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Abstract:
Informative path planning (IPP) is an NP-hard problem, which aims at planning
a path allowing an agent to build an accurate belief about a quantity of interest
throughout a given search domain, within constraints on resource budget (e.g.,
path length for robots with limited battery life). IPP requires frequent online re-
planning as this belief is updated with every new measurement (i.e., adaptive IPP),
while balancing short-term exploitation and longer-term exploration to avoid sub-
optimal, myopic behaviors. Encouraged by the recent developments in deep re-
inforcement learning, we introduce CAtNIPP, a fully reactive, neural approach
to the adaptive IPP problem. CAtNIPP relies on self-attention for its powerful
ability to capture dependencies in data at multiple spatial scales. Specifically, our
agent learns to form a context of its belief over the entire domain, which it uses
to sequence local movement decisions that optimize short- and longer-term search
objectives. We experimentally demonstrate that CAtNIPP significantly outper-
forms state-of-the-art non-learning IPP solvers in terms of solution quality and
computing time once trained, and present experimental results on hardware.

Keywords: deep RL, informative path planning, context-aware decision-making

1 Introduction

In many real-life robotic deployments that involve data acquisition, such as mapping/exploration
of unknown areas for inspection or search-and-rescue applications, environmental monitoring, and
surface inspection/reconstruction [1, 2, 3], an autonomous robot needs to plan a path to visit a given
domain and obtain measurements about a scalar field of interest, without a priori knowledge of the
true underlying distribution of this information. That is, starting from a uniform distribution with
high uncertainty, the agent must construct a belief over the distribution of interest throughout the
domain (e.g., target likelihood, temperature, surface roughness) based on successive measurements
along its path. This problem is known as the informative path planning (IPP) problem. Specifically,
IPP aims to plan a path that maximizes information gain, while satisfying a budget constraint (e.g.,
path length for robots with limited battery life). IPP problems can be further classified as either
non-adaptive or adaptive. Non-adaptive solvers pre-plan a complete path offline and execute this
pre-determined path, without any replanning upon obtaining new measurements online [4, 5, 6]. On
the other hand, adaptive solvers replan the search path frequently as the agent’s belief is updated
based on new measurements [1, 2, 7]. While our approach can also be used for non-adaptive IPP, we
focus on the more general adaptive IPP problem for its wider applicability to real-life robotic tasks.

Differently from general path planning problems, where the agent is often assigned a goal position,
IPP requires the agent to identify and visit all potential interesting areas throughout the environment.
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Therefore, efficient IPP solvers must reason about the entire agent’s belief to make non-myopic
decisions [8], which balance short-term exploitation of known interesting areas with longer-term
exploration of unknown areas in the domain. Many IPP solvers rely on computationally expensive
means to optimize long-horizon trajectories [4, 5, 7]. Trading off solution quality in favor of lower
computing times, more recent approaches have embraced sampling-based planning [7, 9, 10].

(a) (b) (c) (d)
Figure 1: CAtNIPP’s trajectory sampling variant for adaptive
IPP, showing the path executed by the agent so far (black), and
the long-horizon trajectory that was just (re-)planned (white), of
which the red portion will be executed until the next replanning
step. a) True interest map (unknown to the agent), b) Predicted
interest map from all measurements so far, c) Associated pre-
dicted standard deviation, and d) Predicted high-interest areas.

To further improve computing
time and solution quality, we in-
troduce CAtNIPP, a deep rein-
forcement learning (dRL) based
framework for 2D adaptive IPP.
We first decrease the complexity
of our continuous-space search
domain by generating a proba-
bilistic roadmap [11], i.e., a ran-
dom sparse graph that covers the
domain. We then associate this
roadmap with the agent’s belief,
and formulate adaptive IPP as a
sequential decision-making prob-
lem on this graph. We propose
and train an attention-based neural network that outputs a policy to select which neighboring node
to visit next, thus allowing us to iteratively plan an (adaptive) informative path. There, self-attention
over the graph nodes allows the agent to construct a global context, by embedding its entire belief
into local decision features while identifying dependencies between nodes/areas at different spatial
scales. In doing so, the neural-based, reactive nature of our approach drastically improves planning
time, compared to planners that optimize full trajectories, while context-awareness helps improve
solution quality by allowing our agent to identify and sequence non-myopic decisions that near-
optimally balance short- and long-term objectives. The main contributions of this work are:
• We propose a new fully reactive, policy-based dRL framework for adaptive IPP, which signifi-

cantly outperforms state-of-the-art IPP solvers in terms of both solution quality and computing
time. In CAtNIPP, the agent learns a subtle global representation of its entire belief over the do-
main, that allows it to sequence non-myopic decisions that can achieve longer-term objectives.

• We further propose to rely on receding-horizon, sampling-based trajectory optimization (Fig. 1)
to output higher-quality, longer-horizon trajectories by leveraging the nature of our stochastic
policies, while remaining tractable and usable in real time. We demonstrate these variants of
CAtNIPP in simulation as well as on hardware on a light-intensity-based IPP task.

2 Related Work

To reduce the computing time and improve solution quality, most recent IPP methods have relied on
randomized, sampling-based methods. For non-adaptive IPP solvers, Hollinger et al. [9] introduced
the RIG-tree algorithm, which utilizes RRT-star (a Rapidly-exploring Random Tree variant [12]) to
randomly build a tree structure used to explore the environment and maximize information gain.
Arora et al. [5] combined Constraint Satisfaction and Travelling Salesman Problems to introduce
Randomized Anytime Orienteering (RAOr). RAOr iteratively samples the search space and solves
a TSP instance to visit all sampled locations within the given budget constraints. According to
Popović et al. [1], despite RIG-tree and RAOr not having been initially designed for adaptive IPP,
they only require seconds to plan, which allows them to be generalized to adaptive online replanning
scheme in a traditional receding-horizon manner. Regarding solvers initially designed for adaptive
IPP, Hitz et al. [7] proposed an evolutionary strategy to achieve state-of-the-art performance. They
applied CMA-ES to generate candidate solutions from a multi-variate Gaussian distribution, where
the mean and covariance matrices are adaptively updated according to the evaluation of the candi-
dates. Apart from these conventional solvers, there has been a couple of recent, value-based RL
solvers for IPP. Wei et al. [6] proposed an RNN-based solver, which reasons about the positions
of measurement (for their predicted reduction in uncertainty) but without considering measurement
values, thus limiting its use to non-adaptive IPP problems. Ruckin et al. [13] proposed a specialized
CNN-based solver for 3D IPP, developed for a specific problem statement that assumes image-like
measurements and relies on Kalman Filtering for belief update.
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3 Background

In this section, we first introduce Gaussian Processes (GPs), which are used to model the agent’s
belief (i.e., predicted interest map). We then formulate the general definition of our IPP problem
based on such a GP. Finally, we describe the adaptive replanning requirement for adaptive IPP.

Gaussian Process In IPP, interest (e.g., target distribution, temperature, or radiation level), is asso-
ciated with the 2D environment E ⊂ R2 and modeled as a continuous function ζ : E −→ R. Gaussian
Processes have been widely used to represent such a continuous interest distribution, by providing
a natural means to interpolate between discrete measurements [1, 6, 7], so that ζ ≈ GP(µ, P ).
Specifically, given a set of n′ locations X ∗ ⊂ E at which interest is to be inferred, a set of n
observed locations X ⊂ E and the corresponding measurements set Y , the mean and covariance
of the GP are regressed as: µ = µ(X ∗) + K(X ∗,X )[K(X ,X ) + σ2

nI]−1(Y − µ(X )), P =
K(X ∗,X ∗)−K(X ∗,X )[K(X ,X ) + σ2

nI]−1 ×K(X ∗,X )T , where K(·) is a pre-trained/selected
kernel function, σ2

n is a hyperparameter describing the measurement noise, and I is the n×n identity
matrix. In this work, following [1, 10], we use the Matérn 3/2 kernel function.
Informative Path Planning The general IPP problem aims to find an optimal trajectory ψ∗ in the
space of all available trajectories Ψ for maximum gain in some information-theoretic measures:

ψ∗ = argmax
ψ∈Ψ

I(ψ), s.t. C(ψ) ≤ B, (1)

where I : ψ −→ R+ is the information gained from the measurements obtained along the trajectory
ψ , C : ψ −→ R+ maps a trajectory ψ to its associated execution cost, and B ∈ R+ is the given
path-length budget. Following [5, 6, 7], the trajectory ψ is given a start and a destination but we
note that our method can be easily extended to remove the need for a destination. To evaluate the
information gained from measurements, following [1, 4], we use the variance reduction of the GP to
represent information gain: I(ψ) = Tr(P−) − Tr(P+), where Tr(·) denotes the trace of a matrix,
P− and P+ are the prior and posterior covariances, which are obtained before and after taking
measurements along the trajectory ψ. In this work, to model the data collection of common sensors,
we let the agent take a measurement every time it has traveled a fixed distance from the previous
measurement, thus the number of measurement is only determined by the path length budget B.
Adaptive Replanning If the information gain only depends on the covariance P , i.e., the location
of measurements, the objective is considered non-adaptive since the trajectory could be entirely
planned offline ahead of time, based on the agent’s initial (often uniform) belief. However, in real-
world applications such as search-and-rescue, we usually aim to discover regions of high interest
and further cover (exploit) them. To this end, following [1, 7], we rely on the upper confidence
bound to define high-interest areas XI : XI = {xi ∈ X ∗|µ−i + βP−i,i ≥ µth}, where µ−i and P−i,i are
the prior mean and variance of the GP at the measurement location xi. µth and β ∈ R+ are used
to control the threshold and confidence interval respectively (µth = 0.4, β = 1, in practice). By
replacing X ∗ with XI in the covariance calculation, we restrict the information gain in the objective
function Eq. (1) to the high-value areas predicted by the GP. This formulation makes the IPP objec-
tive dependent on the measurement values in addition to their location, making the problem truly
adaptive. Therefore, frequent online replanning of the trajectory is required to minimize uncertainty
in the (now dynamically defined) high-interest areas XI .

4 Method

In this section, we cast adaptive IPP as an RL problem and detail our attention-based neural network,
as well as our long-horizon planning strategy to further boost the performance of a learned policy.

4.1 IPP as a RL Problem

Sequential Decision-making Problem First, to avoid the complexity associated with a continuous
search domain, we rely on probabilistic roadmaps (PRM) [11] to build a route graph G = (V,E),
with V a set of uniformly-random-sampled nodes over the domain, and E a set of edges. Each node
vi = (xi, yi) ∈ V is connected to its k nearest neighboring nodes and v0 is the destination. Then,
to solve the adaptive IPP using RL, we formulate it as a sequential decision-making problem on this
graph. That is, we let agent interact with the environment by choosing which node to move to from
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amongst the neighbors of its current node. Movement between nodes happens as a straight line. As a
result, the agent’s trajectory ψ can be represented as an ordered set (ψs, ψ1, ..., ψd),∀ψi ∈ V , where
ψs and ψd denote the start and destination nodes respectively. As a result, the trajectory is adaptively
planned, since it is constructed from sequential movements, each depending on the agent’s global
belief, which gets updated online based on new measurements.
Observation The observation st = {G′, vc, Bc, ψs,c,M} of our IPP agent consists of three parts:
the augmented graph, the planning state, and the budget mask.
The augmented graph G′ = (V ′, E) is used to describe the environment modeled by the GP. It
is a combination of the route graph G = (V,E) and the GP GP(µ, P ), where each node v′i =
(vi, µ(vi), P (vi)) ∈ V ′. This augmented graph stores the information about the agent’s global belief
and determines the agent’s local action space. The planning state is defined by {vc, Bc, ψs,c}, where
vc ∈ V is the current position of the agent, Bc = B − C(ψs,c) is the remaining budget, and ψs,c =
(ψs, ψ1, ..., vc) is the executed trajectory so far. The budget mask M is a binary vector containing
one element for each node in the route graph, stating whether selecting this node at the current step
would result in violating the budget constraint. To obtain this mask, we pre-solve the shortest path
problem using Dijkstra [14] to compute the minimal cost to the current node and to the destination
from each node vi. We then compute a virtual budget B∗i = Bc − min C(vc, vi) − min C(vi, ψd)
for each node based on the planning state. Finally, according to B∗, we compute each entry of M

as Mi =

{
1 if B∗i < 0
0 otherwise.

That is, actions (i.e., neighboring nodes) that would inevitably result

in budget overruns are specifically filtered out by the budget mask Mi, which iteratively guarantees
the completeness of CAtNIPP by forcing the agent towards the destination via the shortest possible
path when the budget is about to run out.
Action Each time the agent reaches a node, the GP is updated based on all measurements obtained
so far, and the agent immediately selects its next action. Specifically, at each such decision step
t, given the agent’s observation, our attention-based neural network outputs a stochastic policy to
select the next node to visit out of all neighboring nodes. The policy is parameterized by the set of
weights θ: πθ(ψt = vi, (vc, vi) ∈ E | st), where E is the edge set of the underlying graph.
Reward At each decision step, to maximize information gain, the agent is given a positive reward
based on the reduction in uncertainty associated with its most recent action: rt = (Tr(P t−1) −
Tr(P t))/Tr(P t−1), where we experimentally found that scaling the reward by Tr(P t−1) helped
stabilize training by keeping the rewards consistent in magnitude. However, this normalization in-
troduces a deviation between the training objective and the IPP objective. Therefore, at the last
decision step of each episode, we introduce a negative correction reward rd = −α · Tr(P d), where
P d is the covariance after executing the whole trajectory ψ, and α is a scaling factor (1 in prac-
tice). We empirically observed that this correction reward helps mitigate the bias introduced by the
(dynamic) normalization used in our dense rewards, towards the true IPP reward.

4.2 Neural Network Structure

The proposed attention-based neural network consists of an encoder and a decoder modules (see
Fig. 2). We use the encoder to model the observed environment by learning the dependencies be-
tween nodes in the augmented graph G′, i.e., the context. Based on the features extracted by the
encoder, the planning state {vc, Bc, ψs,c}, and the budget mask M , the decoder then outputs the
policy over which neighboring node to visit next. To handle graphs with arbitrary topologies, our
encoder uses a standard Transformer attention layer with graph Positional Encoding (PE) based on
the graph Laplacian’s eigenvector [15], thus providing the neural network with the ability to reason
about node connectivity. While general policy-based RL agents have a fixed action space, our de-
coder is inspired by the Pointer Network [16] to allow the dimension of the final policy to depend
on the number of neighboring nodes, allowing our network to generalize to arbitrary graphs.

Attention Layer The Transformer attention layer [17] is used as the fundamental building block
in our model. The input of such an attention layer consists of the query source hq and the key-
and-value source hk,v . The attention layer updates the query source using the weighted sum of the
value vector, where the attention weight depends on the similarity between key and query. We com-
pute the updated feature h′i as: qi = WQhqi , ki = WKhk,vi , vi = WV hk,vi , uij =

qTi ·kj√
d
, aij =

euij∑n
j=1 e

uij , h
′
i =

∑n
j=1 aijvj , where WQ,WK ,WV are d× d learnable matrices. The updated fea-
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Figure 2: CAtNIPP’s attention-based neural network. The encoder module relies on self-
attention to identify and represent the global dependencies between nodes in the agent’s belief (i.e.,
augmented graph) as context-aware node features. Relying on the current and neighboring context-
aware node features (grey dashed circle), the planning state, and the mask, the decoder relies on
cross-attention to output the final, context-aware policy (and value estimate during training).

tures are then passed through the feed forward sublayer, composed of two linear layers and a ReLU
activation. As in [17], we use layer normalization and residual connections in these two sublayers.
Encoder The encoder is used to model the observed environment by learning dependen-
cies between nodes in the augmented graph G′. We first embed the node inputs V ′

into d-dimensional node features hni and add Laplacian positional embeddings: hni ={
WLv′i + bL +WPEλi + bPE i > 0
WDv′0 + bD +WPEλ0 + bPE i = 0

where λi is the pre-computed k-dimensional Laplacian

eigenvector, and WL,WD ∈ Rd×4, WPE ∈ Rd×k, bL, bD, bPE ∈ Rd are learnable parameters.
Note that the destination node v′0 is embedded by another linear layer. The node features are then
passed to an attention layer, where hq = hk,v = hn, as is commonly done in self-attention mecha-
nisms. We term the output of the encoder, hen, the context-aware node features, since each of these
updated node features heni contains the dependencies of v′i with all other nodes.
Decoder The decoder is used to output a policy based on the context-aware node features, the
planning state {vc, Bc, ψs,c}, and the budget mask M . We first merge the information about the
budget and the high-interest areas to the context-aware node features: ĥeni = WB [heni , B

∗
i , µth] +

bB , where WB ∈ Rd×(d+2) and bB ∈ Rd are learnable parameters. Then, according to the current
position vc and the edge set E, we select the current node feature henc , the neighboring features
henn from ĥen, and the neighbor mask Mn from M . After that, the current node feature henc are
passed to a LSTM block, where the hidden state and cell state are input from previous current node
feature along the executed trajectory ψs,c. The LSTM output ĥenc is merged with the destination
feature ĥen0 to compute the enhanced current node feature hec: hec = WC [ĥenc , ĥ

en
0 ] + bC , where

WC ∈ Rd×2d and bC ∈ Rd are learnable parameters. We feed the enhanced node current feature and
the neighboring features to an attention layer, where hq = hec and hk,v = hn. We denote the output
of this attention layer ĥec, which is simultaneously passed to a linear layer to output the state value
V (st), and to the final attention layer with the neighboring features, where hq = ĥec and hk,v = hn.
For this final attention layer, we directly treat the attention weights ai as the final policy ui for the IPP
agent, where invalid nodes are explicitly masked using Mn. The masked ui is finally normalized to
yield the probability distribution π for the next node to visit: πi = πθ(ψt = vi|st) = eui/

∑n
i=1 e

ui .

4.3 Training

Our model is trained using PPO [18]. At the beginning of each training episode, we average 8
to 12 random 2-dimensional Gaussian distributions in the unit square [0, 1]2, to construct the true
interest map. The robot’s belief starts as a uniform distribution GP(0, P 0), P 0

i,i = 1. The start and
destination positions are randomly generated in [0, 1]2. During training, the number of nodes for our
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Table 1: Comparison with SOTA IPP solvers (10 trials on 30 instances for each budget). Tr(P) is
the average covariance matrix trace after running out of budget (standard deviation in parentheses).
T(s) is the average total planning time in seconds.

Method Budget 6 Budget 8 Budget 10 Budget 12
Tr(P) T(s) Tr(P) T(s) Tr(P) T(s) Tr(P) T(s)

RIG-Tree 32.69(±12.86) 132.36 15.44(±5.49) 192.74 7.74(±3.01) 240.58 4.80(±2.21) 291.31
RAOr 26.80(±15.16) 17.12 11.17(±3.87) 40.13 6.28(±2.25) 73.60 4.71(±1.13) 127.44
CMA-ES 17.44(±6.09) 124.23 10.48(±5.38) 181.41 6.77(±3.74) 241.47 4.51(±2.42) 268.69
g.(800) 22.86(±6.42) 1.23 7.72(±2.77) 1.68 3.97(±1.46) 2.20 2.70(±1.18) 2.52
ts.(4) 20.19(±3.88) 90.31 7.04(±1.44) 123.56 3.82(±0.61) 158.44 2.52(±0.41) 194.97

graph is randomized within [200, 400] for each episode, the number of neighboring nodes is fixed to
k = 20, and the budget is randomized within [6, 8]. A measurement is obtained every time the agent
has traveled 0.2 from the previous measurement. We set the max episode length to 256 time steps,
and the batch size to 1024. We use the Adam optimizer with learning rate 10−4, which decays every
32 steps by a factor of 0.96. For each training episode, PPO runs 8 iterations. Our model is trained
on a workstation equipped with a i9-10980XE CPU and four NVIDIA RTX 3090 GPUs. We train
our model utilizing Ray, a distributed framework for machine learning [19]. We run 32 IPP instances
in parallel to accelerate the data collection and training, and need around 24h to converge.12

4.4 Trajectory Sampling

Until now, we discussed solving the IPP in the standard RL manner, i.e., iteratively selecting the
next node to visit each time the agent reaches a node. Inspired by conventional non-learning IPP
solvers, we further propose a receding-horizon strategy for our RL agent, where anm-step trajectory
is output at each (re)planning step but only a portion of it is executed before the next replanning step
(see Fig. 1). We utilize the learned policy for further optimization by sampling, which has been
shown to be a reliable optimization strategy for learning-based routing planner [20, 21]. That is, at
each planning step, based on the learned policy, our trajectory sampling method parallely plans a
number s of m-step trajectories, and then selects the trajectory that maximizes the information gain
as the final trajectory ψ∗. During the m-step planning process, only the covariance of the GP can be
predicted, since no measurement is actually taken before executing the trajectory.

5 Experiments

In this section, we compare CAtNIPP with state-of-the-art (SOTA) baselines IPP solvers on a fixed
set of randomly generated environments with identical randomized conditions. We also present
numerical and experimental validation of CAtNIPP on an light-intensity-based adaptive IPP task. In
our supplemental material, we also tested a number of variants of our model and its generalizability.

5.1 Comparison Results

We compare CAtNIPP against a number of state-of-the-art IPP solvers: (a) CMA-ES [7] (we use
linear B-spline for the CMA-ES solver for a fair comparison), (b) RAOr [5], and (c) RIG-tree [9].
Following [1], we implement RAOr and RIG-tree in a receding-horizon manner to make them adap-
tive. All considered solvers (except our fully reactive, greedy variants) replan paths after executing
0.4 of their previously planned trajectory. Starting from hyperparameters suggested by their original
papers, we tuned these solvers to output highest-quality solutions, while keeping the total planning
time similar to our trajectory sampling variants. This enables us to offer a fair comparison between
our methods and these baselines. CAtNIPP’s greedy and trajectory sampling variant are denoted
by g.(n) and ts.(m) respectively, where n is the number of nodes for the route graph and m is the
number of trajectories sampled at each planning step (n is fixed to 400 for ts.). Greedy variants
work in the standard RL manner, i.e., the agent always selects the action with highest activation in
its policy. Trajectory sampling variants plan a 15-step trajectory and execute the first 3 steps before
replanning (in practice, ∼ 0.4 of traveled distance), following the receding-horizon setup in [7].

1Actually, 12 hours of training on one NVIDIA RTX 2080 (batch size 256) can yield similar performance.
2Our full code and trained model can be found at: https://github.com/marmotlab/CAtNIPP
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Figure 3: Comparison with SOTA IPP solvers
for a fixed budget of 10 (10 trials on 30 in-
stances). Our two CAtNIPP variants significantly
outperform all solvers in reducing uncertainty
(left) as well as root mean square error (right).

Figure 4: Attention weights visualization
from the trained encoder. The query source is
the node at the current position (black) and the
keys source are nodes in the augmented graph
(blue). One attention head and three attention
heads pay attention to longer- and shorter-term
high-interest areas respectively.

We report the uncertainty remaining (covariance matrix trace Tr(P ) in the high-interest areas XI ,
lower is better) after finishing the mission, as well as the total planning time in Table 1. The evolution
of the remaining uncertainty and root mean square error compared to the ground truth ||µ− ζ||2 are
plotted in Fig. 3. Upon closer inspection, we note that RAOr tends to plan trajectories that exploit
nearby high-interest areas, thus reducing the uncertainty slowly in the early stage and more rapidly
later on. RIG-tree, on the other hand, has a strong tendency for exploration, which leads to a fast
uncertainty reduction earlier on, but a slower one in the later stages of an episode. As a meta-
heuristic solver, CMA-ES finds a good trade-off between exploration and exploitation, resulting in
the best overall performance among non-learning solvers (even better than CAtNIPP with budget 6).

Fig. 3 shows that CAtNIPP maintains best overall performance with respect to all metrics throughout
the whole budget span. We performed paired t-tests between the covariance reduction results of our
variants and each of the baselines (6 tests in total), which all yielded p-values lower than 1.06 ·10−4.
Using a Bonferroni correction for these multiple tests, we find the final significance threshold p =
1.67 · 10−3 (for a standard, original p = 0.01 threshold), indicating that CAtNIPP (most likely)
significantly outperforms all other baselines in terms of covariance reduction. We further note that
our ts. variants exhibit improved solution quality over our greedy variants (8% better in average) by
further refining these solutions, e.g., in some extreme cases where greedy variants do particularly
poorly. However, greedy variants plan up to around 100× faster than ts. variants and other SOTA
IPP solvers, making it the most time-efficient CAtNIPP version.

5.2 Generalization Results

In our supplemental material, we include detailed testings of CAtNIPP’s generalization capabilities.
We demonstrate that our model, trained on randomly generated ground truths, can generalize to
completely different environments never seen during training, such as different Gaussian mixture
models or even handcrafted, non-Gaussian distributions, while still outperforming baselines. Our
results suggest that CAtNIPP endows the agent with a general strategy for IPP, rather than overfitting
to a particular class of ground truths.

5.3 Attention Visualization: Learning to Be Context-aware

We believe that the superior solution quality of CAtNIPP mainly comes from its ability to be context-
aware, and thus to avoid the type of short-sightedness usually associated with local, reactive IPP
planners. We investigated the learned attention mechanism at the core of CAtNIPP by visualizing
learned attention weights (larger dots means higher weight) at representative time steps. In par-
ticular, Fig. 4 shows that the left attention head and the right three attention heads of the encoder
have learned to focus on the longer- and shorter-term high-interest regions respectively. Given these
context-aware node features, the agent finally learns to make local decisions that can optimize ob-
jectives at the different scales identified by the encoder. Our ablation results in the supplemental
material further confirm that the presence of the encoder is critical.

5.4 Numerical and Experimental Validation

We carried out experiments to validate CAtNIPP’s performance on a TurtleBot3 robot, over a printed
grayscale image of 2.38×2.38m2 representing the ground truth interest map (see Fig. 5). The robot
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is equipped with an on-board camera used to measure the ground light (grayscale) intensity (as an
example of a simple onboard intensity-level sensor, e.g., temperature/radioactivity/gas levels), while
its position is obtained by a downward-facing, overhead camera.

(a) True interest map (b) Early agent belief (c) Final agent belief
Figure 5: Experimental validation of CAtNIPP on Turtle-
Bot3. Selected nodes are shown in green, and robot trajectory
in red (intermediate path in (b), and full final path in (c)).

In this experiment, a trained CAt-
NIPP model adaptively outputs
the next node location to visit
based on the agent’s current be-
lief, using a 400-nodes graph, and
the agent only takes measurements
when reaching a node. This exper-
iment confirms that CAtNIPP is
easily deployable on robot for on-
line, reactive planning, and high-
lights its low computational cost
(≤ 0.1s per decision on CPU). Our
supplemental material includes simulation videos in environments of up to 8× 8m2.

6 Limitations

We believe that the limitations of CAtNIPP lie at three different levels: generalizability, area dis-
cretization, and implementation readiness:

• Our proposed method is sensitive to changes in the hyperparameters of the GP’s kernel func-
tion and the upper bound confidence that defines high-interest areas. Currently, CAtNIPP would
require retraining if any of these parameters were changed significantly. In practice, the hyperpa-
rameters of the GP’s kernel are decided by key characteristics of the actual sensor equipped on the
robot (e.g., range or resolution of a camera). Nevertheless, based on our experience, for a given
type of real-world task (e.g., search and rescue, fire detection, agriculture monitoring), the defini-
tion of “high-interest” is usually rather static. Thus we would expect that, after an initial training
based on these parameters, our learned model will likely not need any further training in practice,
since retraining would only be needed if the task or onboard sensor are drastically changed.

• We currently assume uniform sampling of the route graph, which may prevent the agent from
reaching an interesting area due to insufficient graph coverage. However, CAtNIPP is already
able to handle arbitrary graphs. To address this issue, especially in later stages of the planning, we
will further investigate online re-sampling of graph nodes, e.g., according to the current belief.

• We currently plan paths in a simplified graph, where paths between nodes are straight lines, ignor-
ing most real-life robot motion constraints (i.e., holonomic robot assumption). Future work will
explicitly consider the robot’s motion model, e.g., in the state representation (velocity, heading,
kinematic/dynamics constraints), to better trade-off robot-specificity with ease of implementation.

7 Conclusion

In this paper, we introduce CAtNIPP, a policy-gradient-based dRL method for adaptive IPP that re-
lies on self-attention to endow the agent with the ability to sequence local decisions, informed by its
global context over the search domain to avoid short-sightenedness. In addition to solving adaptive
IPP by simply greedily exploiting our learned policy, which can be done at very low computational
cost (∼ 0.1s per decision once trained), we propose a sampling-based strategy that utilizes the
learned policy more efficiently to output higher-quality solutions, while keeping the computing time
on par with existing IPP solvers. We experimentally demonstrate that both variants of CAtNIPP
significantly outperform state-of-the-art IPP solvers in terms of solution quality and planning time,
with strong generalization to classes of distributions never seen during training. Finally, we present
experimental results on physical and simulated robots in a representative online, adaptive IPP task,
showing promises for robotic deployments in real-life monitoring, inspection, or mapping scenarios.

Future work will mainly focus on extending our model to multi-agent IPP, where robots need to rea-
son about each other to cooperatively plan informative paths, by leveraging synergies and avoiding
redundant work. We also plan to investigate the use of CAtNIPP for robot exploration tasks, where
more real-world object such as obstacles and sensors need to be considered in the planning process.
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