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Abstract
As language models have scaled both their001
number of parameters and pretraining dataset002
sizes, the computational cost for pretraining has003
become intractable except for the most well-004
resourced teams. This increasing cost makes it005
ever more important to be able to reuse a model006
after it has completed pretraining; allowing for007
a model’s abilities to further improve without008
needing to train from scratch. In this work, we009
detail a set of guidelines that cover how to de-010
sign efficacious data distributions and learning011
rate schedules for continued pretraining of lan-012
guage models. When applying these findings013
within a continued pretraining run on top of a014
well-trained 15B parameter model, we show an015
improvement of 9% in average model accuracy016
compared to the baseline of continued train-017
ing on the pretraining set. The resulting recipe018
provides a practical starting point with which019
to begin developing language models through020
reuse rather than retraining.021

1 Introduction022

Language modeling abilities have seen massive023

improvements over the past few years (Brown024

et al., 2020; Chowdhery et al., 2022; OpenAI, 2024;025

Team, 2024). While these advancements have en-026

abled language models (LMs) to become highly-027

skilled conversational agents (OpenAI, 2024; An-028

thropic, 2024; Team, 2024), they have come with029

increased computational cost as pretraining has be-030

come ever more expensive due to both the number031

of model parameters (Team et al., 2024; DeepSeek-032

AI et al., 2024) and pretraining dataset size (Tou-033

vron et al., 2023; Gemma Team, 2024; Parmar et al.,034

2024) continuing to grow in scale. With new LMs035

that set state of the art accuracy being released036

on a frequent basis, LMs developed only a cou-037

ple months back are becoming obsolete as their038

capabilities are no longer up to par. This leaves039

model developers with the choice of either pretrain-040

ing new LMs from scratch or reusing their existing041

LMs and updating them with new information in 042

order to match current best LM abilities. 043

Due to the large computational cost that pre- 044

training of modern LMs incurs, frequent complete 045

retraining is intractable. This makes the reuse of 046

already developed LMs via continued pretraining 047

an attractive proposition. While most recent works 048

(Ibrahim et al., 2024; Jang et al., 2022; Ke et al., 049

2023; Çağatay Yıldız et al., 2024) have recom- 050

mended guidelines for continued pretraining when 051

adapting language models to new data domains or 052

distribution shifts, intuition or recommendations on 053

how to improve a model’s general purpose abilities 054

from a previously finalized checkpoint with contin- 055

ued pretraining have not been widely explored. In 056

this paper, we focus on this under-studied setting 057

and identify strategies that allow for already trained 058

LMs to improve upon areas of weakness without 059

experiencing degradations in other capabilities. 060

In our experiments, we start on top of a 15B pa- 061

rameter LM that has seen 8T tokens of pretraining 062

data. Experimenting with a well trained model of 063

this scale ensures that our findings will be trans- 064

ferable to most settings and model sizes. We first 065

identify the type of data distribution that should be 066

used during continued pretraining and find that it 067

is optimal to have two distributions, with the final 068

one more heavily weighting data sources that relate 069

to the abilities we want to improve in the model. 070

Second, we determine what learning rate schedules 071

enable the most efficient learning during continued 072

pretraining and determine that the most performant 073

one strikes a balance between magnitude of learn- 074

ing rate and steepness of decay. Lastly, we show 075

how the learning rate value at which we switch 076

between data distributions affects downstream ac- 077

curacy and identify the point at which this switch 078

should be made. 079

These findings culminate in a recipe that can be 080

used to perform continued pretraining to improve 081

the capabilities of an existing LM. We demonstrate 082
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that this recipe is beneficial at continued training083

scales from 100B to 1 trillion tokens, illustrating084

its flexibility and robustness to be used in a wide085

variety of settings. We hope that this recipe will086

allow for model providers to forgo the need to reg-087

ularly retrain models from scratch as it makes it088

possible to reuse a trained model to attain improved089

capabilities.090

2 Related Works091

Continued training methods aim to take an already092

trained model and incorporate new data, adapt it093

for a given domain, or specialize it on a certain task094

(Rolnick et al., 2019; Caccia et al., 2021; Lesort095

et al., 2022; Gupta et al., 2023; Lin et al., 2024).096

The major challenge that arises during continued097

training is enabling a model to learn new informa-098

tion without forgetting previously attained knowl-099

edge or capabilities (Robins, 1995; French, 1999).100

The learning rate schedule and data distribution101

used during continued training (Gupta et al., 2023;102

Ibrahim et al., 2024; Winata et al., 2023; Scialom103

et al., 2022) have been shown to be particularly im-104

portant in preventing such catastrophic forgetting.105

For LMs, one major setting of continued training106

has been to embed more recent knowledge into the107

model by using data collected at a date later than108

when the pretraining set was constructed (Jin et al.,109

2022; Jang et al., 2022, 2023; Loureiro et al., 2022;110

Qin et al., 2022). Results from these studies found111

that using experience replay (Chaudhry et al., 2019)112

and knowledge distillation (Hinton et al., 2015) are113

particularly effective. Continued training is also114

commonly used in LMs to adapt the model to data115

coming from a new domain (Ke et al., 2023; Guru-116

rangan et al., 2020; Wu et al., 2024). Many of these117

methods for domain adaptive continued training118

update a portion of the model’s weights with the119

new data to ensure that previous knowledge is not120

lost. For instance, (Wu et al., 2024) does so via121

an expansion of the transformer blocks and only122

updating the newly added weights.123

More related to the setting which we explore,124

several studies utilize continued pretraining to spe-125

cialize a LM on a given task or domain (Zan et al.,126

2022; Yadav et al., 2023; Ma et al., 2023; Yang127

et al., 2024; Labrak et al., 2024). Despite investi-128

gating effective strategies for continued pretraining,129

these studies differ from ours as they do not aim130

to improve the general capabilities of LMs, train131

for far fewer tokens, and use much smaller model132

sizes. The main study which offers a compara- 133

tive setting to ours is (Ibrahim et al., 2024) which 134

provides a recipe, based on learning rate schedule 135

and example replay recommendations, for main- 136

taining general purpose abilities during continued 137

pretraining on data distribution shifts. Their experi- 138

mental setting consists of a 10B parameter model 139

that was pretrained for 300B tokens. Our study 140

differs from (Ibrahim et al., 2024) as we aim to 141

improve the general capabilities of the LM further, 142

and in our experimental setting we perform con- 143

tinued pretraining for up to 1T tokens with a 15B 144

parameter model that was pretrained on 8T tokens. 145

3 Experimental Setup 146

The continued pretraining process is as follows: a 147

model is first pretrained, then a data distribution 148

and learning rate schedule are chosen, a continued 149

pretraining run takes place, and finally the, hope- 150

fully improved, model is returned. Before delv- 151

ing into the experiments that define the continued 152

training recipe, we detail the datasets and model 153

architecture that are used. 154

3.1 Data Sources 155

3.1.1 Pretraining 156

Our pretraining dataset consists of three different 157

domains of data: English natural language data, 158

multilingual natural language data, and source code 159

data. Table 1 highlights the data sources that com- 160

pose the pretraining set along with their respec- 161

tive token counts. In our English corpus, the Web 162

Crawl data is sourced from Common Crawl (CC) 163

snapshots while the remaining categories are com- 164

prised of high-quality sets. For instance, the miscel- 165

laneous category consists of BigScience ROOTS 166

(Lachaux et al., 2020), Reddit, and Pile-Stories 167

(Gao et al., 2020), the encyclopedia category con- 168

tains Wikipedia and Stack Exchange, and scientific 169

papers includes ArXiv and PubMed. 170

The multilingual dataset consists of 53 languages 171

with the majority of examples being drawn from 172

CC snapshots, although a small portion comes from 173

machine translation parallel corpora (Schwenk 174

et al., 2019; El-Kishky et al., 2019). Lastly, our 175

source code data is drawn from permissively li- 176

censed GitHub repositories and totals over 43 lan- 177

guages. 178

We pretrain the model for 8T tokens. Given 179

that current state of the art LMs are pretrained for 180

trillions of tokens, we want to experiment on top of 181

2



Data type Data source Tokens (B)

English

Web Crawl 5,106
Misc. 179
News 93
Scientific Papers 82
Books 80
Legal 50
Encyclopedia 31
Finance 20

Multilingual
Web crawl 2,229
Parallel corpora 55

Source Code GitHub 583

Table 1: The pretraining data composition. Appendix
A.1 and A.2 breakdown the multilingual and coding
languages.

a pretrained model that is emblematic of the type182

of models which the continued pretraining recipe183

would be used for.184

3.1.2 Continued Pretraining185

As the most likely scenario in continued pretrain-186

ing is that the available datasets are exactly those187

which made up the pretraining set, the vast majority188

of our continued training data blend is comprised189

of the pretraining data sources. The only new addi-190

tional source of data is a set of question and answer191

(QA), alignment style examples. Such examples192

have been shown to better extract stored knowledge193

within LMs (Allen-Zhu and Li, 2023). This set of194

QA data totals 2.8B tokens and Table 2 highlights195

the categories of types of QA examples.196

Data type Data source Tokens (B)

QA

World Knowledge 1.13
Reasoning 0.92
STEM 0.31
Chat 0.26
Code 0.19

Table 2: The five constituent categories of the QA, align-
ment style data.

3.2 Model Architecture and Hyperparameters197

We experiment using a 15B parameter decoder-198

only transformer (Vaswani et al., 2017) LM with199

causal attention masks. It has 3.2 billion embed-200

ding parameters and 12.5 billion non-embedding201

parameters. Additional architectural specifications202

include: 32 transformer layers, a hidden size of 203

6144, 48 attention heads, Rotary Position Embed- 204

dings (RoPE) (Su et al., 2023), squared ReLU acti- 205

vations in the MLP layers, a SentencePiece (Kudo 206

and Richardson, 2018) tokenizer with a vocabulary 207

size of 256k, no bias terms, and untied input-output 208

embeddings. Additionally, we use grouped query 209

attention (GQA) (Ainslie et al., 2023) with 8 KV 210

heads. 211

The model is pretrained with a sequence length 212

of 4,096 and uses batch size rampup over the first 213

5% of pretraining tokens, starting from a batch size 214

of 384 and building up to one of 1,152. We use 215

a cosine learning rate schedule, with warmup of 216

16B tokens, to decay from a maximum learning 217

rate (LR) of ηmax = 4.5e-4 to ηmin = 4.5e-5. We 218

train using the AdamW (Loshchilov and Hutter, 219

2019) optimizer with β1 = 0.9, β2 = 0.95, and a 220

weight decay of 0.1. In continued pretraining, the 221

only hyperparameter that is altered is the learning 222

rate schedule. 223

3.3 Evaluation 224

We evaluate the model using a representative set 225

of tasks to test its change in abilities across the En- 226

glish, multilingual, and coding domains. To assess 227

English capabilities, we evaluate on the widely- 228

used MMLU (Hendrycks et al., 2020) and Hel- 229

laswag (Zellers et al., 2019) benchmarks. MMLU 230

measures the model’s world knowledge across 57 231

domains while Hellaswag assesses commonsense 232

reasoning ability within natural language inference. 233

For our multilingual evaluations, we use the Multi- 234

lingual Grade School Mathematics (MGSM) (Shi 235

et al., 2022) benchmark and specifically report the 236

average accuracy across the language subset of 237

Spanish, Japanese, and Thai, as they represent a 238

high, medium, and low resource language respec- 239

tively. Lastly, to assess the model’s coding capa- 240

bilities we utilize the Python code generation task 241

of HumanEval (Chen et al., 2021) with evaluations 242

reported in the pass@1 (Kulal et al., 2019) setting. 243

In our results below, we report the average score 244

across all four of these tasks with fully detailed 245

evaluation scores shared in the Appendix. 246

4 Continued Pretraining Recipe 247

The experimental findings which constitute our con- 248

tinued pretraining recipe are shared below: 249
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Recipe

• Start with a data distribution that is
similar to the pretraining set but places
larger weight on high quality sources
before transitioning to a second distri-
bution that incorporates QA data and
upweights sources in areas of model
weakness.

• The learning rate schedule should start
from ηmin of the pretrained model and
decay with cosine annealing to ηmin

100 .

• The switch between data distribution
should occur at ηmax

5 in the learning
rate schedule.

250

5 Experiments251

The results of the pretrained base model are shown252

in Table 3. The aim for our continuous training253

recipe will be to define steps that help maximally254

improve upon this benchmark. All detailed exper-255

iments perform continuous pretraining for 300B256

tokens. Additionally, we note that in our experi-257

ments we choose to load in the optimizer state from258

the pretrained model as we found that there was a259

negligible difference in evaluation accuracy when260

the optimizer state was loaded in or when initial-261

ized from scratch. Thus, we expect that whether262

eventual practitioners have the optimizer state of263

the pretrained model available or not, the resulting264

findings will hold.265

Model Average Accuracy

Pretrained 48.9

Table 3: Model accuracy after 8T tokens of pretraining.
In per-task evaluations scores shared in Table 12, we
find the model particularly struggles on tasks that assess
STEM based reasoning capabilities.

5.1 Data Distribution266

A crucial component of any training run is the data267

distribution – it defines the information which a268

model sees and directly impacts the model’s capa-269

bilities. As continuous pretraining builds on top270

of a model which has already seen a given pre-271

training distribution, it is important to define a data272

distribution which allows the model to learn new273

concepts without also deviating too far from the pre-274

training distribution such that the model begins to275

experience training instability and accuracy regres- 276

sion. Through a series of runs which tackle what 277

compositions of data distributions best improve the 278

abilities of a pretrained model, we identify general 279

characteristics that can be applied across most con- 280

tinuous pretraining scenarios. In these experiments, 281

we use a learning rate schedule that starts from 282

ηmin and decays to 0 with cosine annealing. 283

First, we examine if the inclusion of QA data, 284

which improves the ability of a model to extract 285

stored knowledge (Allen-Zhu and Li, 2023), im- 286

proves model accuracy. Coupled with this question 287

is another on how to best incorporate the QA data, 288

or more generally any dataset which is not con- 289

tained within the pretraining data distribution, into 290

the continued training run: immediately at the be- 291

ginning and throughout the entirety of continued 292

training, or rather reserved till the end of contin- 293

ued training following a curriculum learning setup 294

(Soviany et al., 2022; Blakeney et al., 2024). We 295

hypothesize that inclusion of new data sources at 296

the beginning of continued pretraining allows for 297

the model to best learn the new information, but 298

may cause learning instabilities that could be mit- 299

igated by showing the new dataset at the end of 300

the run when the learning rate is less aggressive. 301

To answer these questions, we compare continued 302

training entirely with the pretraining data blend, 303

entirely with a QA data blend, and with a mix of 304

the pretraining and QA data blends where we start 305

with the pretraining blend and switch to the QA 306

data blend late in the training run. The QA data 307

blend in this scenario adds the QA dataset to the 308

pretraining data distribution with a weight of 10%. 309

Data Blend Avg. Acc.

Pretraining 51.5
QA 53.4
Pretraining (250B), QA (50B) 54.3

Table 4: Using two data distributions, with the QA data
appearing in the latter, leads to the largest improvement
via continued pretraining. () indicates the number of
training tokens for each blend. Per-task evaluations
scores are shared in Table 13.

Table 4 illustrates that the incorporation of QA 310

data markedly outperforms solely using existing 311

data from the pretraining set. Additionally, first 312

using the pretraining data blend for the majority 313

of training tokens before transitioning to the QA 314

data blend at the end of continued pretraining ex- 315
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Figure 1: Breakdown of the various distributions considered for the General Blend (GB). We use Upweight Non
Web w/ High Quality Web as the GB moving forward given its strong performance across all evaluation areas.

hibits improved accuracy compared to using the316

QA blend throughout the entirety of training. This317

indicates that continued pretraining runs should318

begin with a data distribution which more closely319

aligns to the pretraining one followed by a blend320

that then introduces new data. Moving forward,321

we refer to the initial blend as the general blend,322

GB, and the latter blend as the QA blend, QB, and323

discuss how they can be refined to realize further324

improvements.325

We hypothesize that the optimal GB will be one326

which places greater emphasis on high quality data327

sources and areas of model weakness, without de-328

viating too far from the pretraining distribution.329

Such a blend will enhance knowledge in needed ar-330

eas and prime the model for the QB blend without331

worry of experiencing large training instabilities.332

Figure 1 illustrates the various GB distributions we333

consider; in addition to upweighting sources of in-334

terest, we either subset web crawl to just high qual-335

ity documents, as identified by being in the bottom336

quartile of perplexity scores from a KenLM model337

(Heafield, 2011) trained on Wikipedia, or remove338

web crawl altogether. Experimenting with the var-339

ious GB distributions for all 300B tokens of con-340

tinued training, Table 5 shows that each improves341

upon the pretraining distribution. Even though it342

does not achieve the highest average accuracy, we343

choose Upweight Non Web with High Quality Web344

as the GB moving forward, because compared to345

others, it most consistently achieves high scores346

across all considered tasks as shown in Table 13. 347

Data Blend Avg. Acc.

Pretraining 51.5
Reweight Domains 51.7
Pretraining w/ High Quality Web 52.5
No Web 52.9
UW Non Web w/ High Quality Web 52.0

Table 5: Evaluation results of various GB candidate
distributions. Per-task evaluations scores are shared in
Table 13

With a GB distribution in place, we now look 348

to define the QB distribution by first refining the 349

weights placed on the sources within the QA data 350

and then optimizing the QB distribution as a whole. 351

In the initial QB distribution, the QA data was 352

added as is, and this weighting is shown as QA 353

blend 1 in Figure 2. Given that the pretrained model 354

struggles on STEM tasks, we create two additional 355

blends that both upweight the QA STEM data while 356

either maintaining the original weight of QA world 357

knowledge, blend 2, or QA chat, blend 3, data as 358

seen in Figure 2. We choose to maintain the weight 359

in world knowledge and chat information as such 360

examples cover a broad range of topics and help 361

better align model responses to questions respec- 362

tively. Table 6 highlights that upon adding each of 363

the QA blends to the initial QB distribution follow- 364

ing 250B tokens of the identified GB, QA data that 365

emphasizes both STEM and chat information leads 366
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Figure 2: Various distributions of QA data. We use
Blend 3.

to the best results.367

Data Blend Avg. Acc.

QA 1 54.3
QA 2 (+STEM, +World Knowledge) 53.0
QA 3 (+STEM, +Chat) 54.9

Table 6: Evaluation results of various QA blend candi-
dates. Per-task evaluations scores are shared in Table 13

We now incorporate the QA data within the over-368

all QB distribution. In previous runs, the QB distri-369

bution, aside from the QA dataset, exactly mirrored370

the pretraining set. We define a new series of distri-371

butions based on more aggressive upweighting of372

sources in areas of model weakness and amount of373

weight placed on the QA dataset as seen in Figure374

4. Table 7 details that the aggressive weighting in375

the QB is beneficial, and we use the QB termed376

QA blend moving forward. With refined GB and377

QB distributions, the average evaluation accuracy378

has improved from 48.9 for the pretrained model379

to 55.4, a 13% improvement.

Data Blend Avg. Acc.

Pretraining blend w/ QA data 54.3
General blend w/ QA data 54.2
QA 55.4
QA w/ Upweighted STEM 54.4
QA w/ 1.5e QA data 54.9
QA w/ 3.5e QA data 54.4

Table 7: Evaluation results of various QB candidate
distributions. Per-task evaluations scores are shared in
Table 13

380

5.2 Learning Rate Schedule381

The learning rate schedule greatly impacts the train-382

ing dynamics and efficacy of continued pretraining383

Figure 3: Cosine decay schedules with a Max LR of
4.5e-5. Each schedule differently prioritizes LR magni-
tude and slope of decay.

(Gupta et al., 2023; Ibrahim et al., 2024; Winata 384

et al., 2023). 385

In our above continued pretraining experiments, 386

the learning rate schedule starts at a maximum LR 387

of ηmaxct = 4.5e-5, which is equal to ηmin, and 388

decays to a minimum LR of 0 using cosine an- 389

nealing. As seen in Figure 3, a minimum LR of 390

0 facilitates a steep slope of decay but the magni- 391

tude of LR is severely impacted, especially over 392

the tokens where the QB is used which may im- 393

pact the model’s ability to extract full utility from 394

the QA data. To understand the trade-off between 395

these two characteristics of the learning rate sched- 396

ule in continued pretraining runs, we experiment 397

with two additional minimum learning rate values: 398
ηmaxct
10 = 4.5e-6 and ηmaxct

100 = 4.5e-7. 399

LR Schedule Avg. Acc.

Decay to ηmaxct
10 54.8

Decay to ηmaxct
100 55.7

Decay to 0 55.4

Table 8: Evaluation results of learning rate schedules
with varying Min LR values. Per-task evaluations scores
are shared in Table 14

Table 8 highlights that it is in fact best to strike a 400

middle ground between magnitude of LR and slope 401

of decay, as a minimum LR of ηmaxct
100 achieves the 402

best accuracy. Such a minimum LR value allows 403

for a learning rate schedule that has reasonable 404

decay over the QB tokens, unlike when using a 405

minimum LR of ηmaxct
10 , without severely sacrific- 406

ing on magnitude of LR, as was the case with a 407

minimum LR of 0. 408

Experiments with varying learning rate warmup 409
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Figure 4: Breakdown of the various distributions considered for the QB. Ne refers to N epochs of the QA data. The
final chosen distribution is shown as QA Blend which used 2 epochs of QA data.

and maximum LR values led to accuracy regres-410

sions compared to the schedule detailed above. In411

addition, we ran ablations with a different anneal-412

ing schedule, WSD (Hu et al., 2024), however the413

results were not competitive to cosine annealing.414

Full details and results for both studies are shared415

in Appendix B.2.416

5.3 Switch of Data Distributions417

Until this point, we have been switching between418

the GB and the QB after 250B tokens of continued419

pretraining. We believe this to be sub-optimal, as420

it is unclear how switching between distributions421

after a fixed number of tokens can be easily trans-422

lated to continued training runs of different token423

horizons. We hypothesize that the optimal point for424

switching between the data distributions depends425

upon the learning rate schedule. Figure 5 high-426

lights how both the number of tokens and learning427

rate values for the QB blend would differ if the dis-428

tribution switch occurred at progressively smaller429

fractions of the maximum LR. As the fraction goes430

to 0, both the slope of decay and magnitude of the431

learning rate shrink, meaning that there likely is432

an optimal point in the learning rate curve where433

both of these characteristics are still conducive to434

enable learning but also not too aggressive to the435

point where the data shift in the QB distribution436

causes training instability.437

Table 9 highlights that switching between the438

GB and QB at ηmaxct
5 achieves the best accuracy439

and improves upon the heuristically chosen switch440

Figure 5: Relationship between different distribution
switch points and the number of QB tokens.

point by 0.4 points on average. Wanting to con- 441

firm this distribution switch point holds at differing 442

amounts of continued pretraining tokens, we ran 443

an ablation on a scale of 100B tokens and found 444

that ηmaxct
5 again maximized the results as seen in 445

Table 18.

Distribution Switch Avg. Acc.

At ηmaxct (from step 0) 52.8
At ηmaxct

2 54.7
At ηmaxct

5 56.1
At ηmaxct

10 55.0
At ηmaxct

50 54.6

Table 9: Evaluation results of varying distribution
switch points. Per-task evaluations scores are shared in
Table 17
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This finalizes our continued pretraining recipe.446

We highlight the utility of this recipe as it allows447

the model to achieve an average accuracy of 56.1,448

which improves upon the natural baseline of con-449

tinued training on the pretraining distribution, as450

shared in Table 4, by 9%.451

6 Ablations452

6.1 Varying Token Horizons453

We show the efficacy of the identified continued454

pretraining recipe when used at varying numbers of455

continued training tokens. Table 10 illustrates that456

on continued training horizons from 100B to 1T457

tokens, the identified recipe consistently achieves458

improved evaluation results – realizing a 16% gain459

over the pretrained model when using 1T tokens460

of continued training. We do note that the slope461

in accuracy improvement from 300B to 1T tokens462

is lower than that from 100B to 300B tokens, we463

hypothesize that as we are mainly reusing docu-464

ments from the pretraining set when doing a large465

number of continued training tokens the repeated466

number of epochs on the same data sources have467

decreasing marginal utility.468

Num CPT Tokens MMLU Avg. Acc.

0B 59.3 48.9
100B 63.0 55.0
300B 63.8 56.1
1T 65.3 56.8

Table 10: Performance of the continuous pretraining
(CPT) recipe across different token horizons. Per-task
evaluations scores are shared in Table 19

6.2 Document Mining469

In an effort to improve the utility of the data sources470

that are seen for multiple epochs in long horizon471

continued pretraining runs, we aim to find a sub-472

set of examples that are most helpful for model473

improvement. As the QA dataset was shown to sig-474

nificantly boost model accuracies, we hypothesize475

that restricting each pretraining data source to the476

set of documents which are most similar to the QA477

examples would be beneficial. To do so, we use478

the E5-large-v2 (Wang et al., 2022) text embedding479

model to obtain an embedding for each document480

in our pretraining and QA sets. Using the Faiss481

library (Johnson et al., 2017), we efficiently per-482

form a 50-nearest neighbor search across all these483

embeddings to obtain the 50 most similar, non-QA 484

documents to each example in the QA set. The 485

identified subset of examples constitutes 60B to- 486

kens, and we term this approach document mining. 487

Table 11 shows a training run where we replace 488

all non-QA data sources in the QB distribution 489

solely with the examples identified via document 490

mining. We find that these documents substan- 491

tially improve the performance of the continued 492

pretraining run and believe that document mining 493

is a viable approach at extracting further utility 494

from existing data sources. 495

Blend MMLU Avg. Acc.

CT 1T 65.3 56.8
CT 1T w/ Mined Docs 66.6 57.9

Table 11: Mining examples related to QA documents
further improves accuracy. Per-task evaluations scores
are shared in Table 20

7 Conclusion 496

We investigate how to effectively continue training 497

LMs to improve upon their existing capabilities. 498

Our experiments show that it is especially impor- 499

tant to carefully define the data distribution and 500

learning rate decay schedule used during continued 501

pretraining so that the model is able to smoothly 502

transition away from the pretraining distribution 503

and better learn the newly emphasized data sources. 504

With these findings we propose a general recipe 505

that model developers can use in order to perform 506

continued pretraining on top of their own LMs and 507

show that for our base model, we are able to im- 508

prove cumulative accuracy by over 18%. We hope 509

that this will be a starting point to enable future 510

LMs to be developed through the reuse of existing 511

models rather than retraining from scratch. 512

Limitations 513

In the development of our continued pretraining 514

recipe, we only experiment along the axes of data 515

distributions and hyperparameter configurations. 516

Although we did not include them within our study, 517

there may be added benefit in exploring other as- 518

pects such as altering the learning algorithm. Addi- 519

tionally, given that our study is conducted on top 520

of a model with a given configuration and which 521

was pretrained using a certain data distribution, the 522

results that we highlight are likely to not extrap- 523

olate well when used in settings highly divergent 524

8



from the one utilized in the study. Finally, we525

limited our goal within continued pretraining to526

improving the general purpose capabilities of the527

pretrained model; however, there are many addi-528

tional angles when considering model reuse such529

as domain specialization and the efficient addition530

of new knowledge into existing models.531
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B Experiments863

The evaluation results across all considered tasks864

are shared below for each of our experiments.

Task Pretrained Model

MMLU 59.3
HellaSwag 80.4
HumanEval 31.1
MGSM (ES, JA, TH) 24.9

Table 12: Model accuracy after 8T tokens of pretraining.
We find that the model struggles on STEM based rea-
soning tasks due to its low scores on MGSM and STEM
substasks of MMLU.

865

B.1 Data Distribution866

Table 13 shares the results across all tasks for each867

experiment mentioned within Section 5.1.868

B.2 Learning Rate Schedule869

In identifying a learning rate schedule for contin-870

ued pretraining, we experiment with various de-871

grees of warmup and values of ηmaxct . The com-872

binations we consider are: warmup from ηmin to873

ηmaxct = 1.5 ∗ ηmin, warmup from 0.5 ∗ ηmin to874

ηmaxct = ηmin, and warmup from 0 to what the875

expected learning rate value would be had the pre-876

training learning rate schedule been extended to in-877

corporate the continued training tokens (i.e., from878

8T to 8.3T). We use ηmin to specify the minimum879

learning rate value of the pretrained model, which880

is 4.5e-5. Figure 6 highlights each of these sched-881

ules, and we note that these combinations were882

chosen to quantify different degrees of aggressive-883

ness when using warmup in a continued pretraining884

learning rate schedule.885

Figure 6: Cosine decay schedule with the various levels
of warmup which we experiment with.

As highlighted in Table 15, we find that includ- 886

ing any level of warmup within the continued train- 887

ing learning rate schedule causes regressions in 888

evaluation accuracies, indicating that it is best to 889

decay directly from ηmin. 890

In addition to cosine annealing, we experiment 891

with the WSD learning rate scheduler (Hu et al., 892

2024). Table 16 compares the best found setting of 893

WSD with cosine annealing. The WSD schedule 894

produces significantly lower evaluation accuracies 895

than cosine annealing. We hypothesize that in con- 896

tinued pretraining, switching the decay schedule 897

from the one used during pretraining is harmful. 898

Hence, for models pretrained with cosine anneal- 899

ing, the learning rate schedule in continued training 900

should also use cosine annealing. 901

B.3 Switch of Data Distributions 902

Table 18 highlights that the findings of our exper- 903

iments in Section 5.3 also hold at the continued 904

training token horizon of 100B tokens. This indi- 905

cates that regardless of the number of continued 906

training tokens, transitioning between the GB and 907

QB distributions at ηmaxct
5 is optimal. 908

C Ablations 909

C.1 Varying Token Horizons 910

When extending the number of continued pretrain- 911

ing tokens to 1T, we found that our existing QB 912

distribution would cause the small QA dataset to be 913

trained on for a large number of epochs. To correct 914

for this, we reduce the weight on the QA datset 915

so that it would be trained on for no more than 916

4 epochs. Figure 7 demonstrates the distribution 917

of the QB when used at the scale of 1T continued 918

pretraining tokens. 919
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Data Blend MMLU HellaSwag HumanEval MGSM (ES, JA, TH)

Pretraining 61.9 81.2 28.1 34.7
QA 62 78.7 32.9 40.1
Pretraining (250B) + QA (50B) 62.6 82.2 29.9 42.4

Pretraining 61.9 81.2 28.1 34.7
Reweight Domains 61.9 81.7 29.9 33.2
Pretraining w/ High Quality Web 62.2 80.9 34.1 32.9
No Web 62.3 81.8 29.9 37.7
Upweight Non Web w/ High Quality Web 62.6 81.4 31.7 32.1

QA 1 63.0 82.4 29.9 41.9
QA 2 (+STEM, +World Knowledge) 63.9 82.3 29.3 36.7
QA 3 (+STEM, +Chat) 64.1 82.2 28.7 44.7

QA 64.2 82.4 30.5 44.5
QA w/ Upweighted STEM 64.1 82.3 28.1 42.9
QA w/ 1.5e QA data 64.1 82.2 28.7 44.7
QA w/ 3.5e QA data 64.4 27.4 82.4 43.3

Table 13: Per-task evaluation results of each experiment mentioned within Section 5.1 on defining data distributions
for continued pretraining.

LR Schedule MMLU HellaSwag HumanEval MGSM (ES, JA, TH)

Decay to ηmaxct
10 63.9 82.4 29.3 43.7

Decay to ηmaxct
100 64.2 82.2 31.1 45.2

Decay to 0 64.2 30.5 82.4 44.5

Table 14: Per-task evaluation results of the experiments mentioned in Table 8 on identifying an appropriate learning
rate decay schedule for continued pretraining.

LR Schedule MMLU HellaSwag HumanEval MGSM (ES, JA, TH) Avg. Acc.

Warmup to 6.75e-5 64.0 81.9 31.1 42.3 54.8
Warmup to 4.5e-5 64.0 82.1 32.9 41.5 55.1
Warmup to Expected LR 63.3 82.1 31.7 42.5 54.9
No Warmup 64.2 31.1 82.2 45.2 55.7

Table 15: Comparison of including warmup within learning rate schedules for continued pretraining. No warmup
achieves the best evaluation results.

LR Schedule MMLU HellaSwag HumanEval MGSM (ES, JA, TH) Avg. Acc.

WSD 63.6 80.2 28.1 39.5 52.8
Cosine Annealing 64.2 82.2 31.1 45.2 55.7

Table 16: We find that WSD causes significant regression in evaluation accuracy compared to cosine annealing.
Both learning rate schedules were decayed till ηmaxct

100 .
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Distribution Switch MMLU HellaSwag HumanEval MGSM (ES, JA, TH)

At ηmaxct (from step 0) 65.0 78.7 29.9 37.7
At ηmaxct

2 60.9 81.6 32.3 44.1
At ηmaxct

5 63.8 82.2 32.3 46.1
At ηmaxct

10 63.9 82.2 29.3 44.7
At ηmaxct

50 63.3 81.6 31.1 42.3

Table 17: Per-task evaluation results of the experiments mentioned in Table 9 on how to switch between data
distributions in continued pretraining.

Distribution Switch MMLU HellaSwag HumanEval MGSM (ES, JA, TH) AVG

At ηmaxct (from step 0) 64.1 79.2 31.1 40.0 53.6
At ηmaxct

2 63.2 81.6 27.4 44.1 54.1
At ηmaxct

5 63.0 81.9 31.7 43.6 55.0
At ηmaxct

10 63.6 81.8 30.5 39.7 53.9
At ηmaxct

50 63.3 81.6 31.1 42.3 54.6

Table 18: Ablation of the data distribution switch experiments at a continued pretraining scale of 100B tokens. As
found for the 300B token continued training horizon, switching distributions at ηmaxct

5 achieves the highest accuracy.

Figure 7: Distribution of the QB blend when extending the number of continued pretraining tokens to 1T.

Num CT Tokens MMLU HellaSwag HumanEval MGSM (ES, JA, TH) AVG

0B 59.3 80.4 31.1 24.9 48.9
100B 63.0 81.9 31.7 43.6 55.0
300B 63.8 82.2 32.3 46.1 56.1
1T 65.3 82.4 34.1 45.5

Table 19: Per-task evaluation results of the experiments mentioned in Table 11 on how the identified continued
pretraining recipe performs at varying amounts of continued training tokens.

Blend MMLU HellaSwag HumanEval MGSM (ES, JA, TH)

CT 1T 65.3 82.4 34.1 45.5
CT 1T w/ Mined Docs 66.6 81.7 36.6 46.7

Table 20: Per-task evaluation results of the experiments mentioned in Table 11 on how document mining increases
the utility of existing data sources in continued pretraining.
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