
Reuse, Don’t Retrain:
A Recipe for Continued Pretraining of Language Models

Anonymous ACL submission

Abstract
As language models have scaled both their001
number of parameters and pretraining dataset002
sizes, the computational cost for pretraining has003
become intractable except for the most well-004
resourced teams. This increasing cost makes it005
ever more important to be able to reuse a model006
after it has completed pretraining; allowing for007
a model’s abilities to further improve without008
needing to train from scratch. In this work, we009
detail a set of guidelines that cover how to de-010
sign efficacious data distributions and learning011
rate schedules for continued pretraining of lan-012
guage models. When applying these findings013
within a continued pretraining run on top of a014
well-trained 15B parameter model, we show an015
improvement of 9% in average model accuracy016
compared to the baseline of continued train-017
ing on the pretraining set. The resulting recipe018
provides a practical starting point with which019
to begin developing language models through020
reuse rather than retraining.021

1 Introduction022

Language modeling abilities have seen massive023

improvements over the past few years (Brown024

et al., 2020; Chowdhery et al., 2022; OpenAI, 2024;025

Team, 2024). While these advancements have en-026

abled language models (LMs) to become highly-027

skilled conversational agents (OpenAI, 2024; An-028

thropic, 2024; Team, 2024), they have come with029

increased computational cost as pretraining has be-030

come ever more expensive due to both the number031

of model parameters (Team et al., 2024; DeepSeek-032

AI et al., 2024) and pretraining dataset size (Tou-033

vron et al., 2023; Gemma Team, 2024; Parmar et al.,034

2024) continuing to grow in scale. With new LMs035

that set state of the art accuracy being released036

on a frequent basis, LMs developed only a cou-037

ple months back are becoming obsolete as their038

capabilities are no longer up to par. This leaves039

model developers with the choice of either pretrain-040

ing new LMs from scratch or reusing their existing041

LMs and updating them with new information in 042

order to match current best LM abilities. 043

Due to the large computational cost that pre- 044

training of modern LMs incurs, frequent complete 045

retraining is intractable. This makes the reuse of 046

already developed LMs via continued pretraining 047

an attractive proposition. While most recent works 048

(Ibrahim et al., 2024; Jang et al., 2022; Ke et al., 049

2023; Çağatay Yıldız et al., 2024) have recom- 050

mended guidelines for continued pretraining when 051

adapting language models to new data domains or 052

distribution shifts, intuition or recommendations on 053

how to improve a model’s general purpose abilities 054

from a previously finalized checkpoint with contin- 055

ued pretraining have not been widely explored. In 056

this paper, we focus on this under-studied setting 057

and identify strategies that allow for already trained 058

LMs to improve upon areas of weakness without 059

experiencing degradations in other capabilities. 060

In our experiments, we start on top of a 15B pa- 061

rameter LM that has seen 8T tokens of pretraining 062

data. Experimenting with a well trained model of 063

this scale ensures that our findings will be trans- 064

ferable to most settings and model sizes. We first 065

identify the type of data distribution that should be 066

used during continued pretraining and find that it 067

is optimal to have two distributions, with the final 068

one more heavily weighting data sources that relate 069

to the abilities we want to improve in the model. 070

Second, we determine what learning rate schedules 071

enable the most efficient learning during continued 072

pretraining and determine that the most performant 073

one strikes a balance between magnitude of learn- 074

ing rate and steepness of decay. Lastly, we show 075

how the learning rate value at which we switch 076

between data distributions affects downstream ac- 077

curacy and identify the point at which this switch 078

should be made. 079

These findings culminate in a recipe that can be 080

used to perform continued pretraining to improve 081

the capabilities of an existing LM. We demonstrate 082

1



that this recipe is beneficial at continued training083

scales from 100B to 1 trillion tokens, illustrating084

its flexibility and robustness to be used in a wide085

variety of settings. We hope that this recipe will086

allow for model providers to forgo the need to reg-087

ularly retrain models from scratch as it makes it088

possible to reuse a trained model to attain improved089

capabilities.090

2 Related Works091

Continued training methods aim to take an already092

trained model and incorporate new data, adapt it093

for a given domain, or specialize it on a certain task094

(Rolnick et al., 2019; Caccia et al., 2021; Lesort095

et al., 2022; Gupta et al., 2023; Lin et al., 2024).096

The major challenge that arises during continued097

training is enabling a model to learn new informa-098

tion without forgetting previously attained knowl-099

edge or capabilities (Robins, 1995; French, 1999).100

The learning rate schedule and data distribution101

used during continued training (Gupta et al., 2023;102

Ibrahim et al., 2024; Winata et al., 2023; Scialom103

et al., 2022) have been shown to be particularly im-104

portant in preventing such catastrophic forgetting.105

For LMs, one major setting of continued training106

has been to embed more recent knowledge into the107

model by using data collected at a date later than108

when the pretraining set was constructed (Jin et al.,109

2022; Jang et al., 2022, 2023; Loureiro et al., 2022;110

Qin et al., 2022). Results from these studies found111

that using experience replay (Chaudhry et al., 2019)112

and knowledge distillation (Hinton et al., 2015) are113

particularly effective. Continued training is also114

commonly used in LMs to adapt the model to data115

coming from a new domain (Ke et al., 2023; Guru-116

rangan et al., 2020; Wu et al., 2024). Many of these117

methods for domain adaptive continued training118

update a portion of the model’s weights with the119

new data to ensure that previous knowledge is not120

lost. For instance, (Wu et al., 2024) does so via121

an expansion of the transformer blocks and only122

updating the newly added weights.123

More related to the setting which we explore,124

several studies utilize continued pretraining to spe-125

cialize a LM on a given task or domain (Zan et al.,126

2022; Yadav et al., 2023; Ma et al., 2023; Yang127

et al., 2024; Labrak et al., 2024). Despite investi-128

gating effective strategies for continued pretraining,129

these studies differ from ours as they do not aim130

to improve the general capabilities of LMs, train131

for far fewer tokens, and use much smaller model132

sizes. The main study which offers a compara- 133

tive setting to ours is (Ibrahim et al., 2024) which 134

provides a recipe, based on learning rate schedule 135

and example replay recommendations, for main- 136

taining general purpose abilities during continued 137

pretraining on data distribution shifts. Their experi- 138

mental setting consists of a 10B parameter model 139

that was pretrained for 300B tokens. Our study 140

differs from (Ibrahim et al., 2024) as we aim to 141

improve the general capabilities of the LM further, 142

and in our experimental setting we perform con- 143

tinued pretraining for up to 1T tokens with a 15B 144

parameter model that was pretrained on 8T tokens. 145

3 Experimental Setup 146

The continued pretraining process is as follows: a 147

model is first pretrained, then a data distribution 148

and learning rate schedule are chosen, a continued 149

pretraining run takes place, and finally the, hope- 150

fully improved, model is returned. Before delv- 151

ing into the experiments that define the continued 152

training recipe, we detail the datasets and model 153

architecture that are used. 154

3.1 Data Sources 155

3.1.1 Pretraining 156

Our pretraining dataset consists of three different 157

domains of data: English natural language data, 158

multilingual natural language data, and source code 159

data. Table 1 highlights the data sources that com- 160

pose the pretraining set along with their respec- 161

tive token counts. In our English corpus, the Web 162

Crawl data is sourced from Common Crawl (CC) 163

snapshots while the remaining categories are com- 164

prised of high-quality sets. For instance, the miscel- 165

laneous category consists of BigScience ROOTS 166

(Lachaux et al., 2020), Reddit, and Pile-Stories 167

(Gao et al., 2020), the encyclopedia category con- 168

tains Wikipedia and Stack Exchange, and scientific 169

papers includes ArXiv and PubMed. 170

The multilingual dataset consists of 53 languages 171

with the majority of examples being drawn from 172

CC snapshots, although a small portion comes from 173

machine translation parallel corpora (Schwenk 174

et al., 2019; El-Kishky et al., 2019). Lastly, our 175

source code data is drawn from permissively li- 176

censed GitHub repositories and totals over 43 lan- 177

guages. 178

We pretrain the model for 8T tokens. Given 179

that current state of the art LMs are pretrained for 180

trillions of tokens, we want to experiment on top of 181

2



Data type Data source Tokens (B)

English

Web Crawl 5,106
Misc. 179
News 93
Scientific Papers 82
Books 80
Legal 50
Encyclopedia 31
Finance 20

Multilingual
Web crawl 2,229
Parallel corpora 55

Source Code GitHub 583

Table 1: The pretraining data composition. Appendix
A.1 and A.2 breakdown the multilingual and coding
languages.

a pretrained model that is emblematic of the type182

of models which the continued pretraining recipe183

would be used for.184

3.1.2 Continued Pretraining185

As the most likely scenario in continued pretrain-186

ing is that the available datasets are exactly those187

which made up the pretraining set, the vast majority188

of our continued training data blend is comprised189

of the pretraining data sources. The only new addi-190

tional source of data is a set of question and answer191

(QA), alignment style examples. Such examples192

have been shown to better extract stored knowledge193

within LMs (Allen-Zhu and Li, 2023). This set of194

QA data totals 2.8B tokens and Table 2 highlights195

the categories of types of QA examples.196

Data type Data source Tokens (B)

QA

World Knowledge 1.13
Reasoning 0.92
STEM 0.31
Chat 0.26
Code 0.19

Table 2: The five constituent categories of the QA, align-
ment style data.

3.2 Model Architecture and Hyperparameters197

We experiment using a 15B parameter decoder-198

only transformer (Vaswani et al., 2017) LM with199

causal attention masks. It has 3.2 billion embed-200

ding parameters and 12.5 billion non-embedding201

parameters. Additional architectural specifications202

include: 32 transformer layers, a hidden size of 203

6144, 48 attention heads, Rotary Position Embed- 204

dings (RoPE) (Su et al., 2023), squared ReLU acti- 205

vations in the MLP layers, a SentencePiece (Kudo 206

and Richardson, 2018) tokenizer with a vocabulary 207

size of 256k, no bias terms, and untied input-output 208

embeddings. Additionally, we use grouped query 209

attention (GQA) (Ainslie et al., 2023) with 8 KV 210

heads. 211

The model is pretrained with a sequence length 212

of 4,096 and uses batch size rampup over the first 213

5% of pretraining tokens, starting from a batch size 214

of 384 and building up to one of 1,152. We use 215

a cosine learning rate schedule, with warmup of 216

16B tokens, to decay from a maximum learning 217

rate (LR) of ηmax = 4.5e-4 to ηmin = 4.5e-5. We 218

train using the AdamW (Loshchilov and Hutter, 219

2019) optimizer with β1 = 0.9, β2 = 0.95, and a 220

weight decay of 0.1. In continued pretraining, the 221

only hyperparameter that is altered is the learning 222

rate schedule. 223

3.3 Evaluation 224

We evaluate the model using a representative set 225

of tasks to test its change in abilities across the En- 226

glish, multilingual, and coding domains. To assess 227

English capabilities, we evaluate on the widely- 228

used MMLU (Hendrycks et al., 2020) and Hel- 229

laswag (Zellers et al., 2019) benchmarks. MMLU 230

measures the model’s world knowledge across 57 231

domains while Hellaswag assesses commonsense 232

reasoning ability within natural language inference. 233

For our multilingual evaluations, we use the Multi- 234

lingual Grade School Mathematics (MGSM) (Shi 235

et al., 2022) benchmark and specifically report the 236

average accuracy across the language subset of 237

Spanish, Japanese, and Thai, as they represent a 238

high, medium, and low resource language respec- 239

tively. Lastly, to assess the model’s coding capa- 240

bilities we utilize the Python code generation task 241

of HumanEval (Chen et al., 2021) with evaluations 242

reported in the pass@1 (Kulal et al., 2019) setting. 243

In our results below, we report the average score 244

across all four of these tasks with fully detailed 245

evaluation scores shared in the Appendix. 246

4 Continued Pretraining Recipe 247

The experimental findings which constitute our con- 248

tinued pretraining recipe are shared below: 249

3



Recipe

• Start with a data distribution that is
similar to the pretraining set but places
larger weight on high quality sources
before transitioning to a second distri-
bution that incorporates QA data and
upweights sources in areas of model
weakness.

• The learning rate schedule should start
from ηmin of the pretrained model and
decay with cosine annealing to ηmin

100 .

• The switch between data distribution
should occur at ηmax

5 in the learning
rate schedule.

250

5 Experiments251

The results of the pretrained base model are shown252

in Table 3. The aim for our continuous training253

recipe will be to define steps that help maximally254

improve upon this benchmark. All detailed exper-255

iments perform continuous pretraining for 300B256

tokens. Additionally, we note that in our experi-257

ments we choose to load in the optimizer state from258

the pretrained model as we found that there was a259

negligible difference in evaluation accuracy when260

the optimizer state was loaded in or when initial-261

ized from scratch. Thus, we expect that whether262

eventual practitioners have the optimizer state of263

the pretrained model available or not, the resulting264

findings will hold.265

Model Average Accuracy

Pretrained 48.9

Table 3: Model accuracy after 8T tokens of pretraining.
In per-task evaluations scores shared in Table 12, we
find the model particularly struggles on tasks that assess
STEM based reasoning capabilities.

5.1 Data Distribution266

A crucial component of any training run is the data267

distribution – it defines the information which a268

model sees and directly impacts the model’s capa-269

bilities. As continuous pretraining builds on top270

of a model which has already seen a given pre-271

training distribution, it is important to define a data272

distribution which allows the model to learn new273

concepts without also deviating too far from the pre-274

training distribution such that the model begins to275

experience training instability and accuracy regres- 276

sion. Through a series of runs which tackle what 277

compositions of data distributions best improve the 278

abilities of a pretrained model, we identify general 279

characteristics that can be applied across most con- 280

tinuous pretraining scenarios. In these experiments, 281

we use a learning rate schedule that starts from 282

ηmin and decays to 0 with cosine annealing. 283

First, we examine if the inclusion of QA data, 284

which improves the ability of a model to extract 285

stored knowledge (Allen-Zhu and Li, 2023), im- 286

proves model accuracy. Coupled with this question 287

is another on how to best incorporate the QA data, 288

or more generally any dataset which is not con- 289

tained within the pretraining data distribution, into 290

the continued training run: immediately at the be- 291

ginning and throughout the entirety of continued 292

training, or rather reserved till the end of contin- 293

ued training following a curriculum learning setup 294

(Soviany et al., 2022; Blakeney et al., 2024). We 295

hypothesize that inclusion of new data sources at 296

the beginning of continued pretraining allows for 297

the model to best learn the new information, but 298

may cause learning instabilities that could be mit- 299

igated by showing the new dataset at the end of 300

the run when the learning rate is less aggressive. 301

To answer these questions, we compare continued 302

training entirely with the pretraining data blend, 303

entirely with a QA data blend, and with a mix of 304

the pretraining and QA data blends where we start 305

with the pretraining blend and switch to the QA 306

data blend late in the training run. The QA data 307

blend in this scenario adds the QA dataset to the 308

pretraining data distribution with a weight of 10%. 309

Data Blend Avg. Acc.

Pretraining 51.5
QA 53.4
Pretraining (250B), QA (50B) 54.3

Table 4: Using two data distributions, with the QA data
appearing in the latter, leads to the largest improvement
via continued pretraining. () indicates the number of
training tokens for each blend. Per-task evaluations
scores are shared in Table 13.

Table 4 illustrates that the incorporation of QA 310

data markedly outperforms solely using existing 311

data from the pretraining set. Additionally, first 312

using the pretraining data blend for the majority 313

of training tokens before transitioning to the QA 314

data blend at the end of continued pretraining ex- 315

4



Figure 1: Breakdown of the various distributions considered for the General Blend (GB). We use Upweight Non
Web w/ High Quality Web as the GB moving forward given its strong performance across all evaluation areas.

hibits improved accuracy compared to using the316

QA blend throughout the entirety of training. This317

indicates that continued pretraining runs should318

begin with a data distribution which more closely319

aligns to the pretraining one followed by a blend320

that then introduces new data. Moving forward,321

we refer to the initial blend as the general blend,322

GB, and the latter blend as the QA blend, QB, and323

discuss how they can be refined to realize further324

improvements.325

We hypothesize that the optimal GB will be one326

which places greater emphasis on high quality data327

sources and areas of model weakness, without de-328

viating too far from the pretraining distribution.329

Such a blend will enhance knowledge in needed ar-330

eas and prime the model for the QB blend without331

worry of experiencing large training instabilities.332

Figure 1 illustrates the various GB distributions we333

consider; in addition to upweighting sources of in-334

terest, we either subset web crawl to just high qual-335

ity documents, as identified by being in the bottom336

quartile of perplexity scores from a KenLM model337

(Heafield, 2011) trained on Wikipedia, or remove338

web crawl altogether. Experimenting with the var-339

ious GB distributions for all 300B tokens of con-340

tinued training, Table 5 shows that each improves341

upon the pretraining distribution. Even though it342

does not achieve the highest average accuracy, we343

choose Upweight Non Web with High Quality Web344

as the GB moving forward, because compared to345

others, it most consistently achieves high scores346

across all considered tasks as shown in Table 13. 347

Data Blend Avg. Acc.

Pretraining 51.5
Reweight Domains 51.7
Pretraining w/ High Quality Web 52.5
No Web 52.9
UW Non Web w/ High Quality Web 52.0

Table 5: Evaluation results of various GB candidate
distributions. Per-task evaluations scores are shared in
Table 13

With a GB distribution in place, we now look 348

to define the QB distribution by first refining the 349

weights placed on the sources within the QA data 350

and then optimizing the QB distribution as a whole. 351

In the initial QB distribution, the QA data was 352

added as is, and this weighting is shown as QA 353

blend 1 in Figure 2. Given that the pretrained model 354

struggles on STEM tasks, we create two additional 355

blends that both upweight the QA STEM data while 356

either maintaining the original weight of QA world 357

knowledge, blend 2, or QA chat, blend 3, data as 358

seen in Figure 2. We choose to maintain the weight 359

in world knowledge and chat information as such 360

examples cover a broad range of topics and help 361

better align model responses to questions respec- 362

tively. Table 6 highlights that upon adding each of 363

the QA blends to the initial QB distribution follow- 364

ing 250B tokens of the identified GB, QA data that 365

emphasizes both STEM and chat information leads 366

5



Figure 2: Various distributions of QA data. We use
Blend 3.

to the best results.367

Data Blend Avg. Acc.

QA 1 54.3
QA 2 (+STEM, +World Knowledge) 53.0
QA 3 (+STEM, +Chat) 54.9

Table 6: Evaluation results of various QA blend candi-
dates. Per-task evaluations scores are shared in Table 13

We now incorporate the QA data within the over-368

all QB distribution. In previous runs, the QB distri-369

bution, aside from the QA dataset, exactly mirrored370

the pretraining set. We define a new series of distri-371

butions based on more aggressive upweighting of372

sources in areas of model weakness and amount of373

weight placed on the QA dataset as seen in Figure374

4. Table 7 details that the aggressive weighting in375

the QB is beneficial, and we use the QB termed376

QA blend moving forward. With refined GB and377

QB distributions, the average evaluation accuracy378

has improved from 48.9 for the pretrained model379

to 55.4, a 13% improvement.

Data Blend Avg. Acc.

Pretraining blend w/ QA data 54.3
General blend w/ QA data 54.2
QA 55.4
QA w/ Upweighted STEM 54.4
QA w/ 1.5e QA data 54.9
QA w/ 3.5e QA data 54.4

Table 7: Evaluation results of various QB candidate
distributions. Per-task evaluations scores are shared in
Table 13

380

5.2 Learning Rate Schedule381

The learning rate schedule greatly impacts the train-382

ing dynamics and efficacy of continued pretraining383

Figure 3: Cosine decay schedules with a Max LR of
4.5e-5. Each schedule differently prioritizes LR magni-
tude and slope of decay.

(Gupta et al., 2023; Ibrahim et al., 2024; Winata 384

et al., 2023). 385

In our above continued pretraining experiments, 386

the learning rate schedule starts at a maximum LR 387

of ηmaxct = 4.5e-5, which is equal to ηmin, and 388

decays to a minimum LR of 0 using cosine an- 389

nealing. As seen in Figure 3, a minimum LR of 390

0 facilitates a steep slope of decay but the magni- 391

tude of LR is severely impacted, especially over 392

the tokens where the QB is used which may im- 393

pact the model’s ability to extract full utility from 394

the QA data. To understand the trade-off between 395

these two characteristics of the learning rate sched- 396

ule in continued pretraining runs, we experiment 397

with two additional minimum learning rate values: 398
ηmaxct
10 = 4.5e-6 and ηmaxct

100 = 4.5e-7. 399

LR Schedule Avg. Acc.

Decay to ηmaxct
10 54.8

Decay to ηmaxct
100 55.7

Decay to 0 55.4

Table 8: Evaluation results of learning rate schedules
with varying Min LR values. Per-task evaluations scores
are shared in Table 14

Table 8 highlights that it is in fact best to strike a 400

middle ground between magnitude of LR and slope 401

of decay, as a minimum LR of ηmaxct
100 achieves the 402

best accuracy. Such a minimum LR value allows 403

for a learning rate schedule that has reasonable 404

decay over the QB tokens, unlike when using a 405

minimum LR of ηmaxct
10 , without severely sacrific- 406

ing on magnitude of LR, as was the case with a 407

minimum LR of 0. 408

Experiments with varying learning rate warmup 409

6



Figure 4: Breakdown of the various distributions considered for the QB. Ne refers to N epochs of the QA data. The
final chosen distribution is shown as QA Blend which used 2 epochs of QA data.

and maximum LR values led to accuracy regres-410

sions compared to the schedule detailed above. In411

addition, we ran ablations with a different anneal-412

ing schedule, WSD (Hu et al., 2024), however the413

results were not competitive to cosine annealing.414

Full details and results for both studies are shared415

in Appendix B.2.416

5.3 Switch of Data Distributions417

Until this point, we have been switching between418

the GB and the QB after 250B tokens of continued419

pretraining. We believe this to be sub-optimal, as420

it is unclear how switching between distributions421

after a fixed number of tokens can be easily trans-422

lated to continued training runs of different token423

horizons. We hypothesize that the optimal point for424

switching between the data distributions depends425

upon the learning rate schedule. Figure 5 high-426

lights how both the number of tokens and learning427

rate values for the QB blend would differ if the dis-428

tribution switch occurred at progressively smaller429

fractions of the maximum LR. As the fraction goes430

to 0, both the slope of decay and magnitude of the431

learning rate shrink, meaning that there likely is432

an optimal point in the learning rate curve where433

both of these characteristics are still conducive to434

enable learning but also not too aggressive to the435

point where the data shift in the QB distribution436

causes training instability.437

Table 9 highlights that switching between the438

GB and QB at ηmaxct
5 achieves the best accuracy439

and improves upon the heuristically chosen switch440

Figure 5: Relationship between different distribution
switch points and the number of QB tokens.

point by 0.4 points on average. Wanting to con- 441

firm this distribution switch point holds at differing 442

amounts of continued pretraining tokens, we ran 443

an ablation on a scale of 100B tokens and found 444

that ηmaxct
5 again maximized the results as seen in 445

Table 18.

Distribution Switch Avg. Acc.

At ηmaxct (from step 0) 52.8
At ηmaxct

2 54.7
At ηmaxct

5 56.1
At ηmaxct

10 55.0
At ηmaxct

50 54.6

Table 9: Evaluation results of varying distribution
switch points. Per-task evaluations scores are shared in
Table 17

7



This finalizes our continued pretraining recipe.446

We highlight the utility of this recipe as it allows447

the model to achieve an average accuracy of 56.1,448

which improves upon the natural baseline of con-449

tinued training on the pretraining distribution, as450

shared in Table 4, by 9%.451

6 Ablations452

6.1 Varying Token Horizons453

We show the efficacy of the identified continued454

pretraining recipe when used at varying numbers of455

continued training tokens. Table 10 illustrates that456

on continued training horizons from 100B to 1T457

tokens, the identified recipe consistently achieves458

improved evaluation results – realizing a 16% gain459

over the pretrained model when using 1T tokens460

of continued training. We do note that the slope461

in accuracy improvement from 300B to 1T tokens462

is lower than that from 100B to 300B tokens, we463

hypothesize that as we are mainly reusing docu-464

ments from the pretraining set when doing a large465

number of continued training tokens the repeated466

number of epochs on the same data sources have467

decreasing marginal utility.468

Num CPT Tokens MMLU Avg. Acc.

0B 59.3 48.9
100B 63.0 55.0
300B 63.8 56.1
1T 65.3 56.8

Table 10: Performance of the continuous pretraining
(CPT) recipe across different token horizons. Per-task
evaluations scores are shared in Table 19

6.2 Document Mining469

In an effort to improve the utility of the data sources470

that are seen for multiple epochs in long horizon471

continued pretraining runs, we aim to find a sub-472

set of examples that are most helpful for model473

improvement. As the QA dataset was shown to sig-474

nificantly boost model accuracies, we hypothesize475

that restricting each pretraining data source to the476

set of documents which are most similar to the QA477

examples would be beneficial. To do so, we use478

the E5-large-v2 (Wang et al., 2022) text embedding479

model to obtain an embedding for each document480

in our pretraining and QA sets. Using the Faiss481

library (Johnson et al., 2017), we efficiently per-482

form a 50-nearest neighbor search across all these483

embeddings to obtain the 50 most similar, non-QA 484

documents to each example in the QA set. The 485

identified subset of examples constitutes 60B to- 486

kens, and we term this approach document mining. 487

Table 11 shows a training run where we replace 488

all non-QA data sources in the QB distribution 489

solely with the examples identified via document 490

mining. We find that these documents substan- 491

tially improve the performance of the continued 492

pretraining run and believe that document mining 493

is a viable approach at extracting further utility 494

from existing data sources. 495

Blend MMLU Avg. Acc.

CT 1T 65.3 56.8
CT 1T w/ Mined Docs 66.6 57.9

Table 11: Mining examples related to QA documents
further improves accuracy. Per-task evaluations scores
are shared in Table 20

7 Conclusion 496

We investigate how to effectively continue training 497

LMs to improve upon their existing capabilities. 498

Our experiments show that it is especially impor- 499

tant to carefully define the data distribution and 500

learning rate decay schedule used during continued 501

pretraining so that the model is able to smoothly 502

transition away from the pretraining distribution 503

and better learn the newly emphasized data sources. 504

With these findings we propose a general recipe 505

that model developers can use in order to perform 506

continued pretraining on top of their own LMs and 507

show that for our base model, we are able to im- 508

prove cumulative accuracy by over 18%. We hope 509

that this will be a starting point to enable future 510

LMs to be developed through the reuse of existing 511

models rather than retraining from scratch. 512

Limitations 513

In the development of our continued pretraining 514

recipe, we only experiment along the axes of data 515

distributions and hyperparameter configurations. 516

Although we did not include them within our study, 517

there may be added benefit in exploring other as- 518

pects such as altering the learning algorithm. Addi- 519

tionally, given that our study is conducted on top 520

of a model with a given configuration and which 521

was pretrained using a certain data distribution, the 522

results that we highlight are likely to not extrap- 523

olate well when used in settings highly divergent 524

8



from the one utilized in the study. Finally, we525

limited our goal within continued pretraining to526

improving the general purpose capabilities of the527

pretrained model; however, there are many addi-528

tional angles when considering model reuse such529

as domain specialization and the efficient addition530

of new knowledge into existing models.531

9



References532

Joshua Ainslie, James Lee-Thorp, Michiel de Jong,533
Yury Zemlyanskiy, Federico Lebrón, and Sumit Sang-534
hai. 2023. GQA: Training Generalized Multi-Query535
Transformer Models from Multi-Head Checkpoints.536
arXiv preprint arXiv:2305.13245.537

Zeyuan Allen-Zhu and Yuanzhi Li. 2023. Physics of538
language models: Part 3.1, knowledge storage and539
extraction. Preprint, arXiv:2309.14316.540

Anthropic. 2024. The Claude 3 Model Family: Opus,541
Sonnet, Haiku.542

Cody Blakeney, Mansheej Paul, Brett W. Larsen,543
Sean Owen, and Jonathan Frankle. 2024. Does544
your data spark joy? performance gains from do-545
main upsampling at the end of training. Preprint,546
arXiv:2406.03476.547

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie548
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind549
Neelakantan, Pranav Shyam, Girish Sastry, Amanda550
Askell, Sandhini Agarwal, Ariel Herbert-Voss,551
Gretchen Krueger, Tom Henighan, Rewon Child,552
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,553
Clemens Winter, Christopher Hesse, Mark Chen,554
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin555
Chess, Jack Clark, Christopher Berner, Sam Mc-556
Candlish, Alec Radford, Ilya Sutskever, and Dario557
Amodei. 2020. Language models are few-shot learn-558
ers. Preprint, arXiv:2005.14165.559

Massimo Caccia, Pau Rodriguez, Oleksiy Ostapenko,560
Fabrice Normandin, Min Lin, Lucas Caccia, Is-561
sam Laradji, Irina Rish, Alexandre Lacoste, David562
Vazquez, and Laurent Charlin. 2021. Online563
fast adaptation and knowledge accumulation: a564
new approach to continual learning. Preprint,565
arXiv:2003.05856.566

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elho-567
seiny, Thalaiyasingam Ajanthan, Puneet K. Doka-568
nia, Philip H. S. Torr, and Marc’Aurelio Ranzato.569
2019. On tiny episodic memories in continual learn-570
ing. Preprint, arXiv:1902.10486.571

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming572
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-573
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,574
Greg Brockman, Alex Ray, Raul Puri, Gretchen575
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-576
try, Pamela Mishkin, Brooke Chan, Scott Gray,577
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz578
Kaiser, Mohammad Bavarian, Clemens Winter,579
Philippe Tillet, Felipe Petroski Such, Dave Cum-580
mings, Matthias Plappert, Fotios Chantzis, Eliza-581
beth Barnes, Ariel Herbert-Voss, William Hebgen582
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie583
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,584
William Saunders, Christopher Hesse, Andrew N.585
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan586
Morikawa, Alec Radford, Matthew Knight, Miles587
Brundage, Mira Murati, Katie Mayer, Peter Welinder,588
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya589

Sutskever, and Wojciech Zaremba. 2021. Evaluat- 590
ing large language models trained on code. Preprint, 591
arXiv:2107.03374. 592

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 593
Maarten Bosma, Gaurav Mishra, Adam Roberts, 594
Paul Barham, Hyung Won Chung, Charles Sutton, 595
Sebastian Gehrmann, et al. 2022. PaLM: Scaling 596
Language Modeling with Pathways. arXiv preprint 597
arXiv:2204.02311. 598

DeepSeek-AI, :, Xiao Bi, Deli Chen, Guanting 599
Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, 600
Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, 601
Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge, 602
Kang Guan, Daya Guo, Jianzhong Guo, Guangbo 603
Hao, Zhewen Hao, Ying He, Wenjie Hu, Panpan 604
Huang, Erhang Li, Guowei Li, Jiashi Li, Yao Li, 605
Y. K. Li, Wenfeng Liang, Fangyun Lin, A. X. Liu, 606
Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan 607
Liu, Haoyu Lu, Shanghao Lu, Fuli Luo, Shirong Ma, 608
Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu, 609
Tongzheng Ren, Zehui Ren, Chong Ruan, Zhangli 610
Sha, Zhihong Shao, Junxiao Song, Xuecheng Su, 611
Jingxiang Sun, Yaofeng Sun, Minghui Tang, Bingx- 612
uan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang, 613
Yongji Wang, Tong Wu, Y. Wu, Xin Xie, Zhenda Xie, 614
Ziwei Xie, Yiliang Xiong, Hanwei Xu, R. X. Xu, 615
Yanhong Xu, Dejian Yang, Yuxiang You, Shuiping 616
Yu, Xingkai Yu, B. Zhang, Haowei Zhang, Lecong 617
Zhang, Liyue Zhang, Mingchuan Zhang, Minghua 618
Zhang, Wentao Zhang, Yichao Zhang, Chenggang 619
Zhao, Yao Zhao, Shangyan Zhou, Shunfeng Zhou, 620
Qihao Zhu, and Yuheng Zou. 2024. Deepseek llm: 621
Scaling open-source language models with longter- 622
mism. Preprint, arXiv:2401.02954. 623

Ahmed El-Kishky, Vishrav Chaudhary, Francisco 624
Guzmán, and Philipp Koehn. 2019. Ccaligned: A 625
massive collection of cross-lingual web-document 626
pairs. arXiv preprint arXiv:1911.06154. 627

Robert M. French. 1999. Catastrophic forgetting in con- 628
nectionist networks. Trends in Cognitive Sciences, 629
3(4):128–135. 630

Leo Gao, Stella Biderman, Sid Black, Laurence Gold- 631
ing, Travis Hoppe, Charles Foster, Jason Phang, 632
Horace He, Anish Thite, Noa Nabeshima, Shawn 633
Presser, and Connor Leahy. 2020. The Pile: An 634
800gb dataset of diverse text for language modeling. 635
arXiv preprint arXiv:2101.00027. 636

Google DeepMind Gemma Team. 2024. Gemma: Open 637
Models Based on Gemini Research and Technology. 638

Kshitij Gupta, Benjamin Thérien, Adam Ibrahim, 639
Mats L. Richter, Quentin Anthony, Eugene 640
Belilovsky, Irina Rish, and Timothée Lesort. 2023. 641
Continual pre-training of large language mod- 642
els: How to (re)warm your model? Preprint, 643
arXiv:2308.04014. 644

Suchin Gururangan, Ana Marasović, Swabha 645
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey, 646

10

https://arxiv.org/abs/2309.14316
https://arxiv.org/abs/2309.14316
https://arxiv.org/abs/2309.14316
https://arxiv.org/abs/2309.14316
https://arxiv.org/abs/2309.14316
https://arxiv.org/abs/2406.03476
https://arxiv.org/abs/2406.03476
https://arxiv.org/abs/2406.03476
https://arxiv.org/abs/2406.03476
https://arxiv.org/abs/2406.03476
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2003.05856
https://arxiv.org/abs/2003.05856
https://arxiv.org/abs/2003.05856
https://arxiv.org/abs/2003.05856
https://arxiv.org/abs/2003.05856
https://arxiv.org/abs/1902.10486
https://arxiv.org/abs/1902.10486
https://arxiv.org/abs/1902.10486
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://arxiv.org/abs/2401.02954
https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/10.1016/S1364-6613(99)01294-2
https://arxiv.org/abs/2308.04014
https://arxiv.org/abs/2308.04014
https://arxiv.org/abs/2308.04014


and Noah A. Smith. 2020. Don’t stop pretraining:647
Adapt language models to domains and tasks. In648
Proceedings of the 58th Annual Meeting of the649
Association for Computational Linguistics, pages650
8342–8360, Online. Association for Computational651
Linguistics.652

Kenneth Heafield. 2011. Kenlm: Faster and smaller653
language model queries. In Proceedings of the sixth654
workshop on statistical machine translation, pages655
187–197.656

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,657
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.658
2020. Measuring Massive Multitask Language Un-659
derstanding. arXiv preprint arXiv:2009.03300.660

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.661
Distilling the knowledge in a neural network.662
Preprint, arXiv:1503.02531.663

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu664
Cui, Xiang Long, Zhi Zheng, Yewei Fang, Yuxiang665
Huang, Weilin Zhao, Xinrong Zhang, Zheng Leng666
Thai, Kaihuo Zhang, Chongyi Wang, Yuan Yao,667
Chenyang Zhao, Jie Zhou, Jie Cai, Zhongwu Zhai,668
Ning Ding, Chao Jia, Guoyang Zeng, Dahai Li,669
Zhiyuan Liu, and Maosong Sun. 2024. Minicpm:670
Unveiling the potential of small language mod-671
els with scalable training strategies. Preprint,672
arXiv:2404.06395.673

Adam Ibrahim, Benjamin Thérien, Kshitij Gupta,674
Mats L. Richter, Quentin Anthony, Timothée Lesort,675
Eugene Belilovsky, and Irina Rish. 2024. Simple676
and scalable strategies to continually pre-train large677
language models. Preprint, arXiv:2403.08763.678

Joel Jang, Seonghyeon Ye, Changho Lee, Sohee Yang,679
Joongbo Shin, Janghoon Han, Gyeonghun Kim, and680
Minjoon Seo. 2023. Temporalwiki: A lifelong bench-681
mark for training and evaluating ever-evolving lan-682
guage models. Preprint, arXiv:2204.14211.683

Joel Jang, Seonghyeon Ye, Sohee Yang, Joongbo Shin,684
Janghoon Han, Gyeonghun Kim, Stanley Jungkyu685
Choi, and Minjoon Seo. 2022. Towards continual686
knowledge learning of language models. Preprint,687
arXiv:2110.03215.688

Xisen Jin, Dejiao Zhang, Henghui Zhu, Wei Xiao,689
Shang-Wen Li, Xiaokai Wei, Andrew Arnold, and690
Xiang Ren. 2022. Lifelong pretraining: Continu-691
ally adapting language models to emerging corpora.692
Preprint, arXiv:2110.08534.693

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.694
Billion-scale similarity search with gpus. Preprint,695
arXiv:1702.08734.696

Zixuan Ke, Yijia Shao, Haowei Lin, Tatsuya Kon-697
ishi, Gyuhak Kim, and Bing Liu. 2023. Con-698
tinual pre-training of language models. Preprint,699
arXiv:2302.03241.700

Taku Kudo and John Richardson. 2018. Sentencepiece: 701
A Simple and Language Independent Subword Tok- 702
enizer and Detokenizer for Neural Text Processing. 703
arXiv preprint arXiv:1808.06226. 704

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina 705
Lee, Oded Padon, Alex Aiken, and Percy Liang. 2019. 706
Spoc: Search-based pseudocode to code. Preprint, 707
arXiv:1906.04908. 708

Yanis Labrak, Adrien Bazoge, Emmanuel Morin, Pierre- 709
Antoine Gourraud, Mickael Rouvier, and Richard 710
Dufour. 2024. Biomistral: A collection of open- 711
source pretrained large language models for medical 712
domains. Preprint, arXiv:2402.10373. 713

Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanus- 714
sot, and Guillaume Lample. 2020. Unsupervised 715
translation of programming languages. Preprint, 716
arXiv:2006.03511. 717

Timothée Lesort, Massimo Caccia, and Irina Rish. 718
2022. Understanding continual learning settings 719
with data distribution drift analysis. Preprint, 720
arXiv:2104.01678. 721

Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, 722
Yelong Shen, Ruochen Xu, Chen Lin, Yujiu Yang, 723
Jian Jiao, Nan Duan, and Weizhu Chen. 2024. Rho- 724
1: Not all tokens are what you need. Preprint, 725
arXiv:2404.07965. 726

Ilya Loshchilov and Frank Hutter. 2019. De- 727
coupled weight decay regularization. Preprint, 728
arXiv:1711.05101. 729

Daniel Loureiro, Francesco Barbieri, Leonardo Neves, 730
Luis Espinosa Anke, and Jose Camacho-Collados. 731
2022. Timelms: Diachronic language models from 732
twitter. Preprint, arXiv:2202.03829. 733

Shirong Ma, Shen Huang, Shulin Huang, Xiaobin 734
Wang, Yangning Li, Hai-Tao Zheng, Pengjun Xie, 735
Fei Huang, and Yong Jiang. 2023. Ecomgpt-ct: 736
Continual pre-training of e-commerce large lan- 737
guage models with semi-structured data. Preprint, 738
arXiv:2312.15696. 739

OpenAI. 2024. Gpt-4 technical report. Preprint, 740
arXiv:2303.08774. 741

Jupinder Parmar, Shrimai Prabhumoye, Joseph Jennings, 742
Mostofa Patwary, Sandeep Subramanian, Dan Su, 743
Chen Zhu, Deepak Narayanan, Aastha Jhunjhunwala, 744
Ayush Dattagupta, Vibhu Jawa, Jiwei Liu, Ameya 745
Mahabaleshwarkar, Osvald Nitski, Annika Brundyn, 746
James Maki, Miguel Martinez, Jiaxuan You, John 747
Kamalu, Patrick LeGresley, Denys Fridman, Jared 748
Casper, Ashwath Aithal, Oleksii Kuchaiev, Moham- 749
mad Shoeybi, Jonathan Cohen, and Bryan Catanzaro. 750
2024. Nemotron-4 15b technical report. Preprint, 751
arXiv:2402.16819. 752

Yujia Qin, Jiajie Zhang, Yankai Lin, Zhiyuan Liu, Peng 753
Li, Maosong Sun, and Jie Zhou. 2022. Elle: Efficient 754
lifelong pre-training for emerging data. Preprint, 755
arXiv:2203.06311. 756

11

https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://doi.org/10.18653/v1/2020.acl-main.740
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2404.06395
https://arxiv.org/abs/2404.06395
https://arxiv.org/abs/2404.06395
https://arxiv.org/abs/2404.06395
https://arxiv.org/abs/2404.06395
https://arxiv.org/abs/2403.08763
https://arxiv.org/abs/2403.08763
https://arxiv.org/abs/2403.08763
https://arxiv.org/abs/2403.08763
https://arxiv.org/abs/2403.08763
https://arxiv.org/abs/2204.14211
https://arxiv.org/abs/2204.14211
https://arxiv.org/abs/2204.14211
https://arxiv.org/abs/2204.14211
https://arxiv.org/abs/2204.14211
https://arxiv.org/abs/2110.03215
https://arxiv.org/abs/2110.03215
https://arxiv.org/abs/2110.03215
https://arxiv.org/abs/2110.08534
https://arxiv.org/abs/2110.08534
https://arxiv.org/abs/2110.08534
https://arxiv.org/abs/1702.08734
https://arxiv.org/abs/2302.03241
https://arxiv.org/abs/2302.03241
https://arxiv.org/abs/2302.03241
https://arxiv.org/abs/1906.04908
https://arxiv.org/abs/2402.10373
https://arxiv.org/abs/2402.10373
https://arxiv.org/abs/2402.10373
https://arxiv.org/abs/2402.10373
https://arxiv.org/abs/2402.10373
https://arxiv.org/abs/2006.03511
https://arxiv.org/abs/2006.03511
https://arxiv.org/abs/2006.03511
https://arxiv.org/abs/2104.01678
https://arxiv.org/abs/2104.01678
https://arxiv.org/abs/2104.01678
https://arxiv.org/abs/2404.07965
https://arxiv.org/abs/2404.07965
https://arxiv.org/abs/2404.07965
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/2202.03829
https://arxiv.org/abs/2202.03829
https://arxiv.org/abs/2202.03829
https://arxiv.org/abs/2312.15696
https://arxiv.org/abs/2312.15696
https://arxiv.org/abs/2312.15696
https://arxiv.org/abs/2312.15696
https://arxiv.org/abs/2312.15696
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2402.16819
https://arxiv.org/abs/2203.06311
https://arxiv.org/abs/2203.06311
https://arxiv.org/abs/2203.06311


Anthony V. Robins. 1995. Catastrophic forgetting, re-757
hearsal and pseudorehearsal. Connect. Sci., 7:123–758
146.759

David Rolnick, Arun Ahuja, Jonathan Schwarz, Tim-760
othy P. Lillicrap, and Greg Wayne. 2019. Ex-761
perience replay for continual learning. Preprint,762
arXiv:1811.11682.763

Holger Schwenk, Guillaume Wenzek, Sergey Edunov,764
Edouard Grave, and Armand Joulin. 2019. Ccmatrix:765
Mining billions of high-quality parallel sentences on766
the web. arXiv preprint arXiv:1911.04944.767

Thomas Scialom, Tuhin Chakrabarty, and Smaranda768
Muresan. 2022. Fine-tuned language models are769
continual learners. Preprint, arXiv:2205.12393.770

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang,771
Suraj Srivats, Soroush Vosoughi, Hyung Won Chung,772
Yi Tay, Sebastian Ruder, Denny Zhou, Dipanjan773
Das, and Jason Wei. 2022. Language models are774
multilingual chain-of-thought reasoners. Preprint,775
arXiv:2210.03057.776

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and777
Nicu Sebe. 2022. Curriculum learning: A survey.778
Preprint, arXiv:2101.10382.779

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,780
Bo Wen, and Yunfeng Liu. 2023. Roformer: En-781
hanced transformer with rotary position embedding.782
Preprint, arXiv:2104.09864.783

Gemini Team. 2024. Gemini: A family of highly capa-784
ble multimodal models. Preprint, arXiv:2312.11805.785

Reka Team, Aitor Ormazabal, Che Zheng, Cyprien786
de Masson d’Autume, Dani Yogatama, Deyu Fu,787
Donovan Ong, Eric Chen, Eugenie Lamprecht, Hai788
Pham, Isaac Ong, Kaloyan Aleksiev, Lei Li, Matthew789
Henderson, Max Bain, Mikel Artetxe, Nishant Relan,790
Piotr Padlewski, Qi Liu, Ren Chen, Samuel Phua,791
Yazheng Yang, Yi Tay, Yuqi Wang, Zhongkai Zhu,792
and Zhihui Xie. 2024. Reka core, flash, and edge:793
A series of powerful multimodal language models.794
Preprint, arXiv:2404.12387.795

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-796
bert, Amjad Almahairi, Yasmine Babaei, Nikolay797
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti798
Bhosale, et al. 2023. Llama 2: Open Founda-799
tion and Fine-tuned Chat Models. arXiv preprint800
arXiv:2307.09288.801

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob802
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz803
Kaiser, and Illia Polosukhin. 2017. Attention is all804
you need. In Advances in Neural Information Pro-805
cessing Systems, volume 30. Curran Associates, Inc.806

Liang Wang, Nan Yang, Xiaolong Huang, Binxing807
Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder,808
and Furu Wei. 2022. Text embeddings by weakly-809
supervised contrastive pre-training. arXiv preprint810
arXiv:2212.03533.811

Genta Indra Winata, Lingjue Xie, Karthik Radhakrish- 812
nan, Shijie Wu, Xisen Jin, Pengxiang Cheng, Mayank 813
Kulkarni, and Daniel Preotiuc-Pietro. 2023. Over- 814
coming catastrophic forgetting in massively multilin- 815
gual continual learning. Preprint, arXiv:2305.16252. 816

Chengyue Wu, Yukang Gan, Yixiao Ge, Zeyu Lu, Jiahao 817
Wang, Ye Feng, Ying Shan, and Ping Luo. 2024. 818
Llama pro: Progressive llama with block expansion. 819
Preprint, arXiv:2401.02415. 820

Prateek Yadav, Qing Sun, Hantian Ding, Xiaopeng 821
Li, Dejiao Zhang, Ming Tan, Xiaofei Ma, Parmin- 822
der Bhatia, Ramesh Nallapati, Murali Krishna Ra- 823
manathan, Mohit Bansal, and Bing Xiang. 2023. Ex- 824
ploring continual learning for code generation mod- 825
els. Preprint, arXiv:2307.02435. 826

Xianjun Yang, Junfeng Gao, Wenxin Xue, and Erik 827
Alexandersson. 2024. Pllama: An open-source 828
large language model for plant science. Preprint, 829
arXiv:2401.01600. 830

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, 831
Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen, 832
and Jian-Guang Lou. 2022. Cert: Continual pre- 833
training on sketches for library-oriented code genera- 834
tion. Preprint, arXiv:2206.06888. 835

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali 836
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a 837
machine really finish your sentence? In ACL. 838

Çağatay Yıldız, Nishaanth Kanna Ravichandran, Pr- 839
ishruit Punia, Matthias Bethge, and Beyza Ermis. 840
2024. Investigating continual pretraining in large lan- 841
guage models: Insights and implications. Preprint, 842
arXiv:2402.17400. 843

A Data 844

A.1 Multilingual Data 845

The 53 multilingual languages contained within the 846

pretraining set are: AR, AZ, BG, BN, CA, CS, DA, 847

DE, EL, ES, ET, FA, FI, FR, GL, HE, HI, HR, HU, 848

HY, ID, IS, IT, JA, KA, KK, KN, KO, LT, LV, MK, 849

ML, MR, NE, NL, NO, PL, PT, RO, RU, SK, SL, 850

SQ, SR, SV, TA, TE, TH, TR, UK, UR, VI, and 851

ZH. 852

A.2 Code Data 853

The 43 programming languags contained within 854

our pretraining set are: assembly, c, c-sharp, 855

common-lisp, cpp, css, cuda, dart, dockerfile, for- 856

tran, go, haskell, html, java, javascript, json, julia, 857

jupyter-scripts, lua, makefile, markdown, mathe- 858

matica, omniverse, pascal, perl, php, python, R, 859

restructuredtext, ruby, rust, scala, shell, sql, swift, 860

systemverilog, tex, typescript, verilog, vhdl, visual- 861

basic, xml, and yaml. 862

12

https://api.semanticscholar.org/CorpusID:22882861
https://api.semanticscholar.org/CorpusID:22882861
https://api.semanticscholar.org/CorpusID:22882861
https://arxiv.org/abs/1811.11682
https://arxiv.org/abs/1811.11682
https://arxiv.org/abs/1811.11682
https://arxiv.org/abs/2205.12393
https://arxiv.org/abs/2205.12393
https://arxiv.org/abs/2205.12393
https://arxiv.org/abs/2210.03057
https://arxiv.org/abs/2210.03057
https://arxiv.org/abs/2210.03057
https://arxiv.org/abs/2101.10382
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2404.12387
https://arxiv.org/abs/2404.12387
https://arxiv.org/abs/2404.12387
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2305.16252
https://arxiv.org/abs/2305.16252
https://arxiv.org/abs/2305.16252
https://arxiv.org/abs/2305.16252
https://arxiv.org/abs/2305.16252
https://arxiv.org/abs/2401.02415
https://arxiv.org/abs/2307.02435
https://arxiv.org/abs/2307.02435
https://arxiv.org/abs/2307.02435
https://arxiv.org/abs/2307.02435
https://arxiv.org/abs/2307.02435
https://arxiv.org/abs/2401.01600
https://arxiv.org/abs/2401.01600
https://arxiv.org/abs/2401.01600
https://arxiv.org/abs/2206.06888
https://arxiv.org/abs/2206.06888
https://arxiv.org/abs/2206.06888
https://arxiv.org/abs/2206.06888
https://arxiv.org/abs/2206.06888
https://arxiv.org/abs/2402.17400
https://arxiv.org/abs/2402.17400
https://arxiv.org/abs/2402.17400


B Experiments863

The evaluation results across all considered tasks864

are shared below for each of our experiments.

Task Pretrained Model

MMLU 59.3
HellaSwag 80.4
HumanEval 31.1
MGSM (ES, JA, TH) 24.9

Table 12: Model accuracy after 8T tokens of pretraining.
We find that the model struggles on STEM based rea-
soning tasks due to its low scores on MGSM and STEM
substasks of MMLU.

865

B.1 Data Distribution866

Table 13 shares the results across all tasks for each867

experiment mentioned within Section 5.1.868

B.2 Learning Rate Schedule869

In identifying a learning rate schedule for contin-870

ued pretraining, we experiment with various de-871

grees of warmup and values of ηmaxct . The com-872

binations we consider are: warmup from ηmin to873

ηmaxct = 1.5 ∗ ηmin, warmup from 0.5 ∗ ηmin to874

ηmaxct = ηmin, and warmup from 0 to what the875

expected learning rate value would be had the pre-876

training learning rate schedule been extended to in-877

corporate the continued training tokens (i.e., from878

8T to 8.3T). We use ηmin to specify the minimum879

learning rate value of the pretrained model, which880

is 4.5e-5. Figure 6 highlights each of these sched-881

ules, and we note that these combinations were882

chosen to quantify different degrees of aggressive-883

ness when using warmup in a continued pretraining884

learning rate schedule.885

Figure 6: Cosine decay schedule with the various levels
of warmup which we experiment with.

As highlighted in Table 15, we find that includ- 886

ing any level of warmup within the continued train- 887

ing learning rate schedule causes regressions in 888

evaluation accuracies, indicating that it is best to 889

decay directly from ηmin. 890

In addition to cosine annealing, we experiment 891

with the WSD learning rate scheduler (Hu et al., 892

2024). Table 16 compares the best found setting of 893

WSD with cosine annealing. The WSD schedule 894

produces significantly lower evaluation accuracies 895

than cosine annealing. We hypothesize that in con- 896

tinued pretraining, switching the decay schedule 897

from the one used during pretraining is harmful. 898

Hence, for models pretrained with cosine anneal- 899

ing, the learning rate schedule in continued training 900

should also use cosine annealing. 901

B.3 Switch of Data Distributions 902

Table 18 highlights that the findings of our exper- 903

iments in Section 5.3 also hold at the continued 904

training token horizon of 100B tokens. This indi- 905

cates that regardless of the number of continued 906

training tokens, transitioning between the GB and 907

QB distributions at ηmaxct
5 is optimal. 908

C Ablations 909

C.1 Varying Token Horizons 910

When extending the number of continued pretrain- 911

ing tokens to 1T, we found that our existing QB 912

distribution would cause the small QA dataset to be 913

trained on for a large number of epochs. To correct 914

for this, we reduce the weight on the QA datset 915

so that it would be trained on for no more than 916

4 epochs. Figure 7 demonstrates the distribution 917

of the QB when used at the scale of 1T continued 918

pretraining tokens. 919

13



Data Blend MMLU HellaSwag HumanEval MGSM (ES, JA, TH)

Pretraining 61.9 81.2 28.1 34.7
QA 62 78.7 32.9 40.1
Pretraining (250B) + QA (50B) 62.6 82.2 29.9 42.4

Pretraining 61.9 81.2 28.1 34.7
Reweight Domains 61.9 81.7 29.9 33.2
Pretraining w/ High Quality Web 62.2 80.9 34.1 32.9
No Web 62.3 81.8 29.9 37.7
Upweight Non Web w/ High Quality Web 62.6 81.4 31.7 32.1

QA 1 63.0 82.4 29.9 41.9
QA 2 (+STEM, +World Knowledge) 63.9 82.3 29.3 36.7
QA 3 (+STEM, +Chat) 64.1 82.2 28.7 44.7

QA 64.2 82.4 30.5 44.5
QA w/ Upweighted STEM 64.1 82.3 28.1 42.9
QA w/ 1.5e QA data 64.1 82.2 28.7 44.7
QA w/ 3.5e QA data 64.4 27.4 82.4 43.3

Table 13: Per-task evaluation results of each experiment mentioned within Section 5.1 on defining data distributions
for continued pretraining.

LR Schedule MMLU HellaSwag HumanEval MGSM (ES, JA, TH)

Decay to ηmaxct
10 63.9 82.4 29.3 43.7

Decay to ηmaxct
100 64.2 82.2 31.1 45.2

Decay to 0 64.2 30.5 82.4 44.5

Table 14: Per-task evaluation results of the experiments mentioned in Table 8 on identifying an appropriate learning
rate decay schedule for continued pretraining.

LR Schedule MMLU HellaSwag HumanEval MGSM (ES, JA, TH) Avg. Acc.

Warmup to 6.75e-5 64.0 81.9 31.1 42.3 54.8
Warmup to 4.5e-5 64.0 82.1 32.9 41.5 55.1
Warmup to Expected LR 63.3 82.1 31.7 42.5 54.9
No Warmup 64.2 31.1 82.2 45.2 55.7

Table 15: Comparison of including warmup within learning rate schedules for continued pretraining. No warmup
achieves the best evaluation results.

LR Schedule MMLU HellaSwag HumanEval MGSM (ES, JA, TH) Avg. Acc.

WSD 63.6 80.2 28.1 39.5 52.8
Cosine Annealing 64.2 82.2 31.1 45.2 55.7

Table 16: We find that WSD causes significant regression in evaluation accuracy compared to cosine annealing.
Both learning rate schedules were decayed till ηmaxct

100 .

14



Distribution Switch MMLU HellaSwag HumanEval MGSM (ES, JA, TH)

At ηmaxct (from step 0) 65.0 78.7 29.9 37.7
At ηmaxct

2 60.9 81.6 32.3 44.1
At ηmaxct

5 63.8 82.2 32.3 46.1
At ηmaxct

10 63.9 82.2 29.3 44.7
At ηmaxct

50 63.3 81.6 31.1 42.3

Table 17: Per-task evaluation results of the experiments mentioned in Table 9 on how to switch between data
distributions in continued pretraining.

Distribution Switch MMLU HellaSwag HumanEval MGSM (ES, JA, TH) AVG

At ηmaxct (from step 0) 64.1 79.2 31.1 40.0 53.6
At ηmaxct

2 63.2 81.6 27.4 44.1 54.1
At ηmaxct

5 63.0 81.9 31.7 43.6 55.0
At ηmaxct

10 63.6 81.8 30.5 39.7 53.9
At ηmaxct

50 63.3 81.6 31.1 42.3 54.6

Table 18: Ablation of the data distribution switch experiments at a continued pretraining scale of 100B tokens. As
found for the 300B token continued training horizon, switching distributions at ηmaxct

5 achieves the highest accuracy.

Figure 7: Distribution of the QB blend when extending the number of continued pretraining tokens to 1T.

Num CT Tokens MMLU HellaSwag HumanEval MGSM (ES, JA, TH) AVG

0B 59.3 80.4 31.1 24.9 48.9
100B 63.0 81.9 31.7 43.6 55.0
300B 63.8 82.2 32.3 46.1 56.1
1T 65.3 82.4 34.1 45.5

Table 19: Per-task evaluation results of the experiments mentioned in Table 11 on how the identified continued
pretraining recipe performs at varying amounts of continued training tokens.

Blend MMLU HellaSwag HumanEval MGSM (ES, JA, TH)

CT 1T 65.3 82.4 34.1 45.5
CT 1T w/ Mined Docs 66.6 81.7 36.6 46.7

Table 20: Per-task evaluation results of the experiments mentioned in Table 11 on how document mining increases
the utility of existing data sources in continued pretraining.

15


	Introduction
	Related Works
	Experimental Setup
	Data Sources
	Pretraining
	Continued Pretraining

	Model Architecture and Hyperparameters
	Evaluation

	Continued Pretraining Recipe
	Experiments
	Data Distribution
	Learning Rate Schedule
	Switch of Data Distributions

	Ablations
	Varying Token Horizons
	Document Mining

	Conclusion
	Data
	Multilingual Data
	Code Data

	Experiments
	Data Distribution
	Learning Rate Schedule
	Switch of Data Distributions

	Ablations
	Varying Token Horizons


