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Abstract

Learning object-centric scene representations is essential for attaining structural
understanding and abstraction of complex scenes. Yet, as current approaches
for unsupervised object-centric representation learning are built upon either a
stationary observer assumption or a static scene assumption, they often: i) suf-
fer single-view spatial ambiguities, or ii) infer incorrectly or inaccurately object
representations from dynamic scenes. To address this, we propose Dynamics-
aware Multi-Object Network (DyMON), a method that broadens the scope of
multi-view object-centric representation learning to dynamic scenes. We train Dy-
MON on multi-view-dynamic-scene data and show that DyMON learns—without
supervision—to factorize the entangled effects of observer motions and scene
object dynamics from a sequence of observations, and constructs scene object
spatial representations suitable for rendering at arbitrary times (querying across
time) and from arbitrary viewpoints (querying across space). We also show that
the factorized scene representations (w.r.t. objects) support querying about a single
object by space and time independently.

1 Introduction

Object-centric representation learning promises improved interpretability, generalization, and data-
efficient learning on various downstream tasks like reasoning (e.g. [18}|39]]) and planning (e.g. [30,
2,141]). It aims at discovering compositional structures around objects from the raw sensory input
data, i.e. a binding problem [12], where the segregation (i.e. factorization) is the major challenge
(e.g. [9,4]), especially in cases of no supervision. In the context of visual data, most existing focus
has been on single-view settings, i.e. decomposing and representing 3D scenes based on a single 2D
image [} 10} 26] or a fixed-view video [23]]. These methods often suffer from single-view spatial
ambiguities and thus show several failures or inaccuracies in representing 3D scene properties. It was
demonstrated by Nanbo et al. [31]] that such ambiguities could be effectively resolved by multi-view
information aggregation. However, current multi-view models are built upon a foundational static-
scene assumption. As a result, they: 1) require static-scene data for training and 2) cannot handle
well dynamic scenes where the spatial structures evolve over time. This greatly harms a model’s
potentials in real-world applications.

In this work, we target an unexplored problem—unsupervised object-centric latent representation
learning in multi-view-dynamic-scene scenarios. Despite the importance of the problem to spatial-
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temporal understanding of 3D scenes, solving it presents several technical challenges. Consider one
particularly interesting scenario where both an observer (e.g. a camera) and the objects in the scene
are moving at the same time. To aggregate 3D object information from two consecutive observations,
an agent needs not only to handle the cross-view object correspondence problem [31]] but also to
reason about the independent effects of the scene dynamics and observer motions. One can consider
the aggregation as a process of answering two questions: “how much has an object really changed
in the 3D space” and “what previous spatial unclarity can be clarified by the current view”. In this
paper, we refer to the relationship between the scene spatial structures and the viewpoints as the
temporal entanglement because the temporal dependence of them complicates the identification of
the independent generative mechanism [35]].

We introduce DyMON (Dynamics-aware Multi-Object Network), a unified unsupervised framework
for multi-view object-centric representation learning. Instead of making a strong assumption of
static scenes as that in previous multi-view methods, we only make two weak assumptions about
the training scenes: i) observation sequences are taken at a high frame rate, and ii) there exists a
significant difference between the speed of the observer and the objects (see Sec. [3). Under these
two assumptions, in a short period, we can transition a multi-view-dynamic-scene problem to a
multi-view-static-scene problem if an observer moves faster than a scene evolves, or to a single-view-
dynamic-scene problem if a scene evolves faster than an observer moves. These local approximations
allow DyMON to learn independently the generative relationships between scenes and observations,
and viewpoints and observations during training, which further enable DyMON to address the problem
of scene spatial-temporal factorization, i.e. solving the observer-scene temporal entanglement and
scene object decomposition, at test time.

Through the experiments we demonstrate that: (i) DyMON represents the first unsupervised multi-
view object-centric representation learning work in the context of dynamic-scene settings that can
train and perform object-oriented inference on multi-view-dynamic-scene data (see Sec. [5). (ii)
DyMON recovers the independent generative mechanism of an observer and scene objects from
observations and permits querying predictions of scene appearances and segmentations across both
space and time (see Sec.[5.1). (iii) As DyMON learns scene representations that are factorized in
terms of objects, DyMON allows single-object manipulation along both the space (i.e. viewpoint)
and time axis—e.g. replays dynamics of a single object without interferring the others (see Sec.[5.).

2 Background

Object-centric Representations Consider object-centric representation inference as the inverse
problem of an observation generation problem (i.e. the vision-as-inverse-graphics [40] idea). In the
forward process, i.e. observation generation, we have a scene well-defined by a set of parameter
vectors z = {zx} = {z1, 22, ..., 25 }, where a z;, € RP specifies one and only one object in the
scene. An observation of the scene x, e.g. an image z € R™ or an RGB image € RM*3,
can be taken only by a specified observer (often defined as v € R?) which is independent of the
scene in the forward problem, using a specific mapping g : R” x R? s RM*3, Assuming a
deterministic process, an observation x is generated as © = ¢(z, v), where v is often omitted in
single-view scenarios (e.g. [, [10]). With the forward problem defined, we can describe the goal
of learning an object-centric representation as inferring the intrinsic parameters of the objects {z }
that compose a scene z based on the scene observation x. In other words, computing a factorized
posterior p(z|x) = p(z1, 22, -.., 2K |X), even though it is computationally intractable. As the number
of objects is unknown in the inverse problem, it is worth noting that i) K is often set globally to be a
sufficiently large number (greater than the actual number of objects) to capture all scene objects, and
ii) we allow empty “slots”.

Temporal Entanglement The dynamic nature of the world suggests that the spatial configuration
of a scene (denoted by z') and an observer v* are bound to the specific time ¢ that an observation
is taken (i.e. o' = g(z*,v")). Let X = {(z*,v")}1.r [|represent a data sample, e.g. a sequence
or set of multi-view image observations, from dataset D, where T is the number of the images
in the sample. Assuming z! is given in the data sample for now, i.e. focusing on the generative
process only, we augment a scene data sample as X, = {(zt, v?,z")}1.7. In general, we assume an
independent scene-observer relation: z' | v%|() but they nevertheless become dependent when the

'We define (-) as a joint sample indicator that forbids independent sampling of the random variables wherein.
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Figure 1: Top Left: Multi-view-dynamic-scene setup. v with a time index superscript denotes the
spatial configuration (e.g. position, orientation, etc.) of an observer at a specific time. We highlight
one particular interesting, yet unexplored, scenario where both an observer and scene objects are
moving at the same time—which entangles the independent effects of the observer’s and scene objects’
motions on an scene observation, an image sequence (see bottom left). A latent variable z that is
indexed by time describes the objects and their spatial configuration at a specific time (See Sec. 2] for
detailed definition). Right: DyMON decouples the generative effects of observer motions and scene
object motions and enables: 1) reconstruction and factorization of the observed views (see bottom
right), and 2) novel-view appearance and decomposition prediction for arbitrary times—querying
across both space and time (see top right).

corresponding observation is given: z' f v'|zt. Under a static-scene assumption, we can treat an
augmented data sample as X, = {(2%,v"), z' }1.7 where z’ and v' are separable (i.e. can be sampled
independently). In this case, to recover the independent generative mechanism (i.e. train a g(-))
w.r.t. scenes and observers from data, GQN [8] and MulMON fix z' to z and intervene on the
viewpoints v*. From a causal perspective, this can be seen as estimating p(z! |do(v! = v''), z! = z),

where (z!',vt") ~ {(z*,v")} 1.7, implicitly under a causal model: z — z' « v*. However, in
dynamic settings, the same estimation, i.e. sampling (z* , v ) ~ {(z,v")}1.7 independently of z’,
is forbidden by the (-) indicator. Intuitively, an observer cannot take more than one observations from
different viewpoints at the same time ¢. In this paper, we refer to this issue as temporal entanglement

in view of the temporal implication of the (-) indicator.

3 DyMON

Our goal is to train a multi-view object-centric representation learning model that recovers the
independent generative mechanism of scene objects and their motions and observer motions from
dynamic-scene observations. In this section, we detail how DyMON addresses these two presented
challenges: 1) temporal disentanglement (see Sec. , and 2) scene spatial factorization (see
Sec.[3.2). We discuss the training of DyMON in Sec. @

3.1 Temporal Disentanglement

The key to resolving temporal entanglement, i.e. temporal disentanglement, is to enable sampling
(2%, v?) independently of z!, or (x?, z!) independently of v*. This is seemingly impossible in the multi-
view-dynamic-scene setting as it requires to fix either z° (static scene) or v* (single-view) respectively.
In this paper, we make two assumptions about the training scenes to ensure the satisfaction of the



aforementioned two requirements without violating the global multi-view-dynamic-scene setting. Let
us first describe the dynamics of scenes and observers with two independent dynamical systems:

A gt =Tt AL oA — ot = T (v 1AL, (1)

where t and t + At are the times that two consecutive observations were taken, f,(z!,t) and f, (v’ 1),
or simply f,: and f,, are the average velocities of scene objects and the observer within [t, ¢ + At].
Note that we use a 2! to capture both the shape and pose information of an object. However, we
do not consider shape changes in this work. With the dynamical systems defined, we introduce our
assumptions (which defines a tractable subset of all possible situations) as:

* (A1) The high-frame-rate assumption At — 0 s.t. z't2! ~ zt,

* (A2) The large-speed-difference assumption The data comes from one of two cases (SCFO:
Slow Camera, Fast Objects or FCSO: Fast Camera Slow Objects), that satisfy: |%| >
Cscro or | “]{:j

are positive constants.

| < Creso, where |velocity| computes a speed, and Cscro and Creoso

allows us to assume a nearly static scene z! or a fixed viewpoint v? for a short period. Consider
an example where we assume a static scene, i.e. 77 A g7 x gTTAL in [T — At, T + At],
essentially allows us to extract z' out of a joint sample as: X, = {(z%,v"),2'}_At.r1ar. An
intuitive way to define is: |fz| > |fu| or |fz] < |f.], which specify a large speed difference
between scene speeds and observer speeds.

These two assumptions enable us to accumulate instant changes (velocities) on one variable (e.g.
either z¢ or v*) over a finite number of At while ignoring the small changes of the other (assumed
fixed). We then treat a slow-camera-fast-objects (i.e. SCFQ) scenario, where |f,| > |f.|, as
an approximate single-view-dynamic-scene scenario, and a fast-camera-slow-objects (i.e. FCSO)
scenario, where | f,| < |f,|, an approximate multi-view-static-scene scenario. Either case allows us
to resolve the temporal entanglement problem. Importantly, to answer the question: “is a given data
sample an SCFO or FCSO sample”, we need to quantitatively specify the two assignment criteria
Cscro and Creoso. However, a direct calculation of these two constants is often difficult and does
not generalize as: i) | f,| is not available in unsupervised scene representation learning data, and ii)
the two constants vary across different datasets. In practice, we cluster the data samples into SCFO
and FCSO clusters using only the viewpoint speed | f,|, i.e. assuming |f,| = 1 for training (see
Sec.[3.3). In testing, DyMON treats them equally.

3.2 Spatial Object Factorization

DyMON tackles scene spatial decomposition in a similar way to MulMON [31]] using a generative
model and an inference model. The generative likelihood of a single image observation is modelled
with a spatial Gaussian mixture 38} [11]:

M K
pe(xt|zt = {thc}’ Ut) = H Zp(’(czt = k‘zltc) N(x}tc,za g(;(z};, Ut)a 021)7 2)
i=1k=1
where ¢ indexes a pixel location (M in total) and RGB values (e.g. mfm) that pertain to an object
k are sampled from a Gaussian distribution (7}, ;; go(2},v"), 0°I) whose mean is determined by
the decoder network gy(+) (defined in Sec. [2)) with trainable parameter § and standard deviation o
is globally set to a fixed value 0.1 for all pixels. The mixing coefficients py(C; = k|zy) capture the
categorical probability of assigning a pixel i to an object k (i.e. C; = k). This imposes a competition
over the K objects as every pixel has to be explained by one and only one object in the scene.

DyMON adapts the cross-view inference module [31]] of MulIMON to handle: i) the cross-view object
correspondence problem, ii) recursive approximation of a factorized posterior, and iii) temporal
evolution of spatial structures (which indicates the major difference between the inference modules
of DyMON and MulMON). The decomposition and recursive approximation of the posterior is:

p(z" = {2} 2™ 0S) m ga (2 = {2 }e< 0%) = ¢(2°) [ ge (2'[a", 0" 2<7), (3)
t



where go (z!|2?, v, 2<") denotes the approximate posterior to a subproblem w.r.t. an observation
2! taken from viewpoint v® at time ¢, and assumes a standard Gaussian A/ (0, I) for the scene prior
q(z°). The intuition is to treat a posterior inferred from previous observations as the new prior to
perform Bayesian inference for a new posterior based on a new observation. We use z! to denote
the inferred scene representations after observing z%, i.e. a new posterior, and z<* to denote the new
prior before observing ‘. Note that we can advance ¢ either regularly or irregularly. The single-view
(or within-view) inference is handled by DyMON using iterative amortized inference [27] with
amortization function ® (modelled with neural networks). Refer to Appendix B. for full details about
the generative and inference models of DyMON.

3.3 Training

To enable DyMON to learn independently the generative relationships between scenes and obser-
vations, and viewpoints and observations during training, built upon MulMON’s architecture, we
break a long moving-cam-dynamic-scene sequence into short sub-sequences (see Algo. [I) where
sampling (z*',v"") ~ (2!, v"), ., independently of z¢ is possible. Similar to MulMON [31]], we then
train DyMON by maximizing the following objective function that linearly combines an evidence
lower bound (abbr. ELBO) and the log likelihood (abbr. LL) of the querying views:

c—ELBo + B+ LLguer,

= ZEqp(zf\)[Inge( o) = o 3 Prclan (4, 05 s (5=, o)
| ltET | ‘teT

\Q| > Byyarollog po (22", v9)), 4)

teT tq€Q

where 7 and Q record the times when DyMON performs inference and v! interventions (i.e.

viewpoint-queried generation) and [ is the weighting coefficient. We construct 7 by sampling
t (either regularly or irregularly) with a random walk through [1, T'|, where a uniform distribution
U{At — 2, At + 2} of an expected value At > 2) is used as the step distribution. As shown in
Algo. l by varying the updating periods of z! and v* (denoted as At, and At, respectively), DyMON
imitates the behaviours of a multi-view-static-scene model and a single-view-dynamic-scene model to
handle the SCFO and FCSO samples respectively. In addition, using different 5 for the SCFO and
FCSO samples allows alternating the training focus between spatial reasoning (w.r.t. objects and
viewpoints) and temporal updating.

Assignment Function and Batching As the samplers of T and Q behave differently for SCFO and
FCSO data (see Algo.[T), we need to determine if a X ~ D is an SCFO sample or an FCSO sample.
Under [A2] we consider any dataset consisting of only a mix of SCFO and FCSO samples (where
a sample is a sequence of images). For a given dataset, we cluster all training samples of a dataset
into two clusters w.r.t. the SCFO and FCSO scenarios. This then gives us an assignment function,
assign(X; D) (as shown in Algo. |1} In practice, to avoid breaking parallel training processes with
loading SCFO and FCSO samples into the same batch, we assign the training data beforehand instead
of assigning every data sample on the fly during training. This allows to batch FCSO or SCFO
samples independently at every training step.

4 Related Work

Single-View-Static-Scene The breakthrough of unsupervised object discovery based on a primary
scenario, i.e. a single-view-image setting, lays a solid foundation for the recent rise of unsupervised
object-centric representation learning research. Built upon a VAE [21]], early success was shown
by AIR [[7] that searches for one object at a time on image regions. Because AIR and most of its
successors (e.g. [22]) treat objects as flat pixel patches and the image generation process as “paste
flat objects on canvas” using a spatial transformer [[17], they often cannot summarize well scene
spatial properties that are suitable for 3D manipulation: for example, they do not render smaller
objects when the objects are “moved” further away from the camera. To overcome this, most recent
advances [1 10} 24} 16l 26} 5] model a single 2D image with a spatial Gaussian mixture model [38 [11]]
that allows explicit handling of background and occlusions. Although these models suffer from
single-view ambiguities like occlusions or optical illusions, they have the potential for attaining



Algorithm 1: DyMON Training Algorithm

Input: training data D

Hyperparameters |Q|, (Brcso, Bscro), (A, AT); // At > At > 2,|Q| = sizeof (Q)
Initialize trained parameters ®, 0, and latent prior \° = {(ux = 0,01, =1)};

repeat

Sample a sequence X = {(xt,v')}1.0 ~ D; // T (RGB images, viewpoints)
if assign(X; D) == FCSO then
| B, Aty, At, = Breso, AT, At // At, < At,, update v' more often
else
| B, Aty, At, = Bscro, At, AT // At, < At,, update z' more often
T = random_walk_t(s = 1,e = T, step_dist = U{At, — 2, At, + 2}) ;
(z,v), t, A}, ELBO, LLgyery, = X[1], 1, A0 0, 0;
while ¢ < T do
(2f,0") = X[t] ;
if mod(¢, At,) == 0 then
vavt; // update v
if t € 7 then
r = at; // update x
ELBOWY, \! = iterative_inferences g(z,v,A) ;
z* ~ N(z' A'); // sample updated z'
Q = {t,} = sample_query_t(dist = U{t — At,/2, t + At,/2},size = |Q]);
fort, € O do
(x,0v7) = X[tg];
LLguery+ = (1/(1Q1 - [T1) -logpa(atla,v0) ;  // fix 2, dowv =
| ELBO+ = (1/[T])- ELBOY;
| t+=1;
L=ELBO + - LLgyery ; // Brcso > Bscro
0, ® + optimizer, (L, 0, D);

until 6, ® converge;

factorized representations of 3D scenes. Our work has close relationship to IODINE [10]: we handle
the object-wise inference from an image observation at each time point using the iterative amortized
inference [27] design and capture the compositional generative process with a spatial Gaussian
mixture model.

Multi-View-Static-Scene A natural way of resolving single-view ambiguities is to aggregate in-
formation from multi-view observations. Although multi-view scene explorations do not directly
facilitate object-level 3D scene factorization, Eslami et al. [8] demonstrated that they do reduce
the spatial uncertainty and enable explicit 3D knowledge evaluation—novel-view prediction. As
combining GQN [8] and IODINE [10], Nanbo et al. [31]] showed that MulMON effectively leverages
multi-view exploration to extract accurate object representations of 3D scenes. However, like GQN,
MulMON can only train on static-scene samples and thus does not generalize well to dynamic scenes
ROOTS [3]] combines GQN and AIR’s merits to perform multi-view-static-scene object-centric
representation learning whereas it requires camera intrinsic parameters to overcome AIR’s deficiency
of 3D scene learning — it is thus camera-dependent hence less general. In our work, we propose
DyMON as an extension of MulMON to dynamic scenes and a unified model for unsupervised
multi-view object-centric representation learning.

Single-View-Dynamic-Scene A line of unsupervised scene object-centric representation learning
research was established on the single-view-dynamic-scene setting [14} 22} [19], where they explicitly
model and represent object dynamics based on video observations. However, as most of these works
employ a similar image composition design to AIR, they deal with only flat 2D objects that are similar
to MNIST digits and thus cannot model 3D spatial properties. A closely-related work is that of Lin et
al. [23], i.e. GSWM, where they modelled relative depth information and pair-wise interactions of
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Figure 2: Qualitative results of spatial-temporal factorization. The GT rows show the true scene. The
“MM” and “DM” entries are the scene re-rendered from the corresponding models, i.e. MulMON
and DyMON respectively. The vertical row pairs show the results from viewpoint changes and the
horizontal direction shows the results at different times. Note that we train MulMON and DyMON on
different datasets as MuIMON cannot train on multi-view-dynamic-scene datasets. We also visualize
MulMON’s tendency of generating degenerated results along the temporal direction (marked with
red arrows).

3D object patches. In our work, the spatial-temporal factorization allows us to show the dynamics
and depths of the objects from different viewpoints at different times.

Other Related Work As a multi-view-dynamic-scene representation learning framework, T-
GQN [36] represents the most closely-related work to ours. It models the spatial representation
learning at each time step as a stochastic process (SP) and transitions between these time-stamped
SPs with a state machine. However, a notable distinction between the problems that T-GQN and
DyMON are targeting based on that: 1) T-GQN does not attain object-level scene factorization and
2) a typical T-GQN requires multi-view observations at each time step (as so-called “context”) to
perform spatial learning so as to get rid of the femporal entanglement problem (which has been the
core focus of our work). Our work is essentially dealing with disentangled representation learning
problems, which are often formulated under the frameworks of causal inference and inde-
pendent component analysis (abbr. ICA) [16, [T5]]. Unlike traditional disentanglement representation
learning works (e.g. [20L 25]]) that aims at feature-level disentanglement, in this work, we handle
not only the object-level disentanglement that resides in the object-centric representation learning
research, but also the time-dependent scene-observer disentanglement problem.Recent trend of neural
radiance field (e.g. [29] 28], [34])) are relevant to our work in the sense of 3D scene representations



using multi-view images. However, from an vision-as-inverse-graphics [40] perspective, we do not
consider them scene understanding models as they only aim to memorize the volumetric structure of
a single scene during “training” thus cannot perform representation inference for unseen scenes.

S Experiments

We used two simulated multi-view-dynamic-scene synthetic datasets, namely DRoom and MJC-
Arm, and a real-world dataset, namely CubeLand (see Appendix C.3 for details), in this work. We
conducted quantitative analysis on DRoom and show qualitative results on the other two datasets. The
DRoom dataset consists of five subsets (including both training and testing sets): one subset (denoted
as DRO-| f,,|) with zero object motion (multi-view-static-scene data), one subset (denoted as DRO-| £, |)
with zero camera motion (single-view-dynamic-scene data), and three multi-view-dynamic-scene
subsets of increasing speed difference levels from 1 to 3 (denoted as DR-Lvl.1 ~ 3). Each of the
five subsets consists of around 200 training sequences (40 frames of RGB images per sequence) and
20 testing sequences (40 frames from 12 different views, i.e. 57.6k images). Although DyMON’s
focus is on a more general problem, we nevertheless compare it against two recent and specialized
unsupervised object-centric representation learning methods, i.e. GSWM [23]], and MulMON [31]],
in two respective settings: single-view-dynamic-scenes, and multi-view-static-scenes. All models
were trained with 3 different random seeds for quantitative comparisons. Refer to our supplementary
material for full details on experimental setups, and ablation studies and more qualitative results.

5.1 Space-Time Querying

The recovery of the independent generative mechanism permits DyMON to make both viewpoint-
queried and time-queried predictions, i.e. querying across space and times, of scene appearances and
segmentations using the inferred scene representations, which enables the below two demonstrations:

Novel-view Prediction at Arbitrary Times Recall that a scene observation x is the generative
product of a specific scene (composed by objects) and observer at a specific time ¢ with a well-
defined generative mapping, i.e. z = g(z,v) (see sec. . Like previous multi-view object-centric
representation learning models (e.g. MulMON [31]]), we query from an arbitrary viewpoint v w.r.t.
a scene of interest z by fixing z and manually setting the viewpoint v to arbitrary configurations.
Similarly, we can query about the spatial state of a dynamic scene at time ¢ from a specific viewpoint
by fixing the viewpoint and manually inputting z* at arbitrary times ¢ to the generative function. We
trained a DyMON on the DR-Lv1.3 data and show qualitatively the prediction results that are queried
by space-time tuples in Figure 2]

Dynamics Replay of Scenes & Objects From Arbitrary Viewpoints In this experiment, we give
DyMON a sequence of image observations of a dynamic scene as input, and have it replay the
dynamics from a novel viewpoint using the scene representations it infers from the observations.
This is done by fixing the v to the desired values and querying about consecutive times. As the
inferred scene representations are factorized in terms of objects, we show in Figure [3] (left) that,
besides the complete scene dynamics, DyMON also allows to replay the dynamics of a single object
independently of the others. We present the qualitative results on the MJC-Arm datasets in Figure 3]
(right) where one can see that DyMON not only replays object dynamics as global position changes,
it also captures object local motions.

Dynamics On Real-World Data To demonstrate that our model has the potential for real-world
applications, we conduct experiments and show qualitative results on real images (i.e. CubeLand
data). We refer the readers to Appendix D.4 for the results.

5.2 Versatile Evaluation

DyMON is designed to handle object-centric representation learning in a general setting—mmulti-view-
dynamic-scenes. In this section, we experiment to evaluate how well DyMON handles the specialized
settings.

DyMON vs. Dynamic Scenes We first evaluate DyMON’s performance in the multi-view-dynamic-
scene setting in comparison to MulMON. MulMON also learns the independent generative mechanism
of scene objects and observer, but with a strict static-scene constraint. Note that both DyMON and
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Figure 3: Left: DyMON performing dynamics replays on the DRoom dataset, where the first row
is the observation sequence input to DyMON, second and third rows show replays of the scene
dynamics (all objects’ original motions) and object dynamics (just the foreground green ball moves)
respectively from an arbitrary viewpoint v¢. Right: DyMON replays local motions of robot arm
from an arbitrary viewpoint (top: observation, middle: reconstruction, bottom: replay from a higher
viewpoint).

\ MSE| mloU?T
Models |  Obs.Rec. Nv.Obs. \ Obs.Seg. Nv.Seg.
MulMON ‘ 0.011 £0.001  0.019 £+ 0.002 ‘ 0.511 +0.001 0.461 £+ 0.062
DyMON ‘ 0.004 +0.001  0.021 + 0.002 ‘ 0.717 £ 0.000 0.508 + 0.065

(a) DyMON vs. Multi-View-Dynamic-Scenes

\ MSE| mloU7 | MSE| mloU?

Models |  Obs.Rec. NvObs. |  Obs.Seg. Nv.Seg. Models |  Obs.Rec. Obs.Seg.
MulMON ‘ 0.006 £ 0.001 0.012 £ 0.005 ‘ 0.583 £ 0.080 0.538 +£0.105 GSWM ‘ 0.039 £ 0.007 0.402 + 0.082
DyMON ‘ 0.014£0.001  0.019 £ 0.007 ‘ 0.529 £0.005  0.506 £ 0.105 DyMON ‘ 0.014 £0.011 0.682+0.107

(b) DyMON vs. Multi-View-Static-Scenes (c) DYMON vs. Single-View-Dynamic-Scenes

Table 1: Quantitative comparisons of DyMON and two baseline models, i.e. GSWM and MulMON,
in handling scenarios that the baseline models are specialized at. The models in table (a) are trained
and tested on the DRO-| f,,| data, and those in (b) and (c) are trained and tested on the DRO-| f,| data.
“Obs.” tags reconstructions and segmentations that are computed for the observations and “Nv.” tags
those from novel viewpoints. Mean =+ stddev for 3 training seeds. 1 indicates higher is better and |
indicates the opposite.

MulMON permit novel-view predictions of scene appearances and segmentations, this allows explicit
quantification of the correctness and accuracy of the inferred scene representations. We use a mean-
squared-error (MSE) measure and a mean-intersection-over-union score (mloU) measure. We train
DyMON on the DR-Lv1.3 subset and MulMON on the DRO-| f,| subset (because it is UNABLE
to train on dynamic-scene data) and conduct comparison across the three DRoom dynamic-scene
subsets (i.e. DR-Lvl.1 ~ 3). Table @ shows that, although we train MulMON on a more strict
dataset, i.e. the DRO-|f,| dataset, DyMON still outperforms MulMON on almost all the various
indicators. We show the qualitative comparison results in Figure 2] and observe that MulMON’s
performance declines along the temporal axis when large object motions appear. As neither DyMON
nor MulMON impose any orders for object discovery, we used the Hungarian matching algorithm
to find the best match that maximizes the mIoU score to handle the bipartite matching between the
output and the Ground-truth masks.

DyMON vs. Static Scenes We evaluate how well it handles multi-view-static-scene scenarios in

comparison with a specialized model, i.e. MulMON. We train and test both DyMON and MulIMON

on the DRO-| f,| subset w.r.t. reconstructions and segmentations of both the observed and unobserved
views. Table [Ib] summarizes the results. They show that DyMON can handle this strict constraint



setting, even though it exhibits a slight performance gap compared with the specialized model. Also,
it is worth noting that DyMON and MulMON produce high variances in segmentations. One possible
reason is that both MulMON and DyMON employ stochastic parallel inference mechanisms that
can sometimes infer duplicate latent representations and harm segmentations [32]]. This experiment
along with the DyMON-versus-dynamics-scenes experiment provides useful guidance for model
selection in multi-view applications—use a specialized model in a well-controlled environment and
DyMON to handle complex scenarios.
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Figure 4: Left: Qualitative comparisons of DyMON and GSWM on reconstructing the DRO-|f,|
scenes. The GT rows show the actual observations of a dynamic scene, and the “DM” and “GSWM”
rows show observation reconstruction results of DyMON and GSWM, respectively.

DyMON vs. Fixed-View Observations of Dynamic Scenes We assessed DyMON’s performance
on handling single-view-dynamic-scene observations by comparing it with GSWM [23]], which is
a specialized object-centric representation model for this specific setting, although it is unable to
achieve pixel-level segmentation. We train both DyMON and GSWM on the DRO-|f, | subset and
measure the reconstruction quality of the observations. Table [Ic| shows that DyMON not only
outperforms GSWM in observation reconstruction, but it also permits pixel-wise segmentation which
the specialized model cannot. The qualitative results in Figure[d]show that GSWM learns better object
appearances (especially for textures) than DyMON, whereas DyMON learns more accurate scene
dynamics than GSWM. This is understandable as GSWM models object dynamics explicitly, which
introduces risks of overfitting the observed motions. DyMON supports well temporal interpolations,
i.e. dynamics replays (as shown in Figure [3|and ), but it does not model the object dynamics nor
interactions explicitly like GSWM. As a result, it does not provide readily extrapolatable features
along the time (or dynamics) axis for predicting into the future.

DyMON vs. T-GQN T-GQN [36] is a closely related work as it targets unsupervised scene represen-
tation learning in the multi-view-dynamic-scene settings, even though it does not attain object-centric
factorization in the latent space. Although T-GQN requires multi-view observations at each time step
(as “context” information) to sidestep the temporal entanglement issue, we nevertheless train it on our
DRoom data and show that it fails to represent the DRoom scenes (see Appendix D.3 for the results
and discussions).

6 Conclusion

We have presented Dynamics-aware Multi-Object Network (DyMON), a method for learning object-
centric representations in a multi-view-dynamic-scene setting. We have made two weak assumptions
that allows DyMON to recover the independent generative mechanism of observers and scene
objects from both training and testing multi-view-dynamic-scene data—achieving spatial-temporal
factorization. This permits querying the predictions of scene appearances and segmentations across
both space and time. As this work focuses on representing the spatial scene configurations at every
specific time point, i.e. DyMON does not model dynamics explicitly so it cannot predict the future
evolution of scenes, which leaves space for future exploration.
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