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Abstract—Anomaly detection significantly enhances the ro-
bustness of cloud systems. While neural network-based methods
have recently demonstrated strong advantages, they encounter
practical challenges in cloud environments: the contradiction
between the impracticality of maintaining a unique model for
each service and the limited ability to deal with diverse normal
patterns by a unified model, as well as issues with handling
heavy traffic in real time and short-term anomaly detection
sensitivity. Thus, we propose MACE, a multi-normal-pattern
accommodated and efficient anomaly detection method in the
frequency domain for time series anomaly detection. There are
three novel characteristics of it: (i) a pattern extraction mechanism
excelling at handling diverse normal patterns with a unified model,
which enables the model to identify anomalies by examining the
correlation between the data sample and its service normal pattern,
instead of solely focusing on the data sample itself; (ii) a dualistic
convolution mechanism that amplifies short-term anomalies in
the time domain and hinders the reconstruction of anomalies
in the frequency domain, which enlarges the reconstruction
error disparity between anomaly and normality and facilitates
anomaly detection; (iii) leveraging the sparsity and parallelism of
frequency domain to enhance model efficiency. We theoretically
and experimentally prove that using a strategically selected subset
of Fourier bases can not only reduce computational overhead but
is also profitable to distinguish anomalies, compared to using the
complete spectrum. Moreover, extensive experiments demonstrate
MACE’s effectiveness in handling diverse normal patterns with a
unified model and it achieves state-of-the-art performance with
high efficiency.

Index Terms—Anomaly detection, multiple normal patterns,
efficiency

I. INTRODUCTION

Anomaly detection is an extensively researched issue crucial
for bolstering cloud system reliability and curbing labor
expenses [1], [2]. Reconstruction-based methods, in partic-
ular, have demonstrated state-of-the-art performance in this
domain [3]–[5]. Despite these advancements, several significant
challenges persist, as outlined below:

• C1. Limited capacity to accommodate diverse normal
patterns: In practical scenarios, cloud centers host millions
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of services concurrently, and each service exhibits a unique
normal pattern. To illustrate this, we project the normal
data of each service in the Server Machine Dataset onto
a two-dimensional space and visualize their distribution
in Fig. 1(a), where the data points are scattered randomly.
It is impractical and excessively expensive to maintain
a tailored model for each service [9]. However, most
state-of-the-art methods train a tailored model for each
cloud service [3], [4], [7]. Moreover, it is reported that
many reconstruction-based methods can only effectively
capture a few dominant normal patterns in the training
set for each trained model [10]. We further verify this
by conducting an experiment comparing performances
of some state-of-the-art methods when training a unified
model for ten services and tailoring ten models for ten
services, as shown in Fig.1(b). The performance of the
unified model is substantially lower than the one of the
tailored models.

• C2. Inefficiency in handling heavy traffic in real time:
In large cloud centers, the volume of service traffic can
escalate to hundreds of thousands of requests per second.
In these high-demand scenarios, numerous deep learning-
based methods face challenges in efficiently handling peak
traffic in real time. Furthermore, a notable complication
arises from the incorporation of recurrent networks in
several anomaly detection neural networks, such as VRNN
[11], omniAnomaly [3], and MSCRED [7]. This inclusion
hampers operator parallelization, as recurrent networks
cannot be effectively parallelized across different recurrent
steps.

• C3. Insensitivity to single point anomalies: Encoder-
decoder neural networks, which are used by many
reconstruction-based methods, are insensitive to single
point anomalies and often overlook them [8], [12].

Tackling these challenges is imperative for enhancing the
efficacy and applicability of deep learning-based anomaly
detection methods in practical cloud environments. Therefore,



(a) Data visualization of services (b) The F1 score for unified model and
tailored model on Server Machine Dataset
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Fig. 1. (a) The normal data of each service is compressed into a two-dimensional vector, which is scattered randomly. (b) The figure shows F1 score of some
SOTA methods: DCdetector [6], AnomalyTransformer [4], DVGCRN [5], OmniAnomaly [3], MSCRED [7], TranAD [8]. (c) A data sample is projected to a
normal pattern subspace in a pattern extraction mechanism. When the data sample is closer to the normal pattern subspace, it is easier to reconstruct it from its
projection with less reconstruction error. Thus, the data sample is more likely to be inferred as normality for the normal pattern 1 than normal pattern 2.
anomalies.

we design innovative mechanisms to address these issues, as
outlined below:

• S1. To enhance the model’s ability to accommodate diverse
normal patterns (C1), we propose a pattern extraction
mechanism. The most challenging problem of dealing with
diverse normal patterns is that an anomaly for one normal
pattern could be a normality for another. Thus, we detect
anomalies according to the correlation between the data
sample and its service normal pattern, instead of the data
sample itself. The pattern extraction mechanism identifies
a normal pattern subspace in the frequency domain for
each service. Subsequently, it tailors a representation for
each data sample from the sample’s projection on its
service normal pattern subspace. In this way, when the
data sample is closer to its service normality subspace, it
is easier to reconstruct from the representation with less
reconstruction error and is more likely to be inferred as
normality, as shown in Fig. 1(c).

• S2. To enhance model efficiency and parallelism (C2), we
introduce a frequency-domain-based approach. Anomaly
detection in the frequency domain can leverage sparsity
to reduce computational overhead and enhance fine-
grained parallelism by eliminating temporal dependencies.
To exploit frequency domain sparsity, we propose a
strategy for selecting a subset of Fourier bases for each
service in the pattern extraction process. We theoretically
demonstrate that using only this subset of Fourier bases not
only reduces computational overhead but also improves
anomaly detection performance compared to utilizing the
complete spectrum. For effective anomaly detection in the
frequency domain, we introduce a dualistic convolution
mechanism to replace the standard convolution in the auto-
encoder. This mechanism hinders the reconstruction of
anomalies while keeping the reconstruction of normalities
easy.

• S3. To enhance the sensitivity to short-term anomalies
(C3), we introduce the dualistic convolution mechanism
to the time domain, which amplifies the anomalies,

facilitating their detection while maintaining the similarity
of normality to the original time series. As illustrated in
Fig. 3(b), the dualistic convolution mechanism extends
anomalies while maintaining the similarity of normality
to the original time series.

Accordingly, this work makes the following novel and unique
contributions to the field of anomaly detection:

• We propose a novel pattern extraction mechanism to deal
with diverse normal patterns by facilitating the model to
detect anomalies from the correlation between the data
sample and its service normal pattern, instead of only the
data sample.

• We propose a dualistic convolution mechanism. In the
time domain, it amplifies the anomalies. In the frequency
domain, it hinders the reconstruction of anomalies while
keeping the reconstruction of normalities easy.

• We leverage the sparsity and parallelism of the frequency
domain to improve model efficiency. It is theoretically and
experimentally proved that using just a subset of Fourier
bases can not only reduce computational overhead but also
achieve better anomaly detection performance compared
with using the complete spectrum.

Moreover, we conduct extensive experiments on four real-world
datasets to demonstrate that MACE can effectively capture
diverse normal patterns with a unified model and averagely
improve F1 score by 8.7%, compared with the strongest method
in baselines, while achieving 4× faster.

II. RELATED WORK

Anomaly detection is a crucial task that focuses on identify-
ing outliers within time series data and has been the subject of
extensive research. The existing body of work can be broadly
categorized into three main groups: classical machine learning
[13]–[15] and statistical methods [16]–[19], signal processing-
based methods [20]–[22], and deep learning-based methods
[23]–[28]. In the following, we provide a brief overview of
each category and a review of multi-task learning since multiple



normal pattern learning is highly correlated to the aim of this
work.

A. Anomaly Detection

Classical methods. Conventional statistical and machine
learning methods, as highlighted in earlier works [29]–[31],
operate without the need for extensive training data and
remain unaffected by the challenge of diverse normal patterns.
Furthermore, they typically incur little computational overhead.
Despite these advantages, these approaches are contingent upon
certain assumptions and, in real-world applications, exhibit
constrained robustness [32].

Signal-processing-based methods. Signal processing-based
methods leverage the advantages of fine-grained parallelism
and the sparsity inherent in the frequency domain. Despite
these advantages, they encounter difficulties in simultaneously
capturing both global and subtle features while maintaining
manageable computational overhead. For instance, the Fourier
transform [33] excels at capturing global information but
struggles with subtle local features. In contrast, context-aware
Discrete Fourier Transform (DFT) and context-aware Inverse
DFT (IDFT) select Fourier bases based on a given normal
pattern and integrate with dualistic convolution mechanism,
enhancing the capacity to extract subtle features. The theoretical
evidence supports that this approach widens the reconstruction
error gap between anomalies and normal patterns. JumpStarter
[32], a recent state-of-the-art method in this category, suffers
from significant inference time overhead and struggles to handle
heavy traffic loads in real time.

Deep learning-based methods. Deep learning-based meth-
ods prove to be particularly effective for variable time series
[8]. These methods can be broadly categorized into prediction-
based approaches [34], [35], reconstruction-based methods
[4], [5], and classifier-based methods [36]–[38]. Prediction-
based methods, such as LSTM-NDT [34] and DAGMM [35],
incorporate recurrent networks, which are non-parallelizable
and inefficient. Similarly, reconstruction-based methods like
Donut [39] and OmniAnomaly [3] also rely on recurrent neural
networks. Recent advancements, exemplified by USAD [40]
and GDN [41], replace recurrent neural networks with attention-
based architectures to expedite the training process. However,
these methods face challenges in effectively capturing long-
term dependencies due to the removal of recurrent networks
and the use of small input windows [8]. In contrast to
these approaches, anomaly detection in the frequency domain
eliminates temporal dependencies without sacrificing global
information. Consequently, there is no need for recurrent neural
networks, yet the model can still effectively capture long-
term features. The most recent works leverage the power of
transformers, exemplified by AnomalyTransformer [4] and
TranAD [8], enabling fine-grained parallelism. However, these
methods encounter challenges in handling diverse normal
patterns with a unified model.

B. Multi-task Learning

Multitask Learning (MTL) is a machine learning paradigm
in which a model is trained to concurrently address multiple
interrelated tasks. Unlike the conventional approach of training
separate models for individual tasks, MTL facilitates the sharing
of specific model parameters. This sharing mechanism allows
the model to glean common representations across the spectrum
of tasks it is designed to handle. Within the realm of MTL
research, two principal categories emerge: hard-sharing meth-
ods and soft-sharing methods. Hard-sharing methods involve
the sharing of common low-level hidden layers among the
tasks. In contrast, soft-sharing methods adopt a more nuanced
strategy. They foster the exchange of general knowledge among
multiple models by incorporating regularization techniques into
neural network parameters [42] or establishing connections
across networks [43], [44]. However, both soft-sharing and
hard-sharing methods necessitate the maintenance of task-
specific neural network layers. This maintenance, despite the
advancements in MTL, remains computationally expensive,
particularly when dealing with a multitude of diverse services
and tasks in real-world applications. Finding more efficient
ways to share knowledge across tasks without compromising
performance is an ongoing challenge.

III. PRELIMINARY

A normal multivariate time series is denoted by XN ∈
RT×m, where T denotes the sliding window length and
m denotes the number of feature dimensions. Similarly, an
anomalous multivariate time series is denoted by XA ∈ RT×m.
A normal pattern is a distribution that determines the possibility
p(XN [t]|XN [1 : t]), where XN [t] denotes the tth element of
XN and XN [1 : t] denotes the subsequence of XN from
the first slot to the (t − 1)th slot. The reconstruction-based
method compresses XN and XA separately and reconstructs
them. The reconstructed normal time series is denoted by X̃N ,
while the reconstructed anomalous one is denoted by X̃A.
The objective of reconstruction-based methods is shown in
Eq. 1, which enlarges the gap between the reconstruction error
of normalities and anomalies. Subsequently, it determines a
threshold by some strategies, such as POT [18]. When the
reconstruction error exceeds the threshold, the input data is
inferred as an anomaly.

max .|X̃A −XA| − |X̃N −XN | (1)

Additionally, other symbols utilized in this paper are outlined
in Table I.

IV. PROPOSED METHOD

A. Overview

The overview of MACE is depicted in Figure 2. There are
roughly four stages in MACE. In the first stage, it amplifies
anomalies and makes them easier to detect. In the second
stage, it extracts the normal pattern subspace of each service,
transforms the time series into the frequency domain, and
obtains its frequency representation. In the third stage, it



TABLE I
THE DEFINITION OF SYMBOLS.

Symbol Definition
γ The power in dualistic convolution
σ The scaling factor in dualistic convolution
s The stride length of convolution
ωi The frequency of ith strongest signal of normal pattern

AN (ωi) The amplitude of normality spectrum corresponding to ωi

AA(ωi) The amplitude of anomaly spectrum corresponding to ωi

qN (ωi) The normalized value of AN (ωi)
qA(ωi) The normalized value of AA(ωi)
Ai The ith amplitude of a spectrum
∆Ai The shift variable adding to normal spectrum
∆A The expectation of shift variable
αi The ith element in convolution kernel
Fi,j The Fourier result of jth base of ith feature
ωi,j The frequency of Fourier base corresponding to Fi,j

Σ The correlation matrix of joint distribution of amplitudes
νi The ith row and ith column of Σ
m The number of feature dimensions
n The number of signals in a spectrum
k The number of signals in the context-aware selecting subset
µ The expectation of joint distribution of amplitudes
µi The ith element of µ
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Fig. 2. The model architecture of MACE

reconstructs the representation in the frequency domain. In
the final stage, it transforms the reconstructed spectrum back
into the time domain. More specifically, the details are provided
in the following:

• Stage 1. Amplify anomalies: MACE initially employs
dualistic convolution in the time domain to amplify
anomalies. The dualistic convolution is armed with a
peak convolution and a valley convolution, which are
used to emphasize the upward deviations and downward
deviations respectively. We average the results of peak
convolution and valley convolution in an element-wise
manner.

• Stage 2. Time domain → Frequency representation: We
present a new pattern extraction mechanism to leverage
the sparsity inherent in the frequency domain, thereby
augmenting the model’s capacity for generalization across
various normal patterns. The pattern extraction mechanism
consists of a context-aware Discrete Fourier Transform
(DFT), a frequency characterization module and a context-
aware Inverse Discrete Fourier Transform (IDFT). The
context-aware DFT identifies a normal pattern subspace
in the frequency domain by selecting a subset of Fourier

bases for each service and projects the services’ data
sample to the subspace in the frequency domain. After that,
the frequency characterization module learns a frequency
representation for the sample. In this way, we learn
a correlation between the data sample and a normal
frequency subspace. In the following, we detect anomalies
from this correlation instead of the data sample itself.

• Stage 3. Reconstruction: MACE replaces the vanilla con-
volution in the auto-encoder with the peak convolution and
valley convolution separately to reconstruct the frequency
representation, which enlarges the reconstruction error
disparity between normality and anomalous.

• Stage 4. Reconstructed spectrum → Time domain: MACE
uses the context-aware IDFT in pattern extraction to
transform the spectrums reconstructed by peak convolution
and valley convolution back to the time domain. Finally,
it selects the time series with the highest reconstruction
error as the final reconstructed time series.

During the training process, we use stochastic gradient
descent to minimize the reconstruction error obtained from
stage 4, which requires determining a hyperparameter – learning
rate.

There may be a concern about why we use different
operations in stage 1 and stage 2 to the results of peak and
valley convolution. It is worth noting that in stage 1, what we
average is the manipulated data, while in stage 4, from what we
select the maximum is the reconstruction error. In stage 1, we
use average operation. In this way, the amplified downward and
upward deviations are fused into the following networks. In
stage 4, since the peak convolution and valley convolution
enlarge the reconstruction error of upward deviations and
downward deviations separately, for each time slot we compare
the reconstruction error of them and pick the maximum one.
In this way, we can detect both the upward deviation and the
downward deviation.

B. Dualistic Convolution

The dualistic convolution consists of a peak convolution
and a valley convolution, which targets at upward deviation
and downward deviation respectively. It exhibits different
effects in the time domain and frequency domain. In the time
domain, it is reported that the short-term anomalies are easily
neglected by encoder-decoder models [8]. Thus, we propose
the dualistic convolution mechanism to extend the anomaly in
the time domain, which makes the anomalies more conspicuous
and easily detected. In the frequency domain, it hinders the
reconstruction of anomalies, while keeping the reconstruction
of normal samples easy to facilitate the model to identify
anomalies.

The dualistic convolution mechanism is depicted in Eq.2,
where γ is a hyperparameter to make the convolution pay more
attention to the deviations, σ is a scaling hyperparameter and
Conv1×L(x, s) denotes applying standard convolution to x
with stride s and kernel length L. The peak convolution and
valley convolution are obtained by setting different γ. The peak
convolution is the dualistic convolution with γ greater than 1,



(a) An example for peak convolution. (b) The dualistic and standard convolution in the
time domain.

(c) The dualistic and standard convolution in the
frequency domain.

Fig. 3. (a) The figure shows the contributions of different time slots in peak convolution result in a convolution window when specifying different γ. As γ
grows, the contribution of deviations increases significantly. (b)-(c) The utility of dualistic convolution, compared with standard convolution.

while the valley convolution is the dualistic convolution with
γ less than −1. The larger the absolute value of γ is, the more
dominant the deviations are in the convolution result, as an
example shown in Fig.3(a).

DualisticConv(x) = γ

√
Conv1×L(

xγ

σ
, s)

γ ∈ {2g + 1|g ∈Z ∧ g ̸= 0}, σ > 0

(2)

The dualistic convolution yields distinct outcomes in both
the time and frequency domains. To illustrate this visually, the
convolution results are depicted in Fig.3. In the time domain,
standard convolution mitigates deviations, while dualistic
convolution amplifies them. In the frequency domain, standard
convolution compresses the spectrum to a low-dimensional
space around the main body of the spectrum distribution,
whereas dualistic convolution compresses it to the space around
the ”long tail” of the spectrum distribution. As confirmed
later, anomalous data typically exhibits a long-tail distribution
in the frequency spectrum, while normal data rarely shows
such a tail. Considering that reconstruction is easier from
latent vectors close to the main body of the distribution than
from those close to the tail, dualistic convolution hinders the
reconstruction of anomalies while keeping the process for
normal data straightforward.

In the Time Domain, the stride s of dualistic convolution
is set to 1. In this way, the dualistic convolution functions as
a weighted summation operator for each kernel-length sliding
window, which emphasizes the deviations in its results. Thus,
once an anomaly is included in a convolution window, the
convolution result of this window will be dominated by the
anomaly. Consequently, short-term anomaly will be extended
by the kernel length, as shown in Fig.3(b), which makes short-
term anomaly easier to detect.

In the Frequency Domain, it has been reported that most
anomalies manifest themselves as strong signals with high-
energy components [32], which renders their spectrum higher
variability. This can be proven by statistical data in Table II,
where the amplitude variances of anomalies are greater than
those of normal patterns. Consequently, we set the stride of

dualistic convolution in the frequency domain to the size of
the convolution kernel. In this way, the dualistic convolution
actually picks the min (valley convolution) or the max (peak
convolution) amplitude in each kernel-length segment to
comprise the latent vector, as shown in Fig.4(a). Intuitively,
the dualistic convolution in the frequency domain hinders the
reconstruction of anomalies and keeps the reconstruction of
normalities easy, because when the components in a spectrum
are highly variable, the dualistic convolution tends to pick the
high-energy components to comprise its latent vector, which can
obviously deviate from other components and are difficultly
reconstructed from. In contrast, when the components in a
spectrum are closer to each other, the latent vector obtained by
dualistic convolution does not deviate significantly from the
original spectrum and can represent it better. Furthermore, we
conduct a theoretical comparison of the challenges involved in
reconstructing a spectrum from its latent vector for both normal
and anomalous cases. The level of reconstruction difficulty is
directly associated with the gap between the latent vector and
the original spectrum. In Theorem 1, we examine the upper
bound of this gap for both normal and anomalous scenarios.
Our analysis reveals that the constraints on the gap in normal
cases are more stringent when compared to those in anomalous
cases.

Definition 1. The gap between the convolution result and
the original spectrum of each convolution window is defined
as

∑n
j=1 E(|DualisticConv(A)−Aj |), where A is the ampli-

tudes of spectrum in the convolution window, Aj is the jth

element in A and n is the kernel length.
Theorem 1. When the amplitudes follow a Gaussian

joint distribution N (µ,Σ), the distance between the la-
tent vector and the original spectrum is upper bounded by
2

γ−1
γ n γ

√∑n
i=1(γ − 1)!!νγi |αi|+ |αiµ

γ
i |−

∑n
j=1 µj , where αi

is the ith element in the kernel divided by σ, µi is the ith

element of µ, νi is the ith row and ith column element of Σ
and n!! denotes [n(n− 2)(n− 4) · · · 1].

Proof skeleton. We first transform the gap forma-
tion to

∣∣∣∑n
j=1 E(DualisticConv(A)−Aj)

∣∣∣. That is because



DualisticConv(A) − Aj ≥ 0,∀j as long as we choose a
big enough γ. Taking the peak convolution as an example,
limγ→inf DualisticConv(A) = max(A1,A2, . . . ,An). Thus,
when we take a big γ, we can approximately confirm that
A−Aj ≥ 0,∀j. Subsequently, we further transform the gap
as shown in Eq.4-Eq.5. Since the function f(x) = γ

√
x is a

concave function when x ≥ 0, it can be further scaled by
Jensen inequality [45] as shown in Eq.6. Let Ai = Āi + µi,
where Āi ∼ N (0,Σ), and we obtain Eq.7. The equation is
further scaled by power mean inequality [46] and we obtain
Eq.8. Facilitated by the property of Gamma Function [47], it
can be computed that E(|Āγ

i |) = (γ − 1)!!νγi . Thus, we get
the conclusion, as shown in Eq.9.∣∣∣∣∣∣

n∑
j=1

E(DualisticConv(A)−Aj)

∣∣∣∣∣∣ (3)

=

∣∣∣∣∣∣E(n γ

√√√√ n∑
i=1

αiAγ
i )−

n∑
j=1

µj

∣∣∣∣∣∣ (4)

≤

∣∣∣∣∣∣E(n γ

√√√√ n∑
i=1

|αi||Aγ
i |)−

n∑
j=1

µj

∣∣∣∣∣∣ (5)

≤

∣∣∣∣∣∣n γ

√√√√ n∑
i=1

|αi|E(|Aγ
i |)−

n∑
j=1

µj

∣∣∣∣∣∣ (6)

=

∣∣∣∣∣∣n γ

√√√√ n∑
i=1

|αi|E(|(Āi + µi)γ |)−
n∑

j=1

µj

∣∣∣∣∣∣ (7)

≤

∣∣∣∣∣∣2 γ−1
γ n γ

√√√√ n∑
i=1

|αi|E(|Āγ
i |) + |αiµ

γ
i | −

n∑
j=1

µj

∣∣∣∣∣∣ (8)

=

∣∣∣∣∣∣2 γ−1
γ n γ

√√√√ n∑
i=1

|αi|(γ − 1)!!νγi + |αiµ
γ
i | −

n∑
j=1

µj

∣∣∣∣∣∣ (9)

It is worth noting that the upper bound is primarily determined
by νi, i ∈ [1, n], whereas the influence of µ is negligible.
This is because, regardless of the value of µ, the expression
2

γ−1
γ n γ

√∑n
i=1 |αi|(γ − 1)!!νγi + |αiµ

γ
i |−

∑n
j=1 µj is always

greater than 2
γ−1
γ n γ

√∑n
i=1 |αi|(γ − 1)!!νγi , which is solely

related to νi, i ∈ [1, n]. This can be proven using the power
mean inequality. As a result, the upper bound for the gap is
primarily influenced by the standard deviation of amplitudes
and positively correlated with it. Consequently, the gap between
the latent vector and the original amplitudes for normal
distributions is more rigorously constrained, implying that they
are easier to reconstruct.

C. Pattern Extraction

The most challenging problem in tackling diverse normal
patterns with a unified model is that an anomaly for one

1The Server Machine Dataset [3]
2A service dataset from one of global top 10 internet company [32]
3A service dataset from one of global top 10 internet company [32]

TABLE II
THE AVERAGE SPECTRUM VARIANCES OF ANOMALOUS AND NORMAL

PATTERNS IN DIFFERENT DATASETS.

SMD 1 J-D1 2 J-D2 3

Anomaly 4.55 12.38 15.64
Normality 3.36 11.74 14.13
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(a) Dualistic convolution in the frequency do-
main.

(b) The three channels of
frequency representation.

Fig. 4. (a) The dualistic convolution applying to the frequency domain actually
picks the prominent deviation in each compression step. (b) The figure shows
the three channels of frequency representation in the frequency characterization
module. The first channel is the result of Fourier transformation, the second
is corresponding sin Fourier bases and the third is corresponding cos Fourier
bases.

normal pattern can be normal for another. To overcome this
issue, we propose a pattern extraction mechanism to detect
anomalies by the correlation between the data sample and
its service normal pattern, instead of the data sample itself,
which allows us to handle various normal patterns and reduce
computational overhead by capitalizing on the sparsity inherent
in the frequency domain. Our pattern extraction mechanism
comprises three key components: a context-aware discrete
Fourier transformation (DFT) module, a frequency charac-
terization module, and a context-aware inverse discrete Fourier
transformation (IDFT) module. In the preprocessing stage, we
analyze each service in the frequency domain and identify a
normal pattern subspace containing most of the normalities as
the service normal pattern subspace by establishing a compact
set of dominant Fourier bases for each normal pattern. During
both the training and testing phases, we employ the context-
aware DFT module to project time series data to its service
normal pattern subspace by approximating it with a linear
combination of the bases within the relevant normal pattern
subspace. This procedure effectively compresses the spectral
volume and minimizes computational demands. Subsequently,
the frequency characterization module is used to create a
tailored frequency representation for the time series data
from its projection. After undergoing reconstruction through
a dualistic convolution-based auto-encoder, the spectrum is
transformed back into time series data using the context-aware
IDFT. Furthermore, we theoretically prove that utilizing only
the dominant bases for each normal pattern yields superior
performance in distinguishing anomalies from normal patterns
compared to using the complete spectrum. This is further
supported by experimental evidence in Section V-D.

Context-aware DFT and IDFT. It is assumed that each
service or server exhibits its unique normal pattern. Conse-
quently, during the preprocessing stage, we process the training



TABLE III
THE EXPECTATION OF AMPLITUDES FOR ANOMALIES AND NORMALITIES

ON DIFFERENT DATASETS.

SMD J-D1 J-D2
Anomaly 0.36 0.74 0.81
Normality 0.23 0.72 0.77

dataset in the frequency domain and count the occurrences
of each Fourier base as the first k strongest signals across
all sliding windows. Subsequently, we select the top k bases
with the highest incidence to serve as Fourier bases for their
service normal patterns subspace. In both the training and
testing phases, the context-aware DFT transforms the time
series data exclusively using the bases from the corresponding
normal pattern subspace through the DFT process. Likewise,
the context-aware IDFT processes the spectrum using only
the corresponding bases through the IDFT. Furthermore, we
conduct a theoretical comparison of the reconstruction error
between anomalies and normal patterns, demonstrating that
the context-aware DFT can significantly widen the gap in
reconstruction errors between anomalies and normal patterns.

Definition 2 (Spectrum). Given a DFT spectrum of a
normal pattern AN (ω0) > · · · > AN (ωn), where AN (ωi)
is the amplitude of the signal and ωi is its corresponding
frequency, we compute normalized value of them as follows:
qN (ωi) =

AN (ωi)∑n
i=1 AN (ωi)

. The spectrum of anomalies is denoted
by AA(ω0), . . . ,AA(ωn), where ωi is exactly the ωi in spec-
trum of normal pattern. Similarly, the spectrum of anomalies is
normalized and denoted by qA(ωi). The normalized spectrum
for normalities and anomalies obtained by context-aware DFT
are denoted by q̄N (ωi) and q̄A(ωi) respectively.

Definition 3 (Reconstruction error). The reconstruction error
of context-aware DFT is defined as the KL divergence between
the spectrum obtained by context-aware DFT and the original
spectrum, i.e. KL(q̄|q).

Assumption 1. The anomalies manifest themselves by adding
a shift variable to the spectrum of normalities, whose expecta-
tion is greater than 0, i.e. AA(ωi) = AN (ωi) + ∆Ai, where
∀i,∆Ai are independent identically distributed and follow an
unknown distribution with expectation ∆A, ∆A > 0. It is
reasonable to assume the expectation of shift variable is bigger
than 0 since it is reported that the anomalies have stronger
signals than normalities [32], which implies higher amplitude
expectations of anomalies. Moreover, we statistically collect
the expectation of anomalies and normalities across three real-
world datasets and verify this point, as shown in Table III.

Theorem 2. The gap of reconstruction error between the
anomaly and normality is log

∑k
i=1 qN (ωi)∑k
i=1 qA(ωi)

.

Proof. Using normality as an example, we derive the expres-
sion for its reconstruction error. The expression for an anomaly
can be derived in a similar manner. We start by representing
q̄N as shown in Eq. 10. Subsequently, the reconstruction error
for it is obtained in Eq. 11. Therefore, the difference in the
reconstruction error between anomalies and normal patterns is
given by KL(q̄A|qA)−KL(q̄N |qN ) = log

∑k
i=1 qN (ωi)∑k
i=1 qA(ωi)

.

q̄N (ωi) =

{
qN (ωi)∑k
i=1 qN (ωi)

, i ≤ k

0 , i > k
(10)

KL(q̄N |qN ) =

k∑
j=1

qN (ωj)∑k
i=1 qN (ωi)

log
1∑k

t=1 qN (ωt)

= −
∑k

j=1 qN (ωj)∑k
t=1 qN (ωt)

log

k∑
i=1

qN (ωi)

= − log

k∑
i=1

qN (ωi)

(11)

Intuitively, the gap is greater than 0 because the numerator∑k
i=1 qN (ωi) represents the first k strongest signals, while

the denominator
∑k

i=1 qA(ωi) is not guaranteed to have a
similar characteristic. We have conducted a further analysis of
the condition for achieving a smaller reconstruction error for
normal patterns in Corollary 1.

Corollary 1. When
∑k

i=1 qN (ωi) >
k
n , the reconstruction

error of normality is smaller than that of anomaly.
Proof. According to assumption 1, the qA(ωi) can be trans-

formed into qN (ωi)S+∆Ai

S+
∑n

i=1 ∆Ai
, where S =

∑n
i=1 AN (ωi). Thus,

the gap of reconstruction error between anomaly and normality
can be transformed to log S+n∆A

S+k∆A(
∑k

j=1 qN (ωj))−1 according to

the Law of Large Numbers [48]. When
∑k

i=1 qN (ωi) > k
n ,

we can obtain S + n∆A > S + k∆A(
∑k

j=1 qN (ωj))
−1. As a

result, the gap of reconstruction error is bigger than 0.
It is worth noticing that when using trivial DFT and

completed spectrum, k is set to n and the reconstruction error
gap of anomaly and normality becomes zero, considering that
qA and qN are normalized values. In contrast, by examining the
condition in Corollary 1, it becomes evident that there must be
a value of k less than n that yields a reconstruction error gap
greater than 0. Thus, compared with using the full spectrum,
only using a subset of them widens the reconstruction error
gap between the normalities and anomalies. This confirms
that anomalies are easier to distinguish when employing the
context-aware DFT with a reduced set of bases compared to
the standard DFT.

Frequency characterization. The frequency characterization
module concatenates the result of context-aware DFT and
explicit marked trigonometric bases, as shown in Fig.4(b),
where Fi,j denotes the Fourier result of jth base for ith feature
dimension, ωi,j denotes the frequency of jth base for ith feature
dimension. Afterward, we use a three-channel convolution to
manipulate the concatenated tensors and obtain the frequency
representation.

V. EXPERIMENT

We conduct extensive experiments on four real-world
anomaly detection datasets and obtain the following conclu-
sions:

• When detecting anomalies for multiple services with kinds
of normal patterns by a unified model, MACE achieves



better performance compared with the state-of-the-art
methods.

• MACE achieves comparable performance compared with
the state-of-the-art methods when the state-of-the-art
methods are trained separately for each service and MACE
uses a unified model for all the services.

• MACE shows good transferability on unseen datasets.
• MACE consumes obviously less time and memory over-

head than the state-of-the-art methods.
• Every module in MACE contributes to its performance.

A. Experiment Setup

The datasets used in this paper contain several subsets, which
represent data for different services, servers and detecting
sensors. It is assumed that different subsets have different
normal patterns. We divide every ten subsets in a dataset as a
group. For each group, we train a unified model to detect the
anomaly in it.

Datasets. We utilized a selection of datasets, including the
widely-recognized Server Machine Dataset (SMD), two cloud
service monitoring logs from a top global Internet company
(J-D1 and J-D2), the well-established anomaly detection
benchmark, Soil Moisture Active Passive (SMAP) and a dataset
MC that we collect from one of top ten global cloud providers.
As shown in Fig.5, the normal patterns of SMD are the
most diverse, while the normal patterns of J-D2 are the most
similar. Moreover, SMAP has most point anomalies, while the
anomalies in other datasets are lasting.

• Server Machine Dataset (SMD) [3]: SMD spans a 5-week
period and originates from a major Internet company,
incorporating data from 28 distinct machines. Each ma-
chine’s log data, a subset of SMD, is equally divided into
training and testing sets. The anomaly ratio in SMD is
4.16%.

• Datasets provided by Jumpstarter (J-D1 and J-D2) [32]:
J-D1 and J-D2 are two datasets gathered from a top global
Internet company. Each dataset includes logs of 19 metrics
from 30 services, with each service’s log data forming
a subset in J-D1 and J-D2. The anomaly ratios for J-D1
and J-D2 are 5.25% and 20.26%, respectively.

• Soil Moisture Active Passive (SMAP) [34]: SMAP com-
prises real spacecraft telemetry data and anomalies from
the Soil Moisture Active Passive satellite, featuring an
anomaly ratio of 13.13%.

• MC: MC consists of the monitoring data from 25 services
for 15 days, whose anomaly ratio is 3.6% and contains
substantial point anomalies.

Hyperparameter. The important hyperparameters of MACE
are shown in Table IV, where m denotes the number of basis
in a subset, γf denotes γ for the dualistic convolution in the
frequency domain, γt denotes the one in the time domain,
σf denotes the scaling factor of dualistic convolution in the
frequency domain and σt denotes the one in the time domain.

Baselines. We conducted a comprehensive comparison of
MACE with several state-of-the-art methods, including DCde-
tector [6], AnomalyTransformer [4], DVGCRN [5], JumpStarter

TABLE IV
HYPERPARAMETERS OF MACE.

Hyperparameter Value Hyperparameter Value
m 20 γf in SMD 7

γt in SMD 11 γf in J-D1 11
γt in J-D1 11 γf in J-D2 13
γt in J-D2 13 γf in SMAP 13
γt in SMAP 13 σf in SMD 5
σt in SMD 5 σf in J-D1 5
σt in J-D1 5 σf in J-D2 5
σt in J-D2 5 σf in SMAP 5
σt in SMAP 7 kernel length 5
window size 40 learning rate 0.001

[32], OmniAnomaly [3], and MSCRED [7]. To assess its diverse
pattern generalization capabilities, we introduced two additional
methods: TranAD, a meta-learning-based approach [8], and
ProS, a transfer-learning-based method [49]. Furthermore, to
evaluate its computational efficiency, we compared MACE
with the classical anomaly detection method VAE [50]. Due
to space constraints, some figures represent methods using the
first two letters of their names as a shorthand.

• DCdetector (DC) [6]: DCdetector is a latest cutting-
edge anomaly detection method. It employs a unique
dual attention asymmetric design to establish a permuted
environment and leverages pure contrastive loss to guide
the learning process. This enables the model to learn a
permutation-invariant representation with superior discrim-
ination abilities.

• AnomalyTransformer (An) [4]: Anomaly Transformer
stands out as one of the most cutting-edge methods,
harnessing the formidable capabilities of transformers to
model point-wise representation and pair-wise associations
through an innovative anomaly-attention mechanism.

• DVGCRN (DV) [5]: DVGCRN stands out as another
cutting-edge anomaly detection method, effectively mod-
eling fine-grained spatial and temporal correlations in
multivariate time series. It achieves a precise posterior
approximation of latent variables, contributing to a robust
representation of multivariate time series data.

• JumpStarter (Ju) [32]: JumpStarter stands out as a cutting-
edge anomaly detection method, equipped with a shape-
based clustering and an outlier-resistant sampling algo-
rithm. This combination ensures a rapid initialization and
high F1 score performance.

• OmniAnomaly (Om) [3]: OmniAnomaly is a widely
acknowledged anomaly detection method, employing a
stochastic variable connection and planar normalizing
flow to robustly capture the representation of normal
multivariate time series data.

• MSCRED (MS) [7]: MSCRED is a highly acclaimed
method known for its ability to detect anomalies across
various scales and pinpoint root causes through the
utilization of multi-scale signature matrices.

• TranAD (Tr) [8]: TranAD, a meta-learning-based anomaly
detection method, represents one of the latest cutting-edge
approaches. It excels in learning a robust initialization
for anomaly detection models, demonstrating excellent



(a) The distribution of pairwise distance between
subsets

(b) The ratios of point anomaly, context anomaly
and normal patterns in each dataset

(c) The F1 score of unified model across
various services

Fig. 5. (a) We first use kernel density estimation to estimate the distribution of each subset. Subsequently, we compute KL divergence between each pair of
subsets in a training group. The figure shows the distribution of the KL divergences of different datasets. (b) The figure shows the point anomaly, context
anomaly and normal pattern ratios in each dataset. (c) All the methods train a unified model for every ten services. The figure shows their F1 score across
different services.

generalization across diverse normal patterns.
• ProS (Pr) [49]: ProS introduces a zero-shot methodology,

capable of inferring in the target domains without the need
for re-training. This is achieved through the introduction
of latent domain vectors, serving as latent representations
of the domains.

• VAE (VA) [50]: VAE, a widely recognized and classical
anomaly detection method, serves as a foundational
framework for numerous state-of-the-art approaches. It
introduces low computational and memory overhead,
contributing to its popularity.

Metrics. We use three of the most widely-used metrics to
evaluate the performance of MACE and baseline methods as
many prominent anomaly detection papers [5], [6], [8], [32]
do: the precision, recall and F1 score. The definitions of these
metrics are given in Eq. 12 - Eq. 14, where TP , FP and
FN denote true positive, false positive and false negative
respectively.

Precision =
TP

TP + FP
(12)

Recall =
TP

FN + TP
(13)

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(14)

B. Prediction Accuracy

In this subsection, we conduct extensive experiments to
validate that MACE consistently achieves the best F1 score
compared to baselines when distinguishing anomalies from
different normal patterns with a unified model. Furthermore,
in comparison to baselines that tailor a unique model for each
subset, MACE demonstrates competitive performance with
a unified model. Additionally, owing to the memory-guided
pattern extraction method, MACE exhibits commendable
performance on previously unseen normal patterns.

Adaptability to multiple normal patterns. We assume
that various subsets in the four datasets contain distinct normal
patterns, representing logs for different servers (SMD), services
(J-D1 and J-D2), and data for different detector channels

(SMAP). During the training stage, every ten subsets in a dataset
are grouped together and utilized to train a unified model for
both MACE and baselines. In the testing stage, the trained
model is applied to detect anomalies in each corresponding
testing subset independently. The average metrics for different
subsets are presented in Table V, where the best results are
highlighted in bold, and the second-best results are underlined.
Since JumpStarter is a signal-based method, multiple normal
pattern training is not applicable to it, and thus, JumpStarter is
excluded from this analysis. As indicated in Table V, despite
occasional deviations, MACE achieves the best performance
when detecting multiple normal patterns with a unified model.
Moreover, MACE consistently achieves the best F1 score
compared with all the baselines across the four datasets.
Furthermore, the improvement is substantial: MACE increases
the F1 score by an average of 8.7% compared to the best
baseline performance. As illustrated in Fig. 5(a), the subsets
in SMD exhibit significant differences from each other, where
MACE shows a distinct advantage. Intuitively, since the normal
patterns in J-D2 are very similar to each other, most methods
perform well on this dataset and the advantage of MACE is
not as obvious as the one on the former dataset. Additionally,
MACE attains a high F1 score on SMAP. Considering that most
anomalies in SMAP are point anomalies, this result verifies the
effectiveness of dualistic convolution in the time domain, which
extends the detection capabilities for short-term anomalies and
makes them easier to identify.

Moreover, to verify the unified model can work well on
each service, we plot the F1 score for different services when
detecting anomalies with a unified model on the Server Machine
Dataset in Fig. 5(c). As shown in Fig. 5(c), the performance
of MACE centered around a pretty well average value, while
performances of other methods vary around a broad range
across different services. This verifies MACE can capture
diverse normal patterns well with a unified model.

Competitive performance compared to customizing a
unique model. In this experiment, MACE employs a unified
model for every ten different normal patterns, while baselines
customize a unique model for each subset. As depicted in Table



TABLE V
THE PERFORMANCE OF MACE AND BASELINES WHEN DETECTING ANOMALIES FOR MULTIPLE PATTERNS BY A UNIFIED MODEL.

SMD J-D1 J-D2 SMAP
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

DCdetector 0.680 0.672 0.669 0.709 0.583 0.626 0.956 0.897 0.923 0.594 0.613 0.597
AnomalyTransformer 0.439 0.947 0.562 0.519 0.945 0.639 0.824 0.981 0.891 0.610 0.947 0.699
DVGCRN 0.481 0.766 0.481 0.344 0.737 0.421 0.695 0.867 0.742 0.475 0.979 0.549
OmniAnomaly 0.674 0.829 0.713 0.957 0.868 0.899 0.948 0.932 0.938 0.789 0.984 0.819
MSCRED 0.444 0.562 0.407 0.880 0.806 0.819 0.927 0.944 0.932 0.838 1.000 0.884
TranAD 0.617 0.616 0.471 0.198 0.631 0.258 0.729 0.952 0.797 0.275 0.577 0.291
ProS 0.153 0.785 0.214 0.505 0.731 0.534 0.796 0.861 0.805 0.412 0.973 0.468
VAE 0.221 0.689 0.246 0.377 0.796 0.425 0.566 0.909 0.665 0.470 0.983 0.557
MACE 0.964 0.870 0.910 0.893 0.984 0.934 0.938 0.989 0.961 0.958 1.000 0.977

TABLE VI
MACE USES A UNIFIED MODEL FOR DIFFERENT PATTERNS, WHILE BASELINES CUSTOMIZE A UNIQUE MODEL FOR EACH NORMAL PATTERN.

SMD J-D1 J-D2 SMAP
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

DCdetector 0.836 0.911 0.872 0.766 0.744 0.748 0.956 0.880 0.913 0.956 0.989 0.970
AnomalyTransformer 0.894 0.955 0.923 0.520 0.918 0.645 0.818 0.998 0.896 0.941 0.994 0.967
DVGCRN 0.950 0.883 0.915 0.395 0.806 0.479 0.711 0.852 0.723 0.916 0.920 0.914
JumpStarter 0.904 0.943 0.923 0.921 0.945 0.933 0.941 0.996 0.968 0.471 0.995 0.526
OmniAnomaly 0.695 0.877 0.728 0.891 0.940 0.905 0.945 0.974 0.958 0.713 0.963 0.744
MSCRED 0.746 0.744 0.716 0.975 0.830 0.889 0.949 0.969 0.958 0.872 1.000 0.923
TranAD 0.926 0.997 0.961 0.251 0.918 0.349 0.754 0.965 0.817 0.804 1.000 0.892
ProS 0.146 0.822 0.206 0.422 0.767 0.506 0.763 0.921 0.821 0.447 0.973 0.509
VAE 0.286 0.585 0.255 0.334 0.866 0.385 0.702 0.890 0.763 0.579 0.973 0.648
MACE 0.964 0.870 0.910 0.893 0.984 0.934 0.938 0.989 0.961 0.958 1.000 0.977

TABLE VII
MACE USES A UNIFIED MODEL FOR DIFFERENT PATTERNS, WHILE BASELINES CUSTOMIZE A UNIQUE MODEL FOR EACH NORMAL PATTERN ON MC

DCdetector AnomalyTrans DVGCRN OmniAnomaly MSCRED TranAD ProS VAE JumpStarter MACE
Precision 0.984 1.000 0.125 0.681 0.841 0.784 0.681 0.583 0.473 0.908
Recall 0.728 0.870 0.304 0.981 0.981 0.989 1.000 0.750 0.393 0.994
F1 Score 0.806 0.923 0.147 0.782 0.878 0.864 0.772 0.639 0.393 0.941

TABLE VIII
THE PERFORMANCE OF MACE AND BASELINES FOR UNSEEN NORMAL PATTERNS.

SMD J-D1 J-D2 SMAP
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

DCdetector 0.681 0.685 0.681 0.798 0.771 0.781 0.948 0.857 0.891 0.700 0.760 0.724
AnomalyTransformer 0.490 0.916 0.622 0.555 0.948 0.667 0.838 0.981 0.899 0.586 1.000 0.678
DVGCRN 0.125 0.798 0.173 0.388 0.894 0.478 0.619 0.893 0.664 0.444 1.000 0.525
OmniAnomaly 0.686 0.780 0.701 0.976 0.824 0.880 0.932 0.953 0.941 0.735 0.986 0.794
MSCRED 0.418 0.593 0.409 0.828 0.818 0.806 0.931 0.952 0.939 0.839 1.000 0.896
TranAD 0.255 0.643 0.265 0.127 0.546 0.198 0.516 0.659 0.546 0.205 1.000 0.302
ProS 0.154 0.808 0.215 0.475 0.770 0.564 0.789 0.933 0.855 0.412 0.979 0.469
VAE 0.193 0.789 0.270 0.339 0.875 0.386 0.661 0.884 0.721 0.433 0.979 0.500
MACE 0.915 0.835 0.863 0.972 0.829 0.885 0.963 0.968 0.964 0.954 0.996 0.973

VI and Table VII, MACE achieves comparable performance
with the strongest state-of-the-art methods. It is noteworthy that
MACE captures ten different patterns simultaneously with a
single model, a factor that generally hinders model performance
[10], while baselines customize a unique model for each normal
pattern. The negative impact of multiple normal patterns is
further evident when comparing Table V and Table VI: when
normal patterns are diverse (e.g., in SMD), the baselines in
Table VI, where they tailor a unique model for each normal
pattern, exhibit big strength compared to their performance in

Table V, where they learn a unified model for multiple normal
patterns. In contrast, when normal patterns are similar (e.g., in
J-D2), the baseline performance gaps between Tables V and
VI are narrow. From this comparison, it can be concluded that
the diversity of normal patterns hinders model performance
when using a unified model for multiple patterns. Thus, it is
tolerable for MACE to exhibit a somewhat lower F1 score on
SMD, considering that the normal patterns of SMD are the
most diverse among the four datasets.

MACE performance on unseen normal patterns. As



(a) Time (s) and memory overhead (*10kB).

F1 score

(b) The impact of γt and γf on MACE perfor-
mance.

F1 score

(c) The impact of γt and σt on MACE perfor-
mance.

F1 score

(d) The impact of γf and σf on MACE perfor-
mance.

F1 score

(e) The impact of kernel size and γt on MACE
performance.

F1 score

(f) The impact of number of basis in a subset and
γf on MACE performance.

Fig. 6. Due to the space limitation, we use the first two letters in method names as a shorthand. γt and γf represent the powers in dualistic convolution for
the time domain and frequency domain respectively. σt and σf represent the scaling factors in dualistic convolution for the time domain and frequency domain
respectively. (a) The time and memory overhead of MACE and baselines. (b) The F1 score of MACE for grid search of γt and γf . (c) The F1 score of MACE
for grid search of γt and σt. (d) The F1 score of MACE for grid search of γf and σf . (e) The F1 score of MACE for grid search of dualistic convolution
kernel size in the time domain and γt. (f) The F1 score of MACE for grid search of the number of bases in a subset and γf .

mentioned earlier, different subsets are assumed to represent
different normal patterns, and every ten subsets in a dataset are
divided into a group. MACE and all the baselines are trained
on one group and tested on another. The results are presented
in Table VIII, where the best performances are bolded, and the
second-best performances are underlined. Since JumpStarter is
a signal-based method, training on one group while testing on
another is not applicable to it, and thus, it is not included in
the table. As shown in Table VIII, MACE consistently achieves
the highest F1 score on the four datasets. The performance
of MACE when the normal patterns are diverse, such as in
SMD, is lower than when the normal patterns are similar,
such as in J-D2. When the distance between different normal
patterns is small, MACE can achieve similar F1 scores to those
when MACE is trained and tested on the same group (i.e., the
performance on J-D2 and SMAP).

C. Efficiency Analysis
We evaluated both time and memory overhead on a server

equipped with a configuration comprising 32 Intel(R) Xeon(R)
CPU E5-2620 @ 2.10GHz CPUs and 2 K80 GPUs. For neural
network-based methods, we employed a profiling tool to assess
their memory overhead. In the case of JumpStarter, a signal-
based method, we record its maximum memory consumption
during the inference process. The time overhead was calculated
based on the training time of each method on a subset group
of the SMD dataset. The results, depicted in Fig. 6(a), reveal

that MACE’s time overhead is competitive with some very
simple methods, such as VAE and ProS based on VAE, while
MACE’s F1 scores significantly surpass the ones of them
across all four datasets. Regarding memory overhead, MACE’s
value is higher than that of a two-layer VAE and ProS based
on a two-layer VAE. However, MACE’s memory overhead is
considerably lower than that of other deep neural networks.
These findings underscore MACE’s efficiency in terms of
both time and memory usage, positioning it favorably among
deep neural-network-based methods and showcasing superior
performance in terms of anomaly detection as evidenced by
its higher F1 scores across diverse datasets.

D. Ablation Study
We conducted experiments to assess the effectiveness of in-

dividual modules within MACE by removing them individually.
When the context-aware Discrete Fourier Transform (DFT) and
Inverse DFT (IDFT) modules were removed, they were replaced
with conventional DFT and IDFT. When making ablation
experiments for other modules, we compare the completed
MACE with the one that has removed them. The results are
displayed in Table IX, where ”Dualistic Convolution (F)” and
”Dualistic Convolution (T)” correspond to dualistic convolution
in the frequency and time domains, respectively. As depicted
in Table IX, the complete MACE model exhibits considerable
superiority over its variants. It is worth noting that when
context-aware DFT and IDFT are substituted with vanilla



TABLE IX
THE PERFORMANCES OF MACE WHEN REMOVING DIFFERENT MODULES

Remove module SMD J-D1 J-D2 SMAP
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Context-aware DFT & IDFT 0.762 0.813 0.762 0.624 0.887 0.689 0.958 0.953 0.953 0.775 1.000 0.831
Dualistic Convolution (F) 0.187 0.943 0.184 0.855 0.854 0.820 0.857 0.933 0.886 0.681 0.990 0.713
Dualistic Convolution (T) 0.046 0.842 0.084 0.089 0.946 0.152 0.208 0.440 0.250 0.682 0.989 0.720
Frequency Characterization 0.894 0.860 0.868 0.838 0.940 0.857 0.970 0.980 0.975 0.944 1.000 0.967
Pattern extraction 0.714 0.702 0.696 0.667 0.914 0.740 0.957 0.953 0.954 0.770 0.970 0.797

MACE 0.964 0.870 0.910 0.893 0.984 0.934 0.938 0.989 0.961 0.958 1.000 0.977

counterparts, MACE’s performance takes a sharp nosedive.
The computational and memory overhead of vanilla DFT and
IDFT increases because they introduce more Fourier bases,
yet the performance deteriorates. This observation aligns with
our earlier theoretical analysis. Moreover, this experiment
underscores the effectiveness of the diverse normal pattern
adaptability facilitated by the pattern extraction mechanism.
This module significantly enhances performance on SMD,
characterized by diverse normal patterns, while showing
marginal improvement on J-D2, where the normal patterns
are similar. Similarly, the frequency characterization module
makes a substantial contribution on SMD but is of limited use
on J-D2, given its multi-pattern extraction nature. In summary,
the module-by-module evaluation reaffirms the crucial role
played by various components in MACE and their impact on
anomaly detection performance across different datasets.

E. Hyperparameter Study

We employed grid search to investigate the influence of
critical hyperparameters on the performance of MACE. Fig.6(b)-
Fig.6(f) present the F1 scores corresponding to different
combinations of pairwise hyperparameters. The search ranges
for γ in the time domain and frequency domain, σ in the time
domain and frequency domain, kernel size, and the number of
Fourier bases in Context-aware DFT and IDFT were set to {1,
3, 5, 7, 11, 12, 13}, {3, 5, 7, 10, 12}, {3, 5, 7, 11, 13}, and
{5, 10, 15, 20, 25, 30} respectively.

Impact of γt and γf : When γt and γf are set to 1,
dualistic convolution degenerates into a standard convolution,
essentially nullifying its contribution. Consequently, MACE’s
performances with γt and γf set to 1 are unsatisfied. In general,
the performance of MACE improves as γt and γf increase,
as depicted in Fig.6(c) and Fig.6(d). However, it’s important
to note that γ cannot grow infinitely, as excessively large γ
values can lead to gradient explosions. Thus, setting γ within
the search space mentioned above is a safe approach.

Impact of σt and σf : These scaling factors are introduced
to mitigate gradient explosions. As demonstrated in Fig.6(c)-
Fig.6(d), MACE’s performance remains stable across various
values of σ.

Impact of dualistic convolution kernel size in the time
domain: Intuitively, the performance of MACE initially im-
proves and then declines as the kernel size increases, as shown
in Figure 6(e). That is because when the kernel size increases
from a small value, it makes anomalies more prominent and

easier to detect. However, when the kernel size becomes
excessively large, the dualistic convolution in the time domain
distorts the original time series and detrimentally affects model
performance.

Impact of the number of Fourier bases in context-aware
DFT and IDFT: The performance of MACE generally follows
an increasing-then-decreasing pattern as the number of bases
grows. As analyzed theoretically in Section.IV-C, when the
number of bases increases from a small value, both the recon-
struction of normal patterns and anomalies improve, but the
enhancement in normality reconstruction is more pronounced.
However, when the number of bases becomes relatively large,
the improvement in normality reconstruction becomes marginal,
while the effect on anomaly reconstruction becomes significant.
Therefore, the performance initially increases and then declines
with the growth of the number of bases.

VI. CONCLUSION

In this work, we address the challenges of detecting anoma-
lies from diverse normal patterns with a unified and efficient
model as well as improve the short-term anomaly sensitivity
by proposing MACE. MACE exhibits three key characteristics:
(i) a pattern extraction mechanism allowing the model to detect
anomalies by the correlation between the data sample and
its service normal pattern and adapt to the diverse nature
of normal patterns; (ii) a dualistic convolution mechanism
that amplifies anomalies in the time domain and hinders the
reconstruction in the frequency domain; (iii) the utilization of
the inherent sparsity and parallelism of the frequency domain
to enhance model efficiency. We substantiate our approach
through both mathematical analysis and extensive experiments,
demonstrating that selecting a subset of Fourier bases based
on normal patterns yields superior performance compared to
utilizing the complete spectrum. Comprehensive experiments
confirm MACE’s proficiency in effectively handling diverse
normal patterns, showcasing optimal performance with high
efficiency when benchmarked against state-of-the-art methods.
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