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Abstract

Negation and uncertainty detection is an oft-001
studied challenge in biomedical NLP. Annota-002
tion style for the task has not been standardized003
and as such, the existing datasets not only vary004
in domain but require various algorithmic de-005
signs due to their structural differences. We006
present a new negation detection dataset in two007
versions from clinical publications. We further008
developed two BERT-based models to evaluate009
on each dataset version. Both models treat the010
task as a token-level multi-class classification011
task, one of which is capable of assigning more012
than one label per token in the case of recur-013
sive nesting. Our models achieve F1 scores of014
76% and 72% on the development and test sets,015
respectively.016

1 Introduction017

Negation and uncertainty detection is of partic-018

ular importance in the biomedical NLP domain.019

While benchmark datasets exist, there are few,020

and they generally all follow different annotations021

schemes, or do not fall within the biomedical do-022

main. Recent approaches to the task treat it as023

a token-level, multi-class classification problem024

(where each word is assigned one and only one025

label). As human language is recursive, the task026

of identifying negation and speculation cues along027

with their relevant scopes often involves nesting,028

wherein a single word can have multiple labels029

depending on which cue it interacts with. Like-030

wise, sentences containing multiple cues can have031

nested or overlapping scopes, and resolving the032

structure of which cues and scopes to group to-033

gether is crucial. When treating negation detection034

as a token-level classification task, the ability to035

capture nesting or information regarding structural036

relationships between cues and their scopes can be037

lost. We make two contributions: First, we created038

a new clinical text dataset annotated for negation039

detection in two variations, a flat version and nested040

Figure 1: The trained flat and nested models’ outputs
when a fed single-cue sentence, a multiple-cue sentence,
and a nested-cue sentence.

version. Second, we developed two models to eval- 041

uate on the datasets, one designed specifically to 042

capture nesting and structural information between 043

cues and scopes. 044

2 Related Work 045

A common approach to negation and uncertainty 046

detection involves a two-step process in which 047

negation and speculation cue words are first identi- 048

fied, and then scope resolution is performed. Uncer- 049

tainty detection is sometimes referred to as ‘modal- 050

ity’ or ‘speculation’ detection, cue words are those 051

which directly express the negation or uncertainty 052

(e.g. ‘not’, ‘possibly’), and scope is defined as the 053

part of the sentence affected by the negation or 054

uncertainty cue. 055

Interest in negation detection has largely cen- 056

tered around its use in information retrieval and 057

extraction in clinical texts. An early approach em- 058

ployed a rule-based algorithm which first identi- 059

fies UMLS terms (Bodenreider, 2004), then ex- 060

tracts negation cues from a pre-defined list and 061

finally greedily selects surrounding words using 062
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regular expressions for scope resolution (Chapman,063

Bridewell, Hanbury, Cooper, and Buchanan, 2001).064

Later work framed negation detection as a token-065

level classification task (Morante, Liekens, and066

Daelemans, 2008). Subsequent work proceeded067

to focus more on scope resolution than cue de-068

tection and employed deep learning architecture069

(Qian, Li, Zhu, Zhou, Luo, and Luo, 2016). With070

the advent of transfer learning, more recent and071

SOTA methods involve using a BERT encoder (De-072

vlin et al., 2019). The authors of NegBERT train073

two BERT encoders separately for the task of cue074

detection and scope resolution (Khandelwal and075

Sawant, 2020). This model is adapted to instead076

employ multitask learning whereby the same BERT077

encoder is trained for cue detection and scope reso-078

lution (Khandelwal and Britto, 2020).079

A variety of datasets exist for the task of nega-080

tion detection, and no standard annotation method081

yet exists. The NegEx dataset (Chapman et al.,082

2001) is clinicial and only annotates conditions083

which can be experienced by a person, and also la-084

bels if the condition happened recently or not. For085

example, the sentence ‘Extremities reveal no pe-086

ripheral cyanosis or edema.’ would label ‘cyanosis’087

and ‘edema’ as ‘negated, recent, patient’. The i2b2088

2010 dataset only annotates whether problem men-089

tions are positive or negated (Uzuner, South, Shen,090

and DuVall, 2011). The BioScope corpus anno-091

tates only cues and scopes, where subjects are not092

included in the scope. For example, where bold093

indicates a cue and underline indicates a scope, the094

BioScope corpus would annotate the following sen-095

tence as: ‘The man didn’t see the woman.’ The096

ConanDoyle-neg dataset is similar to the BioScope097

dataset, except it includes the subject in the scope098

and additionally annotates the main event in the099

scope being negated or questioned. For example:100

‘The man didn’t see the woman,’ where see is the101

event. The latter two datasets additionally label102

only the negation affixes when negation cues ap-103

pear as such, e.g. ‘unable’.104

3 Data105

We collected data from PubMed abstracts, resulting106

in 3252 sentences. We reserved 10% of the dataset107

for development set and 10% for a test set. Tables108

1 and 2 provide further statistics on our resulting109

datasets. Additionally, we make our dataset pub-110

licly available through the HuggingFace dataset111

# % full % ann.

sentences 3252 - -
w/ 1+ cue 879 27% -
w/ hedge 483 15% 55%

w/ negation 464 14% 53%
w/ 2+ cues 161 5% 18%

Table 1: Flat Dataset Statistics. ‘% full’ refers to the
percentage of the entire dataset, ‘% ann.’ refers to the
percentage of the data containing one or more negation
cues.

# % full % ann.

sentences 3252 - -
w/ 1+ cue 877 27% -
w/ hedge 490 15% 55%

w/ negation 491 15% 56%
w/ 2+ cues 228 7% 26%
w/ nesting 78 2% 9%

Table 2: Nested Dataset Statistics. ‘% full’ refers to the
percentage of the entire dataset, ‘% ann.’ refers to the
percentage of the data containing one or more negation
cues.

library1 as ‘pubmed_neg’. 112

The sentences were first annotated by a linguist, 113

and then by five Amazon Mechanical Turk2 work- 114

ers per-sentence. Mechanical Turk workers were 115

compensated $0.05-$0.06 per sentence, including 116

those containing neither negation nor uncertainty 117

cues. The annotations were consolidated such that 118

the linguists’ annotations were given equal weight 119

to the entirety of the MTurk annotations. We per- 120

formed annotation consolidation automatically by 121

implementing the approach described by Amazon 122

SageMaker Ground Truth for its Named Entity 123

Recognition annotation consolidation3: “Named 124

entity recognition clusters text selections by Jac- 125

card similarity and calculates selection boundaries 126

based on the mode, or the median if the mode isn’t 127

clear. The label resolves to the most assigned en- 128

tity label in the cluster, breaking ties by random 129

selection." 130

1https://huggingface.co/datasets
2https://www.mturk.com/
3https://docs.aws.amazon.com/sagemake

r/latest/dg/sms-annotation-consolidation
.html, accessed 09.09.2021
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3.1 Annotation Guidelines131

Annotators were instructed to first determine132

whether a negation or uncertainty cue was present133

in a sentence. If so, to then identify the subject134

and scope of the cue. We define the subject as135

the noun phrase (possibly) lacking the action, con-136

cept, item, etc. which is being negated or ques-137

tioned. The scope, by contrast, is the action, con-138

cept, item, etc. whose existence is negated or ques-139

tioned. The cue is then the entire verb phrase up140

until the specific word indicating negation or un-141

certainty, e.g. ‘He [did not]NEG go’, Annotators142

were instructed to ignore nesting, and annotate only143

the outermost negation/speculation. For example,144

‘[The man without the hat]SUBJ [did not]NEG [see145

the dog]SCOPE.’ Further, words containing affixed146

cues were annotated as a whole as the cue, such147

that the whole word ‘unable’ was labeled as the148

negation cue. Lastly, negation-affixed words which149

denote or belong to a discrete medical concept (e.g.150

‘antibodies’, ‘progression-free survival’) were not151

to be annotated.152

3.2 Post-Processing153

Following consolidation, an additional linguist154

manually reviewed the annotations and made ad-155

justments where the consolidation produced a156

noisy, incorrect output as a result of very diverse157

annotator inputs; annotators missed a cue; or anno-158

tators incorrectly labeled something as a cue (e.g.159

‘antibodies’). The linguist added further informa-160

tion disambiguating relationships between cues and161

subjects/scopes when multiple discrete cues occur162

in a single sentence, or when nesting occurs (i.e.163

spans embedded in other spans). This produced164

an additional dataset where all cues are annotated,165

including nested ones. We therefore present two166

versions of the dataset: a flat and a nested one.167

4 Methods168

4.1 Flat Model169

Our flat model is a token-level multi-class classifier170

implemented with the HuggingFace Transformer171

library (Wolf et al., 2020). The classifier receives172

contextualized word vectors from PubMed BERT4173

(Gu et al., 2020) and determines to which of the 6174

classes a token belongs: Subject, Scope, Negation175

4https://huggingface.co/microsoft/Bio
medNLP-PubMedBERT-base-uncased-abstract-
fulltext

cue, Hedge cue, None, or padding. A hedge cue is 176

an uncertainty/speculation cue. 177

4.2 Nested Model 178

Our nested model is also a token-level multi-class 179

classification task identical to the flat model except 180

where specified. The model consists of a BERT en- 181

coder and two learned classifiers: a Cue Detection 182

Classifier and a Scope Detection Classifier. The 183

model first identifies cues in a sentence, and then 184

the scope and subject of each cue separately. Once 185

cues are identified by the Cue Detection Classifier, 186

discrete cues are identified as any contiguous se- 187

quence of the same cue label (e.g. if 3 words in a 188

row are labeled as a negation cue, this is taken to 189

represent a single negation cue). During training, 190

the Cue Detection Classifier’s gold labels are used 191

for this. Then, for each identified cue, we either 192

insert a special token immediately before and after 193

an identified cue span, or replace each identified 194

cue token with this special token. Both methods 195

have been explored with success by Khandelwal 196

and Sawant (2020) and the insertion method by 197

Khandelwal and Britto (2020). The modified sen- 198

tences are passed again to the same BERT encoder, 199

and the output is passed to the Scope Detection 200

Classifier, where each token is determined to be a 201

scope or subject of the cue span in question. The 202

losses from the Cue Detection and Scope Detection 203

Classifiers are summed before performing back- 204

propagation, thereby employing multi-task learn- 205

ing. 206

This nested approach preserves the multi-class clas- 207

sification structure while inherently allowing words 208

to have multiple labels (as is the case with nesting). 209

Additionally, the output contains information about 210

which cue belongs to which subject and scope when 211

multiple cues are present in a single sentence. Nei- 212

ther of these are supported by our Flat Model. 213

4.3 Evaluation 214

We use the F1 metric to evaluate the performance 215

of our models. We compute precision as #correct
#predicted , 216

recall as #correct
#gold , and F1 as 2PR

P+R . Our implemen- 217

tation is token-level and does not consider a cor- 218

rectly assigned ‘No Label’ as a correct prediction, 219

which we feel would inflate precision. Because a 220

token can have more than one label in the nested 221

scenario, we consider two ways to compute cor- 222

rect predictions for precision and recall: a flat and 223

a nested method. The nested method counts how 224
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Data Model
Nested Flat

F1 P R F1 P R

FlatD
Flat 76.1 80.2 72.5 76.1 80.2 72.5

Nested 72.9 71.4 74.5 75.6 76.8 74.5

NestedD
Flat 73.4 80.6 67.4 75.7 80.6 71.3

Nested 74.3 75.6 73.0 76.7 78.7 74.7

FlatT
Flat 70.3 73.5 67.3 70.3 73.5 67.3

Nested 68.4 67.1 69.9 71.8 73.8 69.9

NestedT
Flat 70.3 73.5 67.3 70.3 73.5 67.3

Nested 71.5 74.4 68.9 73.4 78.6 68.8

Table 3: Top models’ performances on the
developmentD and testT sets for all labels for
each dataset version.

many times a label is assigned to each token in the225

gold labels, and the number of times that label was226

assigned to that token in the predictions, and takes227

the overlap as the number of correct predictions.228

If a token is assigned the Subject label 3 times,229

‘#predicted’ += 3. The flat method disregards the230

number of times a label was assigned to a given231

token, and just considers a correct prediction if a232

label was assigned to a token at all. If a token is as-233

signed the Subject label 3 times, ‘#predicted’ += 1,234

but if a token is assigned the Subject label 3 times235

and the Scope label once, ‘#predicted’ += 2. The236

nested method harshly penalizes precision when237

the nested model predicts too many cues, and recall238

when the model predicts too few.239

5 Results240

Tables 3, 4, and 5 show the model performances241

on each dataset, according to each metric. The242

metrics reported for each model are from a single243

model (not an average). Each model was trained on244

its respective dataset, and then evaluated on both.245

Both model architectures perform better on their re-246

spective dataset, in regards to overall performance247

(Table 3) and cue (Table 4) and scope (Table 5) de-248

tection. The nested model achieves the highest F1249

score on the (nested) test set, and generally outper-250

forms the flat model. Both models perform worse251

on the test data than on the development data, likely252

due to overfitting.253

5.1 Discussion254

Not only does the nested model achieve the highest255

F1 score on the test data, it returns useful informa-256

tion regarding groupings of subject, cue, and scope.257

Data Model
Nested Flat

F1 P R F1 P R

FlatD
Flat 70.7 72.4 69.1 70.7 72.4 69.1

Nested 68.1 65.5 71.1 68.1 65.5 71.1

NestedD
Flat 67.9 73.8 62.9 68.4 73.8 63.7

Nested 71.6 72.7 70.6 72.1 72.7 71.4

FlatT
Flat 71.6 77.0 67.0 71.6 77.0 67.0

Nested 69.9 72.5 67.4 69.9 72.5 67.4

NestedT
Flat 71.6 77.0 67.0 71.6 77.0 67.0

Nested 73.3 81.0 66.9 73.5 81.0 67.2

Table 4: Top models’ performances on the
developmentD and testT sets for cue labels only for
each dataset version.

Data Model
Nested Flat

F1 P R F1 P R

FlatD
Flat 76.7 81.1 72.9 76.7 81.1 72.9

Nested 73.4 72.0 74.8 76.5 78.2 74.8

NestedD
Flat 74.0 81.4 67.9 76.5 81.4 72.2

Nested 74.5 75.9 73.2 77.2 79.5 75.1

FlatT
Flat 70.1 73.1 67.4 70.1 73.1 67.4

Nested 68.3 66.4 70.2 72.0 74.0 70.2

NestedT
Flat 70.1 73.1 67.4 70.1 73.1 67.4

Nested 71.3 73.6 69.1 73.4 78.3 69.1

Table 5: Top models’ performances on the
developmentD and testT sets for subject and
scope labels only for each dataset version.

This is particularly useful when sentences contain 258

multiple negations or hedges. The utility of this can 259

be seen in the model outputs illustrated in Figure 260

1. Further, the unconventional annotation choice to 261

label entire negation-affixed words such as ‘unable’ 262

as a negation cue was supported by the fact that 263

PubMed BERT does not tokenize this word into the 264

sub-word tokens ‘un’ and ‘##able’. As such, our 265

models would simply not be capable of assigning a 266

negation cue label to only the prefix ‘un-’. 267

6 Conclusion 268

We created two datasets for the task of negation 269

and uncertainty detection in clinical publications: 270

a flat and a nested version. We further developed 271

two models to evaluate on the datasets as well as 272

two metrics to account for nested labels. Of our 273

two models, the nested model is able to capture not 274

only token-level labels, but also the which subject, 275
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scope, and cues are related to one another. This is276

particularly useful when sentences contain multiple277

cues or some form of recursive nesting. Finally, we278

publicly release both versions of our dataset.279
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