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Abstract

Negation and uncertainty detection is an oft-
studied challenge in biomedical NLP. Annota-
tion style for the task has not been standardized
and as such, the existing datasets not only vary
in domain but require various algorithmic de-
signs due to their structural differences. We
present a new negation detection dataset in two
versions from clinical publications. We further
developed two BERT-based models to evaluate
on each dataset version. Both models treat the
task as a token-level multi-class classification
task, one of which is capable of assigning more
than one label per token in the case of recur-
sive nesting. Our models achieve F1 scores of
76% and 72% on the development and test sets,
respectively.

1 Introduction

Negation and uncertainty detection is of partic-
ular importance in the biomedical NLP domain.
While benchmark datasets exist, there are few,
and they generally all follow different annotations
schemes, or do not fall within the biomedical do-
main. Recent approaches to the task treat it as
a token-level, multi-class classification problem
(where each word is assigned one and only one
label). As human language is recursive, the task
of identifying negation and speculation cues along
with their relevant scopes often involves nesting,
wherein a single word can have multiple labels
depending on which cue it interacts with. Like-
wise, sentences containing multiple cues can have
nested or overlapping scopes, and resolving the
structure of which cues and scopes to group to-
gether is crucial. When treating negation detection
as a token-level classification task, the ability to
capture nesting or information regarding structural
relationships between cues and their scopes can be
lost. We make two contributions: First, we created
a new clinical text dataset annotated for negation
detection in two variations, a flat version and nested

Single Cue
Nested The patient was given a dose of medication before
& Flat: discharge but did not require a prescription.

Multiple Cues
(1) The patient may have symptoms but doesn't
have any family history of the illness.

Nested:

(2) The patient may have symptoms but doesn't

have any family history of the illness.

Flat: The patient may have symptoms but doesn't

have any family history of the illness.

Nested Cues
(1) The patient without symptoms' mother
has no family hlstoryof the illness.
(2) The patient without symptoms' mother
has no family history of the illness.

Nested:

Flat:

Figure 1: The trained flat and nested models’ outputs
when a fed single-cue sentence, a multiple-cue sentence,
and a nested-cue sentence.

version. Second, we developed two models to eval-
uate on the datasets, one designed specifically to
capture nesting and structural information between
cues and scopes.

2 Related Work

A common approach to negation and uncertainty
detection involves a two-step process in which
negation and speculation cue words are first identi-
fied, and then scope resolution is performed. Uncer-
tainty detection is sometimes referred to as ‘modal-
ity’ or ‘speculation’ detection, cue words are those
which directly express the negation or uncertainty
(e.g. ‘not’, ‘possibly’), and scope is defined as the
part of the sentence affected by the negation or
uncertainty cue.

Interest in negation detection has largely cen-
tered around its use in information retrieval and
extraction in clinical texts. An early approach em-
ployed a rule-based algorithm which first identi-
fies UMLS terms (Bodenreider, 2004), then ex-
tracts negation cues from a pre-defined list and
finally greedily selects surrounding words using



regular expressions for scope resolution (Chapman,
Bridewell, Hanbury, Cooper, and Buchanan, 2001).
Later work framed negation detection as a token-
level classification task (Morante, Liekens, and
Daelemans, 2008). Subsequent work proceeded
to focus more on scope resolution than cue de-
tection and employed deep learning architecture
(Qian, Li, Zhu, Zhou, Luo, and Luo, 2016). With
the advent of transfer learning, more recent and
SOTA methods involve using a BERT encoder (De-
vlin et al., 2019). The authors of NegBERT train
two BERT encoders separately for the task of cue
detection and scope resolution (Khandelwal and
Sawant, 2020). This model is adapted to instead
employ multitask learning whereby the same BERT
encoder is trained for cue detection and scope reso-
lution (Khandelwal and Britto, 2020).

A variety of datasets exist for the task of nega-
tion detection, and no standard annotation method
yet exists. The NegEx dataset (Chapman et al.,
2001) is clinicial and only annotates conditions
which can be experienced by a person, and also la-
bels if the condition happened recently or not. For
example, the sentence ‘Extremities reveal no pe-
ripheral cyanosis or edema.” would label ‘cyanosis’
and ‘edema’ as ‘negated, recent, patient’. The i2b2
2010 dataset only annotates whether problem men-
tions are positive or negated (Uzuner, South, Shen,
and DuVall, 2011). The BioScope corpus anno-
tates only cues and scopes, where subjects are not
included in the scope. For example, where bold
indicates a cue and underline indicates a scope, the
BioScope corpus would annotate the following sen-
tence as: ‘The man didn’t see the woman.” The
ConanDoyle-neg dataset is similar to the BioScope
dataset, except it includes the subject in the scope
and additionally annotates the main event in the
scope being negated or questioned. For example:
‘The man didn’t see the woman,” where see is the
event. The latter two datasets additionally label
only the negation affixes when negation cues ap-
pear as such, e.g. ‘unable’.

3 Data

We collected data from PubMed abstracts, resulting
in 3252 sentences. We reserved 10% of the dataset
for development set and 10% for a test set. Tables
1 and 2 provide further statistics on our resulting
datasets. Additionally, we make our dataset pub-
licly available through the HuggingFace dataset

# % full % ann.
sentences 3252 - -
w/ 1+ cue 879  27% -
w/ hedge 483 15% 55%

w/ negation 464 14% 53%
w/ 2+ cues 161 5% 18%

Table 1: Flat Dataset Statistics. ‘% full’ refers to the
percentage of the entire dataset, ‘% ann.’” refers to the
percentage of the data containing one or more negation
cues.

# % full % ann.
sentences 3252 - -
w/ 1+ cue 877 27% -
w/ hedge 490 15% 55%

w/ negation 491 15% 56%
w/ 2+ cues 228 7% 26%

w/ nesting 78 2% 9%

Table 2: Nested Dataset Statistics. ‘% full’ refers to the
percentage of the entire dataset, ‘% ann.’ refers to the
percentage of the data containing one or more negation
cues.

library! as ‘pubmed_neg’.

The sentences were first annotated by a linguist,
and then by five Amazon Mechanical Turk? work-
ers per-sentence. Mechanical Turk workers were
compensated $0.05-$0.06 per sentence, including
those containing neither negation nor uncertainty
cues. The annotations were consolidated such that
the linguists’ annotations were given equal weight
to the entirety of the MTurk annotations. We per-
formed annotation consolidation automatically by
implementing the approach described by Amazon
SageMaker Ground Truth for its Named Entity
Recognition annotation consolidation’: “Named
entity recognition clusters text selections by Jac-
card similarity and calculates selection boundaries
based on the mode, or the median if the mode isn’t
clear. The label resolves to the most assigned en-
tity label in the cluster, breaking ties by random
selection."

"https://huggingface.co/datasets

https://www.mturk.com/

*https://docs.aws.amazon.com/sagemake
r/latest/dg/sms—annotation-consolidation
.html, accessed 09.09.2021
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https://docs.aws.amazon.com/sagemaker/latest/dg/sms-annotation-consolidation.html
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3.1 Annotation Guidelines

Annotators were instructed to first determine
whether a negation or uncertainty cue was present
in a sentence. If so, to then identify the subject
and scope of the cue. We define the subject as
the noun phrase (possibly) lacking the action, con-
cept, item, etc. which is being negated or ques-
tioned. The scope, by contrast, is the action, con-
cept, item, etc. whose existence is negated or ques-
tioned. The cue is then the entire verb phrase up
until the specific word indicating negation or un-
certainty, e.g. ‘He [did not]Nygg g0’, Annotators
were instructed to ignore nesting, and annotate only
the outermost negation/speculation. For example,
‘[The man without the hat]gygy [did not]Ngg [see
the doglscopg.” Further, words containing affixed
cues were annotated as a whole as the cue, such
that the whole word ‘unable’ was labeled as the
negation cue. Lastly, negation-affixed words which
denote or belong to a discrete medical concept (e.g.
‘antibodies’, ‘progression-free survival’) were not
to be annotated.

3.2 Post-Processing

Following consolidation, an additional linguist
manually reviewed the annotations and made ad-
justments where the consolidation produced a
noisy, incorrect output as a result of very diverse
annotator inputs; annotators missed a cue; or anno-
tators incorrectly labeled something as a cue (e.g.
‘antibodies’). The linguist added further informa-
tion disambiguating relationships between cues and
subjects/scopes when multiple discrete cues occur
in a single sentence, or when nesting occurs (i.e.
spans embedded in other spans). This produced
an additional dataset where all cues are annotated,
including nested ones. We therefore present two
versions of the dataset: a flat and a nested one.

4 Methods

4.1 Flat Model

Our flat model is a token-level multi-class classifier
implemented with the HuggingFace Transformer
library (Wolf et al., 2020). The classifier receives
contextualized word vectors from PubMed BERT*
(Gu et al., 2020) and determines to which of the 6
classes a token belongs: Subject, Scope, Negation

*nttps://huggingface.co/microsoft/Bio
medNLP-PubMedBERT-base-uncased-abstract—
fulltext

cue, Hedge cue, None, or padding. A hedge cue is
an uncertainty/speculation cue.

4.2 Nested Model

Our nested model is also a token-level multi-class
classification task identical to the flat model except
where specified. The model consists of a BERT en-
coder and two learned classifiers: a Cue Detection
Classifier and a Scope Detection Classifier. The
model first identifies cues in a sentence, and then
the scope and subject of each cue separately. Once
cues are identified by the Cue Detection Classifier,
discrete cues are identified as any contiguous se-
quence of the same cue label (e.g. if 3 words in a
row are labeled as a negation cue, this is taken to
represent a single negation cue). During training,
the Cue Detection Classifier’s gold labels are used
for this. Then, for each identified cue, we either
insert a special token immediately before and after
an identified cue span, or replace each identified
cue token with this special token. Both methods
have been explored with success by Khandelwal
and Sawant (2020) and the insertion method by
Khandelwal and Britto (2020). The modified sen-
tences are passed again to the same BERT encoder,
and the output is passed to the Scope Detection
Classifier, where each token is determined to be a
scope or subject of the cue span in question. The
losses from the Cue Detection and Scope Detection
Classifiers are summed before performing back-
propagation, thereby employing multi-task learn-
ing.

This nested approach preserves the multi-class clas-
sification structure while inherently allowing words
to have multiple labels (as is the case with nesting).
Additionally, the output contains information about
which cue belongs to which subject and scope when
multiple cues are present in a single sentence. Nei-
ther of these are supported by our Flat Model.

4.3 Evaluation

We use the F1 metric to evaluate the performance
of our models. We compute precision as fcorrect

#predicted’
recall as %, and F1 as %. Our implemen-

tation is token-level and does not consider a cor-
rectly assigned ‘No Label’ as a correct prediction,
which we feel would inflate precision. Because a
token can have more than one label in the nested
scenario, we consider two ways to compute cor-
rect predictions for precision and recall: a flat and
a nested method. The nested method counts how
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Nested Flat Nested Flat
Data Model F1 p R Fl p R Data Model Fl p R FI p R
Flat 761 802 725 761 802 725 Flat 707 724 691 707 724 69.1
Flatp Flatp
Nested 729 714 745 756 768 745 Nested 68.1 655 711 681 655 711
Flat 734 806 674 757 806 713 Flat 67.9 738 629 684 738 637
Nested p Nested p
Nested 743 756 730 767 787 747 Nested 7.6 727 706 721 727 714
Flat 703 735 673 703 735 673 Flat 716 770 670 716 770 670
Flatp Flatp
Nested 684 671 699 718 738  69.9 Nested 699 725 674 699 725 674
Flat 703 735 673 703 735 673 Flat 716 770 670 716 770 670
Nested Nested
Nested 715 744 689 734 786 688 Nested 733 810 669 735 810 672
. 9
Table 3:  Top models’ performances on the  Table 4: Top models’ performances on the

developmentp and testy sets for all labels for
each dataset version.

many times a label is assigned to each token in the
gold labels, and the number of times that label was
assigned to that token in the predictions, and takes
the overlap as the number of correct predictions.
If a token is assigned the Subject label 3 times,
“#predicted’ += 3. The flat method disregards the
number of times a label was assigned to a given
token, and just considers a correct prediction if a
label was assigned to a token at all. If a token is as-
signed the Subject label 3 times, ‘#predicted’ += 1,
but if a token is assigned the Subject label 3 times
and the Scope label once, ‘#predicted’ += 2. The
nested method harshly penalizes precision when
the nested model predicts too many cues, and recall
when the model predicts too few.

5 Results

Tables 3, 4, and 5 show the model performances
on each dataset, according to each metric. The
metrics reported for each model are from a single
model (not an average). Each model was trained on
its respective dataset, and then evaluated on both.
Both model architectures perform better on their re-
spective dataset, in regards to overall performance
(Table 3) and cue (Table 4) and scope (Table 5) de-
tection. The nested model achieves the highest F1
score on the (nested) test set, and generally outper-
forms the flat model. Both models perform worse
on the test data than on the development data, likely
due to overfitting.

5.1 Discussion

Not only does the nested model achieve the highest
F1 score on the test data, it returns useful informa-
tion regarding groupings of subject, cue, and scope.

developmentp and testr sets for cue labels only for
each dataset version.

Nested Flat
Data  Model FIl P R Fl P R
Flat 76.7 81.1 72.9 76.7 81.1 72.9
Flatpp
Nested 73.4 72.0 74.8 76.5 78.2 74.8
Flat 74.0 814 67.9 76.5 814 722
Nested p
Nested 74.5 759 73.2 77.2 79.5 75.1
Flat 70.1 73.1 67.4 70.1 73.1 67.4
Flatp
Nested 68.3 66.4 70.2 72.0 74.0 70.2
Flat 70.1 73.1 67.4 70.1 73.1 67.4
Nested
Nested 71.3 73.6 69.1 734 78.3 69.1
Table 5: Top models’ performances on the

developmentp and testy sets for subject and
scope labels only for each dataset version.

This is particularly useful when sentences contain
multiple negations or hedges. The utility of this can
be seen in the model outputs illustrated in Figure
1. Further, the unconventional annotation choice to
label entire negation-affixed words such as ‘unable’
as a negation cue was supported by the fact that
PubMed BERT does not tokenize this word into the
sub-word tokens ‘un’ and ‘##able’. As such, our
models would simply not be capable of assigning a
negation cue label to only the prefix “un-’.

6 Conclusion

We created two datasets for the task of negation
and uncertainty detection in clinical publications:
a flat and a nested version. We further developed
two models to evaluate on the datasets as well as
two metrics to account for nested labels. Of our
two models, the nested model is able to capture not
only token-level labels, but also the which subject,



scope, and cues are related to one another. This is
particularly useful when sentences contain multiple
cues or some form of recursive nesting. Finally, we
publicly release both versions of our dataset.
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