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ABSTRACT

Recent advancements in machine learning have been driven by models trained
on large-scale, high-quality datasets. However, the practical application of these
models faces two significant challenges: the infeasibility of acquiring precise
labels in real-world settings and the substantial computational burden imposed
by training large models. While existing approaches—such as self-supervised
learning, weak supervision, noisy label learning, and dataset distillation—address
these challenges from a model-centric perspective, they often overlook the potential
benefits of optimizing the data itself. This paper introduces a novel data-centric
learning paradigm where both the dataset and the model co-evolve during the
learning process. We formalize this paradigm and propose a Data-evolution
Learning Algorithm (DELA), which offers three key advantages: optimized
dataset generation, versatile dataset compatibility, and effective utilization of prior
knowledge. Extensive experiments demonstrate that DELA enables the creation of
optimized datasets for reuse in subsequent training, effectively addressing diverse
datasets with varying target types. Moreover, DELA accelerates learning by
utilizing architecture-agnostic, open-source prior models for efficient data creation.
Notably, DELA frequently outperforms traditional SOTA model-centric methods
in self-supervised and noisy label learning. Furthermore, its simplicity enables
implementation in only two lines of PyTorch code, offering significant potential for
advancements in representation learning. Our code will be made publicly available.

1 INTRODUCTION

Evolve

Update

Figure 1: This panel visually summarizes the Data-
Evolution Learning paradigm introduced in our study.
This paradigm is designed to: (1) gradually evolve both
the data and the model throughout the learning process,
and (2) accept various types of data as input, includ-
ing targets generated by a randomly initialized model
and human annotation. This method facilitates efficient
model training and data evolution across heterogeneous
datasets within a unified framework. The data, once
evolved, can be stored, thereby improving the effective-
ness and efficiency of future training processes.

Machine learning models have demonstrated
exceptional performance across a broad spec-
trum of applications, as exemplified by GPT-
4 (Achiam et al., 2023) and LVM (Bai et al.,
2023). The success of these models is largely
due to their remarkable representational capabil-
ities, which are typically achieved through train-
ing on large-scale, high-quality datasets with
comprehensive and accurate supervision (Deng
et al., 2009; Radford et al., 2021). However,
the proliferation of massive datasets in contem-
porary deep learning presents two critical chal-
lenges: (i) Acquiring such precise labels in the
real world is often infeasible due to several fac-
tors, including the high cost of annotation (Set-
tles et al., 2008; Gadre et al., 2023), the inherent
biases and subjectivity of annotators (Tommasi
et al., 2017; Pagano et al., 2023), and privacy
concerns (Mireshghallah et al., 2020; Strobel &
Shokri, 2022). (ii) Training large models with
increasing data and model capacity imposes a
huge computational burden (Brown et al., 2020; Cheng et al., 2017; Strubell et al., 2019).

The community has made significant strides in addressing challenges (i) and (ii) through various
approaches: self-supervised learning (Chen et al., 2020a; Caron et al., 2021; Chen & He, 2021;
Bardes et al., 2021), weak supervision learning (Zhou, 2018; Sugiyama et al., 2022; Chen et al.,
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2024), noisy label learning (Xu et al., 2019; Wang et al., 2024b; 2019; Han et al., 2020b), and
dataset distillation (Wang et al., 2018; Sun et al., 2024; Shao et al., 2023). However, these model-
centric approaches primarily concentrate on developing methods that facilitate effective learning
from defective data without altering the data itself. In this paper, we propose to address challenges
(i) and (ii) from a data-centric perspective by concurrently evolving both the initialized data and the
model into more optimal forms. This approach allows for the dynamic modification of both data and
the model throughout the data-evolution learning process.

To achieve this goal, we formally define our objective in Definition 1 and propose DELA that
offers three distinct advantages over model-centric learning approaches: (a) Optimized Dataset
Generation: Upon completion of the learning process, an optimized dataset is produced, which can be
utilized to train another model with improved efficiency. (b) Versatile Dataset Compatibility: DELA
is compatible with datasets containing various target types, including noisy labels and unlabeled
data, in contrast to model-centric methods that are typically tailored for specific data types. (c)
Effective Utilization of Prior Knowledge: In scenarios involving unlabeled data, DELA facilitates
the integration of prior knowledge from open-source models for initializing data. This approach
accelerates the learning process and conserves computational resources.

Definition 1 (A learning paradigm of simultaneously evolving datasets and models) . Given
a dataset D = (DX , DY ) and model ϕθ, our objective is to derive an evolved dataset D′ and
model ϕθD

after multiple iterations of a data-evolution algorithm, ensuring:

E(x,y)∼P

[
ℓ(ϕθD′ (x),y)

]
< E(x,y)∼P

[
ℓ(ϕθD

(x),y)
]
< ϵ , (1)

where P is the test real distribution, x is a data sample, ℓ is the loss function, and ϵ is a predefined
small threshold. Here, θD′ denotes the parameters of the neural network ϕ trained on D′.
Furthermore, the training on D′ should use the same or a smaller training budget compared to D.

Our work presents the following five key contributions below as an initial step toward establishing a
data-centric representation learning paradigm:

(a) Defining Data-Evolution Learning (see Definition 1 ) and Figure 1 . To the best of our knowledge,
we are the first to introduce a data-centric learning paradigm where both data and model co-evolve
simultaneously, and we formalize the objective of this task. Additionally, we present a simple and
effective technical framework, DELA, to achieve this objective, highlighting several advantages of
this paradigm that remain intractable for traditional model-centric learning paradigms.

(b) An optimized dataset is obtained through learning using DELA (see Section 4.2 ). Traditional
model-centric approaches focus on training an effective model on a fixed dataset, where the dataset
remains unchanged after the learning process. This paradigm typically results in each training
procedure being independent, meaning subsequent training processes cannot leverage information
from previous sessions, especially when involving models with different architectures. DELA
addresses this limitation by evolving the dataset during training, allowing it to be reused and further
optimized in subsequent training processes involving models with varying architectures.

(c) The learning process of DELA can be significantly accelerated (see Section 4.3 ). Leveraging
open-source pre-trained models as prior knowledge is a widely adopted approach in contemporary
machine learning to expedite and improve task-specific training. For example, Ridnik et al. (2021)
use a ResNet-50 model pre-trained on ImageNet-1K as a starting point to train on ImageNet-21K.
However, this approach may not be effective when the target model is based on a different architecture.
In contrast, DELA can fully exploit prior knowledge from architecture-agnostic models to accelerate
learning by employing data initialization (see Section 3 ).

(d) Addressing diverse datasets constructed with varying types of targets (see Section 4.4 ). Specifi-
cally, unlike previous approaches such as TNLPAD (Wang et al., 2024b) and SimCLR (Chen et al.,
2020a), which are tailored for noise-labeled and unlabeled data respectively, DELA leverages multi-
ple data initializations across different datasets. This strategy enables simultaneous model training
and dynamic data evolution across various dataset types.

(e) DELA demonstrates competitive model training performance in comparison to several model-
centric learning approaches (see Section 4.5 ). Extensive experiments conducted on four widely-used
datasets, involving three neural network architectures and seven model-centric learning algorithms,
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validate the effectiveness and efficiency of DELA. Notably, DELA matches or outperforms certain
state-of-the-art (SOTA) model-centric methods.

2 RELATED WORK

This section integrates three key areas of deep learning: (a) techniques for dataset condensation that
maintain efficacy; (b) self-supervised learning methods for training models on unlabeled data; (c)
noise-robust learning approaches for training models on noisy data.

2.1 DATASET DISTILLATION: EFFICIENT AND EFFECTIVE LEARNING WITH REDUCED DATA

The goal of dataset distillation is to generate a substantially smaller dataset that maintains performance
comparable to the original dataset. Traditional methods replicate behaviors from the original dataset
within the distilled one, aiming to reduce discrepancies between surrogate neural network models
trained on both synthetic and original datasets. Key metrics in this process include gradient matching
(Zhao et al., 2020; Kim et al., 2022; Zhang et al., 2023; Liu et al., 2023), feature alignment (Wang
et al., 2022), distribution matching (Zhao & Bilen, 2023; Zhao et al., 2023), and training trajectory
consistency (Cazenavette et al., 2022; Cui et al., 2022; Du et al., 2023; Cui et al., 2023; Yu et al., 2023;
Guo et al., 2023). However, these approaches entail significant computational overhead due to the
continuous calculation of discrepancies between the distilled and original datasets. The optimization
process requires multiple iterations to minimize these discrepancies until convergence, making it
challenging to scale to large datasets, such as ImageNet (Deng et al., 2009).
A promising strategy involves developing metrics that capture essential dataset information, enabling
efficient scaling to large datasets like ImageNet-1K with larger backbones. This approach avoids
the need for multiple comparisons between original and distilled datasets. For instance, SRe2L (Yin
et al., 2023) condenses an entire dataset into a model using pre-trained neural networks, such as
ResNet-18 (He et al., 2016), and subsequently extracts knowledge from these models into images and
targets, thereby forming a distilled dataset. Recently, RDED (Sun et al., 2024) suggests that images
accurately recognized by competent observers, such as humans and pre-trained models, are more
valuable for learning.

2.2 SELF-SUPERVISED LEARNING: EXTRACTING REPRESENTATION FROM UNLABELED DATA

The primary objective of self-supervised learning is to generate robust representations independent of
human-labeled data. These representations should rival those obtained through supervised learning,
offering robust performance across a range of tasks.
Contrastive learning-based methods implicitly assign a “one-hot” label to each sample and its
augmented versions to enhance discriminative power. Since the introduction of InfoNCE (Oord
et al., 2018), numerous studies (He et al., 2020; Chen et al., 2020a;b; Cao et al., 2020; Kalantidis
et al., 2020; Chen et al., 2021; Zhu et al., 2021; Li et al., 2021; Caron et al., 2020; Hu et al., 2021)
have advanced this area. MoCo (He et al., 2020; Chen et al., 2020b; 2021) utilizes a momentum
encoder to maintain consistent negatives, proving effective for both CNNs and Vision Transformers.
SimCLR (Chen et al., 2020a) incorporates strong data augmentations and a nonlinear projection head.
Other approaches include instance classification (Cao et al., 2020), enhanced data augmentation
(Kalantidis et al., 2020; Zhu et al., 2021), clustering techniques (Li et al., 2021; Caron et al., 2020),
and adversarial training (Hu et al., 2021). These methods improve the alignment and uniformity of
representations on the hypersphere (Wang & Isola, 2020).
Asymmetric network methods facilitate self-supervised learning by leveraging only positive pairs,
effectively avoiding representational collapse through the use of asymmetric architectures. BYOL
(Jean-Bastien et al., 2020) employs a dual-component framework consisting of a predictor network
and a momentum encoder. Richemond et al. (2020) demonstrate that BYOL performs efficiently
without the need for batch statistics. SimSiam (Chen & He, 2021) implements gradient stopping
on the target branch to replicate the function of momentum encoder. DINO (Caron et al., 2021)
incorporates a self-distillation loss mechanism. UniGrad (Tao et al., 2022) combines asymmetric
networks with contrastive learning techniques within a theoretically cohesive framework.
In addition, Singh et al. (2023) explore a straightforward self-training technique aimed at improving
supervised fine-tuning performance, which can be viewed as applying expectation-maximization for
reinforcement learning.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Initialized Model & Data Evolved Model & DataData-Evolution Learning

Figure 2: This panel intuitively illustrates the Data-Evolution Learning framework: (a) During the training
process over T steps, our algorithm updates the parameter θt−1 using the dataset Dt−1 at time t − 1. (b)
Subsequently, the dataset Dt−1 evolves into Dt based on the model, now with updated parameters θt−1, at time
t. Together, (a) and (b) constitute a loop in the data-model co-evolution learning framework.

2.3 NOISY LABEL LEARNING: TRAINING MODELS OVER NOISE-LABELED DATASETS

Learning with noisy labels has garnered significant attention in recent years (Han et al., 2020b; Yao
et al., 2018). Numerous approaches have been developed to address this challenge, generally dividing
into two categories: those leveraging the memorization effect and those that do not.

Existing noisy label learning methods can be roughly grouped into two categories: (a) Employing an
explicit or implicit noise model to estimate the distributions of noisy and clean labels, subsequently
deleting or correcting the noisy samples. The models used can vary, including neural networks
(Goldberger & Ben-Reuven, 2017; Jiang et al., 2018; Lee et al., 2018; Ren et al., 2018), conditional
random fields (Vahdat, 2017), or knowledge graphs (Li et al., 2017). However, a significant limitation
is their reliance on a substantial number of clean training samples, making them unsuitable for many
datasets dominated by noisy labels. (a) Constructing more balanced loss functions to mitigate the
impact of noisy training samples (Liu & Tao, 2015; Ma et al., 2018; Zhang & Sabuncu, 2018; Wang
et al., 2019; Xu et al., 2019). For instance, TNLPAD (Wang et al., 2024b) addresses noisy labels
through network parameter additive decomposition.

3 A SIMPLE FRAMEWORK FOR DATA-EVOLUTION LEARNING

This study introduces a novel approach for data-evolution learning (DELA), focusing on evolving data
during training (see Figure 2 ). The central concept of this method is to facilitate the “collaboration”
between data and models. Specifically, the methodology is systematically divided into multiple
stages: (a) Initialize targets for given samples; (b) Update the model for one step using the current
data; (c) Evolve the data using the updated model, and then revert to step (b).

(a) Initializing targets for given samples. We hypothesize that the primary distinction among
datasets, such as CIFAR-10 and its noise-labeled variant, is primarily in their targets. The samples
themselves, sourced consistently from the real world, exhibit relatively similar. Within this framework,
both samples and targets are treated as variables during training, necessitating the use of scenario-
specific strategies for target initialization. Formally, we define:

D ← {(x,y) | y = ψ(x), x ∈ DX} , (2)

where ψ denotes the “data-initializer”. For instance, ψ can represent human annotations and y
indicates the corresponding one-hot labels for standard dataset like CIFAR-10. Additionally, ψ may
include various models for generating diverse data types, including randomly initialized models and
pre-trained models obtained from the internet (referred to as “prior models”).

Interestingly, it has been observed that using a randomly initialized model to generate initial targets in
(2) is more effective and facilitates faster training convergence compared to using random noise (see
our analysis in Appendix D ). Hence, in this paper, when dealing with unlabeled datasets without
specific instructions, DELA opts for a randomly initialized model as the data-initializer.

(b) Updating the model for one step. A batch of data Di ⊂ D is randomly sampled, and the
parameters θ in the model backbone ϕθ and predictor head pθ are updated as follows:

θ ← θ − η∇θE(x,y)∼Di
[ℓ(pθ(ϕθ(x)),y)] , (3)

where ℓ denotes the Cosine Similarity loss function, and η is the learning rate.
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(c) Evolving data for one step. Building upon the insights from Sun et al. (2024), which underscores
the necessity of aligning samples DX with targets DY to create an optimal dataset D, we aim to
refine targets DY to enhance their congruence with samples DX . The refinement process leverages
the updated model:

Di ← {(x′,y′) | x′ = T (x), y′ = λy + (1− λ)ϕθ(x), (x,y) ∈ Di} , (4)

where λ is a blending parameter (refer to Section 4.6 for detailed settings), and T denotes data
augmentation technique. Importantly, as ϕθ(x) is computed during the model update in (3), we
utilize these results directly, obviating the need for recomputation in (4). This algorithm is so simple
that it can be implemented with two lines of PyTorch code (see Appendix B ).

Analysis. Theorem 1 analyzes the convergence of DELA. See proof in Appendix A .

Theorem 1 (Informal statement of convergence of DELA) . By utilizing a mixture of Gaussian
distributions for the initial dataset D0 and initializing a linear model fθ0 , we demonstrate, under
a mild assumption, that θt → θ⋆ and Dt → D⋆ as t→∞, where ⋆ denotes the optimal state.

4 EXPERIMENTS

This section outlines the experimental setup and procedures used to test our hypotheses and evaluate
the effectiveness of our proposed methodologies.

4.1 EXPERIMENTAL SETTING

Outlined below are the experimental settings. For further details, refer to Appendix C .

Datasets. For low-resolution data, specifically 32×32, we evaluate our method using the CIFAR-10
and CIFAR-100 datasets (Krizhevsky et al., 2009b;a). To assess scalability and effectiveness on more
complex and varied datasets, we also conduct experiments on high-resolution data. This includes the
Tiny-ImageNet dataset with 64× 64 resolution (Le & Yang, 2015) and the full ImageNet-1K dataset
with 224× 224 resolution (Deng et al., 2009). Additional details are provided in Appendix C .

Neural network architectures. In alignment with previous studies on dataset distillation (Sun
et al., 2024) and self-supervised learning (Susmelj et al., 2020; Da Costa et al., 2022), we employ
a variety of backbone architectures to evaluate the generalizability of our method. These include
ResNet-{18, 50} (He et al., 2016) and ViT (Dosovitskiy et al., 2020). This selection encompasses a
spectrum of model complexities and capacities, facilitating a thorough assessment of our approach.

Baselines. Referring to a widely-used benchmark (Susmelj et al., 2020; Da Costa et al., 2022; Wang
et al., 2024b), we evaluate the effectiveness and versatility of our algorithm, DELA, in addressing
various data types. We perform comparisons against state-of-the-art methods in three key areas:

• Self-supervised learning: We consider methods that enable training models on unlabeled data,
including Barlow Twins (Zbontar et al., 2021), BYOL (Jean-Bastien et al., 2020), DINO (Caron
et al., 2021), SimSiam (Chen & He, 2021), MoCo (He et al., 2020), SimCLR (Chen et al., 2020a),
DCL (Yeh et al., 2022), and NNCLR (Dwibedi et al., 2021).

• Noisy label learning: We benchmark against techniques designed to handle noisy labels, including
CDR (Xia et al., 2020), SIGUA (Han et al., 2020a), and TNLPAD (Wang et al., 2024b).

Evaluation. In the primary experiments, adhering to established benchmarks and prior research
(Susmelj et al., 2020; Da Costa et al., 2022; Chen et al., 2020a; Bardes et al., 2021), we evaluate
all trained models using both offline and online linear probing strategies. This approach assesses
the representational capacity of the models and ensures a fair and comprehensive comparison with
baseline methods. For comparisons with noisy label learning methods, we adopt the training strategy
outlined in previous studies (Wang et al., 2024b; Xia et al., 2020).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Evaluation of evolved datasets generated by DELA. We assess the performance of DELA by training
and evaluating models on both the original unlabeled datasets and the evolved datasets. This evaluation is
conducted across three model architectures, i.e., ResNet-18, ResNet-50 and ViT-T/16. The datasets include
four types: the original dataset and three evolved datasets, denoted as RN18-E, RN50-E, and VT16-E, which
correspond to the data evolved using DELA across the respective model architectures. Instances marked with ‘#’
indicate the use of a 50% training budget or training steps. The evaluations are performed across four datasets,
i.e., CIFAR-10 (CF-10), CIFAR-100 (CF-100), Tiny-ImageNet (T-IN), and ImageNet-1K (IN-1K).

DELA training over evolved data:

Dataset Architecture Original RN18-E RN50-E VT16-E RN18-E# RN50-E# VT16-E#

ResNet-18 85.3 ± 0.0 88.2 ± 0.0 88.3 ± 0.0 86.5 ± 0.0 86.2 ± 0.0 86.2 ± 0.0 84.8 ± 0.0
CF-10 ResNet-50 88.2 ± 0.0 90.9 ± 0.1 90.9 ± 0.0 90.0 ± 0.0 89.0 ± 0.0 89.3 ± 0.1 87.6 ± 0.0

ViT-T/16 77.3 ± 0.1 81.2 ± 0.1 80.9 ± 0.1 80.7 ± 0.1 78.0 ± 0.1 77.4 ± 0.0 77.0 ± 0.0

ResNet-18 60.7 ± 0.0 64.1 ± 0.1 64.0 ± 0.1 62.7 ± 0.1 61.8 ± 0.2 61.2 ± 0.1 60.5 ± 0.1
CF-100 ResNet-50 65.0 ± 0.2 68.9 ± 0.1 68.7 ± 0.1 68.4 ± 0.1 66.5 ± 0.0 66.5 ± 0.1 65.8 ± 0.1

ViT-T/16 49.4 ± 0.1 54.1 ± 0.1 54.9 ± 0.0 54.6 ± 0.1 49.5 ± 0.1 50.4 ± 0.1 50.8 ± 0.0
ResNet-18 45.7 ± 0.1 48.1 ± 0.1 48.5 ± 0.0 48.4 ± 0.1 47.4 ± 0.1 47.8 ± 0.1 46.9 ± 0.0

T-IN ResNet-50 51.9 ± 0.1 55.2 ± 0.1 55.0 ± 0.0 54.6 ± 0.0 53.3 ± 0.1 53.6 ± 0.1 52.6 ± 0.0
ViT-T/16 39.5 ± 0.1 42.7 ± 0.1 42.7 ± 0.1 42.5 ± 0.1 39.9 ± 0.1 40.1 ± 0.1 39.5 ± 0.1

IN-1K ResNet-50 59.9 ± 0.0 - 63.4 ± 0.0 62.6 ± 0.1 - 61.9 ± 0.0 60.4 ± 0.0
ViT-T/16 46.6 ± 0.0 - 53.8 ± 0.0 52.4 ± 0.0 - 53.4 ± 0.0 51.1 ± 0.0

Implementation details. We implement our method by extending a popular self-supervised learning
open-source benchmark (Susmelj et al., 2020) and a noisy label learning approach (Wang et al., 2024b).
We utilize a fair configuration for all our experiments. This includes using AdamW as the optimizer
with a learning rate of 0.001, β1 = 0.9, β2 = 0.999, ϵ = 1e− 8, weight decay of 0.01, and a mini-
batch size of 128 (except for ImageNet-1K, where we use a mini-batch size of 512). Our implementa-
tion is conducted using PyTorch (Paszke et al., 2019), and all experiments are performed on NVIDIA
RTX 4090 and H100 GPUs. See more detailed configurations and hyper-parameters in Appendix C .

4.2 EFFICIENT AND EFFECTIVE MODEL TRAINING USING EVOLVED DATA FROM DELA

Recall that our DELA algorithm can enhance the data quality during the learning process, resulting
in data that is more refined and beneficial for subsequent training with different model architectures.
To validate the effectiveness and efficiency of the evolved data from DELA, we first apply DELA
learning on original unlabeled datasets using specific model architectures. Subsequently, we evaluate
the evolved datasets across a range of other model architectures. The experimental results presented
in Table 1 demonstrate the following:

(a) Given the same training budget, models trained on evolved datasets exhibit superior performance
compared to those trained on the original datasets;

(b) Models trained on evolved datasets achieve comparable performance to those trained on original
datasets, but with a reduced training budget;

(c) Evolving a dataset with a simpler architecture, such as ResNet-18, can enhance learning effec-
tiveness and efficiency for more complex models like ResNet-50 and ViT-T/16.

(d) Datasets evolved using a ResNet-based architecture, such as RN18-E, typically yield greater
benefits and efficiency enhancements for downstream training compared to those evolved with
VT16-E. It is reasonable to conjecture that DELA-trained models achieve higher performance
with ResNet-based architectures, suggesting that the evolved data is of higher quality.

Summary. Datasets evolved using our DELA demonstrate improved efficiency and effectiveness
compared to the original datasets. These enhancements are influenced by the evolving process.

4.3 ACCELERATING DELA BY USING NON-RANDOMLY INITIALIZED TARGETS

Recall that our DELA, as illustrated in Section 3 , can leverage any prior model to initialize targets
for given unlabeled datasets, thereby accelerating the training process. Table 2 showcases the
effectiveness and efficiency of our approach in facilitating the learning of robust representations by
effectively leveraging the prior knowledge within the prior models. Overall, DELA consistently
outperforms the original DELA when trained on partial data. For instance, on the Tiny-ImageNet

6
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Table 2: Accelerating our DELA using various prior models. We compare evaluation results of the models
trained using (a) DELA with 20%, 40% and 60% data; (b) DELA with different prior models; (c) DELA with full
data, denoted as DELA⋆ in this table. Regarding the prior models used for our DELA, we respectively utilize six
models with increasing representation capabilities, including (a) four DELA⋆-trained models (CF10-T, CF100-T,
TIN-T, IN1K-T) corresponding to four datasets (listed below); (b) CLIP-RN50; and (c) YOLOv9. We underline
the results that outperform the full data training, and bold the results that achieve the highest performance using
a specific ratio of data. All the networks used for training are ResNet-18, except the ResNet-50 used for IN-1K.

DELA initializes targets w/

Dataset % DELA CF10-T CF100-T TIN-T IN1K-T CLIP-RN50 YOLOv9 DELA⋆

20 76.8 ± 0.0 79.7 ± 0.1 79.1 ± 0.0 78.9 ± 0.0 81.5 ± 0.1 78.1 ± 0.0 77.9 ± 0.0
CF-10 40 80.6 ± 0.0 83.1 ± 0.0 83.1 ± 0.1 82.3 ± 0.0 84.8 ± 0.1 82.5 ± 0.1 81.7 ± 0.0 85.7 ± 0.1

60 83.2 ± 0.1 85.2 ± 0.1 84.8 ± 0.0 84.2 ± 0.0 86.6 ± 0.1 84.6 ± 0.0 83.8 ± 0.1

20 49.7 ± 0.1 54.0 ± 0.2 53.7 ± 0.1 53.2 ± 0.1 54.6 ± 0.1 52.0 ± 0.1 50.5 ± 0.1
CF-100 40 54.8 ± 0.0 58.5 ± 0.0 59.0 ± 0.1 58.6 ± 0.1 59.9 ± 0.1 57.6 ± 0.2 56.5 ± 0.1 60.4 ± 0.1

60 57.4 ± 0.1 61.4 ± 0.1 61.2 ± 0.1 60.4 ± 0.1 62.0 ± 0.2 60.5 ± 0.0 59.1 ± 0.2

20 39.0 ± 0.0 42.0 ± 0.0 42.3 ± 0.1 42.8 ± 0.0 45.2 ± 0.2 42.0 ± 0.1 40.6 ± 0.1
T-IN 40 42.2 ± 0.1 46.0 ± 0.1 46.3 ± 0.1 46.1 ± 0.0 48.3 ± 0.0 46.4 ± 0.1 43.9 ± 0.1 44.9 ± 0.2

60 44.2 ± 0.1 47.0 ± 0.1 46.8 ± 0.0 46.9 ± 0.0 50.1 ± 0.1 47.9 ± 0.1 46.0 ± 0.0

20 53.9 ± 0.1 54.7 ± 0.0 54.8 ± 0.1 55.3 ± 0.1 58.8 ± 0.0 62.6 ± 0.0 56.1 ± 0.0
IN-1K 40 56.9 ± 0.0 57.3 ± 0.1 57.2 ± 0.0 57.4 ± 0.0 61.9 ± 0.0 65.0 ± 0.0 59.7 ± 0.0 59.9 ± 0.0

60 58.1 ± 0.0 57.7 ± 0.0 57.8 ± 0.1 58.1 ± 0.1 62.1 ± 0.1 66.2 ± 0.0 60.0 ± 0.1
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(b) CIFAR-100
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(c) Tiny-ImageNet
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(d) ImageNet-1K
Figure 3: Convergence analysis of DELA with different prior models across datasets. This figure illustrates
the accuracy convergence of DELA when initialized with three distinct methods for generating targets: Original
refers to our default strategy of using a randomly initialized model to generate initial targets. CF10-G represents
targets generated by the CIFAR-10 pre-trained model, while IN1K-G denotes targets generated by an ImageNet-
1K pre-trained model. Each subplot corresponds to a specific evaluation dataset. All experiments were conducted
using 40% of the full training data to assess performance under limited data scenarios.

dataset, DELA, when using a model pre-trained on CIFAR-10 as the prior model and leveraging only
40% of the data, can outperform DELA-trained models that utilize the entire dataset. Specifically:

(a) Various robust prior models, such as CLIP-RN50 and IN1K-T, even when trained on task-agnostic
datasets like YOLOv91, significantly enhance the training efficiency and performance of DELA
compared to its original version;

(b) In specific scenarios, such as training on Tiny-ImageNet, DELA demonstrates resilience to prior
knowledge choice. Employing CF10-T as the prior model yields performance competitive with
models trained on extensive datasets like CLIP-RN50.

Summary. Our DELA effectively exploits prior knowledge from various pre-trained models, whether
task- or architecture-agnostic, downloaded from the internet or personal repositories. This capability
enhances data initialization, thus accelerating the training process.

Learning curve analysis. To further elucidate the impact of non-randomly initialized targets, we
conducted a comparative analysis of convergence between DELA using different prior models.

Figure 3 illustrates the convergence dynamics of DELA when initialized with different methods
across four datasets. Our analysis reveals several key insights:

1We employ the backbone of YOLOv9 as the prior model due to its superior capability for representation
extraction (Wang et al., 2024a).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: Evaluating our DELA against noisy-label learning methods. We evaluate the performance of our
algorithm, DELA, by training and assessing models on noise-labeled datasets with different noise levels (denoted
by % in this table). This evaluation is conducted against four established methods. The assessment encompasses
four datasets: MNIST (MT), Fashion-MNIST (F-MT), CIFAR-10 (CF-10) and CIFAR-100 (CF-100).

Dataset % ResNet-18 ResNet-50
CDR SIGUA TNLPAD Standard DELA CDR SIGUA TNLPAD Standard DELA

MT
20 98.2 ± 0.0 98.7 ± 0.0 98.7 ± 0.0 98.5 ± 0.0 99.3 ± 0.0 98.0 ± 0.0 97.0 ± 0.0 98.5 ± 0.1 99.7 ± 0.0 99.4 ± 0.0
40 97.8 ± 0.0 98.1 ± 0.0 93.7 ± 0.0 95.2 ± 0.1 99.2 ± 0.0 98.9 ± 0.0 98.0 ± 0.0 97.0 ± 0.0 98.9 ± 0.1 99.4 ± 0.0
60 91.1 ± 0.0 97.4 ± 0.0 83.4 ± 0.2 84.3 ± 0.1 99.3 ± 0.0 97.5 ± 0.0 92.8 ± 0.0 85.8 ± 0.2 96.4 ± 0.0 99.4 ± 0.0

F-MT
20 94.0 ± 0.1 90.8 ± 0.0 90.2 ± 0.0 90.1 ± 0.0 92.1 ± 0.0 93.3 ± 0.1 89.7 ± 0.0 90.3 ± 0.1 91.5 ± 0.0 93.6 ± 0.0
40 87.9 ± 0.2 88.8 ± 0.0 84.5 ± 0.1 85.0 ± 0.0 91.9 ± 0.0 86.7 ± 0.0 87.3 ± 0.0 85.6 ± 0.0 88.6 ± 0.0 93.4 ± 0.0
60 83.8 ± 0.1 83.2 ± 0.0 75.3 ± 0.2 77.9 ± 0.1 91.2 ± 0.0 83.0 ± 0.2 76.3 ± 0.0 81.9 ± 0.1 86.3 ± 0.2 93.4 ± 0.1

CF-10
20 89.1 ± 0.0 74.6 ± 0.1 89.5 ± 0.0 88.1 ± 0.0 85.3 ± 0.1 89.9 ± 0.1 64.5 ± 0.1 89.9 ± 0.0 89.5 ± 0.1 87.5 ± 0.0
40 84.7 ± 0.1 60.2 ± 0.1 84.4 ± 0.1 82.9 ± 0.1 84.5 ± 0.0 85.6 ± 0.1 37.9 ± 0.0 86.0 ± 0.1 84.7 ± 0.1 86.0 ± 0.0
60 78.1 ± 0.1 23.4 ± 0.1 68.2 ± 0.2 74.2 ± 0.1 82.7 ± 0.1 78.2 ± 0.2 20.5 ± 0.6 69.1 ± 0.1 78.8 ± 0.1 83.3 ± 0.0

CF-100
20 66.0 ± 0.1 30.2 ± 0.1 61.6 ± 0.0 61.3 ± 0.1 60.3 ± 0.1 66.6 ± 0.2 20.5 ± 0.1 63.4 ± 0.1 67.3 ± 0.0 65.2 ± 0.1
40 60.2 ± 0.1 16.0 ± 0.0 57.4 ± 0.1 53.6 ± 0.2 58.3 ± 0.1 57.8 ± 0.2 8.6 ± 0.1 55.7 ± 0.0 61.0 ± 0.0 62.8 ± 0.1
60 42.0 ± 0.2 4.1 ± 0.0 42.1 ± 0.0 44.7 ± 0.1 56.6 ± 0.1 47.2 ± 0.1 3.8 ± 0.1 46.2 ± 0.2 53.0 ± 0.1 59.2 ± 0.1

(a) DELA, initialized with non-random prior models, consistently converges faster across all datasets,
achieving higher accuracy in fewer epochs compared to random initialization.

(b) DELA with strong priors consistently outperforms those with weaker priors. Notably, on complex
datasets such as Tiny ImageNet and ImageNet-1K, the performance gap is more pronounced.

4.4 LEARNING AND DENOISING DATASETS WITH NOISY TARGETS USING DELA

To further investigate the potential applications of DELA algorithm in addressing challenges in
contemporary deep learning, we apply DELA to learning tasks involving noise-labeled datasets.
Following the strategy outlined in Wang et al. (2024b), we introduce symmetric noise at varying
levels to the clean targets within the original datasets and benchmark various methods, including
DELA. The experimental results in Table 3 and Appendix E indicate that:

(a) DELA consistently outperforms several SOTA baselines across multiple datasets;
(b) DELA demonstrates robustness to varying degrees of noise. For instance, while the performance

of TNLPAD significantly declines with increased noise levels (from 20% to 40%), DELA exhibits
only minor performance degradation.

Our DELA has exhibited twofold advantages: (a) It can adapt to and evolve various types of original
targets (see Section 3 ), including learning directly from noisy datasets; (b) The evolved noisy
datasets, considered as cleaner versions, can be effectively utilized to train models using DELA.

4.5 DELA BENCHMARKS AGAINST VARIOUS SELF-SUPERVISED LEARNING METHODS

As we discussed in Section 3 , our DELA can deal with unlabeled data by initializing targets
using random models. Therefore, to demonstrate the effectiveness and versatility of DELA in self-
supervised learning against various baselines, we conduct experiments with widely-used techniques
in Table 4 . The results reveal that DELA consistently achieves superior or comparable performance
to SOTA methods across diverse datasets and neural network architectures, underscoring its robust
generalization capability.

4.6 ABLATION STUDY

In this section, we present a comprehensive ablation study to analyze the impact of various components
and design choices on the performance of DELA. We focus on three key aspects: the influence of
evolved data, the computational efficiency gained through incorporating prior knowledge, and the
sensitivity of the algorithm to different λ scheduler configurations.

Impact of evolved data on DELA. The evolved data in DELA serves as a powerful mechanism for
incorporating various priors to accelerate training. As the strength of these priors gradually increases,
we observe a corresponding enhancement in the final performance. Figure 4a illustrates this trend,
showcasing the performance of DELA using different evolved data sources on the CIFAR-100 dataset.
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Table 4: Evaluating our DELA against self-supervised learning methods. We analyze our DELA by training
and evaluating models over unlabeled datasets, against seven conventional self-supervised learning methods.
Dataset Architecture Barlow BYOL DINO MoCo SimCLR DCL NNCLR DELA

CF-10
ResNet-18 84.8 ± 0.0 84.1 ± 0.0 81.2 ± 0.0 83.5 ± 0.1 83.6 ± 0.0 84.4 ± 0.0 82.4 ± 0.1 85.7 ± 0.1
ResNet-50 86.4 ± 0.1 85.4 ± 0.1 83.9 ± 0.1 85.5 ± 0.1 86.2 ± 0.0 87.4 ± 0.0 82.5 ± 0.1 87.5 ± 0.0
ViT-T/16 72.6 ± 0.1 72.2 ± 0.0 76.7 ± 0.0 75.6 ± 0.0 75.7 ± 0.0 78.9 ± 0.1 69.5 ± 0.1 77.1 ± 0.0

CF-100
ResNet-18 58.4 ± 0.1 57.4 ± 0.1 51.0 ± 0.0 58.6 ± 0.1 55.5 ± 0.0 59.9 ± 0.1 46.4 ± 0.1 60.4 ± 0.1
ResNet-50 62.7 ± 0.1 59.1 ± 0.1 57.1 ± 0.1 63.0 ± 0.0 60.8 ± 0.0 63.6 ± 0.1 48.2 ± 0.1 63.8 ± 0.3
ViT-T/16 42.7 ± 0.0 40.7 ± 0.1 44.3 ± 0.1 48.1 ± 0.1 45.0 ± 0.1 51.8 ± 0.1 32.7 ± 0.0 48.3 ± 0.2

T-IN
ResNet-18 44.2 ± 0.0 44.3 ± 0.1 36.1 ± 0.0 42.4 ± 0.2 41.5 ± 0.1 44.6 ± 0.0 36.4 ± 0.1 44.9 ± 0.2
ResNet-50 51.7 ± 0.1 47.7 ± 0.2 42.9 ± 0.1 49.7 ± 0.2 47.8 ± 0.1 49.9 ± 0.3 41.9 ± 0.1 49.9 ± 0.0
ViT-T/16 39.7 ± 0.1 29.6 ± 0.1 30.6 ± 0.0 37.3 ± 0.0 31.6 ± 0.0 37.9 ± 0.2 20.3 ± 0.1 37.9 ± 0.1

IN-1K ResNet-50 59.6 ± 0.0 62.8 ± 0.0 52.2 ± 0.0 57.6 ± 0.0 58.0 ± 0.0 60.6 ± 0.0 58.3 ± 0.1 59.9 ± 0.0
ViT-T/16 43.1 ± 0.0 43.9 ± 0.0 40.4 ± 0.0 43.5 ± 0.0 40.8 ± 0.1 46.6 ± 0.0 35.5 ± 0.1 46.6 ± 0.0
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Figure 4: Comprehensive ablation study of DELA. (a) Performance of DELA using different evolved data
sources on CIFAR-100. RN18-E, RN50-E, and VT16-E represent evolved data obtained by training ResNet18,
ResNet50, and ViT-T/16 architectures, respectively, on the CIFAR-100 dataset. (b) Analysis of computational
efficiency using different prior models. The y-axis indicates the percentage of training budget/steps required to
achieve the same accuracy as the original DELA. RN18-G, RN50-G, and VT16-G represent targets generated by
ResNet18, ResNet50, and ViT-T/16 models, respectively. (c) Sensitivity analysis of λ scheduler configurations
on CIFAR-100. The heatmap shows the final accuracy for different combinations of starting and ending λ values.
“C” indicates a constant λ throughout training: for example, a cell with y-axis “C” and x-axis 0.4 means λ
remains constant at 0.4 for the entire training process.

In our experiments, we define the evolution degree as the extent of training progression in the co-
evolving process. Specifically, with our standard setting of 100 epochs for full evolution, an evolution
degree of 0.1 corresponds to the dataset saved after 10 epochs of training. This metric allows us to
quantify the impact of evolutionary progression on model performance. Our analysis reveals:

(a) The performance of DELA improves substantially as the evolution degree increases, regardless
of the architecture used to generate the evolved data. This demonstrates the robustness of our
method across different data sources and suggests that the co-evolution process consistently
enhances the quality of the training data.

(b) The performance trajectories for different architectures show similar upward trends, further
emphasizing the consistency of our method’s improvement across various data sources.

(c) It is interesting to note that the ViT-based evolved data (VT16-E) demonstrates the least improve-
ment, which might be attributed to the convolutional inductive bias present in ResNet architectures.
Nevertheless, it still exhibits a noteworthy 2.5 percentage point improvement at best.

Summary. The performance of DELA consistently improves with higher evolution degrees across
data evolved from various neural network architectures, demonstrating its superior robustness.

Analysis of computational cost in DELA by leveraging different prior models. Leveraging
co-evolved data during training allows us to substantially reduce training time, thereby conserving
computational resources. Figure 4b illustrates the efficiency gains across different datasets and prior
knowledge sources. Our analysis reveals:

9
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(a) In all datasets, the incorporation of prior knowledge significantly reduces the training budget/steps
needed to achieve the same accuracy as a model trained with the original DELA.

(b) The selection of prior knowledge sources affects efficiency variably across datasets. Specifically,
RN50-G demonstrates optimal efficiency for CIFAR-100 and TinyImageNet, whereas RN18-G is
most effective for CIFAR-10.

Summary. Our DELA’s capability to efficiently integrate various prior models—many of which are
freely available online—offers a significant advantage in training efficiency and resource utilization.
These findings underscore the potential of our approach to substantially reduce computational costs,
especially with complex datasets where traditional model-centric methods demand extensive resources.
This highlights the promise of our proposed data-centric learning paradigm (see Definition 1 ) and
corresponding framework DELA for the community.

Sensitivity analysis of λ scheduler in DELA. The λ scheduler in DELA plays a crucial role in
balancing the impact of prior model knowledge on the training process. It controls how the incorpo-
rated prior, whether from co-evolved data, randomly initialized models, or pre-trained models, affects
the evolution process. Larger λ values allow for more effective utilization of the prior, especially
in the early stages of training, but may lead to over-fitting if maintained throughout the process.
In our analysis, we considered two primary λ scheduler configurations: constant settings, where λ
remains unchanged throughout training, and cosine annealing schedules, where λ decreases gradually
from a higher initial value to a lower final value. This approach allows us to examine the impact of
both static and dynamic prior influence on the training process.
Figure 4c and Figure 5 illustrate the performance of DELA under various λ scheduler configura-
tions on the CIFAR-100 dataset. Figure 4c represents the scenario using initial targets generated by a
randomly initialized model (weak prior), while Figure 5 shows results using evolved data (RN18-E),
which are derived from a ResNet18 model trained on CIFAR-100 (strong prior). Our analysis reveals:
(a) For both weak and strong priors, higher starting λ values (0.99 and 0.999) generally lead to

better performance, indicating the importance of leveraging prior model knowledge.
(b) The impact of the ending λ value is less pronounced, particularly for strong priors, suggesting

that the method is robust to this parameter within the tested range (0.2 to 0.6).
(c) Constant λ values (denoted by “C” in the first row of the heatmaps) consistently underperform

compared to annealing schedules. This observation highlights the benefits of dynamically
adjusting the influence of prior knowledge throughout the training process, allowing the model
to initially leverage the prior heavily and then gradually adapt to the specific dataset.

(d) The performance gap between weak and strong priors is substantial (approximately 5 percentage
points), emphasizing the value of incorporating high-quality prior knowledge.

Summary. We recommend that practitioners use a high starting λ value (0.999) with a gradual
decrease to a moderate ending value (around 0.3) when employing the cosine annealing schedule.
This configuration allows the training of DELA to benefit significantly from prior knowledge in the
early stages while still adapting effectively to the specific dataset as training progresses.

Furthermore, please refer to Appendix D for additional ablation studies of our DELA.

5 LIMITATION AND CONCLUSION

This paper introduces data-evolution learning, a novel data-centric learning paradigm that
simultaneously evolves datasets and models. Our proposed DELA demonstrates significant
advantages over traditional model-centric approaches by generating reusable optimized datasets,
exhibiting versatile compatibility with various data types, and effectively leveraging prior knowledge
to accelerate learning. Extensive experiments across multiple datasets, architectures, and baselines
validate DELA’s effectiveness and efficiency, consistently matching or outperforming SOTA
model-centric methods in various learning scenarios. The data-evolution learning paradigm opens
new possibilities for representation learning, providing a fresh perspective on addressing data quality
and computational efficiency challenges. While results are promising, future work could explore
theoretical foundations, extend to more diverse tasks, and investigate potential in other domains
such as natural language processing and reinforcement learning.
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A PROOF OF THEOREM 1

We consider a mixture of two Gaussian distributions, denoted as N+(µ, σ) and N−(−µ, σ), and use
a linear model:

ϕθ(x) =

{
1, if x < θ

−1, otherwise

The distribution of samples is defined as follows:

GX = {(1− y) · x+ + y · x− | y ∼ Bernoulli(0.5), x+ ∼ N+, x− ∼ N−}

(a) Initializing Targets for Given Samples

The initial data G0 for the model ϕθ0 is defined by:

G0 = {(x, y) | y = ϕθ0(x), x ∼ GX}

(b) Updating the Model for One Step

The model ϕθ is updated using:

θt = θt−1 − η∇θE(x,y)∼Gt−1, ϵ∼N (0,1) [ℓ(ϕθ(x+ α · ϵ), y)]

where ℓ is the mean squared error (MSE) loss function, η is the learning rate, t is the training step
index, and α determines the degree of data augmentation.

(c) Evolving Data for One Step

The updated model informs the refinement of the data:

Gt = {(x, y) | y = ϕθt(x), x ∼ GX}

This process is then repeated by reverting to step (b).

We aim to prove that θt → 0 as t→∞ provided that the initial threshold satisfies |µ| > |θ0| ≈ 0.

Proof. 1. Smooth Approximation of ϕθ(x)

The activation function ϕθ(x) is non-differentiable at x = θ, which poses challenges for gradient-
based optimization. To facilitate differentiation, we approximate ϕθ(x) with a smooth surrogate
function. A common choice is the hyperbolic tangent function:

ϕκ
θ (x) = tanh (κ(θ − x)) ,

where κ > 0 controls the steepness of the approximation. As κ→∞, ϕκ
θ (x) approaches the original

activation function ϕθ(x).

2. Derivation of the Gradient of the Loss Function

We employ the Mean Squared Error (MSE) loss function for a single sample (x, y):

ℓ(ϕκ
θ (x+ αϵ), y) =

1

2
(ϕκ

θ (x+ αϵ)− y)
2
,

where α denotes the degree of data augmentation, and ϵ ∼ N (0, 1) introduces stochastic perturba-
tions.

The expected loss over the dataset Gt−1 at training step t− 1 is:

L(θ) = E(x,y)∼Gt−1,ϵ∼N (0,1)

[
1

2
(ϕκ

θ (x+ αϵ)− y)
2

]
.

Taking the gradient of the expected loss with respect to θ yields:

∇θL(θ) = E(x,y)∼Gt−1,ϵ∼N (0,1) [(ϕ
κ
θ (x+ αϵ)− y) · ∇θϕ

κ
θ (x+ αϵ)] .

Given our smooth approximation:

∇θϕ
κ
θ (z) = κ · sech2 (κ(θ − z)) ,
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where z = x+ αϵ, and sech2 is the squared hyperbolic secant function.
3. Exploiting Symmetry in the Data Distribution
The data distribution GX is a symmetric mixture of two Gaussian distributions centered at µ and −µ,
respectively. This symmetry implies that for every sample x ∼ N+(µ, σ) with label y = 1, there
exists a corresponding sample −x ∼ N−(−µ, σ) with label y = −1.
This symmetry ensures that certain terms in the gradient expectation will cancel out, simplifying the
analysis.
4. Linearizing the Gradient Near θ = 0

Assume that the threshold θ is small relative to µ, i.e., |θ| < |µ|. Under this assumption, we can
perform a first-order Taylor expansion of ϕκ

θ (z) around θ = 0:

ϕκ
θ (z) ≈ tanh(−κz) + κ · sech2(−κz) · θ.

Since tanh is an odd function and sech2 is even, substituting z = x+ αϵ and using the symmetry of
GX leads to the cancellation of the zeroth-order terms, leaving:

ϕκ
θ (z)− ϕκ

θ (x) ≈ κ · sech2(κz) · θ − κ · sech2(κx) · θ.

Given the symmetry x
d
= −x, the expectation simplifies, and higher-order terms in θ can be neglected.

Thus, the gradient becomes approximately linear in θ:

∇θL(θ) ≈ a · θ,

where
a = κ2 · Ex,ϵ

[
sech2(κz) · sech2(κ(θ − z))

]
> 0.

5. Analyzing the Update Rule to Show Convergence
Using gradient descent, the update rule for θ at each step t is:

θt = θt−1 − η · ∇θL(θt−1) ≈ θt−1 − η · a · θt−1 = (1− ηa) · θt−1.

To ensure convergence, the learning rate η must satisfy:

0 < ηa < 2.

Under this condition, the factor |1− ηa| < 1, which guarantees that |θt| decreases geometrically at
each step. Consequently, as t→∞:

θt → 0.

B PSUEDO-CODE FOR DATA-EVOLUTION LEARNING (DELA)

The pseudo-code for the Data-Evolution Learning Algorithm (DeLA) is provided in Algorithm 1.

C EXPERIMENTAL DETAILS

C.1 DATA DESCRIPTION

We conducted our experiments on four widely-used datasets in computer vision: CIFAR-10, CIFAR-
100, TinyImageNet, and ImageNet-1K. Table 5 summarizes the key characteristics of these datasets.

Table 5: Summary of datasets used in our experiments

Dataset Classes Training Images Test Images Image Size

CIFAR-10 10 50,000 10,000 32x32
CIFAR-100 100 50,000 10,000 32x32
TinyImageNet 200 100,000 10,000 64x64
ImageNet-1K 1,000 1,281,167 50,000 224x224
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Algorithm 1 Data-Evolution Learning Algorithm (DeLA)

Require: Dataset DX = {xi}Ni=1 ∈ X , Data-initializer ψ : X → Rk, Learning rate η, Blending
parameter λ

1: Initialize backbone fθ : X → Rd, projector hθ : Rd → Rk, predictor pθ : Rk → Rk

2: Initialize dataset: D ← {(xi,ψ(xi))}Ni=1

3: for mini-batch Di = {(xj ,yj)}Bj=1 ∼ D do
4: Compute representations:
5: h← hθ(fθ(x))
6: z← pθ(h)
7: Update model:

8: θ ← θ + η∇θ

(
1

|Di|
∑B

j=1

z⊤
j yj

∥zj∥∥yj∥

)
9: Evolve data:

10: Di ← {(T (xj),yj + (1− λ)hj)}Bj=1
11: end for
12: return Trained backbone fθ and evolved dataset D

Table 6: Common training settings across all experiments

Parameter Value

Number of epochs 100
Learning rate 0.001
Weight decay 0.01
Optimizer AdamW
Loss function Negative similarity
Precision Mixed precision (float16)

C.2 TRAINING AND VALIDATION PROCEDURES

We employed consistent training settings across all experiments, as detailed in Table 6 . Batch sizes
varied depending on the dataset, as shown in Table 7 .

For evaluation, we used a linear evaluation protocol. The linear classifier was trained for 100 epochs
on the frozen features extracted by the main network, using the batch sizes specified in Table 7 .

C.3 EXPERIMENTAL SETUP AND ENVIRONMENT

All experiments were conducted using PyTorch framework with mixed precision training enabled.
We used NVIDIA GPUs for accelerated computations, although the specific hardware details may
vary depending on the scale of the experiment.

C.4 EVALUATION METRICS AND RESULTS INTERPRETATION

Our primary evaluation metric was classification accuracy on the test set after linear evaluation. This
metric provides a measure of the quality of the learned representations, as it assesses how well a
linear classifier can separate classes using these features.

C.5 REPRODUCIBILITY

To ensure reproducibility, we have provided detailed hyperparameters and experimental settings in
this appendix. Our code, including the implementation of DELA and the evaluation protocols, will
be made available in a public repository upon publication.

D ADDITIONAL ABLATION STUDIES

Impact of Projector Architecture on DELA Performance The projector architecture plays a
crucial role in DELA’s performance, offering several key benefits: (i) it provides flexibility to control
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Table 7: Batch sizes for different datasets

Dataset Training Batch Size Linear Eval Batch Size

CIFAR-10 128 128
CIFAR-100 128 128
TinyImageNet 128 128
ImageNet-1K 512 1024
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Figure 5: λ scheduler (strong prior). Sensitivity analysis of λ scheduler configurations on CIFAR-100 using
strong priors (CF100-RN18-E, evolved data from ResNet18 trained on CIFAR-100). The heatmap shows the final
accuracy for different combinations of starting and ending λ values, with “C” indicating constant λ throughout
training.

the feature space dimension, (ii) it unifies features from different models, (iii) it strikes a balance
between target effectiveness and computational costs, and (iv) it enhances the model’s capacity to
cluster features effectively. To thoroughly investigate the influence of various projector architectures
on DELA’s performance, we conducted extensive experiments encompassing several structural
variations. Table 8 illustrates the performance of DELA across these architectural variants.

Our analysis reveals several important findings:

(a) The baseline architecture consistently outperforms other variants across all datasets, demon-
strating its robustness and effectiveness in diverse learning scenarios. This indicates that each
component in the projector architecture is essential and cannot be removed without degrading
performance.

(b) Normalization layers, particularly BatchNorm, show consistent benefits across all datasets. This
effect is more pronounced in larger, more diverse datasets, suggesting that normalization becomes
increasingly crucial as data complexity grows.

(c) Non-linearity, introduced either through activation functions or normalization, is crucial for
effective feature projection. This is evidenced by the poor performance of the Linear + Linear
architecture across all datasets.

(d) The simplicity of the architecture correlates inversely with its ability to handle complex datasets.
Single Linear layer architectures perform adequately on simpler tasks but struggle with more
complex datasets, indicating that sophisticated projector architectures are necessary to capture
rich feature representations in complex scenarios.

These findings underscore the importance of every parts in DELA’s projector, especially when
dealing with complex, large-scale datasets. This default configuration consistently outperformed
other variants across all datasets, demonstrating its robustness and effectiveness in diverse learning
scenarios.
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Table 8: Impact of Projector Architecture on DELA Performance. We analyze the effect of various projector
architectures on the performance of DELA. Results are reported in terms of test accuracy (%) on CIFAR-10,
CIFAR-100, and TinyImageNet datasets.

Projector Architecture CIFAR-10 CIFAR-100 TinyImageNet

Linear + BatchNorm + ReLU + Linear 85.7 60.4 44.9
Linear 82.2 51.4 34.8
Linear + ReLU + Linear 71.7 45.0 39.7
Linear + BatchNorm + Linear 83.4 54.0 36.7
Linear + Linear 10.0 1.0 14.5
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Figure 6: Ablation study on the demensions of projector in DELA. We illustrate the performance of DELA
across various combinations of hidden and output dimensions for the projector.

Furthermore, we examined the sensitivity of DELA to variations in the hidden dimension and output
dimension of the projector. Our findings, summarized in Figure 6 , reveal:

(a) The impact of projector dimensions varies across datasets, with more complex datasets showing
higher sensitivity to dimensional changes. However, the overall performance differences are not
drastic, indicating a degree of robustness in the projector architecture.

(b) There is a clear trend of increasing dimensional requirements as dataset complexity increases.
Moving from CIFAR-10 to CIFAR-100 to TinyImageNet, we observe a need for higher dimen-
sions in both hidden and output layers. This suggests that datasets with more classes and larger
sample sizes require higher-dimensional feature spaces for effective representation.

(c) Extremely low dimensions for the target output (e.g., 32) consistently yield the lowest perfor-
mance across all datasets, indicating a minimum threshold for effective feature representation.
This underfitting scenario likely occurs because the low-dimensional space is insufficient to
separate different classes effectively.

(d) Conversely, very high dimensions can lead to overfitting, particularly in datasets with limited
samples or high noise levels. This creates a delicate balance between representational power and
generalization ability, which becomes more critical as dataset complexity increases.

The observed dimension-dependent behavior can be attributed to the role of the projector’s output in
our algorithm. As we store and refine these outputs over time, they effectively form a feature space
for distinguishing different images. A larger feature space increases the model’s capacity but also the
risk of overfitting, particularly in scenarios with limited or noisy data.

Our findings highlight the importance of careful projector dimension tuning in DELA, especially
when adapting the algorithm to new datasets or domains. They also suggest that adaptive dimension
selection strategies could be a promising direction for future research, potentially allowing the
algorithm to automatically adjust its projector dimensions based on the characteristics of the dataset
at hand.

Impact of Randomly Initialized Models on Target Generation An intriguing aspect of our
method is the use of randomly initialized models for target generation. Our investigations reveal that
targets generated by these untrained models consistently outperform those created using standard
normal distributions, suggesting that even without training, these models encapsulate certain priors
about image content. To further explore this phenomenon, we conducted a comprehensive study
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Table 9: Comparison of targets generated by different randomly initialized model. We analyze the impact
of using targets generated by various randomly initialized model architectures on the performance of DELA.
Results are reported in terms of test accuracy (%) on CIFAR-10, CIFAR-100, and TinyImageNet datasets.
Random target serves as a baseline for comparison.

Model Architecture CIFAR-10 CIFAR-100 TinyImageNet

Random Target 78.4 44.0 36.4

AlexNet 84.8 59.6 44.2

ResNet-18 83.2 57.1 43.0
ResNet-50 81.7 53.0 40.6
ResNet-101 78.9 45.3 39.7

DenseNet-121 83.6 57.6 43.1
DenseNet-161 84.1 58.2 43.1
DenseNet-169 83.9 57.6 43.8

MobileNet-v3-Small 85.1 59.0 44.0
MobileNet-v3-Large 84.8 59.2 44.0

EfficientNet-v2-S 84.1 57.7 42.9
EfficientNet-v2-M 82.8 57.0 42.5
EfficientNet-v2-L 81.9 54.7 42.0

ConvNeXt-v2-Small 85.4 60.0 44.4
ConvNeXt-v2-Base 85.6 60.0 44.4
ConvNeXt-v2-Large 85.5 59.9 44.2

ViT-B/16 84.0 58.7 44.9
ViT-B/32 83.4 58.4 44.2

comparing the quality of targets generated by various randomly initialized architectures and analyzed
their impact on convergence dynamics.

Table 9 presents the performance of DELA using targets generated by different model architectures
on CIFAR-10, CIFAR-100, and TinyImageNet datasets. Our analysis yields several noteworthy
observations:

(a) Across all tested architectures, randomly initialized model-generated targets significantly out-
perform purely random targets, demonstrating the inherent value of neural network structures in
capturing image priors.

(b) Among the tested architectures, ConvNeXt-v2 variants consistently produced the highest quality
targets for CIFAR-10 and CIFAR-100, leading to notable improvements in final accuracy com-
pared to random targets. For TinyImageNet, the ViT-B/16 architecture performed best, achieving
the most substantial improvement over random targets.

(c) Interestingly, within the same model family, smaller variants often outperformed their larger
counterparts. This trend suggests that more compact architectures might better capture general
image structures without overfitting to specific patterns, making them more suitable for generating
diverse targets.

(d) Examining the performance trends chronologically, we observe that more recent architectures
generally produce better targets. This pattern indicates that modern architectural designs, includ-
ing carefully chosen parameters and module structures, may be more adept at capturing inherent
data characteristics, even without training.

(e) The superior performance of certain architectures, such as ConvNeXt-v2 and ViT, in generating
high-quality targets provides insights into the design principles that lead to better visual priors.
This finding has implications not only for target generation in our method but also for the broader
field of neural network architecture design and initialization strategies.

To further elucidate the impact of different target generation methods on both convergence dynamics
and feature space distribution, we conducted additional analyses. Figure 7 illustrates the convergence
behavior of DELA across different datasets using three distinct target generation approaches: our
proposed method using a randomly initialized ConvNeXt-v2-Base model (Original), targets generated
by an ImageNet-1K pre-trained model (IN1K-G) as a strong prior reference, and targets drawn from
a standard normal distribution (Random) as a baseline.

The convergence analysis reveals several key insights:
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Figure 7: Convergence analysis of DELA with different prior models across datasets. This figure illustrates
the accuracy convergence of DELA when initialized with three distinct methods for generating targets: Original
(our default strategy using a randomly initialized ConvNeXt-v2-Base model), IN1K-G (targets generated by
an ImageNet-1K pre-trained model), and Random (targets drawn from a standard normal distribution). Each
subplot corresponds to a specific evaluation dataset.

(a) Across all datasets, the convergence rate follows the order: IN1K-G > Original > Random,
demonstrating the effectiveness of our proposed method in accelerating training compared to
random initialization.

(b) The Random target approach exhibits high volatility in performance, particularly in the early
stages of training, whereas both Original and IN1K-G show more stable learning curves.

(c) For larger datasets like TinyImageNet, the Random approach exhibits a slower, almost linear
increase in performance over time. In contrast, both Original and IN1K-G demonstrate a more
rapid initial improvement followed by a gradual plateau, indicative of more efficient learning
dynamics. This accelerated learning curve suggests that these methods enable the model to
quickly capture relevant features in the early stages of training, leading to faster convergence and
better overall performance.

(d) The performance gap between our Original method and the strong IN1K-G prior narrows as
training progresses, suggesting that our approach can achieve comparable results without relying
on pre-trained models.

To complement our convergence analysis, we visualized the distribution of targets in the feature
space at the beginning of training and after convergence using t-SNE dimensionality reduction.
Figure 8 presents this comparison for targets generated using a standard normal distribution and our
best-performing randomly initialized model (ConvNeXt-v2-Base).

This visualization reveals several additional insights:

(a) The initial distribution of model-generated targets exhibits a more structured and clustered
arrangement compared to the uniform spread of normally distributed targets, suggesting that
the randomly initialized model inherently captures some latent structure in the data space, even
before training.

(b) Post-convergence, the model-generated targets demonstrate significantly tighter and more distinct
clusters, indicating a more effective differentiation between classes and potentially contributing
to the improved classification performance observed in our experiments.

(c) Targets derived from the normal distribution, while showing some clustering after training,
exhibit less defined boundaries between classes, aligning with the performance gap noted in our
quantitative results and underscoring the advantages of using model-generated targets.

These findings collectively underscore the critical role of target initialization in the overall efficacy of
DELA. The choice of architecture for target generation significantly impacts the final performance of
our method by influencing the initial distribution of targets, which in turn affects the optimization
process. The effectiveness of randomly initialized models in producing high-quality targets suggests
that these architectures inherently encode meaningful priors about image content, aligning with
recent findings in the field of neural network initialization and architecture design (Ramanujan
et al., 2020; Frankle & Carbin, 2018; Ulyanov et al., 2018). This observation not only highlights
the importance of carefully selecting and designing target generation architectures but also opens
new avenues for research in self-supervised learning and model initialization strategies. Our results
demonstrate that by leveraging the inherent structural biases of neural networks, even before training,
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Figure 8: Feature space visualization of target distributions. t-SNE-reduced representations of targets for
CIFAR-100 dataset. (a) and (b) show the initial distribution of targets generated by a standard normal distribution
and a randomly initialized ConvNeXt-v2-Base model, respectively. (c) and (d) depict the corresponding target
distributions after training convergence.

Table 10: Evaluating our DELA against self-supervised learning methods. We analyze our DELA by training
and evaluating models over unlabeled datasets, against seven conventional self-supervised learning methods.
Dataset Architecture Barlow BYOL DINO MoCo SimCLR DCL NNCLR DELA

CF-10 ResNet-18 72.1 ± 0.1 72.8 ± 0.1 71.5 ± 0.0 72.5 ± 0.1 72.5 ± 0.1 72.3 ± 0.2 72.0 ± 0.3 72.9 ± 0.0
ResNet-50 72.5 ± 0.0 72.3 ± 0.1 71.6 ± 0.1 72.7 ± 0.4 72.8 ± 0.3 72.8 ± 0.1 71.6 ± 0.2 73.2 ± 0.4

CF-100 ResNet-18 72.4 ± 0.1 72.7 ± 0.1 71.6 ± 0.1 72.7 ± 0.1 72.5 ± 0.2 73.0 ± 0.1 71.5 ± 0.2 73.1 ± 0.0
ResNet-50 72.7 ± 0.5 72.3 ± 0.2 71.6 ± 0.3 72.9 ± 0.1 72.6 ± 0.6 73.0 ± 0.1 71.0 ± 0.1 73.0 ± 0.3

T-IN ResNet-18 74.1 ± 0.1 74.2 ± 0.1 72.7 ± 0.2 73.7 ± 0.1 73.8 ± 0.2 73.8 ± 0.1 72.8 ± 0.1 74.0 ± 0.1
ResNet-50 74.4 ± 0.2 73.8 ± 0.3 71.8 ± 1.4 73.6 ± 0.1 73.2 ± 0.1 73.5 ± 0.2 72.1 ± 0.1 73.9 ± 0.3

IN-1K ResNet-50 78.3 ± 0.3 79.1 ± 0.7 78.7 ± 0.2 79.4 ± 0.6 80.1 ± 0.2 79.8 ± 0.2 79.7 ± 0.3 80.3 ± 0.1

we can significantly enhance the performance and efficiency of self-supervised learning algorithms,
potentially leading to more robust and effective representation learning across various domains.

E ADDITIONAL RESULTS

We evaluate different self-supervised learning methods and our DELA on semantic segmentation
using the VOC 2012 dataset (Everingham et al., 2015). Semantic segmentation involves classifying
each pixel of an image. The experimental results are shown in Table 10 , which demonstrate our
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Table 11: Comparison of model performance using original noisy data and evolved data. We report the test
accuracy (%) on MNIST (MT), Fashion-MNIST (F-MT), and CIFAR-10 (CF-10) datasets with varying levels of
label noise. ’Original’ denotes training with the original noisy dataset, while ’RN18-E’ and ’RN50-E’ represent
training with evolved data obtained using ResNet18 and ResNet50, respectively.

Dataset Arch. Noise Rate 0.2 Noise Rate 0.4 Noise Rate 0.6
Original RN18-E RN50-E Original RN18-E RN50-E Original RN18-E RN50-E

MT RN18 99.3 99.2 99.2 99.2 99.3 99.1 99.3 99.2 99.1
RN50 99.4 99.3 99.4 99.4 99.3 99.1 99.4 99.5 99.4

F-MT RN18 92.1 91.5 91.0 91.9 89.5 90.5 91.2 91.8 89.5
RN50 93.6 92.0 90.5 93.4 90.0 89.4 93.4 92.5 91.8

CF-10 RN18 85.3 88.5 86.5 84.5 86.5 84.3 82.7 87.0 84.5
RN50 87.5 91.0 90.7 86.0 90.5 90.2 83.3 90.1 89.8

DELA demonstrates strong performance and generalization capabilities, excelling especially on
larger datasets like ImageNet-1K.
To evaluate the robustness of DELA against noisy labels, we conducted experiments on MNIST,
Fashion-MNIST, and CIFAR-10 datasets with varying levels of label noise (20%, 40%, and 60%).
Table 11 presents the test accuracies achieved using the original noisy datasets and the evolved
datasets generated by DELA with ResNet18 and ResNet50 architectures. The results demonstrate
that DELA effectively "purifies" the noisy datasets, leading to improved model accuracy, particularly
for CIFAR-10. Notably, the performance of models trained on evolved data remains relatively stable
across different noise levels, especially for CIFAR-10, where DELA consistently outperforms training
on original noisy data. This stability underscores the robust nature of our method in handling noisy
data.
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