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Abstract

Tabular data cell completion aims to infer the correct constants that could
fill a missing cell in a table row. While machine learning (ML) models have
proven to be effective for this task, the limited interpretability restricts
their applicability in trust-critical domains. In this paper, we develop two
interpretable ML models to predict whether a candidate constant should fill
the empty cell of an incomplete row by learning Datalog rules describing
chain-like patterns of relations. Both models are fully interpretable with
formal guarantees: we provide algorithms that take a model instance and
extract an equivalent set of rules, in the sense that both the model and
the rules produce the same output for any input table over a fixed relation
schema. Furthermore, our models utilize different aggregation strategies to
offer distinct trade-offs regarding expressive power and ease of rule extraction.
Evaluations reveal that our models achieve state-of-the-art performance on
tabular data cell completion with superior interpretability.

1 Introduction

Tabular data underlies many real-world datasets, from medical records to financial trans-
actions. Tables, however, are often incomplete: missing cells arise due to collection errors,
privacy restrictions, or unavailable information. The task of tabular data cell completion
aims to infer such missing values from the observed table entries (Zhang & Balog, 2019;
Ahmadov et al., 2015; Yakout et al., 2012). Unlike classical imputation in machine learning
(Sun et al., 2023; Van Buuren & Groothuis-Oudshoorn, 2011; Stekhoven & Bühlmann, 2012),
cell completion does not assume a single ground-truth answer—multiple valid completions
may exist, all of which are acceptable.
Early work approached this problem using statistical heuristics (Yakout et al., 2012), external
resources such as knowledge bases (Zhang & Balog, 2019), specialized settings restricted to
table positions such as headers (Ahmadov et al., 2015). More recently, machine learning
methods have represented tabular data as hypergraphs, where nodes are cell values and
hyperedges correspond to rows, and applied hypergraph neural networks (Yadati et al., 2019;
Yadati, 2020). While effective, the predictions of these models are difficult to explain in a
transparent and faithful manner, limiting trust and interpretability in sensitive domains. Our
task also relates to neural rule learning methods developed for knowledge graph completion,
such as Neural-LP (Yang et al., 2017) and DRUM (Sadeghian et al., 2019), though tabular
data presents distinct challenges due to its multi-row, multi-column structure.
We address this challenge by drawing inspiration from faithful rule learning (Tena Cucala
et al., 2022a;b; 2023; Wang et al., 2024a). Unlike feature-attribution explainability methods
for tabular models (Lundberg & Lee, 2017), our goal is to design models for cell completion
that not only achieve high predictive performance but also yield human-readable Datalog
rules as explanations. Crucially, our approach provides a formal guarantee of faithfulness:
every prediction made by the model can be derived from the extracted rules on the same
input, and conversely, the rules derive exactly the model’s predictions. For example, as
illustrated in Figure 1, when predicting that a missing value is ‘US ’, the model may justify
this via a rule connecting workplace and residency country. Such rules offer a transparent
view into the decision-making process of the model, fostering trust in the model’s behavior.
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Name City Country
Alice Boston US

… … …
Emma Boston ?

Name Org. Country
Emma MIT US

… … …

Name Relation Name
Emma co-worker Alice

… … …

Figure 1: An example scenario of tabular data cell completion with multi-sourced Web tables
about people’s work and residency, where ‘?’ denotes a missing value for the data cell.

Our contributions are: (i) Two novel rule learning models for cell completion: one based
on sum aggregation (Section 3) and another based on max aggregation with reduced rule
extraction complexity (Section 5); (ii) Faithful rule extraction algorithms for both models,
with formal guarantees (Sections 4 and 5); and (iii) A comprehensive evaluation on standard
benchmarks, showing competitive performance and improved explainability (Section 6).

2 Background

Tabular Data Cell Completion. We follow standard database terminology. We assume a
signature consisting of two disjoint countable sets of predicates and constants. Each predicate
P has an arity |P | (its number of columns). A fact is an expression P (c1, . . . , c|P |), where P
is a predicate and each ci is either a constant or the special null symbol ‘?’. Intuitively, a
fact corresponds to a row in a table, and ‘?’ denotes a missing value. A table over predicate
P is a finite set of facts over P . A database (instance) is a union of tables over predicates
in a schema. If a fact, table, or database mentions ‘?’, it is incomplete. For simplicity, we
focus on the case where each fact contains at most one null value (extensions to multiple
nulls are discussed in Appendix F). For an incomplete database D, a completion is another
database obtained by replacing each null with one or more constants from D. For example,
a completion of the database in Figure 1 may replace ‘?’ with the constant ‘US ’. The task of
tabular data cell completion is therefore: given D, map each incomplete fact to the set of
constants that replace its null value in D’s completion (Yakout et al., 2012).
This task resembles hypergraph link prediction (Chen & Liu, 2023; Fatemi et al., 2020;
Yadati et al., 2019; Wang et al., 2023a), since a database can be viewed as a hypergraph
with constants as nodes and facts as hyperedges. However, unlike general link prediction
(which predicts arbitrary facts), our task specifically fills missing cells in partially observed
rows. Hypergraph methods can be adapted by removing incomplete facts, converting to a
hypergraph, applying a model, and extracting predictions, but they lack direct mechanisms for
handling incompleteness. The task is also related to Programming by Example (PBE) (Wang
et al., 2017; Kolb et al., 2017), though in PBE users must supply input-output pairs and
derivation knowledge, whereas here completions must be inferred automatically. We further
discuss related work, including data-quality rule mining, in Appendix A.
Datalog. Datalog is a declarative rule-based language from databases and logic programming
(Abiteboul et al., 1995), which we use to express symbolic rules explaining model predictions.
A term is a variable or a constant. An atom is an expression of the form P (t1, · · · , t|P |),
where P is a predicate and each ti with 1 ≤ i ≤ |P | is a term. An inequality is an expression
as t1 ̸≈ t2 where t1 and t2 are terms. A literal is an atom or an inequality. A fact is a
variable-free atom, and a dataset is a finite set of facts. A (Datalog) rule is an expression of
the form H ← B1 ∧ · · · ∧Bℓ, where ℓ ≥ 0, H is the head atom, and Bi for 1 ≤ i ≤ ℓ are body
literals. A (Datalog) program is a finite set of rules.
For a mapping σ from variables to terms, and for ω a term, a literal, or a conjunction of
literals, ωσ replaces each variable x in ω with σ(x) if the latter is defined. Conjunctions of
literals ω1 and ω2 are isomorphic if there exists a bijection σ from the variables in ω1 to
those in in ω2 such that ω1σ and ω2 coincide. A set S contains a conjunction of literals ω1
up to isomorphism if there exists ω2 ∈ S such that ω1 and ω2 are isomorphic. Each rule r
defines an immediate consequence operator Tr. For a dataset D, Tr(D) is the smallest dataset
containing Hσ for each mapping σ from variables in r to constants in D such that Biσ ∈ D
if Bi is an atom, or xσ ≠ yσ if Bi is an inequality of the form x ̸≈ y, for each 1 ≤ i ≤ ℓ.
Thus, inequalities are interpreted under the standard Unique Name Assumption (UNA), that
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US

Emma ?BostonN-C-C
0.60.1

Prediction threshold: 𝛽𝛽 = 0.8


Name City Country
Alice Boston US

Emma Boston ?

Name Org. Country
Emma MIT US

(a) Input tabular data                                  (b) MC: aggregate all paths of length ≤ 𝐿𝐿 (c) MC: computation process

Name Relation Name
Emma co-worker Alice Alice 0.5

0.2 1 0⋯

⋯0.9

0⋯1
0⋯0
⋯

Emma

Boston 0⋯0
0⋯1
⋯

Σ

0 1⋯

𝑏𝑏ℎ,𝑡𝑡(𝑖𝑖, 𝑗𝑗,𝑘𝑘)

0.2

0.6

…

N ranks

L steps

×

(N-O-C,1,3)

⋯

⋯
(N-C-C,2,3)

⋯

Σ=

Σ=

US

0.1
N-C-C,2,1N-R-N,1,3

N-C-C,1,3

N-C-C,2,3

N-O-C,1,3

> 𝛽𝛽


Figure 2: An illustration of our approach: the model aggregates all paths from existing
constants (i.e., Emma and Boston) in the incomplete fact to a candidate constant (i.e., US)
for completing it. Then it sums the weights of all paths and outputs constant US if and only
if the sum surpasses the prediction threshold β. The values in blue are learnable parameters.

is, different constants refer to different objects. The immediate consequence for a program R
is defined as TR(D) =

⋃
r∈R Tr(D). The application of these operators to a dataset can only

derive finitely many facts because there are finitely many constants in each input dataset.
Tensors, Vectors, Matrices. We consider n-dimensional tensors over R. A vector is
a 1-dimensional tensor, and a matrix is a 2-dimensional tensor. For an n-dimensional
tensor A, we use A(i1, i2, · · · , in) to denote its element at position (i1, i2, · · · , in). For a list
of tensors T1, · · · , Tn of the same dimension, we use max1≤i≤n Ti to denote their element-
wise maximum. Besides, for matrices M of dimension m × n and N of dimension n × p,
the max-product of M and N, written M ⊗ N, is a matrix of dimension m × p where
M⊗N(i, j) = max1≤k≤n M(i, k) ·N(k, j) for 1 ≤ i ≤ m and 1 ≤ j ≤ p.

3 Model for Tabular Data Cell Completion

This section introduces the core idea of our model, presents its formal definition, demonstrates
its application to input databases, and offers a formal interpretation of the function it realizes.
We assume an arbitrary database schema P1, . . . , Pδ throughout the paper.

3.1 Model Definition

Our method builds on rule-based link prediction models for graphs (Yang et al., 2017;
Sadeghian et al., 2019; Tena Cucala et al., 2022b; Wang et al., 2024a), which learn to
infer direct connections from path patterns between constants. We extend this concept to
databases of any arity, where paths capture dependencies across richer relational structures.
Definition 3.1. A path of length ℓ ≥ 1 in a database D is a sequence c0, · · · , cℓ of (not
necessarily distinct) constants such that for each 1 ≤ i ≤ ℓ, there exists a fact in D that
mentions both ci−1 and ci in distinct positions.

For example, given the database in Figure 2 (a), a path of length 2 is ‘Emma, Alice, US ’, as
the database contains facts N-R-N(Emma, co-worker, Alice) and N-C-C(Alice, Boston, US).
Our model predicts a missing constant (e.g., ‘US ’) by analyzing paths in D that connect
this constant to other constants in the incomplete fact. For instance, in Figure 2, the
aforementioned path from ‘Emma’ to ‘US ’, represented in Figure 2 (b), can be used to
predict that ‘Emma’ lives in the ‘US ’. Once the relevant paths have been identified, our
model computes a weighted sum of their counts, where the weight of each path is based on
properties described by its matching path schemas, as defined next.
Definition 3.2. A path schema of length ℓ ≥ 1 is a sequence of the form (Pr1 , p1, q1),
(Pr2 , p2, q2), · · · , (Prℓ

, pℓ, qℓ), where 1 ≤ ri ≤ δ and pi, qi are distinct positive integers with
1 ≤ pi, qi ≤ |Pri

|, for each i ∈ {1, · · · , ℓ}. A path c0, · · · , cℓ in D matches the path schema if
there exist facts α1, · · · , αℓ in D such that αi mentions predicate Pri

and has constant ci−1
(resp. ci) in position pi (resp. qi), for each 1 ≤ i ≤ ℓ.

For example, in the database in Figure 2 (a), path ‘Emma, Alice, US ’ matches the path
schema ‘(N-R-N, 1, 3), (N-C-C, 1, 3)’. Note that a path can match several path schemas.
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Path schemas capture key properties for path analysis. Ideally, our model would assign
individual learnable parameters to each path schema, quantifying its influence in completing
missing values over a specific predicate. The prediction process would involve identifying
all paths from each constant in an incomplete fact to a candidate constant, weighting each
path by its schema-specific parameters, and then aggregating the results. However, this
approach would require a prohibitively large number of parameters, most of which would not
be used in any given prediction. This would lead to training instability, particularly in deep
architectures, where issues like vanishing or exploding gradients are exacerbated (Bengio
et al., 1994). To address this, we adopt the solution in TensorLog (Cohen et al., 2020) and
subsequent works like Neural-LP (Yang et al., 2017) and DRUM (Sadeghian et al., 2019),
where path schema influences are computed as composite functions of a more compact set of
parameters, improving both efficiency and training stability.
The following definition introduces the parameters of our model.
Definition 3.3. A Multi-Chain (MC) model of rank N ≥ 1 and depth L ≥ 1 is a tuple (b1,1,
· · · , b1,|P1|, · · · , bδ,1, · · · , bδ,|Pδ|, β), where β ∈ R≥0 and each bh,t is a tensor in [0, 1]N×L×K

with K =
∑δ

k=1 |Pk| · (|Pk| − 1) + 1.

The model’s expressive power is controlled by two hyperparameters: rank N and depth L.
Rank N indicates that the model simulates N independent rank 1 models whose outputs are
combined, while L sets the maximum path length the model considers. Each tensor bh,t

corresponds to a possible predicate Ph and a position 1 ≤ t ≤ |Ph|; the third dimension K
of these tensors is one plus the total number of distinct triples (P, p, q) that can appear in
a path schema: indeed, for each of the δ possible distinct predicates Pk, there are exactly
|Pk| · (|Pk| − 1) distinct pairs of distinct positions. The additional +1 corresponds to the
empty fact ⊤, which our model will use to consider paths with length strictly less than L.
LetM be an MC model as in Definition 3.3 and let Ph(c) be an incomplete fact in D with a
null in position t. Model M predicts the constants replacing this null value as follows. First,
let c1, c2, · · · , cϵ be the constants in D in an arbitrary but fixed order. For each predicate
Pk and pair of distinct positions p, q with 1 ≤ p, q ≤ |Pk|, let Mk,p→q ∈ {0, 1}ϵ×ϵ be an
adjacency matrix where Mk,p→q(i, j) = 1 if there is a fact in D over Pk and constants ci

and cj are on its p-th and q-th positions, respectively, otherwise Mk,p→q(i, j) = 0. For each
rank 1 ≤ i ≤ N and constant cs ∈ c, the model encodes cs as a one-hot vector vi,0

cs
where

vi,0
cs

(s) = 1 and all other elements are 0. Then it iteratively computes the vector vi,j
cs

for
1 ≤ j ≤ L as in Equation 1, where dk,p→q ∈ N is the position of (k, p, q) in the lexicographic
order for 1 ≤ k ≤ δ, 1 ≤ p, q ≤ |Pk|, and p ̸= q (see Appendix D for an analytical expression):

(vi,j
cs

)⊺ = (vi,j−1
cs

)⊺ ·
( δ∑

k=1

∑
1≤p,q≤|Pk|, p ̸=q

bh,t(i, j, dk,p→q) ·Mk,p→q + bh,t(i, j, K)
)

. (1)

The model then computes vector vh,t
c =

∑N
i=1
∑

cs∈c vi,L
cs

by adding the results of all constants
in c and all ranks. For each 1 ≤ u ≤ ϵ, constant cu replaces the null value iff vh,t

c (u) > β.

3.2 Model Interpretation

We next show that our model’s operation implements the intuition outlined in Section 3.1,
which involves calculating a weighted sum of all paths in database D that match each valid
path schema up to a specified maximum length. Fix an MC model M as in Definition 3.3
with rank N and depth L, and a database D over constants c1, · · · , cϵ. Let Ω be the set of
path schemas of length up to L and ⊤. We provide an interpretation of the vectors vh,t

c as a
weighted sum of relevant paths in D.
Lemma 3.4. Let Ph(c) be an incomplete fact in D with a null value in position 1 ≤ t ≤ |Ph|.
Then, vector vh,t

c is equal to
∑

ω∈Ω wtM(ω) · vω,D,c, where wtM : Ω 7→ R≥0 is a function
that depends only on the parameters of M, and vω,D,c is a non-negative vector of dimension
ϵ defined as follows: (1) if ω = ⊤, then vω,D,c(u) is the number of occurrences of cu in c,
for each 1 ≤ u ≤ ϵ; (2) if ω is a path schema of length ℓ ≥ 1, then vω,D,c(u) is the number
of distinct paths in D connecting constants in c to cu and matching ω, for each 1 ≤ u ≤ ϵ.
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Intuitively, when ω ̸= ⊤, each element vω,D,c(u) for 1 ≤ u ≤ ϵ counts the number of
distinct paths matching ω and connecting constants in c to cu. The lemma holds because,
for each 1 ≤ i ≤ N , constant cs, and step j in the computation of vi,L

cs
, element vi,j

cs
(u)

represents a weighted sum of all distinct paths from cs to cu in D of length ≤ j. The
(unweighted) sum of these paths can be factored out across all 1 ≤ i ≤ N , leaving behind an
expression that depends only on the parameters of M. Equation 1 ensures that vi,j

cs
(u) has

the aforementioned meaning: the products of all Mk,p→q with vi,j−1
cs

essentially consider all
possible extensions of paths of length ≤ j − 1 starting from cs (represented by vi,j−1

cs
) with

an additional fact α or with ⊤, forming paths of length ≤ j. The weight of each new path
is obtained by multiplying the weight of the previous path by bh,t(i, j, dk,p→q), where Pk

is the predicate of α, p is the position in α of the constant that links α with the previous
path, and q is the position of cu in α. The last term (vi,j−1

cs
)⊺ · bh,t(i, j, K) corresponds to

the case where each previous path is extended by ⊤ instead of a fact α.

4 Faithful Rule Extraction for the MC Model

In this section, we introduce an algorithm to extract a set of Datalog rules from an arbitrary
MC model so that both the rules and the model generate the same outputs for each database.
We also present a simpler algorithm to extract rules explaining specific model predictions.

4.1 Multichain Rules

To apply Datalog rules to databases, we follow the standard procedure and represent each
database over the fixed database schema {Pi}1≤i≤δ as a relational dataset. To represent
incomplete facts, we introduce an auxiliary predicate P t

i of arity |Pi|−1 for each Pi and possible
position 1 ≤ t ≤ |Pi| of the null value in a fact over Pi. We then represent each incomplete fact
Pi(c1, · · · , ct−1, ?, ct+1, · · · , c|Pi|) as the fact P t

i (c1, · · · , ct−1, ct+1, · · · , c|Pi|). For example,
the incomplete fact in Figure 2 (a) is described by the fact N-C-C3(Emma, Boston).
We next introduce chain patterns, which will describe path schemas in rule bodies.
Definition 4.1. A chain pattern Φ(x, y) of length ℓ ≥ 1 is an ordered conjunction of ℓ atoms
where the i-th atom mentions linking variables zi−1 and zi exactly once, with z0 = x and
zℓ = y, and no other variable occurs twice.

Each path schema corresponds to a chain pattern of the same length, where each element
(Pri

, pi, qi) in the path schema corresponds to an atom with predicate Pri
and variables zi−1,

zi on the pi-th and qi-th positions, respectively, and fresh variables in the other positions.
For example, consider the database schema in Figure 2 (a); a chain pattern describing the
path schema (N-R-N, 1, 3), (N-C-C, 1, 3) is N-R-N(x, v, z1) ∧ N-C-C(z1, w, y).
As shown in Lemma 3.4, the MC model is capable of counting distinct paths between
constants. To express this counting ability using rules, we use conjunctions of a special form:
Definition 4.2. A multichain conjunction for x and y with core chain pattern Φ(x, y) and
cardinality C ∈ N is of the form

∧C
j=1 Φj(x, y) ∧

∧
1≤j<j′≤C

(∨ℓ−1
i=1 zj

i ̸≈ zj′

i

)
, where Φj(x, y)

is obtained by replacing each zi in Φ(x, y) with zj
i , and any variables other than x, y, and zj

i
are pairwise distinct among all atoms in the conjunction.

A multichain conjunction for x and y is specified by a cardinality C and a chain pattern
Φ(x, y). Intuitively, it represents C copies of the core Φ(x, y) where variables other than x
and y are uniquely renamed in each copy. The inequalities ensure that, when the conjunction
is grounded, no two copies ground all linking variables z1, · · · , zℓ−1 in the same way (the
disjunction ensures that they differ in the grounding of at least one variable). Hence, a
multichain conjunction can be grounded in D if there are at least C distinct paths in D with
the same endpoints matching the path schema Φ(x, y).
Definition 4.3. A Multichain (MC) rule is of the form 2, where for each 1 ≤ r ≤ |Ph| with
r ̸= t, x′

r is either xr or identical to y, and φr(x′
r, y) is a (possibly empty) conjunction of

finitely many multichain conjunctions for x′
r and y, with no variables in common other than

5
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x′
r and y. Moreover, at least one φr(x′

r, y) must be non-empty if no x′
r is identical to y.

Ph(x′
1, · · · , x′

t−1, y, x′
t+1, · · · , x′

|Ph|)← P t
h(x′

1, · · · , x′
t−1, x′

t+1, · · · , x′
|Ph|) ∧

∧
1≤r≤|Ph|

r ̸=t

φr(x′
r, y) (2)

The body of a rule of the form 2 matches a dataset D if the corresponding database has
an incomplete fact of the form Ph(cs1 , · · · , cst−1 , ?, cst+1 , · · · , cs|Ph|), as per the first body
atom, and if it contains enough paths from the constants csr

to some constant c matching
the path schemas captured by the conjunctions in the relevant φr(x′

r, y). Then it derives
Ph(cs1 , · · · , cst−1 , c, cst+1 , · · · , cs|Ph|), replacing the null value in the incomplete fact by c.

4.2 Faithful Rule Extraction for an MC Model

We consider a set of rules R is faithful to an MC model M if, for any database D, the result
of applying TR to D and then transforming the derived facts back into a database yields the
same facts as directly applyingM to D (Tena Cucala et al., 2022b; Wang et al., 2024a). Our
goal in this section is to extract a faithful program RM from an arbitrary MC model M.
While MC conjunctions are limited by their cardinality in counting paths, MC models can
count arbitrarily. This gap is addressed by a crucial property: for each path schema ω with
positive weight, there exists a cutoff value C̊(ω) beyond which additional matching paths
do not affect the model’s output. In particular, C̊(ω) is the smallest natural number that
surpasses the model’s threshold when multiplied by the model’s weight for ω. Our definitions
ensure that a model completes a fact with constant c if the number of paths matching ω from
other constants in the fact to c is at least C̊(ω), regardless of other possible paths between
these constants. Hence, beyond C̊(ω), the output of the model is invariant to the number of
paths matching ω. Thus, to represent an MC model, we only need to consider finitely many
rules where the cardinalities in MC conjunctions for path schema ω are at most C̊(ω).

Algorithm 1: Faithful Rule Extraction for an MC Model.
Input: An MC model M, and a rule extraction threshold γ.
Output: A finite set RM of multichain rules.

1 RM := ∅, Ω := list of path schemas with ℓ ≤ L, ending with ⊤, foreach ω ∈ Ω do wt(ω) := 0;
2 foreach h, t ∈ {(1, 1), · · · , (1, |P1|), · · · , (δ, 1), · · · , (δ, |Pδ|)} do
3 foreach [d1, · · · , dL] with di ∈ {1, · · · , K} do
4 [d′

1, · · · , d′
ℓ] := remove all occurrences of K from [d1, · · · , dL];

5 foreach j ∈ {1, · · · , ℓ} do
6 (kj , pj , qj) := the triple corresponding to d′

j ;
7 if ℓ ≥ 1 then ω = (k1, p1, q1), · · · , (kℓ, pℓ, qℓ) else ω := ⊤ ;
8 wt(ω) := wt(ω) +

∑N

i=1

∏L

j=1 bh,t(i, j, dj);
9 foreach i ∈ {1, · · · , |Ω| − 1} do

10 if wt(Ω(i)) = 0 then C̊i := 0 else if |Ω(i)| = 1 then C̊i := 1 else C̊i := ⌊ β
wt(Ω(i))⌋+ 1;

11 Θ := ∅;
12 foreach [C1, · · · , C|Ω|−1] where each Ci ∈ {0, · · · , C̊i} do
13 φ :=

∧|Ω|−1
i=1 ϕi, where if Ci = 0 then ϕi := ⊤ else ϕi := an MC conjunction for x and y

with cardinality Ci and the chain pattern for Ω(i) as core;
14 Θ := Θ ∪ {φ, φ{x 7→ y}};
15 wt′(φ) :=

∑|Ω|−1
i=1 Ci · wt(Ω(i)); wt′(φ{x 7→ y}) := wt′(φ) + wt(⊤);

16 foreach [φ1, · · · , φt−1, φt+1, · · · , φ|Ph|] with φr ∈ Θ do
17 if

∑
1≤r≤|Ph|,r ̸=t

wt′(φr) ≤ γ then continue;
18 H := Ph(x1, · · · , xt−1, y, xt+1, · · · , x|Ph|){xr 7→ y foreach φr not mentioning x};
19 A := P t

h(x1, · · · , xt−1, xt+1, · · · , x|Ph|){xr 7→ y foreach φr not mentioning x};
20 RM := RM ∪

{
H ← A ∧

∧
1≤r≤|Ph|,r ̸=t

φr{x 7→ xr if xr appears in H}
}

;
21 return RM;

Algorithm 1 describes the computation of a faithful program for an MC model. It initializes
the program as an empty set, creates a list Ω of path schemas with length ℓ ≤ L and ⊤,
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and initializes a function wt(·) to record their weights (line 1). Each element of Ω other
than ⊤ corresponds to a chain pattern. The algorithm then iterates over predicates Ph and
positions 1 ≤ t ≤ |Ph| of the null value (line 2). Each iteration computes the weight wt(ω) for
each ω in Ω (lines 3–8). Then, for each path schema Ω(i), it computes the cardinality upper
bound C̊i = C̊(Ω(i)) for the chain pattern corresponding to path schema Ω(i) (lines 9–10).
Next, Θ is initialized as empty (line 11) to store each possible conjunction φ comprised of
at most one multichain conjunction per path schema ω in Ω, with core ω and cardinality
less or equal to the upper bound C̊(ω) (lines 12–13). Besides, Θ also contains copies of
these conjunctions where x is replaced by y, corresponding to chains that start and end in
the same constant (line 14). The algorithm computes a weight wt′(φ) for each φ ∈ Θ by
summing the weights wt(ω) of the core ω of each multichain conjunction in φ multiplied
by its cardinality (line 15). Finally, the algorithm considers all possible ways of selecting
one φr ∈ Θ for each 1 ≤ r ≤ |Ph| and r ̸= t (lines 16–20), and it computes a score for
their conjunction by aggregating the weights wt′(φr) (line 17). If the score exceeds the rule
extraction threshold γ, the rule constructed in lines 18–20 is added to the program.
Theorem 4.4. The program RM extracted by Algorithm 1 is faithful to M when γ = β.
Algorithm 1 terminates in O

(
CδLν2L

)
steps with ν = max1≤k≤δ |Pk|, C = max1≤i≤|Ω|−1 C̊i.

4.3 Faithful Rule Extraction over a Specific Database

Although extracting a faithful program from an MC model can be computationally expensive,
we show that a small subset of this program can be efficiently extracted to explain the
predictions of the model for a specific database. To this end, we devise an algorithm that
takes both a model and a dataset (corresponding to a database) as input, and extracts a
single rule for each individual prediction of the model for that dataset. Specifically, for each
prediction, the algorithm identifies all paths of length at most L connecting the incomplete
fact’s constants to the predicted constant. Then it generates a multichain rule by using each
matched path schema as a rule core and setting the cardinality to the schema’s number of
matches, bounded by the corresponding cutoff value. Finally, it returns the union of all these
rules. The full algorithm is given in Appendix B.
Theorem 4.5. For MC model M and dataset D, a program RM,D ⊆ RM that returns the
same output as M on D can be obtained with worst time complexity O

(
δL · ν2L · ϵL+ν ·

)
, for

ν = max1≤k≤δ |Pk| and ϵ the number of distinct constants in D.

Unlike in Theorem 4.4, the complexity of rule extraction here depends on the graph structure
of D and the size of the result obtained by applying M to D. In practice, datasets are often
sparse (Appendix G). RM,D is typically computed in just a few minutes (Appendix H.5).

5 Model Variant with Simplified Rule Extraction

Recall that the MC model predicts that constant c completes a fact by aggregating all paths
in the database from the incomplete fact’s constants to c. However, in practice, this approach
can sometimes be too sensitive to the noise produced by irrelevant paths with small weights.
To address this, we propose MC-max, a variant of the model that uses only the highest-weight
path from a relevant constant to the target. While less expressive (see Appendix E), the
MC-max model enables more efficient rule extraction with lower complexity.
The MC-max model simplifies the original MC approach by replacing path counting with
binary path existence checks. This is achieved through three key modifications to the MC
computation: first, pushing vector terms into operators; second, replacing all summation
operators with max operators (including matrix products becoming max-products); and
third, using max operations for aggregating intermediate results. These changes preserve the
model’s ability to detect paths while eliminating its counting capability.
Definition 5.1. An MC-max model has the same form as an MC model, with Equation 1
replaced by Equation 3 and vh,t

c = max1≤i≤N,cs∈c vi,L
cs

.
(vi,j

cs
)⊺ = max

1≤k≤δ
1≤p,q≤|Pk|, p ̸=q

{
bh,t(i, j, K) · (vi,j−1

cs
)⊺ , bh,t(i, j, dk,p→q) · (vi,j−1

cs
)⊺ ⊗Mk,p→q

}
. (3)
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Algorithm 2: Faithful Rule Extraction for an MC-max Model.
Input: An MC-max model M, and a rule extraction threshold γ.
Output: A Datalog (without inequality) program RM.

1 RM := ∅;
2 foreach h, t ∈ {(1, 1), · · · , (1, |P1|), · · · , (δ, |Pδ|)} and i ∈ {1, · · · , N} do
3 S := ∅ ; S ′ := {(1, [])};
4 foreach j ∈ {1, · · · , L} do
5 S := S ′ ; S ′ := ∅;
6 foreach (s, [k]) ∈ S and k′ ∈ {1, · · · , K} do
7 if s · bh,t(i, j, k′) > γ then S ′ = S ′ ∪ {(s · bh,t(i, j, k′), [k, k′])};
8 foreach (s, [k1, · · · , kL]) ∈ S ′ do
9 [k′

1, · · · , k′
ℓ] := remove all occurrences of K from [k1, · · · , kL] ;

10 foreach j ∈ {1, · · · , ℓ} do
11 (k, p, q) := the triple corresponding to k′

j ; φj := atom with predicate Pk, variables
zj−1, zj on the p-th, q-th positions, and fresh variables on the other positions, resp.;

12 foreach r ∈ {1, · · · , t− 1, t + 1, · · · , |Ph|} do
13 H := Ph(x1, · · · , xt−1, y, xt+1, · · · , x|Ph|), A := P t

h(x1, · · · , xt−1, xt+1, · · · , x|Ph|);
14 if ℓ ≥ 1 then RM := RM ∪ {H ← A ∧

∧ℓ

j=1 φj{z0 7→ xr, zℓ 7→ y}} else
RM := RM ∪ {H{xr 7→ y} ← A{xr 7→ y}} ;

15 return RM;

The complexity of rule extraction from an MC model stems from enumerating all possible
path schema matches. By eliminating path counting, MC-max simplifies rule extraction
while preserving core functionality. Algorithm 2 describes rule extraction for MC-max. It
iterates over all predicates Ph, position t, and rank i (line 2). Each iteration expands the path
schema and updates the weight by multiplying the value bh,t(i, j, k) accordingly (lines 4–7).
Since elements of bh,t are between 0 and 1, the updated weight value in each step decreases
monotonically. Hence, we can prune the search space by comparing the current weight with
the threshold in each step (line 7). For each path schema whose weight exceeds the threshold
(line 8), the algorithm constructs the corresponding chain pattern (lines 9–11), enumerates
all xr (line 12), and adds the rule to the output program (lines 13–14).
Theorem 5.2. The program RM extracted by Algorithm 2 is faithful to the input MC-max
model M when γ = β. Algorithm 2 terminates in O

(
δL · ν2L

)
steps with ν = max1≤k≤δ |Pk|.

6 Evaluation

Datasets and Baselines. We used the relational tabular datasets WP-IND, JF-IND, and
MFB-IND (Yadati, 2020) under the inductive setting, where constants in the test sets may
not appear in training. We also used FB-AUTO (Fatemi et al., 2020) under the transductive
setting, where all test-time constants are seen during training. We also evaluated our models
on binary inductive datasets from Teru et al. (2020), based on FB15k-237 (Toutanova &
Chen, 2015), NELL-995 (Xiong et al., 2017), and WN18RR (Dettmers et al., 2018), with
original splits. We use HyperGCN (Yadati et al., 2019), GMPNN (Yadati, 2020) and two
LLM-based methods, Chain-of-Thought (CoT) (Wei et al., 2022) with GPT-5 mini (OpenAI,
2025), TabLLM (Hegselmann et al., 2023) as baselines (more details in Appendix G).
Tabular Data Cell Completion. Table 1 reports Precision (P), Recall (R), Accuracy (Acc),
Area Under the precision-recall Curve (AUC) and F1 score. In general, MC and MC-max
outperformed baseline models, with MC-max slightly surpassing MC despite its limited
expressivity. This supports our hypothesis that aggregating all paths may introduce noise.
GMPNN models achieved higher recall on most datasets, which we attribute to their use of
randomly selected negative examples for training augmentation. LLM-based methods exhibit
unbalanced behavior: few-shot prompting results are often overly conservative, resulting in
low recall, while fine-tuned models become overly optimistic, producing many false positives.
Table 2 shows that MC and MC-max models achieve similar overall performance on binary
datasets, with complementary strengths: MC has better precision and accuracy, while
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Table 1: Results (%) of Inductive and Transductive Tabular Data Cell Completion.

WP-IND JF-IND MFB-IND FB-AUTO
P R Acc AUC F1 P R Acc AUC F1 P R Acc AUC F1 P R Acc AUC F1

HyperGCN 54.5 38.4 53.2 46.5 45.0 58.1 30.9 54.3 44.5 40.4 61.8 29.0 55.5 45.4 39.4 67.4 76.4 69.7 71.9 71.6
GMPNN-sum 50.0 42.2 50.0 38.4 45.8 51.8 60.0 52.0 47.5 55.6 68.4 73.4 69.7 65.6 70.8 55.4 58.6 55.7 55.7 57.0
GMPNN-mean 52.4 94.5 54.3 60.4 67.4 53.1 92.7 55.5 58.9 67.5 69.1 81.1 72.4 72.4 74.6 58.1 85.6 61.9 71.9 69.2
GMPNN-max 50.3 78.3 50.5 53.6 61.3 53.2 87.7 55.2 64.8 66.2 80.4 92.4 84.9 89.2 86.0 60.3 94.9 66.2 77.4 73.8
CoT (GPT-5 mini) 85.3 22.1 52.2 - 35.1 77.4 5.5 31.6 - 10.3 66.7 7.1 60.3 - 12.9 73.2 10.9 50.2 - 19.0
TabLLM (Llama 3.1) 25.3 89.2 30.2 - 39.5 24.4 85.7 39.1 - 38.0 18.4 87.5 33.3 - 30.4 34.9 95.4 36.8 - 51.1
MC (N = 1) 79.6 49.8 68.5 64.5 61.2 63.6 57.3 62.2 57.0 60.3 91.7 86.1 89.1 93.3 88.8 92.4 76.6 85.1 85.8 83.7
MC (N = 2) 80.6 50.2 69.1 62.7 61.9 62.7 57.3 61.5 56.6 59.9 91.3 85.7 88.7 93.0 88.4 91.1 75.1 83.9 84.9 82.3
MC (N = 3) 83.2 49.8 69.9 63.5 62.3 60.4 58.2 59.9 56.4 59.3 91.4 86.3 89.1 93.4 88.8 92.5 76.4 85.1 85.6 83.6
MC-max (N = 1) 88.4 47.0 70.4 66.7 61.4 79.2 55.5 70.4 66.8 65.2 88.3 92.3 90.1 92.0 90.3 95.3 78.1 87.1 86.7 85.9
MC-max (N = 2) 88.9 47.5 70.8 67.2 61.9 80.0 54.5 70.4 67.6 64.9 88.6 94.3 91.1 92.0 91.3 97.4 78.8 88.3 86.7 87.1
MC-max (N = 3) 87.4 49.3 71.1 66.9 63.1 78.9 52.7 69.2 67.3 63.2 89.5 91.9 90.6 93.3 90.7 95.1 75.4 85.7 85.8 84.1

Table 2: Results (%) of MC (M) and MC-max (m) on
Binary Datasets.

P R Acc AUC F1
M m M m M m M m M m

FB
15

k-
23

7 V1 47.4 47.2 44.9 44.9 47.6 47.3 51.6 51.0 46.1 46.0
V2 56.9 54.0 54.1 56.1 56.6 54.2 62.6 62.2 55.5 55.0
V3 65.1 65.5 46.0 46.2 60.7 60.9 60.9 60.5 53.9 54.2
V4 77.4 72.2 46.6 50.8 66.5 65.6 65.3 65.3 58.2 59.7

N
EL

L-
99

5 V1 97.5 100.0 76.5 68.5 87.2 84.2 80.4 79.7 85.7 81.3
V2 68.5 64.4 68.0 75.2 68.4 66.9 75.0 77.0 68.2 69.4
V3 66.4 62.9 76.2 78.1 68.8 66.1 80.2 81.6 71.0 69.7
V4 67.1 66.6 76.4 77.5 69.5 69.4 80.9 80.9 71.4 71.7

W
N

18
R

R V1 96.0 84.7 63.0 64.6 80.2 76.5 75.1 76.0 76.1 73.3
V2 92.5 89.9 61.9 62.2 78.5 77.6 73.0 73.4 74.2 73.5
V3 98.5 98.3 28.0 28.0 63.8 63.8 41.4 40.6 43.6 43.6
V4 95.3 93.4 59.4 59.6 78.3 77.7 71.4 71.7 73.2 72.7

Table 3: Rule Extraction
Time (s) for MC-max.

N = 1 N = 2 N = 3
WP-IND 1.375 2.251 2.371
JF-IND 0.777 1.205 1.323
MFB-IND 0.025 0.030 0.039
FB-AUTO 0.005 0.005 0.007

FB
15

k-
23

7 V1 54.87 100.9 109.6
V2 71.75 138.0 159.8
V3 39.30 84.83 135.8
V4 78.28 95.78 142.1

N
EL

L-
99

5 V1 0.006 0.009 0.009
V2 4.988 5.799 10.74
V3 21.90 40.82 66.59
V4 3.634 6.998 10.51

W
N

18
R

R V1 0.001 0.001 0.002
V2 0.002 0.002 0.003
V3 0.001 0.002 0.003
V4 0.001 0.001 0.002

MC-max yields higher recall. These results suggest MC-max’s practical applicability despite
its simpler design. (More result analysis in Appendix H.)
Rule Extraction. We implemented Algorithm 2 for faithful rule extraction for MC-max.
Table 3 reports its runtime for each dataset, which was under 3 minutes in all cases. Table 4
presents examples of extracted rules (more analysis in Appendix H.4). We also implemented
Section 4.3’s database-specific rule extraction algorithm for MC. We recorded rule extraction
time for every 100 facts predicted by MC on each test dataset, which finished within 5
minutes in all cases (Appendix H.5). These results validate the feasibility of our approaches.

Table 4: Example Rules Learned by MC-max from Tabular Datasets.

W
P-

IN
D Deceased-Place-Country(x1, x, y)← Deceased-Place-Country3(x1, x) ∧ Deceased-Place-Country(w1, x, y)

Member-Membership-Role(x1, x, y)← Member-Membership-Role3(x1, x) ∧ Member-Membership-Role(w1, x, y)
Person-Sibling-Kinship(x, y, x2)← Person-Sibling-Kinship2(x, x2) ∧ Person-Sibling-Kinship(y, x, w1)
Politician-Position-Predecessor-Successor(x, x2, y, x3)←

Politician-Position-Predecessor-Successor3(x, x2, x3) ∧ Politician-Position-Predecessor-Successor(y, w1, w2, x)

JF
-I

N
D Country-Player-Olympics(y, x, x2)← Country-Player-Olympics1(x, x2) ∧ Country-Player-Olympics(y, x, w1)

Player-Event-Player(x1, y, x)← Player-Event-Player2(x1, x) ∧ Player-Event-Player(x, y, w1)
Player-Event-Team(x, x2, y)← Player-Event-Team2(x, x2) ∧ Team-Player-Event(y, x, w1)
Team-Player-Event(x, x2, y)← Team-Player-Event3(x, x2) ∧ Team-Player-Event(x, w1, y)

M
FB

-I
N

D Ethnicity-Language-Person(x1, y, x)←
Ethnicity-Language-Person2(x1, x) ∧ Ethnicity-Language-Person(z1, w1, x) ∧ Ethnicity-Language-Person(z1, y, w2)

Music-Artist-Place(x1, x, y)← Music-Artist-Place3(x1, x) ∧ Music-Artist-Place(w1, x, y)
Music-Genre-Subgenre(y, x, x1)← Music-Genre-Subgenre1(x, x1) ∧ Music-Genre-Subgenre(w1, x, z1) ∧ Music-Genre-Subgenre(y, z1, w2)
Type-Singer-Instrument(y, x, x2)← Type-Singer-Instrument1(x, x2) ∧ Type-Singer-Instrument(w1, x, z1) ∧ Type-Singer-Instrument(y, w2, z1)

7 Limitations and Future Work

Our models currently capture only path-like relationships between constants; hence, future
work could focus on learning rules with more complex structures. Furthermore, since existing
datasets typically use random data splits for evaluation, we plan to develop more effective
and informative benchmarks based on rule-driven fact generation.
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A Extended Related Works

Rule Learning. Rule learning aims to automatically provide rules that explain the
predictions of ML models. A number of approaches (Yang et al., 2017; Evans & Grefenstette,
2018; Sadeghian et al., 2019; Qu et al., 2021; Ferreira et al., 2022; Zhang et al., 2023; Wang
et al., 2023b) have been proposed to extract such rules, but many of them lack formal
guarantees establishing the relationship between the model and the extracted rules. Instead,
they often rely on informal claims that the rules “approximate” the model’s behavior (Yang
et al., 2017; Evans & Grefenstette, 2018; Sadeghian et al., 2019; Qu et al., 2021).
To fill the gap, faithful rule learning (Tena Cucala et al., 2022a;b; 2023; Wang et al., 2024a)
has been investigated to not only provide rule-based explanation, but also ensure theoretical
equivalence between the model and the extracted rules. However, these methods are typically
restricted to binary relational data (Tena Cucala et al., 2022b; Wang et al., 2024a), such as
knowledge graphs. Extending them to tabular data is nontrivial due to the more complex
relations among data cells described by each row. To the best of our knowledge, no prior
work has investigated faithful rule learning for tabular data cell completion.

Data Quality Rule Discovery. Data quality rule discovery focuses on extracting sta-
tistical dependencies that profile tables or detect inconsistencies (Chiang & Miller, 2008;
Chu et al., 2014). These methods typically take a table as input and output rules describing
frequent patterns, optimizing for metrics such as rule quality or confidence. Our work
differs from data quality rule discovery in multiple aspects. Despite the different input, the
extracted rules in our work serve as an explanatory mechanism for ML models, rather than
as stand-alone quality indicators, and directly support the task of completing missing cells
in multi-relational databases.

Extending GNN to Relational Tables. Our task is closely related to hypergraph link
prediction (Chen & Liu, 2023; Fatemi et al., 2020; Yadati et al., 2019; Wang et al., 2023a),
since a database can be viewed as a hypergraph. Recent ML approaches extend Graph Neural
Networks (GNNs) and propose hypergraph neural networks (Yadati et al., 2019; Yadati, 2020),
where tabular data is represented as a hypergraph with cell values as nodes and rows as
hyperedges. While effective, these methods generally lack interpretability, motivating our
focus on explainable alternatives. Another line of work is relational deep learning (Fey et al.,
2024; Chen et al., 2025), which also adapts GNNs to relational databases but they represent
a database differently: rows are nodes and edges are defined by primary–foreign key relations.
In contrast, both hypergraph neural networks (Yadati et al., 2019; Yadati, 2020) and our
approach operate at the cell level, treating individual data values as nodes, which is more
suitable for cell completion tasks.

LLM-based Table Understanding. Recent works have explored the use of large language
models for table understanding and reasoning (Hegselmann et al., 2023; Cheng et al., 2023;
Wang et al., 2024b). However, as generative models may produce hallucinated values
and cannot provide faithful explanations for their results, such uncertainty is especially
problematic in safety-critical or legally regulated settings. In contrast, our approach offers
provably faithful explanations for the results.

B Faithful Rule Extraction for the MC Model with Fixed
Dataset

Algorithm 3 outlines the process of extracting the program RM,D for a given MC model M
and dataset D. It begins with initializing RM,D as an empty set (line 1). Pall is initialized
with all existing constants in any incomplete facts in D (line 2), which can also be intuitively
viewed as paths of length 0. Then for length j from 1 to L (line 3), Pall iteratively adds
expanded paths with length j (lines 3–9), by considering all possible extensions for current
paths with length j − 1 (lines 7–8). The next part of the algorithm constructs a MC
rule for each fact Ph(cs1 , · · · , cst−1 , cu, cst+1 , · · · , cs|Ph|) predicted by M (line 10), such that
applying the rule to D is able to derive the same facts. The rule body is a conjunction of φr
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with 1 ≤ r ≤ |Ph| and r ̸= t (line 11), and each φr corresponds to the paths connecting csr

and cu. Each φr is initialized as ⊤, and a function count(·) is initialized as 0 for any path
schema and ⊤ (line 12). Then the algorithm counts all paths in Pall from csr

to cu (line 13),
grouped by the same path schema (lines 14–15). The corresponding multichain conjunction
is added into φr in lines 16–17. Additionally, for each φr, the variable x is updated to
match the equivalence between csr

and cu (line 18). After obtaining all φr for 1 ≤ r ≤ |Ph|
and r ̸= t to constitute the rule body, and updating the variables accordingly in the rule
head (line 19), the rule is added to the result program (line 20).

Algorithm 3: Rule Extraction with Fixed Datasets.
Input: A MC model M, and a dataset D.
Output: A multichain program RM,D.

1 RM,D := ∅;
2 Pnext := {[c] | c appear in any incomplete fact P t

k(· · · ) from D}, Pall := Pnext;
3 foreach j ∈ {1, · · · , L} do
4 Pcurrent := Pnext , Pnext = ∅;
5 while Pcurrent is not empty do
6 pop [· · · , cs′ ] from Pcurrent;
7 foreach Pk(· · · , cr′

p−1
, cs′ , cr′

p+1
, · · · ) ∈ D do

8 Pnext = Pnext ∪ {[· · · , cs′ , dk,p→q, cr′
q
] | 1 ≤ q ≤ |Pk|, q ̸= p};

9 Pall := Pall ∪ Pnext;
10 foreach Ph(· · · , cst−1 , cu, cst+1 , · · · ) completed from P t

h(cs1 , · · · , cst−1 , cst+1 , · · · , cs|Ph| ) do
11 foreach r ∈ {1, · · · , t− 1, t + 1, · · · , |Ph|} do
12 φr(x, y) := ⊤ ; count(ω) := 0 for ω as any path schema or ⊤;
13 foreach [csr , d1, · · · , dℓ, cu] ∈ Pall do
14 foreach j ∈ {1, · · · , ℓ} do (kj , pj , qj) := the triple corresponding to dj ;
15 ω := (k1, p1, q1), · · · , (kℓ, pℓ, qℓ), count(ω) := count(ω) + 1
16 foreach ω : count(ω) > 0 do
17 φr(x, y) append a multichain conjunction with cardinality min(count(ω), C̊ω) and

core being the chain pattern corresponding to ω;
18 if sr ̸= u then φr := φr{x 7→ xr} else φr := φr{x 7→ y};
19 H := Ph(x1, · · · , xt−1, y, xt+1, · · · , x|Ph|){xr 7→ y foreach sr = u} ,

A := P t
h(x1, · · · , xt−1, xt+1, · · · , x|Ph|){xr 7→ y foreach sr = u};

20 RM,D := RM,D ∪ {H ← A ∧
∧

1≤r≤|Ph|,r ̸=t
φr};

21 return RM,D;

C Proofs

Lemma 3.4. Let Ph(c) be an incomplete fact in D with a null value in position 1 ≤ t ≤ |Ph|.
Then, vector vh,t

c is equal to
∑

ω∈Ω wtM(ω) · vω,D,c, where wtM : Ω 7→ R≥0 is a function
that depends only on the parameters of M, and vω,D,c is a non-negative vector of dimension
ϵ defined as follows: (1) if ω = ⊤, then vω,D,c(u) is the number of occurrences of cu in c,
for each 1 ≤ u ≤ ϵ; (2) if ω is a path schema of length ℓ ≥ 1, then vω,D,c(u) is the number
of distinct paths in D connecting constants in c to cu and matching ω, for each 1 ≤ u ≤ ϵ.

Proof. Let D be an arbitrary incomplete database as defined in the paper that contains
constants c1, · · · , cϵ. Consider the computation of the MC model as Equation 1, for simplicity,
we denote each adjacency matrix Mk,p→q with 1 ≤ k ≤ δ, 1 ≤ p, q ≤ |Pk| and p ̸= q

as M̂dk,p→q
where 1 ≤ dk,p→q ≤ K − 1. Besides, let M̂K ∈ {0, 1}ϵ×ϵ be an identity matrix,

in which M̂K(i, i) = 1 for 1 ≤ i ≤ ϵ and 0 elsewhere. Then Equation 1 can be written as
Equation 4.

(vi,j
cs

)⊺ = (vi,j−1
cs

)⊺ ·
K∑

d=1
bh,t(i, j, d) · M̂d . (4)
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Also, the computation of the result vector vh,t
c can be written as Equation 5.

(vh,t
c )⊺ =

N∑
i=1

∑
cs∈c

(vi,0
cs

)⊺ ·
L∏

j=1

(
K∑

d=1
bh,t(i, j, d) · M̂d

)
. (5)

The distributive and associative properties of the sum and product operators in Equation 5
allow us to rewrite it as Equation 6.

(vh,t
c )⊺ =

∑
[d1,··· ,dL]∈{1,··· ,K}L

(
N∑

i=1

L∏
j=1

bh,t(i, j, dj)

)
·

(∑
cs∈c

(vi,0
cs

)⊺
)
· M̂d1 · M̂d2 · · · · · M̂dL . (6)

Each list [d1, · · · , dL] with 1 ≤ di ≤ K for 1 ≤ i ≤ L corresponds to a path schema or ⊤
as follows. Let [d′

1, · · · , d′
ℓ] be the list of removing all occurrences of Ks from [d1, · · · , dL].

Then the list corresponds to ⊤ if ℓ = 0, or a path schema if ℓ ≥ 1, where each d′
i satisfying

1 ≤ d′
i ≤ K − 1 corresponds to a unique triple as (ki, pi, qi) by definition, and the i-th item

of the path schema is (Pki
, pi, qi), respectively, for 1 ≤ i ≤ ℓ.

For a path schema ω with 1 ≤ ℓ ≤ L, let SL
ω be the set of all lists [d1, · · · , dL] that can be

obtained from [dk1,p1→q1 , · · · , dkℓ,pℓ→qℓ
] by padding it (if needed) with the value K. Then

Equation 6 can be written as Equation 7.

(vh,t
c )⊺ =

∑
ω∈Ω

 ∑
[d1,··· ,dL]∈SL

ω

(
N∑

i=1

L∏
j=1

bh,t(i, j, dj)

)
·

(∑
cs∈c

(vi,0
cs

)⊺
)
· M̂d1 · M̂d2 · · · · · M̂dL

 .

(7)
Each vector (vi,0

cs
)⊺ · M̂d1 · M̂d2 · · · · · M̂dL

for cs ∈ c is equal to (vi,0
cs

)⊺ · M̂d′
1
· · · · · M̂d′

ℓ
by

removing all occurrences of M̂K . If ℓ ≥ 1, a simple inductive argument shows that the vector
describes the number of paths of length ℓ from cs to each constant. In particular, the u-th
element of the vector is the number of paths with length ℓ from cs to cu. Based on that, the u-
th element of the vector obtained by adding up cs ∈ c as

(∑
cs∈c(vi,0

cs
)⊺
)
·M̂d1 ·M̂d2 · · · · ·M̂dL

is the total number of paths with length ℓ from ccs ∈ c to each constant. If ℓ = 0, the
vector

(∑
cs∈c(vi,0

cs
)⊺
)
·M̂d1 ·M̂d2 ·· · ··M̂dL

is simply
(∑

cs∈c(vi,0
cs

)⊺
)
, in which the u-th element

for 1 ≤ u ≤ ϵ is the number of cu that appears in c. Moreover, for each conjunction ω ∈ Ω
with ℓ ≥ 1 and for each [d1, · · · , dL] ∈ SL

ω , there is a one-to-one correspondence between each
mapping of ω that grounds x to each cs ∈ c and y to cu, and each chain of length ℓ from cs

to cu. Therefore, for each [d1, · · · , dL] ∈ SL
ω , the vector

(∑
cs∈c(vi,0

cs
)⊺
)
·M̂d1 ·M̂d2 · · · · ·M̂dL

is always vω,D,c. Besides, for ω = ⊤, there is a unique list [K, · · · , K] ∈ SL
ω . For this list, as

introduced above, the vector
(∑

cs∈c(vi,0
cs

)⊺
)
· M̂d1 · M̂d2 · · · · · M̂dL

is also equal to vω,D,c.
Therefore, in Equation 7 we can replace the vector

(∑
cs∈c(vi,0

cs
)⊺
)
· M̂d1 · M̂d2 · · · · · M̂dL

with vω,D,c, as it is equal for each [d1, · · · , dL] ∈ SL
ω of a given ω. Then the right side of

Equation 7 becomes
∑

ω∈Ω wtM(ω) · vω,D,c, which finishes our proof with

wtM(ω) =
∑

[d1,··· ,dL]∈SL
ω

 N∑
i=1

L∏
j=1

bh,t(i, j, dj)

 . (8)

Corollary C.1. The equation vh,t
c =

∑
ω∈Ω wtM(ω) · vω,D,c in Lemma 3.4 can be equally

written as vh,t
c =

∑
cs∈c

∑
ω∈Ω wtM(ω) · vω,D,cs , where Ω and wtM(ω) are the same as

Lemma 3.4, while vω,D,cs is a vector that depends on ω, D, and the constant cs ∈ c.

Proof. The proof of Lemma 3.4 shows that vω,D,c =
(∑

cs∈c(vi,0
cs

)⊺
)
· M̂d1 · M̂d2 · · · · · M̂dL

.
Let vω,D,cs

= (vi,0
cs

)⊺ · M̂d1 · M̂d2 · · · · · M̂dL
for each cs ∈ c. Then the distributive property

of the sum and product operators allows us to exchange the order of two sum operators,
which completes the proof.
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Theorem 4.4. The program RM extracted by Algorithm 1 is faithful to M when γ = β.
Algorithm 1 terminates in O

(
CδLν2L

)
steps with ν = max1≤k≤δ |Pk|, C = max1≤i≤|Ω|−1 C̊i.

Proof. Let R be the output of Algorithm 1 of input M with γ = β. Let L and N be the
depth and rank of M, respectively. To compare MC models to MC rules, we view each MC
model M as defining a transformation TM over datasets: given a dataset D representing
a database, where incomplete rows are facts over auxiliary predicates, TM maps D to the
set of all facts corresponding to new rows obtained by applying M for tabular data cell
completion. We will compare TM with the operator TR induced by a set of rules R. A set
of rules R is faithful to M if TM(D) = TR(D) for each dataset D representing a database.

Auxiliary Proposition 1. We first prove an auxiliary proposition that, for each element
ω ∈ Ω being either a path schema or ⊤, the value wt(ω) computed in Algorithm 1 lines 3–8,
satisfies wt(ω) = wtM(ω) after the whole iteration over [d1, · · · , dL] with di ∈ {1, · · · , K}.
Let ω = (k1, p1, q1) · · · (kℓ, pℓ, qℓ) (resp. ω = ⊤) where ℓ ≥ 1 (resp. ℓ = 0). Let [d′

1, · · · , d′
ℓ] =

[dk1,p1→q1 , · · · , dkℓ,pℓ→qℓ
] (resp. []), where each 1 ≤ dki,pi→qi

≤ K − 1 is the position of
(ki, pi, qi) as defined in the paper. Note that wt(ω) is only updated within the iteration of h, t

(line 8). Meanwhile, lines 3–8 ensure that wt(ω) =
∑

[d1,··· ,dL]∈S

(∑N
i=1
∏L

j=1 bh,t(i, j, dk)
)

where S contains all lists of length L, satisfying that [d1, · · · , dL] becomes [d′
1, · · · , d′

ℓ] by
removing all occurrences of K. Therefore, when performing the iteration in lines 5–6 with the
list [d′

1, · · · , d′
ℓ] from [d1, · · · , dL], the ω is constructed in line 7, and wt(ω) is defined. Besides,

to prove wt(ω) = wtM(ω), with Equation 8 we need to show S = SL
ω , which straightforwardly

follows the definitions of S and SL
ω .

Auxiliary Proposition 2. Next, we prove another auxiliary proposition that, in each
iteration with a pair of h, t (lines 2–20), the set Θ (initiated in line 11) consists of all
conjunctions of the form φ = ϕ1 ∧ · · · ∧ ϕn and φ{x 7→ y} = ϕ1{x 7→ y} ∧ · · · ∧ ϕn{x 7→ y}
with 0 ≤ n ≤ |Ω|−1, satisfying (1) for n ≥ 1, each ϕi for 1 ≤ i ≤ n is a multichain conjunction
for x and y with a distinct core, (2) for n = 0, φ = ⊤ and φ{x 7→ y} = ⊤{x 7→ y} are two
distinct elements in Θ. Besides, for each element φ ∈ Θ, the value of wt′(φ) is defined in
line 15. Notice that each path schema Ω(i) for 1 ≤ i ≤ |Ω|− 1 corresponds to a distinct chain
pattern. By enumerating all the lists [C1, · · · , C|Ω|−1] with 0 ≤ Ci ≤ C̊i, line 12 produces
all possible combinations ϕ1, · · · , ϕ|Ω|−1 with each ϕi being ⊤ or a multichain conjunction
with core corresponding to Ω(i) and cardinality Ci for 1 ≤ i ≤ |Ω| − 1. Then, for each
combination ϕ1, · · · , ϕ|Ω|−1, the disjoint conjunctions φ and φ{x 7→ y} are constructed,
respectively (lines 13–14), along with the values wt′(φ) and wt′(φ{x 7→ y}) (line 15).

Soundness. We prove the soundness of R to M by taking an arbitrary dataset D that
encodes a database, and showing that TR(D) ⊆ TM(D).
Let Ph(cs1 , · · · , cst−1 , cu, cst+1 , · · · , cs|Ph|) be an arbitrary fact in TR(D). To derive the fact,
there exists P t

h(cs1 , · · · , cst−1 , cst+1 , · · · , cs|Ph|) ∈ D, and a MC rule R ∈ R such that the
body of R is of the form A ∧ φ1 ∧ · · · ∧ φt−1 ∧ φt+1 ∧ · · · ∧ φ|Ph|, where A is an atom with
predicate P t

h describing the structure of the incomplete fact, and each φr for 1 ≤ r ≤ |Ph|
and r ̸= t is either (Case 1) φr = ⊤, or (Case 2) φr = ϕ1∧· · ·∧ϕP with P ≥ 1 and each ϕp

for 1 ≤ p ≤ P being a multichain conjunction with a distinct core; meanwhile, there exists a
mapping σ from the variables in R to constants in D that grounds xr (resp. y if φr is of
the form φr{x 7→ y}) to csr and y to cu such that, for each multichain conjunction ϕp, if its
core is a chain pattern Φp = λp

1 ∧ · · · ∧ λp
ℓp

where each λp
j for 1 ≤ j ≤ ℓp is an atom with

predicate Pkj
, variables zj−1, zj on the pj-th, qj-th positions while variables elsewhere are

pairwise distinct, and the cardinality of ϕp is Cp, then λp
j σ ∈ D for each 1 ≤ j ≤ ℓp, and for

each pair j, j′ with 1 ≤ j < j′ ≤ Cp, there exists 1 ≤ k ≤ ℓp such that zj
kσ ̸= zj′

k σ.
As each φr in the body of R corresponds to the constant csr

for 1 ≤ r ≤ |Ph|, r ̸= t, and is
independent to each other, we analyze each φr by the two cases as mentioned above. Besides,
by Corollary C.1, the vector vh,t

c =
∑

1≤r≤|Ph|,r ̸=t

∑
ω∈Ω wtM(ω) · vω,D,csr

can be viewed
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as the sum of |Ph| − 1 independent parts as vh,t
csr

=
∑

ω∈Ω wtM(ω) · vω,D,csr
, each of which

corresponds to a constant csr
with 1 ≤ r ≤ |Ph| and r ̸= t. We consider the contribution of

each part to the value vh,t
c (u) as follows.

Case 1. If φr = ⊤, the wt′(φr) and wt′(φr{x 7→ y}) are computed in line 15, respectively,
with [C1, · · · , C|Ω|−1] = [0, · · · , 0]. The auxiliary proposition 1 shows that wt(⊤) = wtM(⊤).
Therefore, if u = sr, the value of vh,t

csr
(u) = wtM(⊤) = wt′(φr) and φr is of the form φr{x 7→

y} = ⊤{x 7→ y}; if u ̸= sr, the value of vh,t
csr

(u) = 0 = wt′(φr) and φr is of the form φr = ⊤.
Both cases satisfy that vh,t

csr
(u) ≥ wt′(φr).

Case 2. If φr is of the form ϕ1 ∧ · · · ∧ ϕP with P ≥ 1, for each multichain conjunction ϕp

with 1 ≤ p ≤ P , we can use σ to produce Cp mappings σ1, · · · , σCp
defined as σj(zj

i ) = ziσ
for each 0 ≤ i ≤ ℓ and 1 ≤ j ≤ Cp. If Cp > 1, then all mappings are necessarily pairwise
distinct (i.e., they differ in the assignment of at least one variable) because line 10 ensures
that Cp > 1 can only occur when the length of path schema has length ≥ 2, namely, the
corresponding chain pattern contains at least two body atoms. Thus, for each pair of j, j′

satisfying 1 ≤ j < j′ ≤ Cp, there exists 1 ≤ k ≤ ℓ − 1 such that zj
kσ ≠ zj′

k σ. Therefore,
these mappings provides at least Cp distinct paths of the same path schema connecting
csr and cu. Let ωp be the path schema corresponding to the core of ϕp, then we have
vωp,D,csr

(u) ≥ Cp. By construction, ωp ∈ Ω for each ϕp with 1 ≤ p ≤ P . By Corollary C.1,
vh,t

csr
=
∑

ω∈Ω wtM(ω) · vω,D,csr
. Both wtM(ω) and vω,D,csr

for all ω ∈ Ω are non-negative,
so vh,t

csr
(u) ≥

∑
1≤p≤P wtM(ωp) · Cp if u ̸= sr, or vh,t

csr
(u) ≥

∑
1≤p≤P wtM(ωp) · Cp +wtM(⊤)

if u = sr (with φr of the form φr{x 7→ y}). The auxiliary proposition 1 shows that
wt(ω) = wtM(ω) for each ω ∈ Ω. The auxiliary proposition 2 shows that Θ consists of all
candidates for φr with their score wt′(φr). Therefore, we have vh,t

csr
(u) ≥ wt′(φr).

Finally, as each vector vh,t
csr

for 1 ≤ r ≤ |Ph| and r ̸= t are independent to each other, the
value vh,t

c (u) =
∑

1≤r≤|Ph|,r ̸=t vh,t
csr

(u). Therefore, we have vh,t
c (u) ≥

∑
1≤r≤|Ph|,r ̸=t wt′(φr).

R ∈ R indicates
∑

1≤r≤|Ph|,r ̸=t wt′(φr) > γ. Given β = γ, we have vh,t
c (u) > β, indicating

the fact Ph(cs1 , · · · , cst−1 , cu, cst+1 , · · · , cs|Ph|) ∈ TM(D).

Completeness. We prove the completeness by taking an arbitrary dataset D that encodes
a database, and showing that TM(D) ⊆ TR(D).
Let Ph(cs1 , · · · , cst−1 , cu, cst+1 , · · · , cs|Ph|) be an arbitrary fact predicted by M to com-
plete the fact P t

h(cs1 , · · · , cst−1 , cst+1 , · · · , cs|Ph|) ∈ D with the constant cu. We show
that there exists a MC rule in R which derives the same fact from D. Specifically,
we consider two cases. In each case, we construct a rule of the form 2 with head
Ph(x1, · · · , xt−1, y, xt+1, · · · , x|Ph|){xr 7→ y foreach sr = u}, and the body being the con-
junction of φr for 1 ≤ r ≤ |Ph| and r ̸= t, and show that (1) this rule is in R, and (2) this
rule can be grounded in D with each xr (or y if sr = u) mapped to csr and y to cu. Therefore,
Ph(cs1 , · · · , cst−1 , cu, cst+1 , · · · , cs|Ph|) ∈ TR(D).

By Corollary C.1, vh,t
c =

∑
1≤r≤|Ph|,r ̸=t

∑
ω∈Ω wtM(ω) · vω,D,csr

can be viewed as the sum
of |Ph| − 1 independent parts as vh,t

csr
=
∑

ω∈Ω wtM(ω) · vω,D,csr
. For each vh,t

csr
, let Ωr be

the set of all path schemas ω ∈ Ω satisfying vω,D,csr
(u) > 0, and let ω ∈ Ωr be such an

arbitrary path schema. By definition, if ω = ⊤, then vω,D,csr
(u) = 1 if sr = u and 0 if sr ̸= u;

otherwise, vω,D,csr
(u) is the number of distinct paths of schema ω in D that connects csr

and cu. Besides, in the case of ω ̸= ⊤, let ω = Ω(k), line 10 computes a corresponding
value C̊k for it. To simplify the notations, in the following we also denote the value computed
in line 10 for each ω as C̊ω.
Case 1. There exists r and ω ∈ Ωr such that vω,D,csr

(u) > C̊ω. Note that this is not
the case for ω = ⊤, because C̊⊤ is not defined. Also, this is not the case for ω with
a single atom, because in this case vω,D,csr

(u) ≤ 1 while C̊ω = 1. Therefore, ω must
have length ≥ 2. Let φr be a multichain conjunction with core being the chain pattern

17
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corresponding to ω and cardinality C̊ω. Since vω,D,csr
(u) > C̊ω, there exist at least C̊ω

mappings that ground φr in D with x to csr
and y to cu. By definition, in a multichain

conjunction, each Φj shares no variables other than x and y. We can take the union of
those C̊ω mappings to obtain a new mapping σ, which clearly grounds φr in D with x
to csr

and y to cu. Next, as ω is a unique element in Ω, let ω = Ω(k). Consider the list
[C1, · · · , C|Ω|−1] where Ck = C̊ω and Ci = 0 for 1 ≤ i ≤ |Ω| − 1 and i ̸= k, since this list is in
the iteration of lines 12–15, we have φr ∈ Θ with wt′(φr) computed in line 15. Specifically,
we have either (1) wt′(φr) = wt(ω) · C̊ω > β (as the first part of line 15 if u ̸= sr), or
(2) wt′(φr) = wt(ω)·C̊ω +wt(Ω(|Ω|)) ≥ β (as the second part of line 15 if u = sr). In this case,
consider the rule Ph(x1, · · · , xt−1, y, xt+1, · · · , x|Ph|)← P t

h(x1, · · · , xt−1, xt+1, · · · , x|Ph|)∧φr

(or replace xr both in the rule head and body with y if u = sr). The comparison in line 17
shows

∑
1≤i≤|Ph|,i̸=t wt′(φi) ≥ wt′(φr) > β. With β = γ we prove the rule is in R. Besides,

we have produced a mapping as above that grounds the rule body in D with x mapped
to csr

and y mapped to cu.

Case 2. For all 1 ≤ r ≤ |Ph| and r ̸= t, there is no ω ∈ Ωr such that vω,D,csr
(u) > C̊ω.

For each 1 ≤ r ≤ |Ph|, and r ̸= t, let φr be a conjunction of multichain conjunctions, such
that for each element ω ∈ Ωr and ω ̸= ⊤, φr contains a multichain conjunction with core
corresponding to ω, and cardinality vω,D,csr

(u). Such multichain conjunction is well-defined
since the definition of Ωr ensures vω,D,csr

(u) > 0. Then we omit any φr = ⊤, and consider
the MC rule whose rule body consists of remaining φr ̸= ⊤ with 1 ≤ r ≤ |Ph|, r ̸= t,
written as Ph(x1, · · · , xt−1, y, xt+1, · · · , x|Ph|) ← P t

h(x1, · · · , xt−1, xt+1, · · · , x|Ph|) ∧ φr1 ∧
· · · ∧ φrk

{xr 7→ y for each sr = u}, where {r1, · · · , rk} ⊆ {1, · · · , t− 1, t + 1, · · · , |Ph|}.
We first consider each φri

with 1 ≤ i ≤ k, which consists of MC conjunctions for xri

and y if sri
̸= u or φri

{xri
7→ y} if sri

= u. For each ω ∈ Ωri
and ω ≠ ⊤, there

exists at least vω,D,csri
(u) distinct paths of schema ω in D that connects csri

and cu. By
Definition 3.1, each of these paths forms a (pairwise distinct) grounding in D of the chain
pattern corresponding to ω. Note that, in a multichain conjunction by definition 4.2, each
element Φj shares no variables other than x and y (i.e., xri

and y in φri
). Meanwhile, each

multichain conjunction in φri
also shares no variables other than xri

and y. Therefore,
we can take the union of the substitutions to produce a new substitution σ, which clearly
grounds φri

in D that maps xri
to csri

and y to cu. Let [C1, · · · , C|Ω|−1] be the list
where Cj = 0 if Ω(j) ̸∈ Ωri

, and Cj = vΩ(j),D,csri
(u) elsewhere for 1 ≤ j ≤ |Ω| − 1. This list

is well-defined since each ω ∈ Ωri is a unique element in Ω. Also, this list is in the loop of
line 12, as vω,D,csri

(u) ≤ C̊ω for all ω ∈ Ωri
. We have φri

{xri
7→ x} ∈ Θ. Besides, line 15

computes wt′(φri{xri 7→ x}) =
∑|Ω|−1

j=1 Cj ·wt(Ω(j)). By Lemma 3.4 and the definition of Ωri ,
we have wt′(φri

{xri
7→ x}) =

∑
ω∈Ωri

wtM(ω) · vω,D,csri
(u). Analogously, line 15 computes

wt′(φri
{xri

7→ y}) =
∑|Ω|−1

j=1 Cj · wt(Ω(j)) + wt(Ω(|Ω|)) =
∑

ω∈Ωri
wtM(ω) · vω,D,csri

(u).

For the rule Ph(x1, · · · , xt−1, y, xt+1, · · · , x|Ph|)← P t
h(x1, · · · , xt−1, xt+1, · · · , x|Ph|) ∧ φr1 ∧

· · · ∧ φrk
{xr 7→ y for each sr = u}, the analysis above shows that for each φri , there exists

a substitution σri to ground φri in D with xri mapped to csri
and y to cu. Definition 4.3

ensures that all φri
for 1 ≤ i ≤ k share no variables other than y. Therefore, we can take the

union of these substitutions to produce a new substitution σ′, which grounds each φri
in D

that maps xri
to csri

and y to cu. This shows the fact Ph(cs1 , · · · , cst−1 , cu, cst+1 , · · · , cs|Ph|)
can be derived by the rule, given the fact P t

h(cs1 , · · · , cst−1 , cst+1 , · · · , cs|Ph|) ∈ D.

To show the rule is in R, the value compared with γ in line 17 is
∑

1≤i≤k wt′(φri
). With the

above analysis, we have
∑

1≤i≤k wt′(φri
) =

∑
1≤i≤k

∑
ω∈Ωri

wtM(ω) · vω,D,csri
(u). By the

definition of Ωr for 1 ≤ r ≤ |Ph| and r ̸= t, this score is equal to
∑

1≤r≤|Ph|,r ̸=t

∑
ω∈Ω wtM(ω)·

vω,D,csr
(u), since vω,D,csr

(u) = 0 other than ω ∈ Ωr for each 1 ≤ r ≤ |Ph|, r ̸= t. By Corol-
lary C.1, this score is equal to vh,t

c (u). Since the fact Ph(cs1 , · · · , cst−1 , cu, cst+1 , · · · , cs|Ph|)
is predicted by M, we have vh,t

c (u) > β. With β = γ, we have
∑

1≤i≤k wt′(φri) > γ, which
shows the rule is in R. This completes our proof.
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Time Complexity. Let ν = max1≤i≤δ |Pi| be the maximum arity of all the predicates
P1, · · · , Pδ. Each path schema ω ∈ Ω has length at most L, and each element of which is of
the form (Pk, p, q), satisfying 1 ≤ k ≤ δ, 1 ≤ p ≤ |Pk| and 1 ≤ q ≤ |Pk|. Therefore,

|Ω| =
L∑

ℓ=1

(
δ∑

k=1
|Pk| · (|Pk| − 1)

)ℓ

+ 1 = O
(

L∑
ℓ=1

(
δ · ν2)ℓ

)
= O

(
δL · ν2L

)
.

The cost to compute Ω and initialize wt(ω) in line 1 is O(|Ω| · L). We analyze the time
complexity of the main loop (lines 2–20) as follows. The number of loops over all the h, t

is
∑δ

k=1 |Pk| = O(δ ·ν). The loop in lines 3–8 considers KL different lists. For each list, line 4
requires O(L) steps, and the same for lines 5–7. The computations in line 8 requires N · L
steps. The total cost of this part is O(KL · (L + L + 1 + N · L)) = O(KL · N · L). By
definition of the MC model, K =

∑δ
k=1 |Pk|(|Pk| − 1) + 1 = O(δ · ν2). So the total cost

becomes O(δL · ν2L ·N · L)
The loop in lines 9-10 has |Ω| − 1 iterations, each of which requires a constant number of
operations. The overall cost is O(|Ω|).

For the loop in lines 12–15, let C = max1≤i≤|Ω|−1 C̊i. The number of lists [C1, · · · , C|Ω|−1]
with 0 ≤ Ci ≤ C̊i is bounded by (C + 1)|Ω|, which is an upper-bound for the number of
iterations. In each iteration, line 13 constructs at most |Ω| − 1 multichain conjunction, where
each conjunction has at most L · C atoms and

(
C
2
)
· L = O(C2 · L) inequalities. Lines 14–15

combines the multichain conjunctions and computes a score with O(|Ω|) operations. The
total cost of this part is

O
(

(C + 1)|Ω| ·
(
|Ω| ·

(
L · C + C2 · L

)
+ |Ω|

))
= O

(
C |Ω|+2 · |Ω| · L

)
.

For the loop in lines 16–20, the size of Θ is bounded by the number of iterations as lines 12–15.
In each iteration with a list [C1, · · · , C|Ω|−1], two elements are added into Θ. Therefore, we
have |Θ| = O((C+1)|Ω|). The number of lists [φ1, · · · , φt−1, φt+1, · · · , φ|Ph|] with each φ ∈ Θ
is |Θ||Ph|−1, which is bounded by O(C |Ω|·(ν−1)). Line 17 requires at most ν operations, and
the same is for lines 18–19. Line 20 requires a constant time to finish. The total cost of this
part is O(C |Ω|·(ν−1) · ν).
Therefore, the overall time complexity of Algorithm 1 is

O
(
|Ω| · L + δ · ν ·

(
δL · ν2L ·N · L + |Ω|+ C |Ω|+2 · |Ω| · L + C |Ω|·(ν−1) · ν

))
. (9)

By replacing |Ω| with O
(
δL · ν2L

)
, the expression can be simplified as

O
(

δL+1 · ν2L+1 ·N · L + L · δL+1 · ν2L+1 · CδL·ν2L+2 + δ · ν2 · CδL·ν2L·(ν−1)
)

= O
(

L · δL+1 · ν2L+1 ·
(

N + CδL·ν2L+2
)

+ δ · ν2 · CδL·ν2L·(ν−1)
)

= O
(

CδL·ν2L
)

.
(10)

Theorem 4.5. For MC model M and dataset D, a program RM,D ⊆ RM that returns the
same output as M on D can be obtained with worst time complexity O

(
δL · ν2L · ϵL+ν ·

)
, for

ν = max1≤k≤δ |Pk| and ϵ the number of distinct constants in D.

Proof. Let RM,D be the output of Algorithm 3 for the input modelM and dataset D. Let L
and N be the depth and rank of M, respectively. Besides, let TM be the transformation
defined byM over datasets: given a dataset D, TM maps D to the set of all facts correspond-
ing to new rows obtained by applying M for completion. A set of rules RM,D is faithful to
M if TM(D) = TRM,D (D) for each dataset D representing a database.

Soundness. We prove TRM,D (D) ⊆ TM(D) by pointing out that RM,D is a subset of the
MC program extracted by Algorithm 1. Let R be the program extracted by Algorithm 1. We
have RM,D ⊆ R by construction, so TRM,D (D) ⊆ TR(D). Meanwhile, Theorem 4.4 ensures
that R is sound for M, i.e., TR(D) ⊆ TM(D). Therefore, we have TRM,D (D) ⊆ TM(D).
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Completeness. To prove TM(D) ⊆ TRM,D (D), we consider an arbitrary fact
Ph(cs1 , · · · , cst−1 , cu, cst+1 , · · · , cs|Ph|) ∈ TM(D), predicted by M by completing the
fact P t

h(cs1 , · · · , cst−1 , cst+1 , · · · , cs|Ph|) ∈ D with the constant cu, and show that there
exists a rule produced by Algorithm 3 which is able to derive this fact from D.
Let H ← A ∧

∧
1≤r≤|Ph|,r ̸=t φr be the rule added to RM,D within the iteration

of Ph(cs1 , · · · , cst−1 , cu, cst+1 , · · · , cs|Ph|) in lines 10–20. We consider each φr in the rule
body with 1 ≤ r ≤ |Ph| and r ̸= t. For each multichain conjunction in φr with core
corresponding to path schema ω, count(ω) counts distinct paths with schema ω from csr

to cu in D, which is greater or equal to the cardinality of this multichain conjunction. The
corresponding facts in D of these paths form count(ω) pairwise distinct groundings of the
chain pattern corresponding to ω. This ensures that φr can be grounded in D by mapping xr

to csr
and y to cu. Besides, as each φr for 1 ≤ r ≤ |Ph| and r ̸= t shares no variables

except y, each φr can be grounded in D without affecting each other. Therefore, the whole
rule can be grounded in D with xr mapped to csr

for 1 ≤ r ≤ |Ph|, r ̸= t, and y mapped
to cu. This completes our proof that Ph(cs1 , · · · , cst−1 , cu, cst+1 , · · · , cs|Ph|) ∈ TRM,D (D).

Time Complexity. In the worst case, the number of possible paths in Pall reaches O(ϵL ·
KL). With K =

∑δ
k=1 |Pk|(|Pk| − 1) + 1 = O(δ · ν2), the size of Pall can be written

as O(ϵL · δL · ν2L). Consider the iteration of Algorithm 3, lines 10–20, the size of TM(D)
is O(ϵν · δ) in the worst case (line 10), and the number of iterations over r as line 11 is at
most ν. In lines 13–15, each loop with a specific chain [csr , d1, · · · , dℓ, cu] costs at most O(L)
steps. The computation in lines 16–17 has at most the same cost as lines 13–15, since
each specific chain [csr

, d1, · · · , dℓ, cu] grounds at most one specific chain pattern in some
multichain conjunction. The aggregation in lines 19–20 costs at most O̊(L) steps. Besides,
the computation of all the values C̊ω for each chain pattern ω requires O(δL · ν2L ·N · L)
steps. Therefore, the worst case complexity of Algorithm 3 is

O
(
ϵL · δL · ν2L · ϵν · δ · ν · L + δL · ν2L ·N · L

)
= O

(
δL · ν2L · ϵL+ν ·

)
.

Additionally, let TM′(D) = {Ph(cs1 , · · · , cst−1 , cu, cst+1 , · · · , cs|Ph|)} ⊆ TM(D). By replac-
ing TM(D) with TM′(D) in Algorithm 3, the algorithm terminates with time complex-
ity O(δL · ν2L · ϵL), and the result program R′ contains a single rule ρ. The above
complexity analysis for Algorithm 3 ensures that this rule can be grounded in D and
derive Ph(cs1 , · · · , cst−1 , cu, cst+1 , · · · , cs|Ph|) ∈ Tρ(D).

Theorem 5.2. The program RM extracted by Algorithm 2 is faithful to the input MC-max
model M when γ = β. Algorithm 2 terminates in O

(
δL · ν2L

)
steps with ν = max1≤k≤δ |Pk|.

Proof. Let RM be the output of Algorithm 2 on input M. Let L and N be the depth and
rank of M, respectively. Besides, let TM be the transformation defined by M over datasets:
given a dataset D, TM maps D to the set of all facts corresponding to new rows obtained
by applying M for tabular data cell completion. A set of rules RM is faithful to M if
TM(D) = TRM(D) for each dataset D representing a database.

Soundness. We prove the soundness of RM to M by taking an arbitrary input dataset D
that encodes a database, and showing that TRM(D) ⊆ TM(D).
Let Ph(cs1 , · · · , cst−1 , cu, cst+1 , · · · , cs|Ph|) be an arbitrary fact in TRM(D). To derive the
fact, there exists a rule in RM of the form Ph(x1, · · · , xt−1, y, xt+1, · · · , x|Ph|) ← A ∧
λk1,p1→q1(xr, z1)∧· · ·∧λkℓ,pℓ→qℓ

(zℓ−1, y), or Ph(x1, · · · , xt−1, y, xt+1, · · · , x|Ph|){xr 7→ y} ←
A{xr 7→ y}, where 1 ≤ r ≤ |Ph|, r ̸= t, and A = P t

h(x1, · · · , xt−1, xt+1, · · · , x|Ph|). Each
λki,pi→qi

(zi−1, zi) for 1 ≤ i ≤ ℓ denotes an atom with predicate Pki
, variables zi−1, zi on its

pi-th, qi-th positions, and pairwise distinct variables on the other positions, respectively, with
z0 = xr, zℓ = y. Meanwhile, there exists a fact P t

h(cs1 , · · · , cst−1 , cst+1 , · · · , cs|Ph|) ∈ D to
ground the atom A. Besides, in the first case where the rule body contains λk1,p1→q1(xr, z1)∧
· · · ∧ λkℓ,pℓ→qℓ

(zℓ−1, y) with ℓ ≥ 1, there exists a substitution σ that ground it in D by
mapping xr to csr and y to cu.
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For ω = λk1,p1→q1(xr, z1)∧· · ·∧λkℓ,pℓ→qℓ
(zℓ−1, y) with 0 ≤ ℓ ≤ L (ω = ⊤ for ℓ = 0), let SL

ω be
the set of all lists [d1, · · · , dL] of length L that can be obtained from [dk1,p1→q1 , · · · , dkℓ,pℓ→qℓ

]
(resp. [] for ℓ = 0) by padding it (if needed) with the value K. Let

[d′
1, · · · , d′

L] = arg max
[d1,··· ,dL]∈SL

ω

max
1≤i≤N

 L∏
j=1

bh,t(i, j, dj)

 .

Since the rule is in RM, we have
∏L

j=1 bh,t(i, j, d′
j) > γ.

For simplicity, we denote each adjacency matrix Mk,p→q with 1 ≤ k ≤ δ, 1 ≤ p, q ≤ |Pk|
and p ̸= q as M̂dk,p→q

where 1 ≤ dk,p→q ≤ K− 1. Besides, let M̂K ∈ {0, 1}ϵ×ϵ be an identity
matrix, in which M̂K(i, i) = 1 for 1 ≤ i ≤ ϵ and 0 elsewhere. Then we can rewrite the
Equation 3 and compute vh,t

c (u) as Equation 11.

vh,t
c (u) = max

1≤i≤N
1≤r≤|Ph|,r ̸=t

 max
[d1,··· ,dL]∈{1,··· ,K}L,

M̂d1 ⊗···⊗M̂dL
(sr,u)=1

L∏
j=1

bh,t(i, j, dj)

 . (11)

If the rule body contains λk1,p1→q1(xr, z1) ∧ · · · ∧ λkℓ,pℓ→qℓ
(zℓ−1, y) with ℓ ≥ 1, the exis-

tence of substitution σ ensures that M̂d′
1
⊗ · · · ⊗ M̂d′

L
(sr, u) = 1 for some r with 1 ≤

r ≤ |Ph| and r ̸= t. Otherwise, if the rule body only contains A, then sr = u,
[d′

1, · · · , d′
L] = [K, · · · , K], and M̂d′

1
⊗ · · · ⊗ M̂d′

L
(sr, u) = 1 holds as well by definition.

This means the list [d′
1, · · · , d′

L] is included in the max operation of Equation 11, so we
have vh,t

c (u) ≥
∏L

j=1 bh,t(i, j, d′
j) > γ. Therefore, we have vh,t

c (u) > β with β = γ, which
ensures Ph(cs1 , · · · , cst−1 , cu, cst+1 , · · · , cs|Ph|) ∈ TM(D).

Completeness. We consider an arbitrary fact Ph(cs1 , · · · , cst−1 , cu, cst+1 , · · · , cs|Ph|) ∈
TM(D) by completing the fact P t

h(cs1 , · · · , cst−1 , cst+1 , · · · , cs|Ph|) ∈ D with constant cu, and
prove the fact is in TRM(D).
Let [d′

1, · · · , d′
L] and corresponding values of i′ and r′ be

[d′
1, · · · , d′

L], i′, r′ = arg max
1≤r≤|Ph|,r ̸=t,1≤i≤N,

[d1,··· ,dL]∈{1,··· ,K}L,

M̂d1 ⊗···⊗M̂dL
(sr,u)=1

 L∏
j=1

bh,t(i, j, dj)

 . (12)

Clearly, at least one such sequence [d′
1, · · · , d′

L] with corresponding i′ and r′ must exist
because Ph(cs1 , · · · , cst−1 , cu, cst+1 , · · · , cs|Ph|) ∈ TM(D). By Equation 11, we have vh,t

c (u) =∏L
j=1 bh,t(i′, j, d′

j) > β and M̂d′
1
⊗· · ·⊗M̂d′

L
(sr′ , u) = 1. Let [d′′

1 , · · · , d′′
ℓ ] be the list obtained

from [d′
1, · · · , d′

L] by removing all K. Then we consider two cases with ℓ = 0 and ℓ ≥ 1,
respectively.
If ℓ = 0, we consider the rule Ph(x1, · · · , xt−1, y, xt+1, · · · , x|Ph|){xr′ 7→ y} ← A{xr′ 7→
y}, where A = P t

h(x1, · · · , xt−1, xt+1, · · · , x|Ph|) describes the structure of the incomplete
fact. We have

∏L
j=1 bh,t(i′, j, d′

j) > γ with β = γ, which ensures the rule is in the result
program RM. Meanwhile, M̂d′

1
⊗· · ·⊗M̂d′

L
(sr′ , u) = 1 ensures that the rule can be grounded

in D with csr′ = cu to derive the fact Ph(cs1 , · · · , cst−1 , cu, cst+1 , · · · , cs|Ph|) ∈ TRM(D).

If ℓ ≥ 1, we consider the rule Ph(x1, · · · , xt−1, y, xt+1, · · · , x|Ph|)← A ∧ λk1,p1→q1(xr′ , z1) ∧
· · · ∧λkℓ,pℓ→qℓ

(zℓ−1, y), where A = P t
h(x1, · · · , xt−1, xt+1, · · · , x|Ph|), and (ki, pi, qi) uniquely

correspond to each index d′′
ℓ by definition for each 1 ≤ i ≤ ℓ. Analogous to the case of ℓ = 0, we

have
∏L

j=1 bh,t(i′, j, d′
j) > γ = β to ensure the rule is in the result program RM. Meanwhile,

by definition of the adjacency matrices M̂d for 1 ≤ d ≤ K, we have M̂d′
1
⊗ · · · ⊗ M̂d′

L
=
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M̂d′′
1
⊗· · ·⊗M̂d′′

ℓ
. Therefore, we have M̂d′′

1
⊗· · ·⊗M̂d′′

ℓ
(sr′ , u) = 1, which ensures that there

exists a substitution to ground the rule body in D by mapping xr′ to csr′ and y to cu. This
rule derives the fact Ph(cs1 , · · · , cst−1 , cu, cst+1 , · · · , cs|Ph|) and completes our proof.

Time Complexity. In Algorithm 2, the number of iterations over all h, t with 1 ≤ h ≤ δ,
1 ≤ t ≤ |Pδ| and rank 1 ≤ i ≤ N is O(δ · ν ·N) with ν = max1≤k≤δ |Pk|. The iteration of
lines 4–7 costs O(KL) steps to compute all possible scores for each chain pattern, with K =∑δ

k=1 |Pk|(|Pk| − 1) + 1 = O(δ · ν2). The iteration of lines 8–14 loops over all the O(KL)
elements of S ′, and each loop costs at most O(L + ν) steps. Therefore, the time complexity
of Algorithm 2 is

O
(
δ · ν ·N ·KL · (L + ν)

)
= O

(
δL · ν2L

)
.

D Analytical Expression of dk,p→q

Given predicates P1, · · · , Pδ with arity |Pi| ≥ 2 for 1 ≤ i ≤ δ, the position dk,p→q of triple
(k, p, q) is computed as

dk,p→q =
k−1∑
i=1
|Pi| · (|Pi| − 1) +

{
(|Pk| − 1) · (p− 1) + q if q < p

(|Pk| − 1) · (p− 1) + q − 1 if q > p
. (13)

In turn, the triple (k, p, q) can be obtained for a given d satisfying 1 ≤ d ≤ K − 1 as

k = min
{

a ∈ Z>0 |
a∑

i=1
|Pi| · (|Pi| − 1) ≥ d

}
,

p = min
{

b ∈ Z>0 |
k−1∑
i=1
|Pi| · (|Pi| − 1) + b · (|Pk| − 1) ≥ d

}
,

q = d−
k−1∑
i=1
|Pi| · (|Pi| − 1)− (p− 1) · (|Pk| − 1) .

(14)

E Comparison of Expressive Power of MC and MC-max

The following proposition shows that the expressive power of MC models is not equivalent
to MC-max models, as MC models can capture rules that cannot be captured by MC-max.
Proposition E.1. There exists a MC model such that no MC-max model is equivalent to it,
where equivalent means they produce the same result for each input dataset D.

Proof. We prove this proposition by giving an example of such MC model, and a specific
input dataset D. Then we show that no MC-max model is able to produce the same result
as the MC model on this dataset.
We assume a signature consisting of a single predicate P with arity 4, and a set of constants
{a1, a2, a3, a4, b, c, d, e, f, g, h}. The input dataset has an incomplete fact and three complete
facts as D = {P 4(a1, b, c), P (a2, b, c, d), P (a3, b, e, f), P (a4, g, c, h)}. Let the MC modelM =
(b1,1, b1,2, b1,3, b1,4, β) of rank N = 1 and depth L = 1, where β = 0.9, all elements of the
tensors are 0 except b1,4(1, 1, d1,2→4) = b1,4(1, 1, d1,3→4) = 0.5. Following the computation
process of the MC model as Equation 1, we are able to obtain the (only) constant d to
replace the null value in the incomplete fact. The completed fact is P (a1, b, c, d), which can
be explained by the rule 15, containing two chain patterns of length 1.

P (x1, x2, x3, y)← P 4(x1, x2, x3) ∧ P (u, x2, v, y) ∧ P (w, z, x3, y) . (15)

Then we prove by contradiction that no MC-max model can produce the same result as M
on D. To this end, suppose there exists a MC-max model M′ that yields the same result as
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M on D. Then M′ must predict the constant d for the incomplete fact, since d is predicted
by M. By definition of the MC-max model, it only utilizes one path with the highest weight
from any existing constants (i.e., a1, b, c in this case) from the incomplete fact to the target
constant. We consider the following cases.

1. The model utilizes a path connecting a1 and d in D. As there is no such path in D,
this cannot be true.

2. The model utilizes a path connecting b and d in D. In this case, we can find another
path with the same path schema that connects b and f . In particular, by applying
the mapping {a2, a4 7→ a3; g 7→ b; c 7→ e; d, f 7→ h} to the path, i.e., replacing each
constant with the one on the same position of predicate P as the fact P (a3, b, e, f).
It is easy to see that the new path exists, and connects b and f . Besides, as the
path schema is unchanged, the weight of new path is the same as the one connecting
b and d. Therefore, if the model M′ derives d, it must also derives f in the result.
This contradicts with that M only derives d as result.

3. The model utilizes a path connecting c and d in D. Analogous to case 2, we can find
another path with the same path schema that connects c and h, with the mapping
{a2, a3 7→ a4; b 7→ g; e 7→ c; d, f 7→ h}. Therefore, if the model M′ derives d, it must
also derives h in the result. This contradicts with that M only derives d as result.

As we have enumerated all possible cases for M′ to derive d, while none of them satisfies
the requirement that M′ produces the same result as M. This contradiction completes our
proof that no such MC-max model exists that can produce the same result as M on D.

F Applying MC and MC-max to Complete Multiple Null Values

In this part, we explain that our models can be applied to incomplete facts with multiple null
values as a direct extension. Figure 3 shows an example of this case, where some row(s) in
the input tabular data contain more than one null value to be completed. As we introduced
in Section 2, input tabular data can be viewed as facts with predicates. In this example, we
have predicates Name-Org.-Country, Name-City-Country-Org (abbreviated as N-O-C and
N-C-C-O in the rest of this section, respectively), two complete facts N-O-C(Emma, MIT, US),
N-C-C-O(Alice, Boston, US, Amazon), and an incomplete fact N-C-C-O(Emma, Boston, ?, ?).

Name City Country Org.
Alice Boston US Amazon

… … … …
Emma Boston ? ?

Name Org. Country
Emma MIT US

… … …

Figure 3: An example of tabular data cell completion with multiple null values in an
incomplete fact, where each ‘?’ denotes a missing value for the data cell.

Following the same definition of data predicates P1, · · · , Pδ and auxiliary predicates {P t
i |

1 ≤ t ≤ |Pi|} introduced in Section 4, we analogously represent the input tabular data
as a dataset D. Apart from keeping the same representation for facts with zero or one
null value, we extend it for facts with multiple null values. Specifically, we introduce a
special constant c0 that is distinct from all the constants from the input tabular data,
which intuitively denotes an ‘unknown’ constant. Then for each incomplete fact with
predicate Pk and m null values on its p1, · · · , pm positions with 1 ≤ k ≤ δ and 1 < m <
|Pk|, D contains m facts of the form P t

k(c1, · · · , ct−1, ct+1, · · · , c|Pk|) for t ∈ {p1, · · · , pm},
where each cj = c0 for j ̸= t and j ∈ {p1, · · · , pm}. In the example of Figure 3, the
incomplete fact N-C-C-O(Emma, Boston, ?, ?) is represented by two facts in D, namely,
N-C-C-O3(Emma, Boston, c0) and N-C-C-O4(Emma, Boston, c0).
As the above formulation of dataset D has the same form as our input introduced in Section 3,
we can apply our model as Definition 3.3 to D. In particular, by additionally encoding the
constant c0 as vi,0

c0
= {0}δ, Equation 1 is well defined. Observe that, as c0 is distinct from
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all constants in the input tabular data, introducing c0 will not affect any of the adjacency
matrices Mk,p→q. Besides, as c0 is initiated as a zero vector in Equation 1, the existence of
c0 has neither contribution nor effect on the final results of vh,t

c .
Finally, to obtain complete facts by eliminating the existence of c0, we post-process the
TM(D) (i.e., the result of applying model M to dataset D) as follows. For each set of m
facts Pk(c1, · · · , ct−1, ct, ct+1, · · · , c|Pk|) in TM(D) with a distinct t ∈ {p1, · · · , pm}, satisfy-
ing cj = c0 for j ̸= t and j ∈ {p1, · · · , pm}, and other constants ci for 1 ≤ i ≤ |Pk| and
ci /∈ {p1, · · · , pm} are the same for the m facts, we merge them into a single fact without c0,
by substituting all c0 on the t-th position for t ∈ {p1, · · · , pm} with the (only) constant ct ∈
{c1, · · · , cδ} on the same position among these m facts. For example, in Figure 3, if the model
produces TM(D) = {N-C-C-O(Emma, Boston, US, c0), N-C-C-O(Emma, Boston, c0, MIT)},
the complete fact is obtained by merging the two facts as N-C-C-O(Emma, Boston, US, MIT).
To apply the MC-max model for incomplete facts with multiple null values, recall that the
MC-max model has the same form and input as the MC model (see Section 5); therefore, the
above extension also applies to the MC-max model. Analogously, by adding the initializing
vector of constant c0 as vi,0

c0
= {0}δ, the transformation of MC-max model as Equation 3 is

well defined. Then we are able to conduct the same post-process as above to eliminate c0
and obtain the complete fact.
Note that, any extension discussed in this section only involves pre-processing the input
(i.e., how to get D) and post-processing the output (i.e., how to handle TM(D)), while the
definition of models and rule extraction algorithms are unchanged. Therefore, Theorem 4.4
and Theorem 5.2 are not affected under this extended scenario. The faithfulness between
the model and extracted rules still holds.

G Experiment Settings

Additional details about the experiments are provided in this section, including the statistics
of datasets, and the configurations used for training and evaluation.

G.1 Statistics of Datasets

For relational tabular datasets, we reused the three inductive datasets WP-IND, JF-IND,
and MFB-IND from Yadati (2020), as well as a transductive dataset FB-AUTO from Fatemi
et al. (2020). Each dataset consists of train, validation, and test sets, where the test set of
each inductive dataset contains the same predicates but also unseen constants w.r.t. the train
and validation sets. Table 5 presents the statistics of each dataset. Compared with WP-IND,
JF-IND, and FB-AUTO, MFB-IND has a similar number of constants but significantly more
facts, indicating a much higher density than the others. In addition to the number of facts,
predicates, and the arity of each predicate, we also calculated the number of occurrences
for each constant in the dataset. The constants in MFB-IND exhibited a higher median
frequency of occurrence than those in the other datasets. This also suggests that MFB-IND
has a denser structure with more chains between pairwise constants within a given length
constraint.

Table 5: Statistics of Tabular Datasets.

#Train Facts #Validation Facts #Test Facts #Constants #Predicates Arity Constant Frequency
median max (median)

WP-IND 4,139 1,138 1,139 4,463 32 3 4 1
JF-IND 6,167 659 645 4,785 31 3 4 2
MFB-IND 336,733 15,052 15,056 3,783 12 3 3 45
FB-AUTO 6,778 2,255 2,180 3,388 8 5 5 4

To use these datasets for tabular data cell completion, each train set was randomly split
into an incomplete set of facts D and a set of positive examples with a 3 : 1 ratio. For
inductive datasets, the test set was similarly split in an 1 : 1 ratio. The incomplete facts
with a missing value were then obtained by masking one constant at each position in the
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positive examples. Besides, to evaluate model performance with negative examples, for each
dataset we randomly sampled negative facts by replacing the constant at each position of a
positive example in the test set. Finally, an equal number of positive and negative examples
were combined during the evaluation process.
For binary datasets, we reused the 12 benchmark datasets for inductive knowledge graph
completion from Teru et al. (2020). Table 6 presents the statistics of each dataset. Analogous
to the hypergraph datasets, we computed the number of occurrences for each constant in the
dataset. Compared with NELL-995 and WN18RR, FB15k-237 datasets in general have more
predicates and a higher frequency of constants, indicating a greater diversity of incomplete
facts and binary connections between pairwise constants. To use these datasets for our task,
we reused the splits in Wang et al. (2024a) for each train set and test set, including the
incomplete set of facts, positive examples, and negative examples.

Table 6: Statistics of Binary datasets.

#Train Facts #Validation Facts #Test Facts #Predicates Constant Frequency (median)

FB15k-237
V1 4,245 489 2,198 180 3
V2 9,739 1,166 4,623 200 4
V3 17,986 2,194 8,271 215 5
V4 27,203 3,352 13,138 219 7

NELL-995
V1 4,687 414 933 14 2
V2 8,219 922 5,062 88 2
V3 16,393 1,851 8,857 142 2
V4 7,546 876 7,804 76 2

WN18RR
V1 5,410 630 1,806 9 3
V2 15,262 1,838 4,452 10 3
V3 25,901 3,097 6,932 11 3
V4 7,940 934 13,763 9 3

G.2 Model Configurations

For baseline models, we reused the original implementation of HyperGCN layers1 from Yadati
et al. (2019), and adapted it to the tabular data cell completion task by adding an extra
linear layer for binary classification to predict the correctness of an input fact. We used the
standard version for better performance on WP-IND, JF-IND, FB-AUTO, while using the
fast version on MFB-IND, as a single training epoch of the standard version on this dense
dataset cost more than 24 hours.
For GMPNN models (Yadati, 2020), we reused their original implementation2 for our task.
We reused the default hyperparameter settings for all the baseline models.
For LLM baselines, we implement Chain-of-Thought (Wei et al., 2022) with customized
prompts and 3-shot examples. Each input contains an incomplete tabular data instance and
a candidate fact, where the model is prompted to judge the validity of the candidate fact and
output a binary answer. We accessed the GPT-5 mini model (OpenAI, 2025) via its official
API. For TabLLM (Hegselmann et al., 2023), we followed the original implementation3

and adapted it to our task. We further replaced its backbone LLM with a more advanced
open-sourced model Llama-3.1-8B-Instruct (Meta, 2024). We accessed the model from
HuggingFace4 and deployed it locally for fine-tuning and evaluation. The model was fine-
tuned with QLora (Dettmers et al., 2023) for binary classification of the candidate fact.
We implemented the MC and MC-max models based on Python 3.85 and PyTorch 2.06. For
training the MC and MC-max models, we applied the Adam optimizer with cross-entropy
loss, and tuned the learning rate between 0.01 and 0.0001 for each model. Each model

1https://github.com/malllabiisc/HyperGCN
2https://github.com/naganandy/G-MPNN-R
3https://github.com/clinicalml/TabLLM/tree/main
4https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
5https://www.python.org/downloads/release/python-3817/
6https://pytorch.org/get-started/pytorch-2.0/
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was trained for up to 10 epochs, and an early stopping strategy was employed when the
validation loss increased during the training process.
For MC and MC-max, we set depth L = 2 and evaluated ranks 1 ≤ N ≤ 3. The threshold β ∈
(0, 1) was tuned for each model to maximize the F1 score on validation sets. On binary
datasets, we compared their best performance by tuning rank N between 1 and 3.
For rule extraction, we implemented Algorithm 3 for the MC model on all datasets used in
our experiments. We also implemented Algorithm 2 for the MC-max models and set the
rule extraction threshold γ = β.
All the experiments were performed on a workstation with an Intel Xeon E5-2670 CPU and
a Quadro RTX 8000 GPU.

H Additional Evaluation Results

We provide more evaluation results in this section, including the training time of each model
on every dataset, and rule extraction time of MC and MC-max models.

H.1 Extended Result Analysis for Tabular Data Cell Completion

Sum vs. Max Aggregation. Results in Table 1 and Table 2 reflect the different behaviors
of the two models. The MC model, with sum aggregation, often achieves higher recall by
leveraging all evidence paths, which is beneficial when multiple weak signals contribute to a
correct prediction, but may be more susceptible to noise from irrelevant paths. In contrast,
the MC-max model, with max aggregation, considers only the strongest path, making it
more robust in noisy settings and yielding more precise and concise rules, at the cost of
reduced expressivity.

Few-shot Prompting vs. Fine-tuning LLMs. Table 1 also demonstrates the unbalanced
and unstable performance of LLM-based methods. In particular, predictions by few-shot
prompting models are often overly conservative, leading to frequent failures in identifying
the correct constant to fill the missing cell. In contrast, fine-tuned models tend to be overly
optimistic, producing a large number of false positives. The results highlight the difficulty
of calibrating LLM predictions for tabular data cell completion, where both under- and
over-prediction significantly undermine reliability.
In our task, the candidate space is large and evidence is distributed across multiple tables
or hops. Therefore, correct completions often require aggregating several weak, schema-
constrained clues. With fixed few-shot prompting, the LLM’s probability distribution is
spread over many candidates and it struggles to bind constants across hops, so many true
positives are filtered out, yielding conservative behavior and frequent failures to identify
the correct constant. In contrast, fine-tuning makes the model internalize spurious co-
occurrences and frequency priors (e.g., frequent values in the table) and loses its implicit
“abstain” behavior, leading to overconfident predictions and inflated false positives. We
observe that few-shot models often fail when correct predictions require multi-hop joins,
while fine-tuned models frequently produce false positives by predicting overly common
values for the missing cell. This contrasts with our approach that explicitly aggregates paths
under schema constraints, thus improving calibration.
Compared with LLM-based methods, our models not only achieve a more balanced overall
performance across all metrics, but also provide faithful, human-understandable explanations.

H.2 Training Time

Table 7 reports the training time for each model on the WP-IND, JF-IND, MFB-IND,
and FB-AUTO datasets. Generally, all models were able to finish training within several
minutes to a few hours, varying among datasets. The HyperGCN model spent less training
time than the GMPNN models, despite its less satisfying performance for our task. The
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GMPNN-sum, GMPNN-mean, and GMPNN-max models used similar training time, since
their only difference is the strategy for aggregating neighborhood information.
For the MC and MC-max models, the number of learnable parameters grows linearly with
the rank, resulting in the longer training time as the rank N increases. This indicates the
model’s flexibility to scale to larger datasets by adjusting the rank as a hyperparameter.
The MC-max model spent longer training time than the MC model with the same rank,
primarily due to the computation of max-product and max aggregation. Additionally, MC
models were observed to early stop more frequently than MC-max models with increments
of validation loss. Overall, both MC and MC-max models demonstrated comparable training
time to the baseline models, suggesting the practical feasibility of our approaches.

Table 7: Training Time (minutes) for Each Model.

WP-IND JF-IND MFB-IND FB-AUTO
HyperGCN 9.3 18.4 225.0 39.7
GMPNN-sum 21.7 24.5 439.9 31.6
GMPNN-mean 21.6 24.4 438.0 79.0
GMPNN-max 21.3 24.2 432.1 77.7
TabLLM (Llama 3.1) 95.6 110.3 150.8 100.2
MC (N = 1) 9.0 7.5 131.6 4.0
MC (N = 2) 19.7 15.7 307.5 6.2
MC (N = 3) 29.4 24.4 408.1 12.0
MC-max (N = 1) 27.1 38.6 301.2 16.1
MC-max (N = 2) 52.4 76.2 620.7 33.3
MC-max (N = 3) 75.0 112.9 828.0 50.3

H.3 Significant Test

Based on the results in Table 1, we conducted paired t-tests for each pair of baseline and
our proposed models across all evaluation metrics where MC and MC-max outperformed
the baselines. A paired t-test typically indicates a statistically significant difference when
p < 0.05. Table 8 reports the results of p-values, with all values of p < 0.05 marked with an
asterisk (*). Overall, the results reveal significant differences between our proposed models,
MC and MC-max, and the baseline models. In particular, both MC and MC-max significantly
outperform all baseline models in terms of precision and accuracy, and also significantly
outperform GMPNN-sum in terms of F1 score. Additionally, MC-max significantly exceeds
most baseline models except GMPNN-max in terms of precision, recall, and AUC.

Table 8: p-values of Paired t-Test for Results in Table 1.

MC (N = 1) MC (N = 2) MC (N = 3) MC-max (N = 1) MC-max (N = 2) MC-max (N = 3)

HyperGCN
P 0.029* 0.033* 0.045* 0.002* 0.002* 0.002*
Acc 0.046* 0.050 0.055 0.017* 0.017* 0.021*
AUC 0.070 0.079 0.076 0.034* 0.033* 0.039*
F1 0.063 0.067 0.063 0.051 0.049* 0.056

GMPNN-sum
P 0.017* 0.019* 0.028* 0.007* 0.008* 0.006*
Acc 0.016* 0.016* 0.023* 0.005* 0.005* 0.004*
AUC 0.016* 0.016* 0.017* 0.002* 0.001* 0.001*
F1 0.038* 0.036* 0.042* 0.020* 0.022* 0.021*

GMPNN-mean
P 0.018* 0.019* 0.029* 0.006* 0.007* 0.005*
Acc 0.021* 0.021* 0.031* 0.004* 0.005* 0.003*
AUC 0.166 0.202 0.192 0.029* 0.024* 0.031*
F1 0.576 0.598 0.579 0.386 0.366 0.402

GMPNN-max
P 0.036* 0.040* 0.055 0.029* 0.029* 0.024*
Acc 0.050 0.056 0.070 0.024* 0.021* 0.022*
AUC 0.414 0.486 0.459 0.083 0.074 0.061
F1 0.640 0.696 0.659 0.280 0.261 0.301

CoT (GPT-5 mini)
P 0.560 0.578 0.567 0.119 0.109 0.135
R 0.014* 0.014* 0.014* 0.021* 0.022* 0.020*
Acc 0.006* 0.005* 0.005* 0.007* 0.007* 0.005*
F1 0.015* 0.014* 0.014* 0.014* 0.015* 0.013*

TabLLM (Llama 3.1)
P 0.004* 0.004* 0.005* 0.000* 0.000* 0.000*
R 0.072 0.065 0.073 0.125 0.144 0.108
Acc 0.010* 0.010* 0.012* 0.004* 0.005* 0.005*
F1 0.029* 0.029* 0.029* 0.023* 0.024* 0.025*
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H.4 Analysis of the Extracted Rules from MC-max

Table 4 presents examples of top-weighted rules extracted by MC-max from the WP-IND,
JF-IND, and MFB-IND datasets. Most extracted rules demonstrate binary relationships
between constants, such as the first two rules from WP-IND. The model also captured
symmetrical binary relationships, exemplified by the third rule from WP-IND, as well as
transitive binary relationships, such as the first rule from MFB-IND. Additionally, it exhibits
the ability to ‘align’ specific positions across different predicates. For example, in the third
rule extracted from JF-IND, it aligns the positions of Team and Player across different
predicates Player-Event-Team and Team-Player-Event.

H.5 Rule Extraction Time for MC model over a Specific Dataset

Table 9 presents the runtime of Algorithm 3 for MC models with each input tabular dataset.
Since the number of results obtained by applyingM to D varies across datasets, we measured
the average rule extraction time per 100 result facts obtained by applyingM to D, to enable
a consistent comparison across datasets.
In all cases, Algorithm 3 completed rule extraction within a few minutes. Besides, increasing
the rank N did not significantly affect the time for rule extraction. These results confirm
the practical feasibility of our rule extraction approach. Additionally, we observed that the
majority of the runtime was spent on computing the weights of every chain pattern and their
cardinality upper bounds, while the time increment would remain limited with growing size
of the result set by applying M to D.

Table 9: Rule Extraction Time of MC on Fixed Datasets (seconds per 100 result facts).

N = 1 N = 2 N = 3
WP-IND 11.89 14.61 15.70
JF-IND 11.34 13.78 14.48
MFB-IND 5.66 5.95 6.27
FB-AUTO 0.61 0.70 0.78

FB15k-237
V1 95.80 105.02 117.08
V2 134.17 149.70 169.26
V3 174.61 196.80 227.41
V4 188.42 217.78 246.52

NELL-995
V1 0.17 0.20 0.24
V2 10.71 12.59 14.30
V3 47.18 57.08 64.25
V4 6.97 8.45 9.42

WN18RR
V1 0.03 0.05 0.06
V2 0.05 0.07 0.10
V3 0.08 0.12 0.20
V4 0.05 0.08 0.16
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