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Abstract

Accurately modeling the correlation structure of errors is critical for reliable un-
certainty quantification in probabilistic time series forecasting. While recent deep
learning models for multivariate time series have developed efficient parameter-
izations for time-varying contemporaneous covariance, but they often assume
temporal independence of errors for simplicity. However, real-world data often
exhibit significant error autocorrelation and cross-lag correlation due to factors
such as missing covariates. In this paper, we introduce a plug-and-play method
that learns the covariance structure of errors over multiple steps for autoregres-
sive models with Gaussian-distributed errors. To ensure scalable inference and
computational efficiency, we model the contemporaneous covariance using a low-
rank-plus-diagonal parameterization and capture cross-covariance through a group
of independent latent temporal processes. The learned covariance matrix is then
used to calibrate predictions based on observed residuals. We evaluate our method
on probabilistic models built on RNNs and Transformer architectures, and the
results confirm the effectiveness of our approach in improving predictive accuracy
and uncertainty quantification without significantly increasing the parameter size.

1 Introduction

Uncertainty quantification is crucial in time series forecasting, especially for applications that need
more detailed insights than point forecasts. Probabilistic time series forecasting with deep learning
(DL) has attracted attention for its ability to capture complex, nonlinear dependencies and provide the
probability distribution of target variables [1, 2]. In multivariate time series, autoregressive models
are widely used for probabilistic forecasting [3–5], modeling the joint one-step-ahead predictive
distribution and generating multistep-ahead predictions in a rolling manner. To enable scalable
learning, these models often assume that errors are independent over time. Typically, time series
variables follow a Gaussian distribution zt = m(ht) + ηt, where m(·) is the mean function and
ηt ∼ N (0,Σt) is a stochastic error process with contemporaneous covariance matrix Σt. The
assumption of time-independence implies Cov(ηs,ηt) = 0, ∀s ̸= t. This holds when the model
can account for all correlations between successive time steps through hidden states determined
by previous values. However, real-world data often violate this assumption, as residuals exhibit
substantial cross-correlation due to omission of important covariates and model misspecification.

Modeling error autocorrelation (or cross-correlation) is a key area of research in statistical time series
models. A common approach is to assume that the error series follows a dependent temporal process,
such as an autoregressive integrated moving average (ARIMA) model [6]. Deep learning models
face similar challenges. Previous studies have attempted to incorporate temporally-correlated errors
into the training process by modifying the loss function [7, 8]. However, these methods, based on
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deterministic output, are not easily applicable to probabilistic forecasting models, particularly in a
multivariate setting. A notable innovation is the batch training method introduced by Zheng et al.
[9], which trains a univariate probabilistic forecasting model using generalized least squares (GLS)
loss over batched errors. This approach parameterizes a dynamic covariance matrix to capture error
autocorrelation, which is then used to calibrate the predictive distribution of time series variables.
While this method consistently improves probabilistic forecasting performance compared to naive
training (i.e., without considering autocorrelated errors); however, it is only applicable to univariate
models, such as DeepAR [10].

In this paper, we introduce an efficient method for learning error cross-correlation in multivariate
probabilistic forecasting models. Our focus is on deep learning models that are autoregressive with
Gaussian-distributed errors. Modeling cross-correlation in multivariate models presents challenges
due to increased dimensionality, as the covariance matrix scales with the number of time series N . To
address this computational challenge, we propose characterizing error cross-correlation through a set
of independent latent temporal processes using a low-rank parameterization of the covariance matrix.
This approach prevents the computational cost from growing with the number of time series. Our
method offers a general-purpose approach to multivariate probabilistic forecasting models, offering
significantly improved predictive accuracy.

Contributions:

1. We introduce a plug-and-play method for training autoregressive multivariate probabilistic fore-
casting models using a redesigned GLS loss. (§4)

2. We propose an efficient parameterization of the error covariance matrix across multiple steps,
enabling efficient computation of its inverse and determinant through matrix inversion and deter-
minant lemmas. (§4.1)

3. The learned covariance matrix is used to fine-tune the predictive distribution based on observed
residuals. (§4.2)

4. We demonstrate that the proposed method effectively captures error cross-correlation and improves
prediction quality. Notably, these improvements are achieved through a statistical formulation
without significantly increasing the size of model parameters. (§5)

2 Probabilistic Time Series Forecasting

Denote zt = [z1,t, . . . , zN,t]
⊤ ∈ RN as the vector of time series variables at time step t, where N is

the number of time series. Probabilistic time series forecasting can be formulated as estimating the
joint conditional distribution p (zT+1:T+Q | zT−P+1:T ;xT−P+1:T+Q) given the observed history
{zt}Tt=1, where zt1:t2 = [zt1 , . . . , zt2 ] and xt are known time-dependent covariates (e.g., time of day,
day of week) for all future time steps. In essence, the problem involves predicting the time series
values for Q future time steps using all available covariates and P steps of historical time series data:

p (zT+1:T+Q | zT−P+1:T ;xT−P+1:T+Q) =
∏T+Q

t=T+1
p (zt | zt−P :t−1;xt−P :t) , (1)

which becomes an autoregressive model that can be used for either one-step-ahead (Q = 1) or
multistep-ahead forecasting in a rolling manner. When performing multistep-ahead forecasting,
samples are drawn in the prediction range (t ≥ T + 1) and fed back for the next time step until the
end of the desired prediction range. In neural networks, the conditioning information is commonly
encoded into a state vector ht. Hence, Eq. (1) can be expressed more concisely:

p (zT+1:T+Q | zT−P+1:T ;xT−P+1:T+Q) =
∏T+Q

t=T+1
p (zt | ht) , (2)

where ht is mapped to the parameters of a parametric distribution (e.g., multivariate Gaussian).

Existing autoregressive models typically assume that the error at each time step is independent,
meaning that zt follows a multivariate Gaussian distribution:

zt | ht ∼ N (µ(ht),Σ(ht)) , (3)

where µ(·) and Σ(·) map ht to the mean and covariance parameters of a multivariate Gaussian
distribution. This formulation can be decomposed as zt = µt + ηt with ηt ∼ N (0,Σt). The
temporally independent error assumption corresponds to Cov(ηs,ηt) = 0 for any time points s and
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Figure 1: Contemporaneous covariance matrix Cov(ηt,ηt) and cross-covariance matrix
Cov(ηt−∆,ηt),∆ = 1, 2, 3, calculated based on the one-step-ahead prediction residuals of GP-
Var on a batch of time series from the m4_hourly dataset. For visualization clarity, covariance are
clipped to the range [0, 0.6].

t where s ̸= t. Fig. 1 provides an empirical example of the contemporaneous covariance matrix
Cov(ηt,ηt) and cross-covariance matrix Cov(ηt−∆,ηt),∆ = 1, 2, 3. The results are calculated
based on the prediction residuals of GPVar [3] on the m4_hourly dataset. While multivariate models
primarily focus on contemporaneous covariance, the residuals clearly exhibit temporal dependence,
as Cov(ηt−∆,ηt) ̸= 0. This non-zero cross-covariance suggests that residuals still contain valuable
information, which can be leveraged to improve predictions.

3 Related Work

3.1 Probabilistic Time Series Forecasting

Probabilistic forecasting aims to model the probability distribution of target variables, unlike de-
terministic forecasting, which produces only point estimates. There are two main approaches:
parametric probability density functions (PDFs) and quantile functions [2]. For example, MQ-RNN
[11] generates quantile forecasts using a sequence-to-sequence (Seq2Seq) RNN architecture. In
contrast, PDF-based approaches assume a specific distribution (e.g., Gaussian, Poisson) and use
neural networks to generate the distribution parameters. DeepAR [10], for instance, uses an RNN
to model hidden state transitions, while its multivariate version, GPVar [3], employs a Gaussian
copula to transform observations into Gaussian variables, assuming a joint multivariate Gaussian
distribution.

Neural networks can also generate probabilistic model parameters. The deep state space model (SSM)
[12] uses an RNN to generate SSM parameters. The normalizing Kalman filter (NKF) [13] combines
normalizing flows (NFs) with the linear Gaussian state space model (LGM) to model nonlinear
dynamics and evaluate the PDF of observations. NKF uses RNNs to produce LGM parameters at each
time step, then transforms the LGM output into observations using NFs. Wang et al. [14] proposed the
deep factor model, which includes a deterministic global component parameterized by an RNN and a
random component from any classical probabilistic model (e.g., Gaussian white noise) to represent
random effects. Some methods improve expressive conditioning for probabilistic forecasting by using
Transformer instead of RNNs to model latent state dynamics, thus breaking the Markovian assumption
in RNNs [15]. Other approaches adopt more flexible distribution forms, including normalizing flows
[4], diffusion models [5], and copulas [16, 17]. For a recent and comprehensive review, we refer
readers to Benidis et al. [2].

3.2 Modeling Correlated Errors

Error correlation in time series has been extensively studied in econometrics and statistics [18, 6, 19].
In multivariate time series, correlation structure is characterized by contemporaneous covariance
Var(ηt) = Cov(ηt,ηt) and cross-covariance Cov(ηt−∆,ηt). Cross-covariance includes both the
autocovariance of errors Cov(ηi,t−∆, ηi,t) and the cross-lag covariance Cov(ηi,t−∆, ηj,t) between
pairs of components in the multivariate series. Contemporaneous covariance captures the correlation
among individual time series at a specific point in time. In the univariate setting, DeepAR [10]
achieves probabilistic forecasting by modeling the contemporaneous covariance, assuming that errors
are independent over time. To address autocorrelation, Sun et al. [7] re-parameterized the input and
output of neural networks to model first-order error autocorrelation, effectively capturing serially
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correlated errors using an AR(1) process. This method improves the performance of one-step-ahead
neural forecasting models, allowing joint optimization of base and error regressors, but is limited
to deterministic models. In spatial modeling, Saha et al. [20] introduced the RF-GLS model, which
uses random forests to estimate nonlinear covariate effects and Gaussian processes (GP) to model
spatial random effects. The RF-GLS model assumes that the error process follows an AR(p) process
to accommodate autocorrelated errors. Zheng et al. [9] proposed training a probabilistic forecasting
model with a GLS loss that explicitly models the time-varying autocorrelation of batched error terms,
extending DeepAR to incorporate autocorrelated errors.

In the multivariate setting, most existing work focuses on modeling contemporaneous covariance,
assuming that ηt is independently distributed, which implies Cov(ηt−∆,ηt) = 0. For example,
GPVar [3] generalizes DeepAR [10] to account for correlations between time series by viewing the
distribution of time series variables as a Gaussian process. In Seq2Seq models, correlations can span
across series and forecasting steps, as predictions for future time steps are generated simultaneously.
Since predictions for future time steps are generated simultaneously, we refer to these correlations as
contemporaneous correlations within the scope of this study. Choi et al. [21] introduced a dynamic
mixture of matrix Gaussian distributions to capture contemporaneous covariance of errors in Seq2Seq
models. One exception that explicitly models error cross-correlation is [8], where the authors assume
that the matrix-variate error term of a multivariate Seq2Seq model follows a matrix autoregressive
(AR) process with seasonal lags. However, applying this technique to probabilistic forecasting models
is not straightforward.

To the best of our knowledge, our work is the first to model cross-covariance in multivariate proba-
bilistic time series forecasting. The closest related studies are by Zheng et al. [9] and Zheng et al.
[8]. Zheng et al. [9] applies GLS loss in the temporal domain to model autocorrelated errors, but
their approach is tailored for univariate time series. Zheng et al. [8] models cross-covariance in
multivariate forecasting models, but their method is limited to deterministic models and requires
predefined seasonal lags in the error autoregressive process. Our work extends [9] to the multivariate
setting, enabling the modeling of the correlation structure of multivariate errors across multiple steps.
In addition, we distinguish our approach from methods that directly model the distribution of time
series variables, such as Copulas [16, 17], where no decomposition of the error term is provided.

4 Our Method

Our methodology builds upon the formulation outlined in Eq. (2), employing an autoregressive model
as its foundational framework. Using an RNN as an example, a probabilistic forecasting model
consists of two components. Firstly, it incorporates a transition model fΘ to capture the dynamics of
state transitions ht = fΘ (ht−1, zt−1,xt), thus inherently having autoregressive properties. Second,
it integrates a distribution head, represented by θ, which maps ht to the parameters of the desired
probability distribution. Following GPVar [3], our approach employs the multivariate Gaussian
distribution as the distribution head. The time series variable can be decomposed into a deterministic
mean component and a random error component zt = µt + ηt, where ηt ∼ N (0,Σt). To efficiently
model the covariance Σt for large N , GPVar adopts a low-rank-plus-diagonal parameterization
Σt = LtL

⊤
t + diag (dt), where Lt ∈ RN×R (R ≪ N) and dt ∈ RN

+ . Autoregressive models
based on Gaussian likelihood typically assume that ηt are independently distributed following a
multivariate Gaussian distribution. The log-likelihood of the distribution serves as the loss function
for optimizing the model:

L =
∑T

t=1
log p (zt | θ (ht)) ∝

∑T

t=1
−1

2
[ln|Σt|+ η⊤

t Σ
−1
t ηt]. (4)

The parameters θ(ht) are parameterized as (µt,Lt,dt), where µt ∈ RN represents the mean vector
of the distribution. Lt and dt correspond to the covariance factor and diagonal elements in the low-
rank parameterization of the multivariate Gaussian distribution. We use shared mapping functions for
all time series:

µi(hi,t) = µ̃(hi,t) = w⊤
µ hi,t,

di(hi,t) = d̃(hi,t) = log(1 + exp(w⊤
d hi,t)),

li(hi,t) = l̃(hi,t) = Wlhi,t,

(5)
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Figure 2: Graphic illustration of Eq. (8), where B is the number of time series in a batch, R is the
rank of the covariance factor, D is the time window we consider cross-correlation, P and Q are the
conditioning range and prediction range. Cross-correlation is modeled by introducing correlation in
each row of matrix rt−D+1:t.

where hi,t ∈ RH , wµ ∈ RH , wd ∈ RH , and Wl ∈ RR×H are parameters. Since the parameters
of the mapping functions are shared across all time series, we can use a random subset of time
series to compute the Gaussian likelihood-based loss in each optimization step, as any subset of zt
will still follow a multivariate Gaussian distribution. In other words, we can train the model with a
substantially reduced batch size B < N .

4.1 Training with Correlated Errors

We build upon the approach introduced in [9] to address cross-correlated errors in a multivariate
context by introducing time-dependent error terms ηt into the GLS loss. In many existing deep
probabilistic forecasting models, such as GPVar [3], a training batch typically consists of a sample
slice of B time series spanning a temporal length of P +Q, where P is the conditioning range and
Q is the prediction range. The Gaussian likelihood is evaluated independently at each time step
within the prediction range through one-step-ahead predictions. However, this approach overlooks
the serial correlation of errors across consecutive time steps. To address this limitation, we propose
modifying the likelihood function by introducing a dynamic covariance that accommodates the
temporal dependence of the error term, as illustrated in Fig. 2. To achieve this, we organize D smaller
slices of time series with a temporal length of P + 1 (i.e., Q = 1), sorted by the prediction start time
in sequential order, where D represents the time horizon over which we consider cross-correlation.
The new batch structure effectively reconstructs the conventional training batch, covering the same
time horizon when D = Q. An example of the collection of target time series variables in a batch
covering cross-correlation horizon D is given by

zt−D+1 = µt−D+1 + ηt−D+1,

zt−D+2 = µt−D+2 + ηt−D+2,

. . .

zt = µt + ηt,

(6)

where for time point t′, µt′ , Lt′ and dt′ are the outputs of the model. The covariance parameterization
in GPVar corresponds to

ηt′ = Lt′rt′ + εt′ , (7)
where rt′ ∼ N (0, IR) is a low-dimensional latent variable, and εt′ ∼ N (0,diag (dt′)) is an
additional error independent of rt′ . We denote zbat

t = vec (zt−D+1:t) ∈ RDB as the collection of
target time series variables in a batch, where vec(·) is an operator that stacks all the columns of a
matrix into a vector. Similarly, we define µbat

t ∈ RDB , rbat
t ∈ RDR, εbat

t ∈ RDB , dbat
t ∈ RDB

+ , and
Lbat

t = blkdiag({Lt′}tt′=t−D+1) ∈ RDB×DR, where Lbat
t has a block diagonal structure (see Fig. 2).

The batch-wise decomposition is then expressed as

zbat
t = µbat

t +Lbat
t rbat

t + εbat
t . (8)
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Figure 3: Illustration of the training process. Following [3], time series dimensions are randomly
sampled, and the base model (e.g., RNNs) is unrolled for each dimension individually (e.g., 1, 2, 4,
followed by 1, 3, 4 as depicted). The model parameters are shared across all time series dimensions.
A batch of time series variables zbat

t contains time series vectors zt covering time steps from t−D+1
to t. In contrast to [3], our approach explicitly models dependencies over the extended temporal
window from t−D + 1 to t during training.

The default GPVar model assumes the latent variable rt is temporally independent, meaning
Cov (rs, rt) = 0,∀s ̸= t. However, this assumption cannot capture the potential cross-correlation in
the errors. To address this, we introduce temporal dependencies in the latent variable within a batch by
assuming rbat

t ∼ N (0,Ct ⊗ IR), where Ct is a dynamic D ×D correlation matrix. This approach
assumes that the rows in the matrix rt−D+1:t = [rt−D+1, . . . , rt] are independent and identically
distributed, following N (0,Ct). To efficiently capture dynamic patterns over time, we follow Zheng
et al. [9] and express Ct as a dynamic weighted sum base kernel matrices: Ct =

∑M
m=1 wm,tKm,

where wm,t ≥ 0 (with
∑

m wm,t = 1) represents the weights for each component. For simplicity,
we model each component Km using a kernel matrix generated from a squared-exponential (SE)
kernel function, where the (i, j)-th entry is Kij

m = exp(− (i−j)2

l2m
), with different lengthscales lm

(e.g., l = 1, 2, 3, . . . ). In addition, we incorporate an identity matrix into the additive structure to
account for the independent noise process. This parameterization ensures that Ct is a positive definite
symmetric matrix with unit diagonals, making it a valid correlation matrix. The weights for these
components are derived from the hidden state ht at each time step through a small neural network,
with the number of nodes in the output layer set to M (i.e., the number of components). A softmax
layer is used to ensure that these weights are summed up to 1. Note that the parameters of this
network will be learned simultaneously with those of the base model.

Marginalizing out rbat
t in Eq. (8), we have zbat

t ∼ N
(
µbat

t ,Σbat
t

)
with covariance

Σbat
t = (Lbat

t )(Ct ⊗ IR)(L
bat
t )⊤ + diag(dbat

t ). (9)
It is straightforward to derive that for any i, j ∈ {0, 1, . . . , D − 1} and i ̸= j, the proposed model
creates cross-covariance Cov

(
ηt−i,ηt−j

)
= Cij

t Lt−iL
⊤
t−j between times t− i and t− j, which

is no longer 0. While this parameterization results in a non-stationary multivariate process through
varying coregionalization [22, 23], a key difference is that both the coregionalization coefficient
matrix Lt and the temporal correlation Ct are generated by a deep neural network. In this sense, our
model can better characterize the empirical cross-covariance matrices of the residuals (see empirical
examples in Fig. 1). As µbat

t , Lbat
t , and dbat

t are default outputs of the base probabilistic model, we
can compute the overall likelihood (with overlapped data) as

L =
∑T

t=D
log p

(
zbat
t | µbat

t ,Σbat
t

)
. (10)

Here, computing the log-likelihood involves evaluating the inverse and the determinant of Σbat
t with

size DB ×DB, for which a naive implementation has a prohibitive time complexity of O
(
D3B3

)
.

However, our parameterization of Σbat
t as E + ACA⊤, where E = diag(dbat

t ), A = Lbat
t , and

C = Ct ⊗ IR, allows us to leverage the Sherman–Morrison–Woodbury identity (matrix inversion
lemma) and the companion matrix determinant lemma to simplify the computation:

(E +ACA⊤)−1 = E−1 −E−1A(C−1 +A⊤E−1A)−1A⊤E−1,

det (E +ACA⊤) = det (C−1 +A⊤E−1A) det (C) det (E).
(11)

Then, the likelihood calculation only requires computing the inverse and determinant of a DR×DR
matrix, specifically C−1 + A⊤E−1A. These computations can be efficiently performed using
Cholesky factorization. Detailed computations are provided in Appendix §A.2.
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Modeling the latent process rt offers several advantages. Firstly, because rt has a much lower
dimension than εt, modeling the cross-correlation of rt results in a significantly smaller DR×DR
covariance matrix compared to the DB ×DB covariance matrix of εt. Secondly, since rt follows
an isotropic Gaussian distribution, the covariance of rbat

t can be parameterized with a Kronecker
structure Ct ⊗ IR. This greatly simplifies the task into learning a D ×D correlation matrix shared
by all time series in a batch. Lastly, similar to GPVar, we can still train the model in an end-to-end
manner using a subset of time series in each iteration to ensure computational efficiency (Fig. 3).

4.2 Multistep-ahead Rolling Prediction

Autoregressive models perform multistep-ahead forecasting in an iterative manner, where the model
generates a sample at each time step during prediction, using it as input for the subsequent step, and
continuing this process until the desired prediction range is reached. Our approach enhances this
process, similar to Zheng et al. [9], by offering additional calibration based on the learned correlation
matrix Ct. Assuming observations are available up to time step t, the conditional distribution of ηt+1
given errors in the past (D − 1) steps, can be derived as

ηt+1 | ηt,ηt−1, . . . ,ηt−D+2 ∼ N
(
Σ∗Σ

−1
obsηobs,Σt+1 −Σ∗Σ

−1
obsΣ

⊤
∗

)
, (12)

where ηobs = vec
([
ηt−D+2, . . . ,ηt−1,ηt

])
∈ R(D−1)B represents the set of residuals, accessible

at forecasting step t + 1. Here, Σobs is a (D − 1)B × (D − 1)B partition of Σbat
t+1 that captures

the covariance of ηobs, and Σ∗ is a B × (D − 1)B partition of Σbat
t+1 representing the covariance

between ηt+1 and ηobs, i.e., Σbat
t+1 =

[
Σobs Σ⊤

∗
Σ∗ Σt+1

]
. For conciseness, we omit the time index t in

Σobs, Σ∗ and ηobs. Since µt+1 is a deterministic output from the base model, a sample of the target
variables z̃t+1 can be derived by first drawing a sample η̃t+1 from Eq. (12), then combining it with
the predicted mean vector µt+1 as z̃t+1 = µt+1 + η̃t+1. It should be noted that we can still leverage
the Sherman-Morrison-Woodbury identity when computing the inverse Σ−1

obs .

By taking the sample η̃t+1 as an observed residual, we can iteratively apply the process described in
Eq. (12) to derive a trajectory of {z̃t+q}Qq=1. Repeating this procedure allows us to generate multiple
samples, characterizing the predictive distribution at each time step.

5 Experiments

5.1 Evaluation of Predictive Performance

Datasets. We use widely recognized time series benchmarking datasets from GluonTS [24]. The
prediction range (Q) for each dataset follows the configurations provided by GluonTS. We applied
a sequential split into training, validation, and testing sets for each dataset. Each dataset was
standardized using the mean and standard deviation from the training set, and predictions were
rescaled to their original values for evaluation. Further details on the datasets can be found in
Appendix §A.1.

Base probabilistic models. We integrated the proposed method into two distinct autoregressive
models: the RNN-based GPVar [3] and the decoder-only Transformer [25]. These models are
trained to generate distribution parameters as described in §4. Our approach can be applied to other
autoregressive multivariate models with minimal adjustments, provided the final prediction follows a
multivariate Gaussian distribution. The implementation is based on using PyTorch Forecasting [26].
Both models use lagged time series values and additional features or covariates as inputs. Details
on model training (§A.3), hyperparameter tuning (§A.5), and the base model (§A.6) are provided in
Appendix §A. The code is available at https://github.com/rottenivy/mv_pts_correlatederr.

Dynamic correlation matrix. We introduce a limited number of additional parameters to project the
state vector ht into component weights wm,t, which are used to generate the dynamic correlation
matrix Ct. The number of base kernels (M ) for generating Ct and the associated lengthscale set
{lm}M−1

m=1 are treated as hyperparameters. We perform a grid search over M = 2, 3, 4 and two sets of
lengthscales—{0.5, 1.5, . . . } and {1.0, 2.0, . . . }. Models with the best validation loss are selected.
These different lengthscales capture varying correlation decay rates, enabling the model to account

7
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Table 1: CRPSsum accuracy comparison. “w/o” denotes methods without time-dependent errors,
while “w/” indicates our method. Bold values show models with time-dependent errors performing
better. Mean and standard deviation are obtained from 10 runs of each model.

VAR GARCH GPVar Transformer

w/o w/ w/o w/

exchange_rate 0.0033±0.0000 0.0435±0.0001 0.0068±0.0004 0.0117±0.0004 0.0055±0.0002 0.0042±0.0002
solar 0.7663±0.0050 0.8752±0.0015 0.7103±0.0065 0.6929±0.0039 0.4960±0.0034 0.4132±0.0027
electricity 0.1264±0.0006 0.2847±0.0015 0.0430±0.0005 0.0403±0.0004 0.0494±0.0004 0.0638±0.0003
traffic 3.5241±0.0084 0.4459±0.0005 0.1095±0.0002 0.0649±0.0002 0.0717±0.0002 0.0981±0.0002
wikipedia 26.2025±0.0389 0.6699±0.0045 0.1745±0.0008 0.0743±0.0009 0.0841±0.0013 0.0500±0.0005
m4_hourly 0.2352±0.0008 0.2758±0.0006 0.0613±0.0004 0.0358±0.0002 0.0651±0.0004 0.0616±0.0003
m1_quarterly N/A N/A 0.3942±0.0030 0.3538±0.0017 0.4448±0.0027 0.4367±0.0028
pems03 0.0598±0.0002 0.3202±0.0007 0.0503±0.0001 0.0491±0.0002 0.0490±0.0001 0.0386±0.0001
uber_hourly N/A N/A 0.0342±0.0006 0.0222±0.0004 0.0632±0.0003 0.0513±0.0005

avg. rel. impr. 13.79% avg. rel. impr. 6.91%

for different temporal patterns. The time-varying component weights enable dynamic adaptation to
changing correlation structures over time.

Baselines. We evaluate the proposed method by comparing it with a baseline model trained without
accounting for error cross-correlation (Eq. (4)). The baseline model represents a special case of our
model with Ct = ID. To ensure a straightforward and fair comparison, we align the cross-correlation
range (D) with the prediction range (Q), ensuring identical data sampling processes for both methods.
Additionally, we set P = Q following the default configuration in GluonTS. We also include VAR
and GARCH as naive baseline models (see Appendix §A.4).

Metrics. We use the Continuous Ranked Probability Score (CRPS) [27] as the main metric:

CRPS(F, z) = EF |Z − z| − 1

2
EF |Z − Z ′| , (13)

where F is the cumulative distribution function (CDF) of the predicted variable, z is the observation,
Z and Z ′ are independent copies of the prediction samples associated with the distribution F . To
evaluate multivariate dependencies in the time series data, we compute CRPSsum by first summing
both the forecast and ground-truth values across all time series and then calculating the CRPS
over the resulting sums [3, 16, 17]. As CRPSsum may overlook model performance on individual
dimensions [28], we also report additional metrics, e.g., the energy score [27, 29], in Appendix §B.1.

Training dynamics. Our approach incurs additional training costs per optimization step due to
the more complex likelihood function. As shown in Appendix §B.3, the training time per epoch
for models using our method is generally longer than that of baseline methods. However, our
parameterization allows for scalability to large time series datasets by using a small random subset of
time series at each optimization step during training.

Benchmark results. The CRPSsum results are presented in Table 1. Our method achieves an
average improvement of 13.79% for GPVar and 6.91% for the Transformer model. It is important to
note that the degree of performance enhancement varies across different base models and datasets,
influenced by factors such as the inherent data characteristics and the performance of different model
architectures. The alignment between the actual correlation structure and our kernel assumption also
plays a crucial role in the effectiveness of our method. Additionally, our approach demonstrates
consistent improvements across five different metrics, with significant gains in multivariate metrics
such as the energy score (Appendix §B.2).

To provide further insights, we compare the residual autocorrelation and cross-lag correlation with
and without applying our method in Appendix §B.5.1, showing that our method effectively reduces
cross-correlations in many scenarios. We use ACF plot comparisons to illustrate the reduction in
autocorrelation and cross-correlation plot comparisons to demonstrate the decrease in cross-lag
correlation. The residuals generated by the model with our method exhibit weaker cross-correlations,
which is particularly enhanced by the calibration process during prediction (§4.2).

Furthermore, Appendix §B.5.2 separates the accuracy improvement over forecast steps for each
dataset. The performance improvement is shown to be related to both the absolute time across the
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Figure 4: (a) Component weights for generating Ct for a batch of time series (B = 8) from the
m4_hourly dataset obtained by the GPVar model. Parameters w0, w1, w2 represent the component
weights of the kernel matrices associated with lengthscales l = 0.5, 1.5, 2.5, and w3 is the component
weight of the identity matrix. Shaded areas distinguish different days; (b) The autocorrelation function
(ACF) indicated by the correlation matrix Ct at 17:00. Given the rapid decay of the ACF, we only
plot 12 lags to enhance visualization; (c) The corresponding covariance matrix of the associated
target variables Σbat

t at 17:00. A zoom-in view of a 3B × 3B region is illustrated in the plot, where
the diagonal blocks represent B×B covariance matrices Σt′ of zt′ over three consecutive time steps.
The off-diagonal blocks describe the cross-covariance Cov(zt−∆, zt), ∀∆ ̸= 0. For visualization
clarity, covariance values are clipped to the range [0, 0.03].

temporal span of the dataset (especially for time series with strong periodic patterns) and the relative
time over the prediction horizon.

5.2 Model Interpretation

Our method captures error cross-correlation through the dynamic construction of a covariance matrix,
achieved by combining kernel matrices with varying lengthscales in a dynamically weighted sum. A
small lengthscale corresponds to short-range positive correlations, while a large lengthscale captures
positive correlations over longer lags.

In Fig. 4, we depict the dynamic component weights and the resulting autocorrelation function (the
first row of the correlation matrix Ct) for a batch of time series from the m4_hourly dataset spanning
a four-day window. We also provide the covariance matrix of zbat

t using the correlation matrix and
model outputs at a specific time of day. The component weight w3, corresponding to the identity
matrix, dominates throughout the observation period. This suggests that the error correlation is
generally mild over time. This behavior is influenced by the Kronecker structure used to parameterize
the covariance over the low-dimensional latent variables rt, which assumes all latent processes share
the same autocorrelation structure. Given the Kronecker structure, the model tends to learn the
mildest temporal correlation among the time series in a batch.

Moreover, we observe that the dynamic component weights adjust the correlation strengths. Specif-
ically, when the weight assigned to the identity matrix (w3) increases, the error process tends to
be more independent. In contrast, when the weights assigned to the other kernel matrices (w0, w1,
and w2) are larger, the error process becomes more correlated, as the kernel matrices with different
lengthscales combine to formulate a specific correlation structure. Fig. 4(a) demonstrates pronounced
daily patterns in temporal correlation, particularly when errors exhibit increased correlation around
17:00 each day. The corresponding autocorrelation function is shown in Fig. 4(b). Fig. 4(c) illustrates
the corresponding covariance matrix of the associated target variables within the cross-correlation
horizon. The diagonal blocks represent the contemporaneous covariance Σt of zt at each time step,
while the off-diagonal blocks capture the cross-covariance Cov(zt−∆, zt) for ∀∆ ̸= 0, effectively
modeled by our approach. The zoomed-in view provides a 3B × 3B region that illustrates the
cross-covariance within two lags. We observe that the cross-covariance is most pronounced at lag
1, consistent with the observation in Fig. 4(a) that the component weight w0, assigned to the base
kernel matrix with lengthscale l = 0.5, is more pronounced than w1 and w2.

6 Discussion

In this section, we discuss factors that influence the performance of our method. Specifically, we
highlight the effectiveness of our model in long-term forecasting across various scenarios. We also
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discuss the effect of scaling up to larger batch sizes during prediction. Additionally, we examine the
impact of non-Gaussian errors on model performance.

Long-term forecasting. The advantage of modeling error correlation can vary in long-term fore-
casting, especially in autoregressive predictions where errors accumulate and propagate over time.
Using residuals from previous time steps to calibrate forecasts may be beneficial for non-stationary
segments of the time series. However, for time series with strong periodic effects, the model may also
rely on seasonal lags. As shown in Fig. 21 and Fig. 22 of the Appendix, the advantage of modeling
error correlation can decrease in longer-term forecasts compared to shorter-term forecasts for some
datasets with strong periodic effects (e.g., the traffic dataset in Fig. 21). It is not necessarily
true that the advantage diminishes for long-horizon predictions, as the effectiveness of our method
depends on the quality of predictions during inference. In cases where the model provides accurate
long-term forecasts, the benefit of modeling correlated errors may be less pronounced.

Scalability. Increasing the number of time series B in a batch leads to higher training costs. Because
the model requires numerous iterations over the dataset for optimization, using a large B during
training is not feasible. However, during prediction, the batch size can be increased to leverage more
information. This may enhance both prediction accuracy and error calibration, provided sufficient
memory is available. We demonstrate the effect of increasing batch size during prediction in Appendix
§B.4 through additional experiments. Both models, with and without our method, show improvement
from increased batch sizes during prediction, as reflected by a decrease in CRPSsum.

Non-Gaussian errors. For the baseline model, assuming Gaussian errors may lead to model misspec-
ification, resulting in more correlated residuals. To address this issue, we also trained the baseline
models using the likelihood of a multivariate t-distribution; the results are presented in Table 15 of
the Appendix. Although using an alternative distribution can lead to better performance on some
datasets without our method, we observed that our method effectively closes the performance gap
when the t-distribution outperforms the Gaussian assumption. We chose the Gaussian distribution for
its beneficial properties, including its marginalization rule and well-defined conditional distributions,
both essential for statistically consistent model training and reliable inference. Thus, a more effective
approach could involve first transforming the original observations into Gaussian-distributed data
using a Gaussian Copula [3], followed by applying our method.

7 Conclusion and Broader Impacts

This paper presents a novel approach for addressing error cross-correlation in multivariate proba-
bilistic time series forecasting, specifically for models with autoregressive properties and Gaussian
distribution outputs. We construct a dynamic covariance matrix using a small set of independent and
identically distributed latent temporal processes. These latent processes effectively model temporal
correlation and integrate seamlessly into the base model, where the contemporaneous covariance
is parameterized by a low-rank-plus-diagonal structure. This approach enables the modeling and
prediction of a time-varying covariance matrix for the target time series variables. The experimental
results demonstrate its effectiveness in enhancing uncertainty quantification.

Our contributions are two-fold. First, our approach relaxes the time-independent error assumption
during the training process for probabilistic forecasting models, addressing the reality that residuals are
typically time-dependent. Second, the learned cross-correlation improves multistep-ahead predictions
by refining the distribution output at each forecasting step. These enhancements to existing models
have broader implications for fields such as finance, healthcare, and energy, where improved forecasts
and uncertainty quantification can lead to more informed decisions.

There are several avenues for future research. First, the Kronecker structure Ct ⊗ IR for the
covariance matrix of the latent variable rbat

t may be too restrictive for multivariate time series
problems. Exploring more flexible covariance structures, such as employing different Cr,t matrices
for each latent temporal process as in the linear model of coregionalization (LMC, [22, 23]), could
be a promising direction for further investigation. Second, the parameterization of Ct could be
expanded. Instead of using SE kernels, Ct could be parameterized as fully learnable positive definite
symmetric Toeplitz matrices. For example, an AR(p) process has a covariance structure in Toeplitz
form, allowing for the modeling of negative correlations. This alternative approach could offer greater
flexibility in capturing complex correlation patterns in multivariate time series data.
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A Experimental Details

A.1 Datasets

We performed experiments on a diverse set of real-world datasets obtained from GluonTS [24]. These
datasets include:

• electricity [30]: Hourly electricity consumption data collected from a total of 370
households over the period spanning from January 2012 to June 2014.

• m4_hourly [31]: Hourly time series data from various domains, covering microeconomics,
macroeconomics, finance, industry, demographics, and various other fields, are sourced
from the M4-competition.

• exchange_rate [32]: Daily exchange rate information for eight different countries span-
ning the period from 1990 to 2016.

• m1_quarterly [33]: Quarterly time series data spanning seven different domains.
• pems03 [34]: Traffic flow records obtained from Caltrans District 3 and accessed through

the Caltrans Performance Measurement System (PeMS). The records are aggregated at a
5-minute interval.
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• solar [32]: Hourly time series representing solar power production data in the state of
Alabama for the year 2006.

• traffic [35]: Hourly traffic occupancy rates recorded by sensors installed in the San
Francisco freeway system between January 2008 and June 2008.

• uber_hourly [36]: Hourly time series of Uber pickups in New York City spanning from
February to July 2015.

• wikipedia [37]: Daily page views for 2,000 Wikipedia pages spanning from January 2012
to March 2014.

These datasets are widely employed for benchmarking time series forecasting models, following
their default configurations in GluonTS, including granularity, prediction range (Q), and the number
of rolling evaluations. For each dataset, we performed a sequential split into training, validation,
and testing sets, with the temporal length of the validation set matching that of the testing set. The
temporal length of the testing set was determined by considering the prediction range and the required
number of rolling evaluations. For instance, the testing horizon for the traffic dataset is computed
as 24 + 7 − 1 = 30 time steps. As a result, the model will predict 24 steps (Q) sequentially,
with 7 distinct consecutive prediction start timestamps, also known as 7 forecast instances. In
our experiments, we align the conditioning range (P ) with the prediction range (Q), maintaining
consistency with the default setting in GluonTS. For simplicity, we set the autocorrelation horizon
(D) to also match the prediction range (Q). Essentially, in this paper, we have P = Q = D. Each
dataset was standardized using the mean and standard deviation from the training set. Predictions
were rescaled to their original values for computing evaluation metrics. The statistics of all datasets
are summarized in Table 2.

Table 2: Dataset summary.

Dataset Granularity # of time series # of time steps Q Rolling evaluation

electricity hourly 370 5,857 24 7
m4_hourly hourly 414 1,008 48 7
exchange_rate workday 8 6,101 30 5
m1_quarterly quarterly 281 48 8 1
pems03 5min 358 26,208 12 24
solar hourly 137 7,033 24 7
traffic hourly 963 4,025 24 7
uber_hourly hourly 262 8,343 24 7
wikipedia daily 2,000 792 30 5

A.2 Multivariate Likelihood with Correlated Errors

The probability density function of a multivariate normal distribution with autocorrelated errors, as
described in §4.1, is defined in Eq. (14). For simplicity, we omit the subscript t and superscript bat
for all notations:

f(z) = (2π)−B/2|Σ|−1/2 exp

(
−1

2
(z − µ)

⊤
Σ−1 (z − µ)

)
. (14)

We use the negative log likelihood (NLL) of an observed z as the loss function for training our model.
The NLL can be calculated as the negative log of the probability density function in Eq. (14):

LNLL = − lnL (z) =
1

2

[
ln|Σ|+ (z − µ)

⊤
Σ−1 (z − µ) +B ln (2π)

]
, (15)

where B is the number of time series in a batch. The covariance matrix is parameterized as Σ =
L(C ⊗ IR)L

⊤ +E. In this parameterization, L ∈ RDB×DR is the covariance factor, C ∈ RD×D

is the autocorrelation matrix, E = diag(d), and d ∈ RDB
+ are the diagonal elements. The bottleneck

in evaluating this NLL lies in the calculation of the inverse and determinant of Σ. Therefore, we can
simplify the calculation using the Sherman–Morrison–Woodbury identity (matrix inversion lemma)
and the companion matrix determinant lemma:

Σ−1 =
(
E +L (C ⊗ IR)L

⊤
)−1

= E−1 −E−1L
(
(C ⊗ IR)

−1
+L⊤E−1L

)−1

L⊤E−1.

(16)
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Consequently, the Mahalanobis term in Eq. (15) becomes:

η⊤Σ−1η =η⊤E−1η − η⊤E−1L
(
(C ⊗ IR)

−1
+L⊤E−1L

)−1

L⊤E−1η

=η⊤E−1η − η⊤E−1L
(
LcapL

⊤
cap

)−1

L⊤E−1η

=η⊤E−1η −
(
L−1

capL
⊤E−1η

)⊤ (
L−1

capL
⊤E−1η

)
=η⊤E−1η − k⊤k,

(17)

where k = L−1
capL

⊤E−1η. Lcap is the Cholesky factor of the capacitance matrix(
(C ⊗ IR)

−1
+L⊤E−1L

)
. The computation of k can be efficiently resolved by solving the

linear system of equations Lcapk = L⊤E−1η. Since E is a diagonal matrix, the only matrix inverse
we need to calculate in Eq. (17) is (C ⊗ IR)

−1, which can be further simplified as C−1 ⊗ IR. Recall
that C is a D × D autocorrelation matrix. Therefore, calculating its inverse is much easier than
computing the inverse of Σ, which is a DB ×DB matrix. Moreover, the computational cost does
not scale with the number of time series B in a batch.

The calculation of the determinant can also be greatly simplified with our parameterization:

ln|Σ| = ln|E +L (C ⊗ IR)L
⊤|

= ln|(C ⊗ IR)
−1

+L⊤E−1L|+ ln|C ⊗ IR|+ ln|E|

= 2

DR∑
i

ln [Lcap]i,i + 2R

D∑
i

ln [LC ]i,i +

DB∑
i

ln [E]i,i ,

(18)

where LC is the Cholesky factor of the autocorrelation matrix C.

A.3 Training Procedure

Compute used All models in the paper were trained in an Anaconda environment with access to one
AMD Ryzen Threadripper PRO 5955WX CPU and four NVIDIA RTX A5000 GPUs (each with 24
GB of memory).

Batch size We adopt the approach of GPVar [3] by using B = 20 time series in a sample slice and
a batch size of 16. Because our data sampler selects one slice of time series as a batch instead of
sampling 16 slices simultaneously, we set accumulate_grad_batches to 16 to achieve an effective
batch size of 16.

Training loop Each epoch involves training the model on up to 400 batches from the training set,
followed by computing the NLL on the validation set. Training stops when any of the following
conditions are met:

• A total of 10,000 gradient updates have been performed during model training,
• No improvement in the best NLL value on the validation set is observed for 10 consecutive epochs.

We select the version of the model that achieved the best NLL value on the validation set.

A.4 Naive Baseline Description

In this paper, we employ VAR [38] (Vector Autoregression) and GARCH [39] (Generalized Au-
toregressive Conditionally Heteroskedasticity) as two naive baseline models. The VAR(p) model is
defined as

zt = c+A1zt−1 + · · ·+Apzt−p + ϵt, ϵt ∼ N (0,Σϵ), (19)
where Ai is an N ×N coefficient matrix, and c is the intercept. We use a VAR model of lag 1 (i.e., a
VAR(1) model) in the experiments. The parameters of Eq. (19) are estimated using ordinary least
squares (OLS), following the procedure in [38].

The GARCH model describes the conditional covariance matrix of the error term in a multivariate
system. Suppose the model for the conditional mean is an AR(1) model:

zt = c+A1zt−1 + ϵt, (20)
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where the error term is modeled as
ϵt = H

1/2
t et, (21)

where Ht is an N×N conditional covariance matrix, and et is an N×1 standard normal vector, et ∼
N (0, IN ). In the experiments, we use the DCC-GARCH(1, 1) model [40], where the conditional
covariance matrix Ht is defined as

Ht = DtRtDt, (22)

where Dt = diag (ht)
1/2, and ht contains the variances for each time series. Rt is the conditional

correlation matrix in the DCC-GARCH model. The parameters of the DCC-GARCH model are
estimated with the log-likelihood function:

L = −1

2

T∑
t=1

[
N ln (2π) + 2 ln|Dt|+ ln|Rt|+ e⊤t R

−1
t et

]
. (23)

In this paper, we implement the VAR model using statsmodels [41] and the DCC-GARCH model
using mgarch [42].

A.5 Hyperparameter Search

The hyperparameters and training configuration largely align with those used in the GPVar paper [3].
All DL models are trained using the Adam optimizer with l2 regularization set to 1e-8, and gradients
are clipped at 10.0. For all methods, we limit the total number of gradient updates to 10,000 and
decay the learning rate by a factor of 2 after 500 consecutive updates without improvement. Table 3
lists the parameters that are tuned, as well as the hyperparameters that are kept constant across all
datasets and not subject to tuning.

Table 3: Hyperparameters values that are fixed or searched over a range during hyperparameter
tuning.

Hyperparameter Value or Range Searched

learning rate [1e-4, 1e-3, 1e-2]
LSTM cells / d_model of Transformer [10, 20, 40]
LSTM layers / Transformer decoder layers 2
n_heads (Transformer) 2
rank 10
sampling dimension 20
dropout 0.01
batch size 16

To tune the hyperparameters of each model, we conduct a grid search over nine parameters on each
dataset. The best hyperparameters for each base model–dataset combination are selected based on
the lowest validation loss. Once the optimal learning rate and hidden size are determined, we apply
the same hyperparameters to models both with and without our method.

The number of base kernels (M ) for generating Ct and the associated lengthscale set {lm}M−1
m=1 are

two additional hyperparameters when applying our method. The optimal values of M and {lm}M−1
m=1

are selected in a similar manner via hyperparameter search. The values of M and {lm}M−1
m=1 explored

during hyperparameter tuning are shown in Table 4. There are six possible combinations. For
example, if we set M = 3 and choose the initial lengthscale to be 1.0, the lengthscales for generating
the component kernels will be {1.0, 2.0} since the last weight corresponds to the identity matrix.

A.6 Base Model Description and Input Features

The input to the base models consists of lagged time series values and generic features that encode
time and identify each time series. The number of lagged values used is determined by the time-
frequency of each dataset. Specifically, we use lags [1, 24, 168] for hourly data; [1, 7, 14] for daily
data; and [1, 2, 4, 12, 24, 48] for data with a granularity of less than one hour. For all other datasets,
we only use the lag-1 values.

17



Table 4: Hyperparameters values of our method that are searched over a range during hyperparameter
tuning.

Hyperparameter Value or Range Searched

number of kernels M [2, 3, 4]
possible lengthscales {lm}M−1

m=1 [{0.5, 1.5, . . . }, {1.0, 2.0, . . . }]

We use generic features to represent time. For datasets with a granularity of one hour or less, we
include features for the hour of the day and the day of the week. For daily datasets, we use the day
of the week feature. Additionally, each time series is distinguished by an identifier number. All
features are encoded with a single value; for example, the hour of the day feature takes values in [0,
23]. These feature values are concatenated with the RNN or Transformer input at each time step to
generate the model input vector yt.

As illustrated in §4, our method requires a state vector ht at each time step to generate the parameters
for the predictive distribution and the dynamic weights for correlation matrix kernels. We use
two different neural architectures for this purpose: RNN and Transformer, both of which preserve
autoregressive properties. Specifically, we use an LSTM as our base model for the RNN and a
decoder-only Transformer (i.e., the GPT model [25]) for the Transformer. Table 5 and Table 6
summarize the number of parameters for the GPVar and Transformer models across each dataset.

Table 5: Number of parameters of the GPVar model for each dataset.

covariate embedding rnn distribution proj covariance proj (our method)

exchange_rate 60 6.1k 252 84
solar 3.7k 26.6k 492 164
electricity 16.5k 29.6k 492 164
traffic 72.5k 34.6k 492 164
wikipedia 200k 5.7k 132 44
m4_hourly 19.7k 10.2k 252 84
m1_quarterly 6.3k 25k 492 164
pems03 26.4k 34.6k 492 164
uber_hourly 9.7k 28.3k 492 164

Table 6: Number of parameters of the Transformer model for each dataset.

target proj covariate proj covariate embedding transformer distribution proj covariance proj (our method)

exchange_rate 160 400 60 26.5k 492 164
solar 40 400 3.7k 1.8k 132 44
electricity 160 2.4k 16.5k 26.5k 492 164
traffic 80 1.8k 72.5k 6.8k 252 84
wikipedia 160 4.2k 200k 26.5k 492 164
m4_hourly 80 1.2k 19.7k 6.8k 252 84
m1_quarterly 80 1.3k 6.3k 26.5k 492 164
pems03 70 870 26.4k 1.8k 132 44
uber_hourly 160 2k 9.7k 26.5k 492 164

LSTM, a type of RNN architecture, is designed to model sequences and time series data. Unlike
traditional RNNs, LSTMs can learn long-term dependencies, making them effective for tasks requiring
context and memory over long sequences. A decoder-only Transformer is primarily used for sequence
generation tasks, such as text generation, language modeling, and machine translation. It is a
simplified version of the original Transformer model introduced by Vaswani et al. [43], consisting of
only the decoder component. The LSTM model can be formulated as
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ft = σ(Wf · [ht−1,yt] + bf ),

it = σ(Wi · [ht−1,yt] + bi),

C̃t = tanh(WC · [ht−1,yt] + bC),

Ct = ft ⊙Ct−1 + it ⊙ C̃t,

ot = σ(Wo · [ht−1,yt] + bo),

ht = ot ⊙ tanh(Ct),

(24)

where yt is the input at each time step. The decoder-only Transformer can be formulated as

Q = YtWQ,

K = YtWK ,

V = YtWV ,

M = Mask(K),

Z = Softmax
(
QKT

√
dk

+M

)
V,

Ht = LayerNorm(Yt + Z),

FFN = ReLU(HtW1 + b1)W2 + b2,

Ht = LayerNorm(Ht + FFN),

(25)

where Ht is the output containing state vectors for all time steps, and M is a square causal mask for
the sequence to preserve autoregressive properties.

B Metrics and Additional Results

B.1 Metric Definition

In this paper, we repeated the evaluation process on the testing set ten times to compute the mean
and standard deviation of all metrics. Metrics calculated in each independent evaluation are based on
the average results from all forecast instances in the testing set. For example, the CRPSsum reported
for traffic is the average CRPSsum of seven forecast instances in its testing set. 100 prediction
samples were drawn for all evaluation processes.

B.1.1 Continuous Ranked Probability Score

The Continuous Ranked Probability Score (CRPS) is defined as:

CRPS (F, z) = EF |Z − z| − 1

2
EF |Z − Z ′|, (26)

where F is the cumulative distribution function (CDF) of the predicted variable, z is the observation,
Z and Z ′ are independent copies of a set of prediction samples associated with the distribution F . For
a single forecast instance, we calculate the average CRPS across time series and over the prediction
horizon:

Ei,t [CRPS (Fi,t, zi,t)] , (27)

where we use the empirical CDF to represent Fi,t when predicting zi,t. Since CRPS only compares
a single ground-truth value to its predicted distribution, we also calculate the CRPSsum [3, 16, 17] to
assess multivariate dependencies in the time series data. CRPSsum is computed by summing both
the forecasted and ground-truth values across all time series and then calculating the CRPS over the
resulting sums:

Et

[
CRPS

(
Ft,
∑
i

zi,t

)]
, (28)

where the empirical Ft is obtained by summing samples across time series.
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B.1.2 Quantile Loss

The Quantile Loss (ρ-risk) is another metric used in [10] to evaluate the performance of probabilistic
forecasting:

Lρ (z, ẑ
ρ) = 2 (ẑρ − z) ((1− ρ) Iẑρ>z − ρIẑρ≤z) , (29)

where I is a binary indicator function that equals 1 when the condition is met, ẑρ represents the
predicted ρ-quantile, and z represents the ground truth value. The quantile loss serves as a metric to
assess the accuracy of a given quantile ρ from the predictive distribution. We summarize the quantile
losses over the testing set across all time series segments by computing a normalized summation
of these losses:

(∑
i,t Lρ

(
zi,t, ẑ

ρ
i,t

))
/
(∑

i,t zi,t

)
. In this paper, we evaluate the 0.5-risk and the

0.9-risk following Salinas et al. [10].

B.1.3 Energy Score

The Energy Score (ES) generalizes the CRPS to evaluate distributional forecasts of a vector-valued
random variable and is thus another multivariate metric used in this paper:

ES(P, z) = E
Z∼P

∥Z − z∥β2 − 1

2
E

Z∼P
Z′∼P

∥Z −Z ′∥β2 , (30)

where ∥z∥2 is the Euclidean norm. In this paper, we use β = 1, following [17]. Since we also want
to aggregate over the prediction horizon, we calculate the Frobenius norm of the matrix ∥zt+1:t+Q∥F
in practice.

B.1.4 Root Relative Mean Squared Error

The Root Relative Mean Squared Error (RRMSE) is a metric commonly used for point forecasts
[44, 32, 45]. RRMSE is defined as:

RRMSE =

√∑Q
t=1∥zt − ẑt∥22√∑Q
t=1∥zt − z̄∥22

, (31)

where ẑt is obtained by taking the mean of our prediction samples, and z̄ is the mean value of the
entire forecast instance. We use this metric to evaluate the mean prediction performance of our model.

B.2 Results on Other Forecasting Metrics

We present the results for CRPS (Table 7), the 0.5-risk (Table 8), the 0.9-risk (Table 9), ES (Table 10),
and RRMSE (Table 11). An “N/A” entry in the tables indicates that the naive baseline models could
not be properly fitted to this dataset. We observe consistent performance improvements in the base
models using our method across different evaluation metrics. Notably, in the multivariate metric ES,
our method shows significant improvement, reducing the score by an average of 5.58% for GPVar
and 3.21% for the Transformer.

B.3 Training Dynamics

In Fig. 5 and Fig. 6, we compare the training dynamics of the base models trained with and without
our method. Note that the likelihood losses of the two methods are not directly comparable, even
for the same dataset and base model, due to differences in the likelihood structures. We observe that
while our method introduces more complexity into the likelihood function, there is no evidence that it
significantly prolongs model convergence. On the contrary, our method can speed up convergence for
some datasets in terms of the training steps used. We also report the training time in Table 12.

B.4 Effect of the Number of Time Series during Prediction

The number of time series does not impact training, as the model is trained using a random subset of
B time series at a time, independent of the total number of time series N . However, during prediction,
the batch size can be increased beyond the training batch size of B = 20 for multistep-ahead rolling
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Table 7: Comparison of CRPS accuracy. “w/o” denotes methods without time-dependent errors,
while “w/” indicates our method. Boldface values indicate that models considering time-dependent
errors have better performance. Mean and standard deviation are obtained from 10 runs of each
model.

VAR GARCH GPVar Transformer

w/o w/ w/o w/

exchange_rate 0.0070±0.0000 0.0438±0.0001 0.0171±0.0004 0.0141±0.0003 0.0092±0.0002 0.0081±0.0001
solar 0.9566±0.0022 0.9193±0.0010 0.7097±0.0047 0.7521±0.0027 0.5981±0.0021 0.5627±0.0018
electricity 0.1548±0.0003 0.2778±0.0010 0.0586±0.0004 0.0568±0.0002 0.0665±0.0003 0.0775±0.0001
traffic 19.9208±0.0495 0.4063±0.0002 0.1474±0.0001 0.1296±0.0001 0.1260±0.0001 0.1318±0.0001
wiki 334.6021±0.4936 3.0351±0.0048 0.3712±0.0003 0.3705±0.0004 0.3737±0.0003 0.2937±0.0002
m4_hourly 0.2837±0.0004 0.3567±0.0004 0.1174±0.0002 0.1237±0.0002 0.1306±0.0002 0.1189±0.0002
m1_quarterly N/A N/A 0.3942±0.0030 0.3538±0.0017 0.4448±0.0027 0.4367±0.002
pems03 0.1144±0.0001 0.3533±0.0002 0.0828±0.0000 0.0835±0.0001 0.0826±0.0001 0.0735±0.0000
uber_hourly N/A N/A 0.1488±0.0003 0.1468±0.0002 0.1576±0.0003 0.1762±0.0003

avg. rel. impr. 3.59% avg. rel. impr. 3.13%

Table 8: Comparison of 0.5-risk accuracy. “w/o” denotes methods without time-dependent errors,
while “w/” indicates our method. Boldface values indicate that models considering time-dependent
errors have better performance. Mean and standard deviation are obtained from 10 runs of each
model.

VAR GARCH GPVar Transformer

w/o w/ w/o w/

exchange_rate 0.0049±0.0000 0.0256±0.0001 0.0109±0.0003 0.0095±0.0004 0.0060±0.0001 0.0056±0.0001
solar 0.6140±0.0025 0.5621±0.0008 0.4998±0.0025 0.5246±0.0016 0.4233±0.0017 0.3958±0.0013
electricity 0.1113±0.0005 0.2014±0.0010 0.0405±0.0003 0.0397±0.0002 0.0449±0.0002 0.0505±0.0001
traffic 10.2654±0.0268 0.2722±0.0002 0.0933±0.0001 0.0859±0.0001 0.0803±0.0001 0.0794±0.0001
wiki 171.5009±0.2573 0.7225±0.0067 0.2231±0.0005 0.2236±0.0006 0.2030±0.0005 0.1487±0.0003
m4_hourly 0.1992±0.0003 0.2365±0.0005 0.0807±0.0001 0.0849±0.0001 0.0880±0.0002 0.0808±0.0001
m1_quarterly N/A N/A 0.2196±0.0023 0.1948±0.0005 0.2328±0.0008 0.2327±0.0014
pems03 0.0784±0.0001 0.2028±0.0002 0.0568±0.0000 0.0574±0.0001 0.0569±0.0000 0.0506±0.0000
uber_hourly N/A N/A 0.1035±0.0002 0.1013±0.0002 0.1093±0.0003 0.1234±0.0002

avg. rel. impr. 2.75% avg. rel. impr. 3.88%

Table 9: Comparison of 0.9-risk accuracy. “w/o” denotes methods without time-dependent errors,
while “w/” indicates our method. Boldface values indicate that models considering time-dependent
errors have better performance. Mean and standard deviation are obtained from 10 runs of each
model.

VAR GARCH GPVar Transformer

w/o w/ w/o w/

exchange_rate 0.0021±0.0000 0.0070±0.0000 0.0042±0.0001 0.0057±0.0001 0.0030±0.0000 0.0023±0.0001
solar 0.4676±0.0016 0.4393±0.0008 0.1617±0.0004 0.1597±0.0003 0.2744±0.0015 0.2710±0.0015
electricity 0.0414±0.0003 0.0744±0.0003 0.0211±0.0004 0.0185±0.0002 0.0281±0.0002 0.0366±0.0002
traffic 11.0170±0.0405 0.1689±0.0001 0.0666±0.0001 0.0580±0.0001 0.0609±0.0001 0.0698±0.0000
wiki 174.0756±0.3770 1.5906±0.0044 0.2136±0.0002 0.2048±0.0001 0.2117±0.0006 0.1764±0.0003
m4_hourly 0.1029±0.0003 0.1309±0.0003 0.0452±0.0002 0.0463±0.0001 0.0525±0.0001 0.0475±0.0002
m1_quarterly N/A N/A 0.3049±0.0044 0.2787±0.0027 0.3784±0.0031 0.3621±0.0037
pems03 0.0399±0.0000 0.1783±0.0001 0.0317±0.0000 0.0317±0.0001 0.0304±0.0000 0.0269±0.0000
uber_hourly N/A N/A 0.0533±0.0002 0.0528±0.0001 0.0562±0.0001 0.0638±0.0002

avg. rel. impr. 0.22% avg. rel. impr. 0.91%
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Table 10: Comparison of ES accuracy. “w/o” denotes methods without time-dependent errors, while
“w/” indicates our method. Boldface values indicate that models considering time-dependent errors
have better performance. Mean and standard deviation are obtained from 10 runs of each model.

VAR GARCH GPVar Transformer

w/o w/ w/o w/

exchange_rate 0.1301±0.0002 0.6085±0.0009 0.3674±0.0067 0.2613±0.0047 0.1798±0.0039 0.1438±0.0026
solar (×103) 1.7429±0.0043 1.7758±0.0015 1.6052±0.0095 1.6591±0.0050 1.5307±0.0049 1.4633±0.0044
electricity (×105) 1.0102±0.0052 1.9422±0.0127 0.3569±0.0050 0.3172±0.0028 0.4031±0.0040 0.4754±0.0025
traffic 3.3585±0.010 (×103) 4.4198±0.0020 2.4008±0.0020 2.2408±0.0015 2.2240±0.0021 2.2566±0.0014
wiki (×107) 970.0242±2.5944 2.8857±0.0783 0.1149±0.0027 0.1155±0.0031 0.1236±0.004 0.1075±0.0046
m4_hourly (×103) 4.5109±0.0084 5.1849±0.0089 2.2729±0.0062 2.3611±0.0060 2.5877±0.0098 2.3440±0.0081
m1_quarterly (×102) N/A N/A 3.7565±0.0294 3.3676±0.0147 4.2149±0.0252 4.1596±0.0248
pems03 (×103) 1.3951±0.0009 5.4642±0.0067 1.0535±0.0010 1.0736±0.0015 1.0673±0.0012 0.9394±0.0004
uber_hourly (×103) N/A N/A 0.9035±0.0041 0.8773±0.0027 0.9377±0.0035 1.0566±0.0033

avg. rel. impr. 5.58% avg. rel. impr. 3.21%

Table 11: Comparison of RRMSE accuracy. “w/o” denotes methods without time-dependent errors,
while “w/” indicates our method. Boldface values indicate that models considering time-dependent
errors have better performance. Mean and standard deviation are obtained from 10 runs of each
model.

VAR GARCH GPVar Transformer

w/o w/ w/o w/

exchange_rate 0.0247±0.0000 0.0983±0.0002 0.0699±0.0012 0.0501±0.0010 0.0350±0.0008 0.0265±0.0007
solar 0.9365±0.0025 0.9556±0.0008 0.8195±0.0038 0.8334±0.0019 0.8114±0.0023 0.7761±0.0019
electricity 0.2732±0.0020 0.5584±0.0036 0.1010±0.0013 0.0912±0.0009 0.1130±0.0011 0.1293±0.0007
traffic 0.6312±0.0017 (×103) 0.9894±0.0008 0.5383±0.0005 0.5061±0.0003 0.5025±0.0005 0.5052±0.0003
wiki 0.6519±0.0016 (×104) 6.3386±0.2020 1.0288±0.0029 1.0393±0.0039 0.9292±0.0057 0.8752±0.0027
m4_hourly 0.6163±0.0012 0.6848±0.0015 0.3072±0.0008 0.3168±0.0007 0.3420±0.0011 0.3179±0.0010
m1_quarterly N/A N/A 19.1005±0.1246 17.0277±0.0845 20.2333±0.0830 20.2708±0.0924
pems03 0.3727±0.0003 0.8824±0.0013 0.2796±0.0003 0.2877±0.0005 0.2841±0.0003 0.2502±0.0001
uber_hourly N/A N/A 0.2358±0.0012 0.2282±0.0008 0.2458±0.0010 0.2768±0.0009

avg. rel. impr. 5.48% avg. rel. impr. 2.85%

Table 12: Training cost comparison. “w/o” denotes methods without time-dependent errors, while
“w/” indicates our method.

GPVar Transformer

w/o w/ w/o w/
sec./epoch epochs sec./epoch epochs sec./epoch epochs sec./epoch epochs

exchange_rate 4.60 56 200.27 39 9.73 57 206.49 41
solar 6.18 39 74.16 51 15.37 121 181.26 132
electricity 7.44 71 119.06 94 19.38 63 103.15 65
traffic 10.50 55 225.20 48 28.30 84 247.58 100
wiki 12.45 30 164.81 33 28.16 51 351.06 48
m4_hourly 7.42 67 189.14 43 17.81 43 355.27 65
m1_quarterly 4.24 51 25.82 12 9.84 29 24.99 17
pems03 11.75 62 143.34 57 36.31 78 88.05 53
uber_hourly 6.82 41 174.90 57 17.28 35 188.08 65
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Figure 5: Training loss/validation loss vs training time of the GPVar model. “w/o” denotes methods
without time-dependent errors, while “w/” indicates our method.
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Figure 6: Training loss/validation loss vs training time of the Transformer model. “w/o” denotes
methods without time-dependent errors, while “w/” indicates our method.
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predictions. This allows more information to be utilized, potentially improving both predictions and
error calibration, provided that memory capacity permits. We conducted an additional experiment to
demonstrate the effect of increasing the batch size during inference (Fig. 7).

Figure 7: The influence of the number of time series in a batch on the performance of inference.
"w/o" denotes methods without time-dependent errors, while "w/" indicates our method. We only
show some datasets here because the remaining datasets have fewer than B = 20 time series in the
testing set.

B.5 Additional Model Interpretation

In this section, we provide further insights into how our method improves the base model. We
illustrate these improvements by comparing the cross-correlations of the residuals from models with
and without our method. Additionally, we demonstrate the performance of our method over the
prediction horizon in multistep-ahead forecasting.

B.5.1 Comparison of Residual Correlation

Recall that our method models both the autocovariance of errors Cov(ηi,t−∆, ηi,t) and the cross-lag
covariance Cov(ηi,t−∆, ηj,t) between all pairs of components in the multivariate series. With the
calibration process introduced in §4.2, our method is expected to reduce error cross-correlations,
including autocorrelation and cross-lag correlation. Here, we compare the empirical ACF of the
residuals ηi,t of a single time series i, as well as the empirical cross-correlations of ηt across multiple
time series.

We begin by comparing the ACF of the one-step-ahead prediction residuals with and without our
method. The comparisons are provided for the following datasets: solar (Fig. 8), electricity
(Fig. 9), traffic (Fig. 10), wiki (Fig. 11), m4_hourly (Fig. 12), pems03 (Fig. 13), and
uber_hourly (Fig. 14). We observe that the autocorrelation of the residuals is reduced after
applying our method.

Next, we compare the cross-correlations of the one-step-ahead prediction residuals with and without
our method. The comparisons are provided for the following datasets: electricity (Fig. 15),
traffic (Fig. 16), wiki (Fig. 17), m4_hourly (Fig. 18), pems03 (Fig. 19), and uber_hourly
(Fig. 20). We also observe that the cross-correlations of the residuals are reduced after applying our
method.

B.5.2 Performance Breakdown at Each Forecast Step

To investigate our performance gain at each forecast step, we calculate the CRPSsum for each forecast
step. The results are shown in Fig. 21 for GPVar and Fig. 22 for the Transformer. Note that the
CRPSsum reported in this section may have different scales compared to previous sections because
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Figure 8: ACF comparison of the one-step-ahead prediction residuals with and without our method.
The results depict the prediction outcomes generated by GPVar for four time series in the solar
dataset.
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Figure 9: ACF comparison of the one-step-ahead prediction residuals with and without our
method. The results depict the prediction outcomes generated by GPVar for four time series in
the electricity dataset.
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Figure 10: ACF comparison of the one-step-ahead prediction residuals with and without our method.
The results depict the prediction outcomes generated by GPVar for four time series in the traffic
dataset.
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Figure 11: ACF comparison of the one-step-ahead prediction residuals with and without our method.
The results depict the prediction outcomes generated by GPVar for four time series in the wiki
dataset.
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Figure 12: ACF comparison of the one-step-ahead prediction residuals with and without our method.
The results depict the prediction outcomes generated by GPVar for four time series in the m4_hourly
dataset.
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Figure 13: ACF comparison of the one-step-ahead prediction residuals with and without our method.
The results depict the prediction outcomes generated by GPVar for four time series in the pems03
dataset.

26



0 5 10 15
lags

−1

0

1

AC
F

Time Series A

0 5 10 15
lags

−1

0

1

AC
F

Time Series B

0 5 10 15
lags

−1

0

1
AC

F
Time Series C

0 5 10 15
lags

−1

0

1

AC
F

Time Series D

w/o w/

Figure 14: ACF comparison of the one-step-ahead prediction residuals with and without our
method. The results depict the prediction outcomes generated by GPVar for four time series in
the uber_hourly dataset.
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Figure 15: Cross-correlation comparison of the one-step-ahead prediction residuals with and without
our method. The results depict the prediction outcomes generated by GPVar for four time series in
the electricity dataset.
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Figure 16: Cross-correlation comparison of the one-step-ahead prediction residuals with and without
our method. The results depict the prediction outcomes generated by GPVar for four time series in
the traffic dataset.
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Figure 17: Cross-correlation comparison of the one-step-ahead prediction residuals with and without
our method. The results depict the prediction outcomes generated by GPVar for four time series in
the wiki dataset.
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Figure 18: Cross-correlation comparison of the one-step-ahead prediction residuals with and without
our method. The results depict the prediction outcomes generated by GPVar for four time series in
the m4_hourly dataset.
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Figure 19: Cross-correlation comparison of the one-step-ahead prediction residuals with and without
our method. The results depict the prediction outcomes generated by GPVar for four time series in
the pems03 dataset.
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Figure 20: Cross-correlation comparison of the one-step-ahead prediction residuals with and without
our method. The results depict the prediction outcomes generated by GPVar for four time series in
the uber_hourly dataset.

they are not normalized. In multistep-ahead forecasting, since the predicted values are used as
inputs for subsequent predictions within the prediction range, the residuals accumulate the effects
of inaccuracies from previous steps. Therefore, the performance improvement depends not only on
our modeling of error correlations but also on the properties of the residuals. These properties can
be influenced by the absolute and relative time of the forecast and the seasonality of the data. For
data without strong seasonality, residuals tend to be larger when predicting further ahead, making
error accumulation more apparent. Conversely, for data with strong seasonality, the impact of
error accumulation can vary. We observe that, in most scenarios, CRPSsum is reduced at the early
forecasting stages. As predictions extend further into the future, some datasets (e.g., traffic in
Fig. 21) show decreased improvement, likely due to seasonality effects. Conversely, other datasets
(e.g., wiki in Fig. 21) exhibit larger improvements further into the future, possibly because the
residuals accumulate over the steps.
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Figure 21: Step-wise CRPSsum accuracy of GPVar. “w/o” denotes methods without time-dependent
errors, while “w/” indicates our method.

B.6 Alternative Parametrization of Ct

B.6.1 Learnable Lengthscales

In this paper, the lengthscales are fixed when generating the correlation matrix Ct, and the flexibility
of Ct comes from dynamically generating the component weights of the kernel matrices. Making
these lengthscales learnable parameters to find the optimal set of {lm}M−1

m=1 is another approach
we can explore to increase modeling flexibility. Based on the best model identified in Table 1, we
experiment with treating the lengthscales as learnable parameters, jointly optimized with the base
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Figure 22: Step-wise CRPSsum accuracy of Transformer. “w/o” denotes methods without time-
dependent errors, while “w/” indicates our method.

model. The results are shown in Table 13. We do not observe significant improvement from learnable
lengthscales.

Table 13: Comparison of CRPSsum accuracy. “w/o” denotes methods without time-dependent
errors, while “w/” indicates our method. “w/ (l)” indicates the lengthscales are learnable parameters.
Boldface values indicate that models considering time-dependent errors have better performance.
Mean and standard deviation are obtained from 10 runs of each model.

GPVar Transformer

w/o w/ w/ (l) w/o w/ w/ (l)

exchange_rate 0.0068±0.0004 0.0117±0.0004 0.0045±0.0001 0.0055±0.0002 0.0042±0.0002 0.0072±0.0002
solar 0.7103±0.0065 0.6929±0.0039 0.7727±0.0040 0.4960±0.0034 0.4132±0.0027 0.4138±0.0023
electricity 0.0430±0.0005 0.0403±0.0004 0.0351±0.0003 0.0494±0.0004 0.0638±0.0003 0.0858±0.0006
traffic 0.1095±0.0002 0.0649±0.0002 0.1297±0.0003 0.0717±0.0002 0.0981±0.0002 0.0950±0.0002
wiki 0.1745±0.0008 0.0743±0.0009 0.4839±0.0021 0.0841±0.0013 0.0500±0.0005 0.0472±0.0004
m4_hourly 0.0613±0.0004 0.0358±0.0002 0.0527±0.0003 0.0651±0.0004 0.0616±0.0003 0.0355±0.0003
m1_quarterly 0.3942±0.0030 0.3538±0.0017 0.3534±0.0017 0.4448±0.0027 0.4367±0.0028 0.3709±0.0120
pems03 0.0503±0.0001 0.0491±0.0002 0.0456±0.0001 0.0490±0.0001 0.0386±0.0001 0.0330±0.0001
uber_hourly 0.0342±0.0006 0.0222±0.0004 0.0218±0.0003 0.0632±0.0003 0.0513±0.0005 0.0969±0.0005

B.6.2 Using Autocorrelations of an AR(p) process

One could parameterize Ct as fully learnable, positive definite symmetric Toeplitz matrices. For
instance, an AR(p) process has an autocorrelation matrix with a Toeplitz structure, allowing the
modeling of negative correlations. This alternative approach may offer more flexibility in capturing
complex correlation patterns in multivariate time series data. The autocorrelations of an AR(p)
process can be obtained by solving a set of equations known as the Yule-Walker equations [46]. For
example, if we consider an AR(2) process and let ρk be the autocorrelation at lag k:

zt = ϕ1zt−1 + ϕ2zt−2 + ϵt. (32)

where ϕ1 and ϕ2 are the coefficients. We have ρ0 = 1 by definition and:

ρ1 = ϕ1ρ0 + ϕ2ρ1,

. . .

ρk = ϕ1ρk−1 + ϕ2ρk−2, k ≥ 2.

(33)

Since ρ0 = 1, we can solve for ρ1:

ρ1 =
ϕ1

1− ϕ2
, (34)
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and for any k ≥ 2, we can solve ρk iteratively by:

ρk = ϕ1ρk−1 + ϕ2ρk−2, k ≥ 2. (35)

The collection {ρ0, ρ1, . . . , ρk, . . . , ρD−1} forms the first row or column of a Toeplitz matrix and can
be used to parameterize Ct. We perform a hyperparameter search to find the best AR order p based
on the validation loss. As shown in Table 14, while the correlation matrix Ct parameterized by an AR
process shows promise in modeling both positive and negative correlations, it does not empirically
provide an overall improvement compared to the kernel method used in this paper. This may be
because cross-correlations in time series are predominantly positive. However, the AR method does
show significant improvements on certain datasets where the kernel method does not perform well.
For example, the AR method greatly improves GPVar on exchange_rate and the Transformer on
electricity.

Table 14: Comparison of CRPSsum accuracy. “w/o” denotes methods without time-dependent errors,
while “w/” indicates our method. “w/ (AR)” indicates Ct is parameterized by an AR process.
Boldface values indicate that models considering time-dependent errors have better performance.
Mean and standard deviation are obtained from 10 runs of each model.

GPVar Transformer

w/o w/ w/ (AR) w/o w/ w/ (AR)

exchange_rate 0.0068±0.0004 0.0117±0.0004 0.0051±0.0002 0.0055±0.0002 0.0042±0.0002 0.0088±0.0004
solar 0.7103±0.0065 0.6929±0.0039 0.5923±0.0042 0.4960±0.0034 0.4132±0.0027 0.3362±0.0025
electricity 0.0430±0.0005 0.0403±0.0004 0.0433±0.0007 0.0494±0.0004 0.0638±0.0003 0.0252±0.0002
traffic 0.1095±0.0002 0.0649±0.0002 0.1095±0.0004 0.0717±0.0002 0.0981±0.0002 0.0878±0.0003
wiki 0.1745±0.0008 0.0743±0.0009 0.2375±0.0013 0.0841±0.0013 0.0500±0.0005 0.0512±0.0008
m4_hourly 0.0613±0.0004 0.0358±0.0002 0.0298±0.0002 0.0651±0.0004 0.0616±0.0003 0.0680±0.0003
m1_quarterly 0.3942±0.0030 0.3538±0.0017 0.1692±0.0029 0.4448±0.0027 0.4367±0.0028 0.4348±0.0028
pems03 0.0503±0.0001 0.0491±0.0002 0.0787±0.0002 0.0490±0.0001 0.0386±0.0001 0.0656±0.0001
uber_hourly 0.0342±0.0006 0.0222±0.0004 0.0375±0.0004 0.0632±0.0003 0.0513±0.0005 0.0770±0.0007

B.7 Alternative Error Assumptions

A more suitable likelihood function can regularize the training process, potentially reducing residual
correlations. For example, assuming the errors follow a multivariate t-distribution improves the
robustness of the model to outliers. Additionally, a stronger base model can help produce residuals
that are more independent. Based on these considerations, we designed our approach to adapt
dynamically to varying levels of error correlation. The weighted correlation matrix assigns greater
weight to the identity matrix when the errors exhibit lower correlation.

We also trained the baseline models using the likelihood of the multivariate t-distribution, and the
results are shown in Table 15. While using an alternative distribution can lead to better performance
on certain datasets when our method is not applied, we observed that our method effectively closes
the performance gap in cases where the multivariate Gaussian assumption is outperformed by the
t-distribution.

An important feature of our method is the ability to use a subset of time series in each training
batch for model optimization, which enhances scalability. For the multivariate t-distribution, the
distribution of these subsets of zt should have the same degrees of freedom as the full distribution of
zt. However, since the degrees of freedom are treated as an additional output of the model in each
training batch, they are not guaranteed to be consistent across batches. While this is not problematic
for deep learning, it violates the marginalization property of the t-distribution from a statistical
standpoint.

We chose Gaussian noise for its beneficial properties, including its marginalization rule and well-
defined conditional distribution, both essential for statistically consistent model training and reliable
inference. To address model misspecification, a more effective approach could involve first trans-
forming the original observations into Gaussian-distributed data using a Gaussian Copula [3], and
then applying our method.

31



Table 15: CRPSsum accuracy comparison. "w/o" denotes methods without time-dependent errors,
while "w/" indicates our method. Bold values show models with time-dependent errors performing
better. Mean and standard deviation are obtained from 10 runs of each model. "N/A" indicates that
the model could not be properly fitted..

GPVar Transformer

Gaussian (w/o) Gaussian (w/) t-distribution (w/o) Gaussian (w/o) Gaussian (w/) t-distribution (w/o)

exchange_rate 0.0068±0.0004 0.0117±0.0004 0.0159±0.0005 0.0055±0.0002 0.0042±0.0002 0.0101±0.0003
solar 0.7103±0.0065 0.6929±0.0039 N/A 0.4960±0.0034 0.4132±0.0027 N/A
electricity 0.0430±0.0005 0.0403±0.0004 0.0467±0.0004 0.0494±0.0004 0.0638±0.0003 0.0466±0.0002
traffic 0.1095±0.0002 0.0649±0.0002 0.0679±0.0002 0.0717±0.0002 0.0981±0.0002 N/A
wikipedia 0.1745±0.0008 0.0743±0.0009 0.0730±0.0004 0.0841±0.0013 0.0500±0.0005 0.1979±0.0005
m4_hourly 0.0613±0.0004 0.0358±0.0002 0.0365±0.0003 0.0651±0.0004 0.0616±0.0003 0.0665±0.0003
m1_quarterly 0.3942±0.0030 0.3538±0.0017 0.3550±0.0084 0.4448±0.0027 0.4367±0.0028 0.4466±0.0044
pems03 0.0503±0.0001 0.0491±0.0002 0.0679±0.0002 0.0490±0.0001 0.0386±0.0001 0.0529±0.0002
uber_hourly 0.0342±0.0006 0.0222±0.0004 0.0666±0.0010 0.0632±0.0003 0.0513±0.0005 0.0340±0.0004

B.8 Qualitative Results on Forecasting

In this section, we provide qualitative analysis of the actual prediction performance by visualizing the
predictions.
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Figure 23: Visualization of forecasting results on exchange_rate using GPVar with our method.
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Figure 24: Visualization of forecasting results on solar using GPVar with our method.
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Figure 25: Visualization of forecasting results on electricity using GPVar with our method.
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Figure 26: Visualization of forecasting results on traffic using GPVar with our method.
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Figure 27: Visualization of forecasting results on wiki using GPVar with our method.
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Figure 28: Visualization of forecasting results on m4_hourly using GPVar with our method.
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Figure 29: Visualization of forecasting results on pems03 using GPVar with our method.
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Figure 30: Visualization of forecasting results on uber_hourly using GPVar with our method.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and/or introduction have clearly stated the claims made, including
the contributions made in the paper and important assumptions and limitations.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations of the work in the "Conclusion" section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: We do not have theoretical result in this study.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have fully disclosed all the information needed to reproduce the main
experimental results of the paper in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: The code will be released after the paper is accepted. However, we have
provided a sufficient amount of experimental details in the Appendix.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specified all the training and test details necessary to understand the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We ran all of our experiments for 10 times to calculate the standard deviation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper has indicated the type of compute workers CPU or GPU, internal
cluster, or cloud provider, including relevant memory and storage.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed societal impacts in the last section of this paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets (e.g., code, data, models), used in
the paper, have been properly credited. The license and terms of use have been explicitly
mentioned and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

42


	Introduction
	Probabilistic Time Series Forecasting
	Related Work
	Probabilistic Time Series Forecasting
	Modeling Correlated Errors

	Our Method
	Training with Correlated Errors
	Multistep-ahead Rolling Prediction

	Experiments
	Evaluation of Predictive Performance
	Model Interpretation

	Discussion
	Conclusion and Broader Impacts
	Experimental Details
	Datasets
	Multivariate Likelihood with Correlated Errors
	Training Procedure
	Naive Baseline Description
	Hyperparameter Search
	Base Model Description and Input Features

	Metrics and Additional Results
	Metric Definition
	Continuous Ranked Probability Score
	Quantile Loss
	Energy Score
	Root Relative Mean Squared Error

	Results on Other Forecasting Metrics
	Training Dynamics
	Effect of the Number of Time Series during Prediction
	Additional Model Interpretation
	Comparison of Residual Correlation
	Performance Breakdown at Each Forecast Step

	Alternative Parametrization of bold0mu mumu CC1 CCCCt
	Learnable Lengthscales
	Using Autocorrelations of an AR(p) process

	Alternative Error Assumptions
	Qualitative Results on Forecasting


