2] Adrian Arnaiz-Rodriguez et al. “DiffWire: Inductive Graph Rewiring via the Lo-
vasz Bound”. In: The First Learning on Graphs Conference. 2022. url: https://
openreview.net/pdf?id=IXvfIex0mX6f (cit. on p. 11).

[3] Yunsheng Bai et al. “Simgnn: A neural network approach to fast graph similarity
computation”. In: Proceedings of the twelfth ACM international conference on web
search and data mining. 2019, pp. 384–392 (cit. on p. 9).

[4] Ulrich Bauer and Michael Lesnick. “Induced Matchings of Barcodes and the Alge-
braic Stability of Persistence”. In: Proceedings of the Thirtieth Annual Symposium on
Computational Geometry. SOCG’14. Kyoto, Japan: Association for Computing Ma-
chinery, 2014, pp. 355–364. isbn: 9781450325943. doi: 10.1145/2582112.2582168.
url: https://doi.org/10.1145/2582112.2582168 (cit. on p. 13).

[5] Jason Behrstock, Mark Hagen, and Alessandro Sisto. “Hierarchically hyperbolic spaces
II: Combination theorems and the distance formula”. In: Pacific Journal of Mathe-
matics 299.2 (2019), pp. 257–338 (cit. on pp. 3, 15).

[6] Jason Behrstock, Mark Hagen, and Alessandro Sisto. “Hierarchically hyperbolic spaces,
I: Curve complexes for cubical groups”. In: Geometry & Topology 21.3 (2017), pp. 1731–
1804 (cit. on p. 14).

[7] Mladen Bestvina, Ken Bromberg, and Koji Fujiwara. “Constructing group actions on
quasi-trees and applications to mapping class groups”. In: Publications mathématiques
de l’IHÉS 122.1 (2015), pp. 1–64 (cit. on pp. 3, 15).

[8] Mitchell Black et al. “Understanding oversquashing in gnns through the lens of ef-
fective resistance”. In: International Conference on Machine Learning. PMLR. 2023,
pp. 2528–2547 (cit. on pp. 1, 9).

[9] Karsten M. Borgwardt et al. “Protein Function Prediction via Graph Kernels”. In:
21.1 (Jan. 2005), pp. 47–56. issn: 1367-4803. doi: 10.1093/bioinformatics/bti1007.
url: https://doi.org/10.1093/bioinformatics/bti1007 (cit. on p. 9).

[10] Jeffrey Brock. “The Weil-Petersson metric and volumes of 3-dimensional hyperbolic
convex cores”. In: Journal of the American Mathematical Society 16.3 (2003), pp. 495–
535 (cit. on p. 14).

[11] Jeffrey F Brock, Richard D Canary, and Yair N Minsky. “The classification of Kleinian
surface groups, II: The ending lamination conjecture”. In: Annals of Mathematics
(2012), pp. 1–149 (cit. on p. 14).

[12] Asim Kumar Debnath et al. “Structure-activity relationship of mutagenic aromatic
and heteroaromatic nitro compounds. Correlation with molecular orbital energies and
hydrophobicity.” In: Journal of medicinal chemistry 34 2 (1991), pp. 786–97. url:
https://api.semanticscholar.org/CorpusID:19990980 (cit. on p. 9).

5

https://openreview.net/forum?id=i80OPhOCVH2
https://openreview.net/pdf?id=IXvfIex0mX6f
https://openreview.net/pdf?id=IXvfIex0mX6f
https://doi.org/10.1145/2582112.2582168
https://doi.org/10.1145/2582112.2582168
https://doi.org/10.1093/bioinformatics/bti1007
https://doi.org/10.1093/bioinformatics/bti1007
https://api.semanticscholar.org/CorpusID:19990980

Extended Abstract Track
[13] Francesco Di Giovanni et al. “How does over-squashing affect the power of GNNs?”

In: arXiv preprint arXiv:2306.03589 (2023) (cit. on p. 16).

[14] Francesco Di Giovanni et al. “On Over-Squashing in Message Passing Neural Net-
works: The Impact of Width, Depth, and Topology”. In: Proceedings of the 40th In-
ternational Conference on Machine Learning. Ed. by Andreas Krause et al. Vol. 202.
Proceedings of Machine Learning Research. PMLR, 23–29 Jul 2023, pp. 7865–7885
(cit. on pp. 1, 16).

[15] Matthew Gentry Durham. “The augmented marking complex of a surface”. In: Jour-
nal of the London Mathematical Society 94.3 (2016), pp. 933–969 (cit. on p. 14).

[16] Matthias Fey and Jan E. Lenssen. “Fast Graph Representation Learning with Py-
Torch Geometric”. In: ICLR Workshop on Representation Learning on Graphs and
Manifolds. 2019 (cit. on p. 11).

[17] Rafael Gómez-Bombarelli et al. “Automatic chemical design using a data-driven con-
tinuous representation of molecules”. In: ACS central science 4.2 (2018), pp. 268–276
(cit. on p. 9).

[18] Mikhael Gromov. “Hyperbolic groups”. In: Essays in group theory. Springer, 1987,
pp. 75–263 (cit. on p. 14).

[19] Max Horn et al. “Topological Graph Neural Networks”. In: International Conference
on Learning Representations. 2022. url: https://openreview.net/forum?id=

oxxUMeFwEHd (cit. on p. 13).

[20] Kedar Karhadkar, Pradeep Kr. Banerjee, and Guido Montufar. “FoSR: First-order
spectral rewiring for addressing oversquashing in GNNs”. In: The Eleventh Interna-
tional Conference on Learning Representations. 2023. url: https://openreview.
net/forum?id=3YjQfCLdrzz (cit. on pp. 9, 16).

[21] Michael Lesnick. “The theory of the interleaving distance on multidimensional persis-
tence modules”. In: Foundations of Computational Mathematics 15.3 (2015), pp. 613–
650 (cit. on p. 13).

[22] Sunhyuk Lim, Facundo Memoli, and Osman Berat Okutan. “Vietoris-rips persis-
tent homology, injective metric spaces, and the filling radius”. In: arXiv preprint
arXiv:2001.07588 (2020) (cit. on p. 13).

[23] Howard A Masur and Yair N Minsky. “Geometry of the complex of curves II: Hier-
archical structure”. In: Geometric and Functional Analysis 10.4 (2000), pp. 902–974
(cit. on p. 14).

[24] Yair Minsky. “The classification of Kleinian surface groups, I: Models and bounds”.
In: Annals of Mathematics (2010), pp. 1–107 (cit. on p. 14).

[25] Christopher Morris et al. “Tudataset: A collection of benchmark datasets for learning
with graphs”. In: arXiv preprint arXiv:2007.08663 (2020) (cit. on p. 9).

[26] Khang Nguyen et al. “Revisiting Over-smoothing and Over-squashing Using Ollivier-
Ricci Curvature”. In: International Conference on Machine Learning. PMLR. 2023,
pp. 25956–25979 (cit. on pp. 1, 8).

6

https://openreview.net/forum?id=oxxUMeFwEHd
https://openreview.net/forum?id=oxxUMeFwEHd
https://openreview.net/forum?id=3YjQfCLdrzz
https://openreview.net/forum?id=3YjQfCLdrzz

Extended Abstract Track
RelWire

[27] Yann Ollivier. “Ricci curvature of Markov chains on metric spaces”. In: Journal of
Functional Analysis 256.3 (2009), pp. 810–864 (cit. on p. 8).

[28] Hongbin Pei et al. “Geom-GCN: Geometric Graph Convolutional Networks”. In:
ArXiv abs/2002.05287 (2020). url: https://api.semanticscholar.org/CorpusID:
210843644 (cit. on p. 18).

[29] Kasra Rafi. “Hyperbolicity in Teichmüller space”. In: Geometry & Topology 18.5
(2014), pp. 3025–3053 (cit. on p. 14).

[30] Bastian Rieck et al. “Neural Persistence: A Complexity Measure for Deep Neural
Networks Using Algebraic Topology”. In: International Conference on Learning Rep-
resentations. 2019. url: https://openreview.net/forum?id=ByxkijC5FQ (cit. on
pp. 2, 12, 13).

[31] Yunsheng Shi et al. “Masked label prediction: Unified message passing model for
semi-supervised classification”. In: arXiv preprint arXiv:2009.03509 (2020) (cit. on
p. 10).

[32] Rishi Sonthalia and Anna Gilbert. “Tree! i am no tree! i am a low dimensional hyper-
bolic embedding”. In: Advances in Neural Information Processing Systems 33 (2020),
pp. 845–856 (cit. on p. 8).

[33] T. Sterling and John J. Irwin. “ZINC 15 – Ligand Discovery for Everyone”. In: Journal
of Chemical Information and Modeling 55 (2015), pp. 2324–2337. url: https://api.
semanticscholar.org/CorpusID:327319 (cit. on p. 9).

[34] Jake Topping et al. “Understanding over-squashing and bottlenecks on graphs via cur-
vature”. In: International Conference on Learning Representations. 2022. url: https:
//openreview.net/forum?id=7UmjRGzp-A (cit. on pp. 1, 8, 9, 16).

[35] Domenico Tortorella and Alessio Micheli. “Is Rewiring Actually Helpful in Graph
Neural Networks?” In: arXiv preprint arXiv:2305.19717 (2023) (cit. on p. 10).

[36] Nicolas Garcia Trillos and Melanie Weber. “Continuum Limits of Ollivier’s Ricci Cur-
vature on data clouds: pointwise consistency and global lower bounds”. In: arXiv
preprint arXiv:2307.02378 (2023) (cit. on p. 8).

[37] Zhenqin Wu et al. “MoleculeNet: a benchmark for molecular machine learning”. In:
Chemical science 9.2 (2018), pp. 513–530 (cit. on p. 9).

[38] Keyulu Xu et al. “Representation Learning on Graphs with Jumping Knowledge Net-
works”. In: Proceedings of the 35th International Conference on Machine Learning.
Ed. by Jennifer Dy and Andreas Krause. Vol. 80. Proceedings of Machine Learning
Research. PMLR, Oct. 2018, pp. 5453–5462 (cit. on p. 1).

7

https://api.semanticscholar.org/CorpusID:210843644
https://api.semanticscholar.org/CorpusID:210843644
https://openreview.net/forum?id=ByxkijC5FQ
https://api.semanticscholar.org/CorpusID:327319
https://api.semanticscholar.org/CorpusID:327319
https://openreview.net/forum?id=7UmjRGzp-A
https://openreview.net/forum?id=7UmjRGzp-A

Extended Abstract Track
Appendix A. Prior

A.1. Graph Properties: Eigengap, commute time, and curvature.

In this section, we detail connections between oversquashing and different statistics.

Definition 2 (Combinatorial Laplacian):
Suppose A is the adjacency matrix for a graph G and D is the degree matrix, the Combi-
natorial Laplacian is L(G) := D −A.

Definition 3 (Eigengap):
For a connected graph G, the eigengap or spectral gap λ2(G) is the second largest eigenvalue
of the Combinatorial Laplacian L(G).

Definition 4 (Cheeger Constant):
Given a graph G = (V,E) a cut cut(C1, C2) is a disjoint partition of the nodes V into C1

and C2. The size of a cut is |cut(C1, C2)| := |{(u, v) ∈ E, u ∈ C1, v ∈ C2}|. The Cheeger

constant hG is defined as min(C1,C2)
|cut(C1,C2)|
|C1||C2| .

Thus, we see that the Cheeger constant tells how connected the graph is, giving it a
clear relation to oversquashing. However, the Cheeger constant is difficult to compute, but
can be well approximated by the eigengap.

λ2(G)

2
≤ hG ≤

√
2λ2(G) and 2hG ≤ λ2(G) ≤

h2G
2
.

Thus, having a large λ2(G) results in a large Cheeger constant. Thus, the graph is
better connected.

Definition 5 (Commute Times):
Let A be the adjacency matrix of a graph G. Consider a random walk on G with transition
probabilities given by P = D−1A.
1. The hitting time H(i, j) is the expected time for a random walk starting at node i to hit

node j.
2. The commute time is CT (i, j) = H(i, j) +H(j, i).

As discussed in [34], the Ricci curvature is a natural method for measuring information
dispersion on a manifold. For instance, two geodesics starting nearby with the same veloc-
ity will converge on a sphere (positive curvature), will remain parallel in Euclidean space
(zero curvature), or will diverge in Hyperbolic space (negative curvature). This divergence
in Hyperbolic space can be used to show that Hyperbolic space is good for representing
hierarchical information [32].

Similar to the Ricci curvature on manifolds, Ricci curvature has also been defined for
graphs [27] and has been used for rewiring [34]. Recently it has been shown by [36] that
the discrete notion of the Ollivier-Ricci curvature defined on metric graphs (i.e. k-nearest
neighbor graphs of data on a manifold M) converges pointwise to the Ricci curvature on
the manifold M. Thus the information divergence interpretation of the curvature applies
to the graphs as well, indicating that graphs with negative curvature are detrimental to
oversquashing. This has been formalized by recent work such as [26, Theorem 4.5], where
the authors show that negative curvature results in sharply decaying importance of distant
nodes. Thus, increasing the curvature of the graphs helps address oversquashing.

8

Extended Abstract Track
RelWire

A.2. Prior Rewiring Works: SDRF, FOSR, and GTR

We review the existing rewiring methods against which we compare our own method Rel-
Wire.

SDRF As we have seen, the curvature of a graph is related to oversquashing. Thus, [34]
design a method to increase the curvature of negatively curved areas. However, the Ollivier
Ricci curvature is difficult to calculate, hence they approximate it using a notion called
Balanced Forman Curvature Ric(i, j). In [34] show that if Ric(i, j) > k for all edges then

we have that
k

2
≤ hG ≤

λ2
2
. Thus, showing the connection between the curvature and other

quantities such as the eigengap and the Cheeger constant. They then create a method that
finds the most negatively curved edge and then add the edge that increases the curvature
of this edge the most.

FOSR In [20], they showed that if f is the second eigenvector for the normalized Laplacian
(I −D−1/2AD−1/2)) then adding an edge i, increases the second eigenvalue by

2fifj√
1 + di

√
1 + dj

+ 2λ2

[
f2i

(√
di√

1 + di
− 1

)
+ f2j

(√
dj√

1 + dj
− 1

)]
.

They use this method to design an algorithm FOSR, that maximizes the first order term.

GTR Another notion of relevance is the total resistance of a graph, G. Let L be the
Combinatorial Laplacian of a graph. Then the resistance R(i, j) between nodes i and j is
given by R(i, j) = (1i − 1j)

TL†(1i − 1j). Here 1i is the indicator vector for the ith node
and L† is the pseudoinverse of the Combinatorial Laplacian. The total resistance Rtot is

Rtot =
∑
i,j

R(i, j). Then the biharmonic distance B(i, j) between nodes i and j is given by

B(i, j) =
√

(1i − 1j)T (L†)2(1i − 1j).

[8] show that the increase in the total resistance of adding an edge (i, j) is given by
B(i,j)2

1+R(i,j) . Hence they design a method GTRthat maximizes this quantity. This quantity is

related to the eigengap as well [8], where the maximum resistance between any two pairs of
nodes Rmax is bounded by

1

nλ2
≤ Rmax ≤

1

λ2
.

Appendix B. Datasets

Specifically, we look at The ZINC dataset [17, 33] which consists of 10,000 molecular graphs.
From [37], we look at ESOL which is the water solubility of 1,128 compounds, BACE which
1,522 compounds representing the inhibitors or human β-secretase 1, Lipophilicity which
is 4,200 drug compounds, and Tox21 measure the toxicity of 7831 compounds. From the
TUDataset [25], we use MUTAG [12] with consists of 188 nitroaromatic compounds and
ENZYMES [9] which is a dataset of 600 protein tertiary structures obtained from the
BRENDA enzyme database. Finally, we use three datasets from [3] consisting of 1520
graphs in total. The statistics for the datasets can be seen in Table 1.

9

Extended Abstract Track
Zinc ESOL BACE Lipo Tox21 Mutag Enzymes AIDS Alkane Linux

Nodes 23.2 13.3 34.1 27 18.6 17.9 32.6 8.9 8.9 7.6
Edges 49.8 27.4 73.7 59 38.6 39.6 124.3 17.6 15.8 13.9

Table 1: Table showing the average sizes of the graphs in each dataset.

Appendix C. Experiments

C.1. Graph Rewiring

Dataset Eigengap Betti Distance
RelWire FOSR GTR SDRF RelWire FOSR GTR SDRF

Zinc 0.094 0.065 0.13 0.029 2.7 3.5 5.2 0.9
ESOL 0.4 0.37 0.4 0.21 1.7 3 3.5 0.7
BACE 0.048 0.033 0.08 0.017 3.5 3.8 5.9 1
Lipophilicity 0.083 0.056 0.12 0.03 3.1 3.7 5.3 1
Tox21 0.24 0.22 0.26 0.12 2.2 3.2 4.3 0.7
Mutag 0.18 0.15 0.23 0.1 2.2 3.2 4.2 1.3
Enzymes 1.1 1.1 1.3 0.06 2.5 3.5 4.6 1.2
AIDS700nef 0.46 0.44 0.49 0.31 1.0 2.9 3 0.65
Alkane 0.46 0.47 0.43 0.24 0.43 2.9 3.0 0.41
Linux 0.6 0.62 0.57 0.3 0.68 2.9 2.7 0.4

Table 2: Table showing the eigengap λ2 and the Betti distance for the rewired graphs.

C.2. Graph Regression

We also do preliminary experiments to show that RelWire helps improve the performance
for graph regression. Four out of the ten data are for graph regression. For each dataset
we split into train, test, and validation sets. We train 5 two layer Transformer Convolution
networks [31]. We then pick the network with the best validation accuracy and report the
test accuracies. These can be see in Table 3. As we see from the Table, we don’t have
any consistent trends. However, we do see that RelWire does perform well on average.
This lack of trends is further supported by [35], where they do node classification tests on
different data sets. This suggests that more work needs to be done to understand when
graph rewiring is helpful.

Data Split For Zinc we used a random split of 8000 training datapoints, 1000 validation
data points and 1000 test datapoints. For BACE we use 1100 training, 200 validation and
222 test datapoints. For Lipo we used 3600 training data points and 300 for validation
and test east. Finally, for ESOL we used 700 graphs as the training data and 100 each for
validation and test.

10

Extended Abstract Track
RelWire

0 20 40 60 80 100
Number of Edges

0

10

20

30

40

50

60

70
|

re
w

ire
d

1
or

ig
in

al
1

|
FOSR
SDRF
GTR
RelWire

(a) Rank Betti Curve

0 20 40 60 80 100
Number of Edges

6

8

10

12

1 2

RelWire
FOSR
SDRF
GTR

(b) 1/λ2

0 20 40 60 80 100
Number of Edges

25

26

27

28

29

30

31

32

Av
er

ag
e

Co
m

m
ut

e
Ti

m
es

RelWire
FOSR
SDRF
GTR

(c) Commute Time

Figure 2: Graph properties for Cornell for the different rewiring methods.

Original RelWire SDRF FOSR GTR

Zinc 185.092 185.089 185.091 185.091 185.090
Lipo 0.7067 0.6662 0.6325 0.7543 1.1388

BACE 0.5142 0.5556 0.5724 0.6284 0.6174
ESOL 0.8605 0.7631 1.4253 0.6936 0.6012

Table 3: Test mean squared error for the model with
the best validation mean squared error over five trials.

Optimization For all methods
we used Adam optimizer with the
default parameters. We also used
cosine annealing as the learning
rate decay.

For Lipo, we used a batch size
of 40 and trained for 100 epochs.
For Zinc we used a batchsize of 80
and also trained for a 100 epochs.
For ESOL and BACE, we used a
bigger batchsize of 100 but trained for 1000 epochs.

Computing Test Error We trained each model five times. We then picked the trial
with the smallest validation accuracy and then reported the corresponding test accuracy.

Computer Resource All datasets were accessed using Pytorch Geometric [16]. The
models were all trained on Google Colab using a V100 GPU and pytorch geometric.

For rewiring, for used the official implementations of FOSR and GTR. For SDRF, we
used the implementation from the LOG conference tutorial on graph rewiring [2].

C.3. WebKd Experiments

In Figure 2, we show the graphs for Cornell.

C.4. Proof

Lemma 6 Let E1, E2 be edges of a simplicial graph G. If for E1, E2 we have that they
1. are contained in a clique subgraph of G, then E1, E2 are independent;
2. are separated by vertex v with πE1(v), πE2(v) both singletons, then E1, E2 are transverse.

Proof We start by proving (1). For this let Ei = (u, v) and E2 = (a, b). Then since this is
a clique with all edge weights equal to 1. We have that

πE1(a) = {u, v} and πE2(u) = {a, b}.

Thus, we have independence.

11

Extended Abstract Track
For (2), we note that since v separates tthe graph into at least two components G1, G2

such that E1 ∈ G1 and E2 ∈ G2. Then we see that for all x ∈ G1, we have that

πE2(x) = πE2(v).

Similarly for all x ∈ G2, we have that

πE1(x) = πE1(v).

Then since πE1(v), πE2(v) are singletons, we see that we cannot get all four projection pairs.
Thus, the edges are transverse.

Appendix D. Capturing topological distortion: Distances from persistent
homology

In this paper, we consider two notions of distances between graphs using topological in-
formation. The first is based on comparing 1-dimensional information, which is already
quite powerful in the context of graphs. The second is based on techniques from topological
data analysis, which takes into account higher dimensional features of the graphs. This
latter machinery is called persistence homology (see e.g., [30]), as it attempts to capture
“persistent” homological features as one takes larger samples of the space.

Definition 7 (Simplicial Complexes):
A k-simplex C is the convex hull of k+1 affinely independent vectors. A simplicial complex
K is a collection of simplices such that for every C ∈ C every face of C is in K and for every
C1, C2 ∈ K, if C1 ∩ C2 is not empty then C1 ∩ C2 is a face of both. The d-skeleton of K,
denoted K(d), is the simplicial subcomplex of K consisting of simplices of dimension at most
d.

These topological calculations involve the integral dth-homology group. The integral
dth-homology group of a topological space X, denoted Hd(X;Z), is an abelian group which
encodes certain d-dimensional topological features up to a natural topological equivalence.
The rank of Hd(X;Z)—namely the number of its Z-factors—encodes the number of d-
dimensional “holes”, and is called the dth Betti number βd. Notably, in dimensions 0 and
1, these numbers have concrete meanings: β0 encodes the number of connected components
of X, and β1 encodes the number of loops on X (up to homotopy).

In what follows, we will want to consider the homology of simplicial complexes obtained
by iteratively adding higher dimensional simplices, with our starting point being a graph.
The following example explains how this process can change the homology:

Example 1 (Changing Betti numbers) Consider a unit 3-cube C as a simplicial com-
plex, and its various skeleta. The 1-skeleton C(1) of C is the graph consisting of the edges
of the cube. It is connected, so β0(C

(1)) = 1, while and β1(C
(1)) = 5 because the graph

can be homotoped to a wedge of five circles. The 2-skeleton C(2) of C is the outside
of the cube, which is homotopic to the 2-sphere. Since C(2) has one connected compo-
nent, we have β0(C

(1)) = 1. Every loop in contractible in C(2), which means that both

12

Extended Abstract Track
RelWire

β1(C
(2)) = 0 and that β2(C

(2)) = 1, as the outside of the sphere is not nullhomologous.
The 3-skeleton C(3) = C is connected and contractible (it is homotopic to the 3-sphere), so
β0(C) = 1, β1(C) = 0, β2(C) = 0, and β3(C) = 1. Hence adding higher dimensional cells
can dramatically change Betti numbers.

Our next goal is to define our two distances. For this, we need a notion of a sequence of
simplicial complexes, called a filtration, as well as a notion of how topological features can
appear and vanish along the filtration, which is called persistence; see [4, 21, 22] for more
details.

Definition 8 (Filtration):
A filtration of simplicial complexes is a collections of nested simplicial complexes G0 ⊂
G1 ⊂ · · · . The complex Gk is called the kth level of the filtration.

Definition 9 (Persistence):
Given a filtration G0 ⊂ G1 ⊂ · · · ⊂ Gk, we can compute the homology groups for each Gi.
Then for any feature (homology class), we can compute the first level k at which the feature
appears, called the birth of the feature and the level at which the feature appears, called
the death. This collection of birth and death tuples is known as the persistence diagram.

In this paper, we will care about two different filtrations where the base complex is a
graph. The first is the filtration defined by the subsequent adding of edges by a graph
rewiring procedure, in which every level Gk is a graph. The second is a standard filtration
known as the Vietoris-Rips filtration. We will use these filtrations to define distances, which
the second type of distance being similar to ones used in prior work such as [19, 30].

Definition 10 (Vietoris-Rips filtration):
Let X = {x1, . . . , xn} be a collection of data points and d a metric on X. Then for any
r ∈ R+, the Vietoris-Rips simplicial complex V Rr(X) is defined by

V Rr(X) = {[xi1 , . . . xik] : ∀j, `, d(xij , xi`) ≤ r}.

• We call {V Rr(X)}r∈R+ the Vietoris-Rips Filtration.

The idea behind the Vietoris-Rips filtration is that it is a way to transform a metric space
to a filtration of simplicial complexes, which in the context of a graph involves introducing
higher dimensional topological features which are derived from the geometry of the graph.
Using a persistence diagram, we can generalize Betti numbers to a more expressive quantity
known as the Betti curve. We can use this to define a distance between persistence diagrams.

Definition 11 (Betti Curve):
Let P be a persistence diagram. The Betti curve β : R→ N is a function, where β(r) is the
number of features that b ≤ r < d, where b and d are the birth and death.

Definition 12 (Persistence Distance):
The persistence distance between two persistence diagrams is the L2 norm of the difference
between their respective Betti curves.

13

Extended Abstract Track
Definition 13 (Betti distance):
Given two graphs G,G′, we will call the persistence distance between their respective
Vietoris-Rips filtrations {V Rr(G)}r∈R+ and {V Rr(G′)}r∈R+ the Betti distance between
G,G′.

In practice, we will use the Betti distance to compute the higher dimensional “topological
distortion” from a base graph G and some other graph G′ built from G by adding edges via
a rewiring process.

Our second notion of distance measures 1-dimensional topological distortion. A graph
filtration G0 ⊂ G1 ⊂ · · · has Gi a simplicial graph for each i. Graph filtrations naturally
arise in the iterative graph rewiring procedures considered in this paper. Since simplicial
graphs have no homology beyond dimension 1 and all edges have length 1, the only relevant
features of a graph filtration are loops and each birth and death happens at integer time
values. Hence their Betti curves are step functions and we obtain:

Lemma 14 (Rank distance) If G0 ⊂ G1 ⊂ · · · and G′0 ⊂ G′1 ⊂ · · · are two graph
filtrations, then their persistence distance equals

averagei|H1(Gi;Z)−H1(G
′
i;Z)|.

• Hence we call the persistence distance between a pair of graph filtrations the rank
distance.

Upshot of topological discussion: In this paper, we use the Betti and rank distances
to measure of how much a given rewiring procedure changes the topology of the graph. For
GNNs, the structure of the base graph encodes crucial information. Hence we can use
these two distances to measure how much a given graph rewiring procedure preserves the
underlying graph structure.

Appendix E. RelWire: relations on graphs

In this section, we detail our new algorithm, which utilized ideas imported from geomet-
ric group theory. We explain the background and motivation first, before describing our
algorithm in detail.

E.1. Coarse geometry and relations on graphs

Geometric group theory is interested in the geometry of infinite groups and the metric
spaces on which they act. Gromov’s work on hyperbolic and CAT(0) spaces [18] introduced
various coarse notions of curvature to the area, which had transformative implications in
the study of low-dimensional hyperbolic manifolds via their fundamental groups.

Hierarchical hyperbolicity [6] is an axiomatic framework for studying hybrid spaces
which exhibit aspects of coarse negative, flat, and positive curvature. This hierarchical
approach builds on work in several areas of low dimensional topology, including mapping
class groups ([23], Teichmüller spaces ([10, 15, 29]), and hyperbolic 3-manifolds ([11, 24]).
These hierarchically hyperbolic spaces (HHSes) are coarsely built out of hyperbolic spaces,
which are combined in both negative and flat curvature ways based on various relations

14

Extended Abstract Track
RelWire

between the hyperbolic spaces. In this paper, we will apply a simplified version of this
hierarchical framework to study curvature properties of graphs. In particular, we will use
the geometry of a fixed graph to induce two (mutually exclusive) types of relations among
its edges. In the general setting, one starts with an ambient geodesic metric space X with
a finite collection of Gromov hyperbolic geodesic metric spaces V. We note that HHSes
were developed to study infinite groups where V is infinite, but we can and will assume
V is finite for simplicity of this discussion. To each space V ∈ V, there is an associated
projection map πV : X → V . The guiding philosophy is that these projections behave like
closest-point projections to convex subspaces, and that they collectively coarsely encode
most of the geometry of X.

In our setting, the ambient space X = G is a simplicial graph and this philosophy
becomes quite simple: the spaces in the hierarchy are the edges, and a projection of a vertex
of G to an edge E is a some collection of its endpoints. Specifically, given a vertex v ∈ G(0)

and an edge E of G, the projection πE(v) ⊂ E(0) of v to E is the endpoint of E which is
closest in G to v. When both endpoints are equidistant to v, then we set πE(v) = E(0) to
be both endpoints. With these projections defined, we define our (simplified) relations.

The first relation, called orthogonal, encodes flat curvature. In the setting of an HHS X,
when two hyperbolic spaces U, V in the hierarchy are orthogonal, the product map πU×πV :
X → U ×V is surjective, and there is a coarsely isometrically embedded flat subspace of X
(see e.g. Subsection 5B of [5]). For instance, R2 is an HHS where the hyperbolic spaces are
the coordinate axes (i.e., copies of R), and the flat subspace corresponding to their product
is the whole ambient space R× R = R2.

(a) 4 cycle (b) Cross

Figure 3: Here are two simple graphs in which:
(a) all adjacent edges are independent and (b)
all edges are transverse.

In our graphical setting, we will say two
edges E1, E2 are independent when πE1 ×
πE2 : G → E

(0)
1 × E(0)

2 is surjective. Oth-
erwise, we will say that E1, E2 are trans-
verse. Roughly, this notion of transversality
encodes negative curvature (see e.g. [7]).

While the connection between indepen-
dence/transversality and flat/negative cur-
vature is not exact, the connection is more
than moral:

Lemma 15 Let E1, E2 be edges of a sim-
plicial graph G. If for E1, E2 we have that
they

1. are contained in a clique subgraph of G, then E1, E2 are independent;
2. are separated by vertex v with πE1(v) and πE2(v) both singletons, then E1, E2 are trans-

verse.

Much more is true in practice. For instance, most edges in a given loop will be pairwise
independent, while the condition in item (2) of Lemma 15 is fairly generic. More refined
relations are capable of exactly encoding, e.g. that independence and being in a loop
are equivalent, but these conditions are difficult to state and even slower to implement
algorithmically.

15

Extended Abstract Track
Remark 16 (Global vs. local curvature):
As every pair of edges in a graph satisfies one of our two relations, they are both capable of
capturing local and global properties of the graph. While item (2) of Lemma 15 says that
independence is frequently more locally focused, transversality captures negative curvature
in a fundamentally different way than existing notions of graph curvature.

E.2. RelWire

Algorithm 2 RelWire

1: function RelWire(G - Graph, k - number
of edges added)

2: Compute shortest distance d(u, v) between
all pairs of nodes u, v.

3: Compute T : E × E → {0, 1} such that
T (e1, e2) = 1 if and only if e1 6⊥ e2.

4: Compute r(u, a) =
d(u, a)

∑
v∈N (u)

∑
b∈N (a) T

(
(u, v), (a, b)

)
.

5: Connect the k non-adjacent node pairs with
largest r value.

6: return Rewired Graph
7: end function

We present our new rewiring technique
RelWire. The pseudocode for the method
can be seen in Algorithm 2. The basic idea
is to eliminate negative curvature by adding
edges, so the main task is to identify pairs
of vertices which belong to the most trans-
verse edge pairs, weighted by their distance
in the graph.

We begin by determining for each pair of
edges if they are independent or transverse.
Then for each pair of nodes u, a, we consider
all neighboring edges of the form (u, v) and
(a, b) for all v ∈ N (u) and b ∈ N (a). Then we define

r(u, a) = d(u, a)
∑

v∈N (u)
b∈N (a)

1{(u, v) 6⊥ (a, b)}.

We then connect the k node pairs that are not adjacent in the graph that have the highest
r values, where k is our rewiring parameter. That is, for a pair of nodes, we count the
number of transverse edge pairs that the two nodes are in. We then weight this count
by the distance between the two nodes, and connect the pairs of nodes with the highest
weighted r value.

As discussed above, tranversality captures some notion of negative curvature, at both
the local and global scale of the graph. Hence connecting a highly transverse distant pair
morally helps remove negative curvature at a global level.

Appendix F. Preserving the topology: barbell example

In this section we explore the topological differences between RelWire, FOSR, GTR,
and SDRF. We will do this using the standard example of a barbell graph G (Figure 5a)
that has been used in prior work such as [13, 14, 20, 34]. We shall use all four methods to
add between one and nine edges, and we shall see that the results are quite different. To
understand the topological distortion caused by rewiring, we compute both the rank and
Betti distances relative to the underlying graph.

Figure 4 shows the rewired graphs for k = 1, 2, 3 and Figure 5b shows the ranks for
adding up to 9 edges. Here we see that RelWire initially introduces a loop and the rank
increases to 1, while successive edges fill in that loop. On the other hand, both FOSR and

16

Extended Abstract Track
RelWire

0

1

2

3

4

5

6
7

8

9

10

11

12

13
14

(a) k = 1

0

1
2

3

4

5

6

7

8

9

10

11

12

13
14

(b) k = 2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(c) k = 3

(d) RelWire rewiring of the barbell graph

0
1

2
3

4

5

6 7

8

9

10

11

12

1314

(e) k = 1

0

1

2

3

4

5

6

7

8

9

10

11

12

13
14

(f) k = 2

0

1

2
3

4

5

6
7

8

9

10

11

12

13

14

(g) k = 3

(h) FOSR rewiring of the barbell graph

0

1
2

3

4

5

6
7

8

9

10
11

12

13
14

(i) k = 1

0

1
2

3

4

5

6

7

8

9

10 11

12
13

14

(j) k = 2

0

1

2

3

4 5

6
7

8

9 10

11

12

13

14

(k) k = 3

(l) GTR rewiring of the barbell graph

0
1

2

3
4

5
6

7

8

9

10

11

12

13

14

(m) k = 1

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

(n) k = 2

0

1

2

3
4

5 6
7

8

9 10 11

1213

14

(o) k = 3

(p) SDRF rewiring of the barbell graph

Figure 4: Rewired barbell graph.

GTR create a loop with each successive edge addition. Finally, it is not clear what SDRF
does to the topology and the topological rank is not very stable.

17

Extended Abstract Track

(a) Barbell Graph

1 2 3 4 5 6 7 8 9
Number of Edges

0

2

4

6

8

1

RelWire
FOSR
SDRF
GTR

(b) Ranks

Figure 5: (a) Barbell Graph. (b) The ranks of the first homology group of the rewired
graphs.

1 2 3 4 5 6 7 8 9
Number of Edges

10

20

30

40

50

60

1 2

RelWire
FOSR
SDRF
GTR

(a) 1
λ2

1 2 3 4 5 6 7 8 9
Number of Edges

6

7

8

9

10

11

Av
er

ag
e

Co
m

m
ut

e
Ti

m
es RelWire

FOSR
SDRF
GTR

(b) Average Commute Times

1 2 3 4 5 6 7 8 9
Number of Edges

0

2

4

6

8

Be
tti

 D
ist

an
ce

RelWire
FOSR
SDRF
GTR

(c) Betti Distance

Figure 6: Figure showing 1
λ2

, the average commute times, as well as the Betti distance
between the rewired graph and the original graph for RelWire, SDRF, GTR, and FOSR.

We also analyze how rewiring affects the statistics related to oversquashing, i.e. average
commute times and eigengaps of the graph. These quantities, along with Betti distance to
the original graph, are plotted in Figure 6. As we can see, RelWire, GTR, and FOSR
have the best average commute times and eigengaps, whereas SDRF is ineffective. On
the other hand, we see that FOSR and GTR result in large topological changes, whereas
RelWire has relatively little effect on the topology.

Appendix G. Betti Curve for Rank Persistence

In the previous experiments we only added a fixed number of edges to the graphs. As with
the barbell graph example, it is interesting to see how the statistics change as we vary the
number of edges added. Hence, we took Texas and Cornell from the WebKb dataset [28]
and added up to 100 edges. Figure 7 shows the results for Texas. The one for Cornell
can be seen in the Appendix. Here we see that RelWire has the best eigengap, FOSR
has the best rank distance, and GTR has the best commute times. There are many other
interesting aspects to the curves. The first is the jump discontinuity in the rank of the
first homology group from FOSR. This implies that FOSR reaches a critical number of

18

Extended Abstract Track
RelWire

edges after which adding loops is no longer beneficial and starts eliminating loops. On the
other, GTR and SDRF seem to always add loops. RelWire on the other hand, seems to
always want to eliminate topological loops. The jump discontinuity in the rank of the first
homology group for FOSR seems to correlate with the jump discontinuity in the eigengap
curve. However, interestingly we see no discontinuity in the commute times curve.

0 20 40 60 80 100
Number of Edges

0

10

20

30

40

50

60

70

|
re

w
ire

d
1

or
ig

in
al

1
|

FOSR
SDRF
GTR
RelWire

(a) Rank distance

0 20 40 60 80 100
Number of Edges

4

6

8

10

12

14

16

18

1 2

RelWire
FOSR
SDRF
GTR

(b) 1/λ2

0 20 40 60 80 100
Number of Edges

25

26

27

28

29

30

31

32

Av
er

ag
e

Co
m

m
ut

e
Ti

m
es

RelWire
FOSR
SDRF
GTR

(c) Commute Time

Figure 7: Comparing the four rewiring methods after many edge additions: in (a), rank
distance; (b) eigengap (λ−12), and (c) the average commute times, each as a function of the
number of edges added.

Appendix H. Conclusion

In conclusion, we use ideas from geometric group theory to develop a new rewiring technique
known as RelWireusing a new curvature-like relation on edges. We also introduce a
new topological distance which measures how rewiring changes the structure of a graph.
We show that compared to other method RelWireis Pareto optimal in that it makes
small topological changes to the graph and makes big changes to statistics connected to
oversquashing such as eigengap and commute times. We test RelWireon the downstream
task of graph regression and report positive results.

Dataset RelWire FOSR GTR SDRF

Zinc 9.96 10.9 9.22 12.7
ESOL 6.1 6.3 5.7 7.0
BACE 13.9 15.4 12.7 17.7
Mutag 7.7 8 7.2 8.8
AIDS700nef 4.5 4.4 4.1 4.8
Alkane 4.8 4.6 4.2 5.2
Linux 3.9 3.8 3.6 4.3

Table 4: Average commute times after
rewiring.

19

	Introduction
	Background and Problem Setup

	Capturing topological distortion: Distances from persistent homology
	RelWire: relations on graphs
	RelWire

	Experiments
	Conclusion
	Prior
	Graph Properties: Eigengap, commute time, and curvature.
	Prior Rewiring Works: SDRF, FOSR, and GTR

	Datasets
	Experiments
	Graph Rewiring
	Graph Regression
	WebKd Experiments
	Proof

	Capturing topological distortion: Distances from persistent homology
	RelWire: relations on graphs
	Coarse geometry and relations on graphs
	RelWire

	Preserving the topology: barbell example
	Betti Curve for Rank Persistence
	Conclusion

