Under review as a conference paper at ICLR 2026

FAITHFUL RULE LEARNING FOR TABULAR
DaTA CELL COMPLETION

Anonymous authors
Paper under double-blind review

ABSTRACT

Tabular data cell completion aims to infer the correct constants that could
fill a missing cell in a table row. While machine learning (ML) models have
proven to be effective for this task, the limited interpretability restricts
their applicability in trust-critical domains. In this paper, we develop two
interpretable ML models to predict whether a candidate constant should fill
the empty cell of an incomplete row by learning Datalog rules describing
chain-like patterns of relations. Both models are fully interpretable with
formal guarantees: we provide algorithms that take a model instance and
extract an equivalent set of rules, in the sense that both the model and
the rules produce the same output for any input table over a fixed relation
schema. Furthermore, our models utilize different aggregation strategies to
offer distinct trade-offs regarding expressive power and ease of rule extraction.
Evaluations reveal that our models achieve state-of-the-art performance on
tabular data cell completion with superior interpretability.

1 INTRODUCTION

Tabular data underlies many real-world datasets, from medical records to financial trans-
actions. Tables, however, are often incomplete: missing cells arise due to collection errors,
privacy restrictions, or unavailable information. The task of tabular data cell completion
aims to infer such missing values from the observed table entries (Zhang & Balog, 2019;
Ahmadov et al., [2015} [Yakout et all [2012). Unlike classical imputation in machine learning
(Sun et al., [2023} [Van Buuren & Groothuis-Oudshoorn, [2011} |Stekhoven & Biihlmannl, 2012)),
cell completion does not assume a single ground-truth answer—multiple valid completions
may exist, all of which are acceptable.

Early work approached this problem using statistical heuristics (Yakout et al.,[2012)), external
resources such as knowledge bases (Zhang & Balog, 2019)), specialized settings restricted to
table positions such as headers (Ahmadov et al., [2015)). More recently, machine learning
methods have represented tabular data as hypergraphs, where nodes are cell values and
hyperedges correspond to rows, and applied hypergraph neural networks (Yadati et al., 2019;
Yadatil, 2020]). While effective, the predictions of these models are difficult to explain in a
transparent and faithful manner, limiting trust and interpretability in sensitive domains. Our
task also relates to neural rule learning methods developed for knowledge graph completion,
such as Neural-LP (Yang et al., 2017) and DRUM (Sadeghian et al., [2019), though tabular
data presents distinct challenges due to its multi-row, multi-column structure.

We address this challenge by drawing inspiration from faithful rule learning (Tena Cucala
et al.l 2022a3b; [2023; |Wang et al.} 2024a)). Unlike feature-attribution explainability methods
for tabular models (Lundberg & Lee, |2017)), our goal is to design models for cell completion
that not only achieve high predictive performance but also yield human-readable Datalog
rules as explanations. Crucially, our approach provides a formal guarantee of faithfulness:
every prediction made by the model can be derived from the extracted rules on the same
input, and conversely, the rules derive exactly the model’s predictions. For example, as
illustrated in Figure [I] when predicting that a missing value is ‘US’, the model may justify
this via a rule connecting workplace and residency country. Such rules offer a transparent
view into the decision-making process of the model, fostering trust in the model’s behavior.



Under review as a conference paper at ICLR 2026

Name Org. Country Name Relation Name Name City Country
Emma MIT Us Emma co-worker Alice Alice Boston Us
Emma Boston ?

Figure 1: An example scenario of tabular data cell completion with multi-sourced Web tables
about people’s work and residency, where ‘7’ denotes a missing value for the data cell.

Our contributions are: (i) Two novel rule learning models for cell completion: one based
on sum aggregation (Section [3)) and another based on max aggregation with reduced rule
extraction complexity (Section [5); (i) Faithful rule extraction algorithms for both models,
with formal guarantees (Sections 4| and [5)); and (iii) A comprehensive evaluation on standard
benchmarks, showing competitive performance and improved explainability (Section @

2 BACKGROUND

Tabular Data Cell Completion. We follow standard database terminology. We assume a
signature consisting of two disjoint countable sets of predicates and constants. Each predicate
P has an arity |P| (its number of columns). A fact is an expression P(ci,...,c|p|), where P
is a predicate and each ¢; is either a constant or the special null symbol ‘?’. Intuitively, a
fact corresponds to a row in a table, and ‘?’ denotes a missing value. A table over predicate
P is a finite set of facts over P. A database (instance) is a union of tables over predicates
in a schema. If a fact, table, or database mentions ‘7, it is incomplete. For simplicity, we
focus on the case where each fact contains at most one null value (extensions to multiple
nulls are discussed in Appendix |F]). For an incomplete database D, a completion is another
database obtained by replacing each null with one or more constants from D. For example,
a completion of the database in Figure [[f may replace ‘?” with the constant ‘US". The task of
tabular data cell completion is therefore: given D, map each incomplete fact to the set of
constants that replace its null value in D’s completion (Yakout et al., 2012)).

This task resembles hypergraph link prediction (Chen & Liu, 2023; |[Fatemi et al., [2020}
Yadati et al.l 2019; |[Wang et al.l |2023al), since a database can be viewed as a hypergraph
with constants as nodes and facts as hyperedges. However, unlike general link prediction
(which predicts arbitrary facts), our task specifically fills missing cells in partially observed
rows. Hypergraph methods can be adapted by removing incomplete facts, converting to a
hypergraph, applying a model, and extracting predictions, but they lack direct mechanisms for
handling incompleteness. The task is also related to Programming by Example (PBE) (Wang
et al., [2017; [Kolb et al.| 2017, though in PBE users must supply input-output pairs and
derivation knowledge, whereas here completions must be inferred automatically. We further
discuss related work, including data-quality rule mining, in Appendix [A]

Datalog. Datalog is a declarative rule-based language from databases and logic programming
(Abiteboul et al., 1995)), which we use to express symbolic rules explaining model predictions.
A term is a variable or a constant. An atom is an expression of the form P(ty,--- ,t/p|),
where P is a predicate and each ¢; with 1 <14 <|P] is a term. An inequality is an expression
as t1 % to where t; and to are terms. A literal is an atom or an inequality. A fact is a
variable-free atom, and a dataset is a finite set of facts. A (Datalog) rule is an expression of
the form H < B A--- A By, where £ > 0, H is the head atom, and B; for 1 < ¢ < { are body
literals. A (Datalog) program is a finite set of rules.

For a mapping ¢ from variables to terms, and for w a term, a literal, or a conjunction of
literals, wo replaces each variable z in w with o(x) if the latter is defined. Conjunctions of
literals wy and wsy are isomorphic if there exists a bijection ¢ from the variables in w; to
those in in wy such that wyo and wy coincide. A set S contains a conjunction of literals wq
up to isomorphism if there exists we € S such that w; and ws are isomorphic. Each rule r
defines an immediate consequence operator T,.. For a dataset D, T,.(D) is the smallest dataset
containing Ho for each mapping o from variables in r to constants in D such that B;o € D
if B; is an atom, or xo # yo if B; is an inequality of the form = % y, for each 1 < i < /.
Thus, inequalities are interpreted under the standard Unique Name Assumption (UNA), that



Under review as a conference paper at ICLR 2026

Name Org. Country Prediction threshold: § = 0.8 N ranks
Emma MIT Us ocC. Us
Name Relation Name > Emma [10-+]
Emma | co-worker | Alice N;C 53
Name City Country N-R-I\:),-II,S I(;I.-IC-C,Z,I | i Boston[0 1]
;nl;;nea gz:izz L‘,.,S N-C-C | Emma Boston ? ... o
(a) Input tabular data (b) MC: aggregate all paths of length < L (c) MC: computation process

Figure 2: An illustration of our approach: the model aggregates all paths from existing
constants (i.e., Emma and Boston) in the incomplete fact to a candidate constant (i.e., US)
for completing it. Then it sums the weights of all paths and outputs constant US if and only
if the sum surpasses the prediction threshold 8. The values in blue are learnable parameters.

is, different constants refer to different objects. The immediate consequence for a program R
is defined as T (D) = |, Tr(D). The application of these operators to a dataset can only
derive finitely many facts because there are finitely many constants in each input dataset.

Tensors, Vectors, Matrices. We consider n-dimensional tensors over R. A wvector is
a 1-dimensional tensor, and a matriz is a 2-dimensional tensor. For an n-dimensional
tensor A, we use A(i1,ia, - ,i,) to denote its element at position (i1, 42, -+ ,4y). For a list
of tensors Ty, -+, T, of the same dimension, we use maxj<;<, T; to denote their element-
wise maximum. Besides, for matrices M of dimension m x n and N of dimension n X p,
the maz-product of M and N, written M ® N, is a matrix of dimension m X p where
M ® N(4,j) = maxi<p<n M(i, k) - N(k,7) for 1 <i<mand 1 < j <p.

3 MODEL FOR TABULAR DATA CELL COMPLETION

This section introduces the core idea of our model, presents its formal definition, demonstrates
its application to input databases, and offers a formal interpretation of the function it realizes.
We assume an arbitrary database schema P, ..., Ps throughout the paper.

3.1 MODEL DEFINITION

Our method builds on rule-based link prediction models for graphs (Yang et al. 2017;
Sadeghian et al., [2019; Tena Cucala et al., |2022b; Wang et al., [2024al), which learn to
infer direct connections from path patterns between constants. We extend this concept to
databases of any arity, where paths capture dependencies across richer relational structures.

Definition 3.1. A path of length ¢ > 1 in a database D is a sequence c¢g, - ,¢; of (not
necessarily distinct) constants such that for each 1 <4 < £, there exists a fact in D that
mentions both ¢; ;1 and ¢; in distinct positions.

For example, given the database in Figure 2| (a), a path of length 2 is ‘Emma, Alice, US’, as
the database contains facts N-R-N(Emma, co-worker, Alice) and N-C-C(Alice, Boston, US).

Our model predicts a missing constant (e.g., ‘US’) by analyzing paths in D that connect
this constant to other constants in the incomplete fact. For instance, in Figure [2 the
aforementioned path from ‘Emma’ to ‘US’, represented in Figure [2| (b), can be used to
predict that ‘Emma’ lives in the ‘US’. Once the relevant paths have been identified, our
model computes a weighted sum of their counts, where the weight of each path is based on
properties described by its matching path schemas, as defined next.

Definition 3.2. A path schema of length ¢ > 1 is a sequence of the form (P.,,p1,q1),
(Pryyp2,G2),++ » (Pr,ype,qe), where 1 < r; < § and p;, ¢; are distinct positive integers with
1<pi,q; <|P,|, foreach i € {1,---,¢}. A path cg, -, ¢, in D matches the path schema if
there exist facts a1, -+, ay in D such that a; mentions predicate P,, and has constant c¢;_;
(resp. ¢;) in position p; (resp. g;), for each 1 <4 < £.

For example, in the database in Figure [2| (a), path ‘Emma, Alice, US’ matches the path
schema ‘(N-R-N, 1, 3), (N-C-C, 1, 3)". Note that a path can match several path schemas.



Under review as a conference paper at ICLR 2026

Path schemas capture key properties for path analysis. Ideally, our model would assign
individual learnable parameters to each path schema, quantifying its influence in completing
missing values over a specific predicate. The prediction process would involve identifying
all paths from each constant in an incomplete fact to a candidate constant, weighting each
path by its schema-specific parameters, and then aggregating the results. However, this
approach would require a prohibitively large number of parameters, most of which would not
be used in any given prediction. This would lead to training instability, particularly in deep
architectures, where issues like vanishing or exploding gradients are exacerbated (Bengio
et al., [1994)). To address this, we adopt the solution in TensorLog (Cohen et al., [2020) and
subsequent works like Neural-LP (Yang et al., [2017) and DRUM (Sadeghian et al., [2019),
where path schema influences are computed as composite functions of a more compact set of
parameters, improving both efficiency and training stability.

The following definition introduces the parameters of our model.

Definition 3.3. A Multi-Chain (MC) model of rank N > 1 and depth L > 1 is a tuple (b1,
o, bBIP L L pIPs] ) where B € R and each b is a tensor in [0, 1]V *EXK
with K = 30, [Pl - ([P — 1) + L.

The model’s expressive power is controlled by two hyperparameters: rank N and depth L.
Rank N indicates that the model simulates N independent rank 1 models whose outputs are
combined, while L sets the maximum path length the model considers. Each tensor b™?
corresponds to a possible predicate P, and a position 1 < ¢ < |Py|; the third dimension K
of these tensors is one plus the total number of distinct triples (P, p, ¢) that can appear in
a path schema: indeed, for each of the § possible distinct predicates Py, there are exactly
| Pg| - (|Px| — 1) distinct pairs of distinct positions. The additional +1 corresponds to the
empty fact T, which our model will use to consider paths with length strictly less than L.

Let M be an MC model as in Definition [3.3[and let Py (c) be an incomplete fact in D with a
null in position ¢t. Model M predicts the constants replacing this null value as follows. First,
let ¢1,¢o,- -+, ce be the constants in D in an arbitrary but fixed order. For each predicate
Py, and pair of distinct positions p,q with 1 < p,q < |Pyl, let My, ., € {0,1}%¢ be an
adjacency matrix where My, ,_,(4,7) = 1 if there is a fact in D over P, and constants c¢;
and ¢; are on its p-th and g¢-th positions, respectively, otherwise My, ,—,4(%,j) = 0. For each
rank 1 <7 < N and constant cs; € ¢, the model encodes c; as a one-hot vector vQO where

s

vi’so (s) = 1 and all other elements are 0. Then it iteratively computes the vector VZCJ for
1 < j < L as in Equation [l where dj ,_., € N is the position of (k,p,q) in the lexicographic
order for 1 <k < 4,1 <p,q < |Pgl|, and p # q (see Appendix@ for an analytical expression):

8
<vzg>T:<vz;-1>r(z > bh’%z’,j,dk,paq)~Mk,p%q+bh’t<i,j,K>). (1)

k=1 1<p,q<|Py|, p#q

The model then computes vector va'' = Ef\il D e.ce viL by adding the results of all constants

in ¢ and all ranks. For each 1 < u < ¢, constant ¢, replaces the null value iff vg’t(u) > f.

3.2 MODEL INTERPRETATION

We next show that our model’s operation implements the intuition outlined in Section [3.1
which involves calculating a weighted sum of all paths in database D that match each valid
path schema up to a specified maximum length. Fix an MC model M as in Definition [3.3]
with rank NV and depth L, and a database D over constants ci,- - ,c.. Let £ be the set of
path schemas of length up to L and T. We provide an interpretation of the vectors vilas a
weighted sum of relevant paths in D.

Lemma 3.4. Let Py(c) be an incomplete fact in D with a null value in position 1 <t < |Py|.
Then, vector Véb’t is equal to Zweﬂ wt (W) - Ve, where wtpg 1 Q@ — Rxq s a function
that depends only on the parameters of M, and v, p.c 5 a non-negative vector of dimension
€ defined as follows: (1) if w =T, then v, p.c(u) is the number of occurrences of ¢, in c,
for each 1 <wu <e¢; (2) if wis a path schema of length £ > 1, then v,, pc(u) s the number
of distinct paths in D connecting constants in ¢ to ¢, and matching w, for each 1 < u < e.



Under review as a conference paper at ICLR 2026

Intuitively, when w # T, each element v, pc(u) for 1 < u < € counts the number of
distinct paths matching w and connecting constants in ¢ to ¢,. The lemma holds because,
for each 1 < i < N, constant c,, and step j in the computation of vil, element v J( )
represents a Welghted sum of all distinct paths from ¢ to ¢, in D of length < j. The
(unweighted) sum of these paths can be factored out across all 1 < i < N, leaving behind an
expression that depends only on the parameters of M. Equation |1{ ensures that vﬁj (u) has
the aforementioned meaning: the products of all My, ,,_,, with vi’j’l essentially consider all
possible extensions of paths of length < j — 1 starting from ¢, (represented by vi’sj —1) with
an additional fact o or with T, forming paths of length < j. The weight of each new path
is obtained by multiplying the weight of the previous path by b™(i, j, dx p—4), where P
is the predicate of «, p is the position in « of the constant that links a with the previous
path, and q is the position of ¢, in . The last term (vi/~1)T.b"(i, j K) corresponds to
the case where each previous path is extended by T 1nstead of a fact a.

4  FAITHFUL RULE EXTRACTION FOR THE MC MODEL

In this section, we introduce an algorithm to extract a set of Datalog rules from an arbitrary
MC model so that both the rules and the model generate the same outputs for each database.
We also present a simpler algorithm to extract rules explaining specific model predictions.

4.1 MULTICHAIN RULES

To apply Datalog rules to databases, we follow the standard procedure and represent each
database over the fixed database schema {P;}i1<i<s as a relational dataset. To represent
incomplete facts, we introduce an auziliary predicate P! of arity |P;|—1 for each P; and possible
position 1 < ¢ < | P;| of the null value in a fact over P;. We then represent each incomplete fact
Pi(c1,- - ce-1,7,¢e41, 0 5 ¢ipy) as the fact Pl(cyy s Cio1,Cryn, - ,¢p,|). For example,
the incomplete fact in Figure (a) is described by the fact N-C-C3( Emma, Boston).

We next introduce chain patterns, which will describe path schemas in rule bodies.

Definition 4.1. A chain pattern ®(z,y) of length £ > 1 is an ordered conjunction of £ atoms
where the i-th atom mentions linking variables z;_1 and z; exactly once, with zp = x and
z¢ = 9, and no other variable occurs twice.

Each path schema corresponds to a chain pattern of the same length, where each element
(Py,,pi,qi) in the path schema corresponds to an atom with predicate P,, and variables z;_1,
z; on the p;-th and ¢;-th positions, respectively, and fresh variables in the other positions.
For example, consider the database schema in Figure [2| (a); a chain pattern describing the
path schema (N-R-N, 1, 3), (N-C-C, 1,3) is N-R-N(x, v, 21) A N-C-C(z1, w, y).

As shown in Lemma [3.4] the MC model is capable of counting distinct paths between
constants. To express this counting ability using rules, we use conjunctions of a special form:

Definition 4.2. A multichain conjunction for x and y with core chain pattern ®(z,y) and
cardinality C' € N is of the form /\](.J:1 QI (z,y) A Ni<jei<c (\/f 117:] % zg/), where ®7(z,y)

is obtained by replacing each z; in ®(z,y) with zf , and any variables other than z, y, and zf
are pairwise distinct among all atoms in the conjunction.

A multichain conjunction for z and y is specified by a cardinality C' and a chain pattern
®(x,y). Intuitively, it represents C copies of the core ®(z,y) where variables other than x
and y are uniquely renamed in each copy. The inequalities ensure that, when the conjunction
is grounded, no two copies ground all linking variables z1,--- ,2z;—1 in the same way (the
disjunction ensures that they differ in the grounding of at least one variable). Hence, a
multichain conjunction can be grounded in D if there are at least C' distinct paths in D with
the same endpoints matching the path schema ®(z,y).

Definition 4.3. A Multichain (MC) rule is of the form |2 where for each 1 <r < |Py| with
r #t, a] is either x, or identical to y, and ¢, ()., y) is a (possibly empty) conjunction of
finitely many multichain conjunctions for z] and y, with no variables in common other than



Under review as a conference paper at ICLR 2026

x). and y. Moreover, at least one ¢, (z/., y) must be non-empty if no z/. is identical to y.

Ph(«’E,h"'7552—17%30;-5—17'“ ,xiPh|)HPitz(m/17‘“a$;—1,$;+17“‘afoh\)/\ /\ gor(x’r,y) (2)
1<r<|Py|
r#£t

The body of a rule of the form [2| matches a dataset D if the corresponding database has
an incomplete fact of the form Pp(cs,, -+ ,¢o,_y, 7 Csppysr - ,cs“,h‘)7 as per the first body
atom, and if it contains enough paths from the constants ¢, to some constant ¢ matching
the path schemas captured by the conjunctions in the relevant o, (2., y). Then it derives
Pr(Copsrvv s CoyyrCrCopprs  Cs\p, | ), replacing the null value in the incomplete fact by c.

4.2 FAITHFUL RULE EXTRACTION FOR AN MC MODEL

We consider a set of rules R is faithful to an MC model M if, for any database D, the result
of applying Tk to D and then transforming the derived facts back into a database yields the
same facts as directly applying M to D (Tena Cucala et al., 2022b; Wang et al.,|2024a)). Our
goal in this section is to extract a faithful program R from an arbitrary MC model M.

While MC conjunctions are limited by their cardinality in counting paths, MC models can
count arbitrarily. This gap is addressed by a crucial property: for each path schema w with
positive weight, there exists a cutoff value C (w) beyond which additional matching paths
do not affect the model’s output. In particular, C (w) is the smallest natural number that
surpasses the model’s threshold when multiplied by the model’s weight for w. Our definitions
ensure that a model completes a fact with constant c if the number of paths matching w from
other constants in the fact to c is at least C (w), regardless of other possible paths between
these constants. Hence, beyond é’(w), the output of the model is invariant to the number of
paths matching w. Thus, to represent an MC model, we only need to consider finitely many
rules where the cardinalities in MC conjunctions for path schema w are at most C/(w).

Algorithm 1: Faithful Rule Extraction for an MC Model.

Input: An MC model M, and a rule extraction threshold ~.

Output: A finite set Ry of multichain rules.
1 R =0, Q := list of path schemas with ¢ < L, ending with T, foreach w € Q do wt(w) := 0;
2 foreach hyt € {(171)7 o 7(17 |P1|)7 o 7(67 1)7 o 7(57 ‘Pél)} do

3 foreach [dy, - ,dy] with d; € {1,--- K} do
4 [di,--- ,dy] := remove all occurrences of K from [d1,--- ,dL];
5 foreach j € {1,--- ,¢} do
6 | (kj,pj,q;) := the triple corresponding to dj;
7 if £>1 then w= (k1,p1,q1), -, (ke,pe, qe) else w:=T ;
8 wt(w) = wt(w +211H] 1b}l"zg,cl)7
9 foreach i € {1,---,[Q2| — 1} do
10 ‘ if wt(Q2(i)) = 0 then C, := 0 else if |Q(i)| = 1 then C; := 1 else C; := Lwtm( 1 +1;
11 O =
12 foreach [C1,- - -, Cjg|—1] where each C; € {0, --- ,Ci} do
13 pi= /\LZ|1—1 ¢i, where if C; = 0 then ¢; := T else ¢; := an MC conjunction for z and y
with cardinality C; and the chain pattern for (i) as core;
14 @ = 6 U{e, o{z— y}}
15 = ST C W Q) Wt (p{a o y}) =t () + we(T);
16 foreach [(pl, L P15, Pit1, P P, ] With ¢, € © do
17 if ZI<T<|P’1| »2¢ Wt (pr) < 7 then continue;
18 H := Pu(x1, -+ ,%t-1,Y, Te41, -+ ,2p, ) {2+ — y foreach ¢, not mentioning x};
19 A= Pl(z1, T, Tet1, ,x|p,|){zr — y foreach ¢, not mentioning x};
20 Rm:=RmU {H — AN /\ISTSIPhIm#t or{x — z, if z, appears in H}};

21 return R

Algorithm [I] describes the computation of a faithful program for an MC model. It initializes
the program as an empty set, creates a list 2 of path schemas with length ¢ < L and T,



Under review as a conference paper at ICLR 2026

and initializes a function wt(:) to record their weights (line 1). Each element of Q other
than T corresponds to a chain pattern. The algorithm then iterates over predicates P, and
positions 1 < ¢t < |Py| of the null value (line 2). Each iteration computes the weight wt(w) for
each w in Q (lines 3-8). Then, for each path schema 2(¢), it computes the cardinality upper
bound C; = C((i)) for the chain pattern corresponding to path schema Q(i) (lines 9-10).
Next, O is initialized as empty (line 11) to store each possible conjunction ¢ comprised of
at most one multichain conjunction per path schema w in €2, with core w and cardinality
less or equal to the upper bound C(w) (lines 12-13). Besides, © also contains copies of
these conjunctions where x is replaced by ¥, corresponding to chains that start and end in
the same constant (line 14). The algorithm computes a weight wt’(¢) for each ¢ € © by
summing the weights wt(w) of the core w of each multichain conjunction in ¢ multiplied
by its cardinality (line 15). Finally, the algorithm considers all possible ways of selecting
one ¢, € O for each 1 < r < |Py| and r # ¢ (lines 16-20), and it computes a score for
their conjunction by aggregating the weights wt’(¢,-) (line 17). If the score exceeds the rule
extraction threshold v, the rule constructed in lines 18-20 is added to the program.

Theorem 4.4. The program R extracted by Algorithm/[1 is faithful to M when v = j.
Algom'thm terminates in O (C5L”2L) steps with v = maxi<x<s |Pr|, C = maxi<;<|o|—1 Cl

4.3 FAITHFUL RULE EXTRACTION OVER A SPECIFIC DATABASE

Although extracting a faithful program from an MC model can be computationally expensive,
we show that a small subset of this program can be efficiently extracted to explain the
predictions of the model for a specific database. To this end, we devise an algorithm that
takes both a model and a dataset (corresponding to a database) as input, and extracts a
single rule for each individual prediction of the model for that dataset. Specifically, for each
prediction, the algorithm identifies all paths of length at most L connecting the incomplete
fact’s constants to the predicted constant. Then it generates a multichain rule by using each
matched path schema as a rule core and setting the cardinality to the schema’s number of
matches, bounded by the corresponding cutoff value. Finally, it returns the union of all these
rules. The full algorithm is given in Appendix

Theorem 4.5. For MC model M and dataset D, a program R p C R that returns the
same output as M on D can be obtained with worst time complexity O (6L 2L ~6L+”-), for
v = maxi<k<s |Px| and € the number of distinct constants in D.

Unlike in Theorem [£.4] the complexity of rule extraction here depends on the graph structure
of D and the size of the result obtained by applying M to D. In practice, datasets are often
sparse (Appendix . Rm,p is typically computed in just a few minutes (Appendix [H.5)).

5 MODEL VARIANT WITH SIMPLIFIED RULE EXTRACTION

Recall that the MC model predicts that constant ¢ completes a fact by aggregating all paths
in the database from the incomplete fact’s constants to ¢. However, in practice, this approach
can sometimes be too sensitive to the noise produced by irrelevant paths with small weights.
To address this, we propose MC-max, a variant of the model that uses only the highest-weight
path from a relevant constant to the target. While less expressive (see Appendix , the
MC-max model enables more efficient rule extraction with lower complexity.

The MC-max model simplifies the original MC approach by replacing path counting with
binary path existence checks. This is achieved through three key modifications to the MC
computation: first, pushing vector terms into operators; second, replacing all summation
operators with max operators (including matrix products becoming max-products); and
third, using max operations for aggregating intermediate results. These changes preserve the
model’s ability to detect paths while eliminating its counting capability.
Definition 5.1. An MC-max model has the same form as an MC model, with Equation [I]
replaced by Equation [3{ and it — MAaX1<;<N,c,ecc VZ’SL.

(V?sj)-r = 1?3%(6 {bh’t(ivjv K) : (Vf:’s]_l)T ’ bh’t(iujv qupﬁq) ’ (V?g_l)T ® qupﬂq} : (3)

1<p,q<|Pgl|, p#q



© 0 g o ok W=

e
= o

12
13

14

15

Under review as a conference paper at ICLR 2026

Algorithm 2: Faithful Rule Extraction for an MC-max Model.

Input: An MC-max model M, and a rule extraction threshold ~.
Output: A Datalog (without inequality) program Raq.
RM = (Z);
foreach h,t € {(1,1),---,(1,|P1]), -, (6, |Ps|)} and s € {1,--- ,N} do
5= 0; 8= (L)
foreach j € {1,--- ,L} do
S§=8;8 :=@;
foreach (s, [k]) € S and k' € {1,--- ,K} do
| if s-b"(i,5,k') >~ then &' = 8" U{(s - b™'(4,5,k), [k, k') };
foreach (s, [k1, - ,kz]) € S’ do
[k1,---,k;] := remove all occurrences of K from [k1,--- , kL] ;
foreach j € {1,---,¢} do
(k,p,q) = the trlple corresponding to k ; ;= atom with predicate Py, variables
zj—1, %j on the p-th, ¢-th positions, and fresh variables on the other positions, resp.;
foreach r € {1,--- ¢t —1,t+1,--- ,|Px|} do
H:= Ph(xh Ly Tt—1,Y, Tt41, 00 7m\Ph,\)a A= Pﬁ(l’l, oy Tt—1, T4, 7m\P}L\);
if £>1then Ry :=RMmU{H +— AA /\ﬁ:1 wi{zo — zr,ze — y}} else
Rm = RmU{H{zr — y} + A{zr = y}};
return R q;

The complexity of rule extraction from an MC model stems from enumerating all possible
path schema matches. By eliminating path counting, MC-max simplifies rule extraction
while preserving core functionality. Algorithm [2] describes rule extraction for MC-max. It
iterates over all predicates Py, position ¢, and rank ¢ (line 2). Each iteration expands the path
schema and updates the weight by multiplying the value b(i, j, k) accordingly (lines 4-7).
Since elements of b™* are between 0 and 1, the updated weight value in each step decreases
monotonically. Hence, we can prune the search space by comparing the current weight with
the threshold in each step (line 7). For each path schema whose weight exceeds the threshold
(line 8), the algorithm constructs the corresponding chain pattern (lines 9-11), enumerates
all z, (line 12), and adds the rule to the output program (lines 13-14).

Theorem 5.2. The program R extracted by Algorithm gzs faithful to the input MC-max
model M when v = 5. Algorithm |4 terminates in O 5L steps with v = maxi<g<s | Pkl

6 EVALUATION

Datasets and Baselines. We used the relational tabular datasets WP-IND, JF-IND, and
MFB-IND (Yadati, [2020) under the inductive setting, where constants in the test sets may
not appear in training. We also used FB-AUTO (Fatemi et al., 2020|) under the transductive
setting, where all test-time constants are seen during training. We also evaluated our models
on binary inductive datasets from |Teru et al.| (2020), based on FB15k-237 (Toutanova &
Chenl, 2015), NELL-995 (Xiong et al, 2017), and WN18RR (Dettmers et all 2018]), with
original splits. We use HyperGCN (Yadati et al 2019), GMPNN (Yadati, |2020) and two
LLM-based methods, Chain-of-Thought (CoT) (Wei et al.| 2022) with GPT-5 mini (OpenAl,
2025), TabLLM (Hegselmann et al. [2023) as baselines (more details in Appendix .

Tabular Data Cell Completion. Table[l]reports Precision (P), Recall (R), Accuracy (Acc),
Area Under the precision-recall Curve (AUC) and F1 score. In general, MC and MC-max
outperformed baseline models, with MC-max slightly surpassing MC despite its limited
expressivity. This supports our hypothesis that aggregating all paths may introduce noise.
GMPNN models achieved higher recall on most datasets, which we attribute to their use of
randomly selected negative examples for training augmentation. LLM-based methods exhibit
unbalanced behavior: few-shot prompting results are often overly conservative, resulting in
low recall, while fine-tuned models become overly optimistic, producing many false positives.
Table [2[ shows that MC and MC-max models achieve similar overall performance on binary
datasets, with complementary strengths: MC has better precision and accuracy, while



Under review as a conference paper at ICLR 2026

Table 1: Results (%) of Inductive and Transductive Tabular Data Cell Completion.

‘WP-IND JF-IND MFEB-IND FB-AUTO

P R Acc AUC F1 P R Acc AUC F1 P R Acc AUC F1 P R Acc AUC F1
HyperGCN 54.5 38.4 53.2 46.5 45.0 58.1 30.9 54.3 44.5 40.4 61.8 29.0 55.5 45.4 39.4 67.4 76.4 69.7 71.9 71.6
GMPNN-sum 50.0 42.2 50.0 38.4 458 51.8 60.0 52.0 47.5 55.6 68.4 73.4 69.7 65.6 70.8 55.4 58.6 55.7 55.7 57.0
GMPNN-mean 52.4 94.5 543 60.4 67.4 53.1 92.7 55.5 58.9 67.5 69.1 81.1 724 724 746 58.1 85.6 61.9 71.9 69.2
GMPNN-max 50.3 78.3 50.5 53.6 61.3 53.2 87.7 55.2 64.8 66.2 80.4 92.4 84.9 89.2 86.0 60.3 94.9 66.2 77.4 73.8
CoT (GPT-5 mini) 85.3 22.1 522 - 351 774 55 316 - 103 66.7 7.1 60.3 - 129 732 109 502 - 19.0
TabLLM (Llama 3.1) 25.3 89.2 30.2 - 39.5 244 857 39.1 - 380 184 875 333 - 304 349 95.4 36.8 - 51.1
MC (N =1) 79.6 49.8 68.5 64.5 61.2 63.6 57.3 62.2 57.0 60.3 91.7 86.1 89.1 93.3 88.8 924 76.6 85.1 85.8 83.7
MC (N =2) 80.6 50.2 69.1 62.7 61.9 62.7 57.3 61.5 56.6 59.9 91.3 85.7 88.7 93.0 88.4 91.1 75.1 83.9 84.9 82.3
MC (N =3) 83.2 49.8 69.9 63.5 62.3 60.4 582 59.9 56.4 59.3 91.4 86.3 89.1 93.4 88.8 92.5 76.4 85.1 85.6 83.6
MC-max (N =1) 88.4 47.0 70.4 66.7 61.4 79.2 55.5 70.4 66.8 65.2 88.3 92.3 90.1 92.0 90.3 95.3 78.1 87.1 86.7 85.9
MC-max (N = 2) 88.9 47.5 70.8 67.2 61.9 80.0 54.5 70.4 67.6 64.9 88.6 94.3 91.1 92.0 91.3 97.4 78.8 88.3 86.7 87.1
MC-max (N = 3) 87.4 49.3 71.1 66.9 63.1 78.9 52.7 69.2 67.3 63.2 89.5 91.9 90.6 93.3 90.7 95.1 754 85.7 85.8 84.1

Table 3: Rule Extraction
Time (s) for MC-max.

N=1 N=2 N=3

P R Acc AUC F1 WPIND 1375 2251 2371
M m M m M m M m M m JF-IND 0.777  1.205  1.323

V1 47.4 472 449 449 47.6 47.3 51.6 51.0 46.1 46.0 N S
V2 56.9 540 541 56.1 56.6 542 62.6 62.2 55.5 55.0 : : :

Table 2: Results (%) of MC (M) and MC-max (m) on
Binary Datasets.

=
)
!
2 V3 651 65.5 46.0 46.2 60.7 60.9 60.9 60.5 53.9 54.2 5 V1 54.87  100.9  109.6
B V4 77.4 722  46.6 50.8 66.5 65.6 65.3 65.3 58.2 59.7 yov2 7175 1380  159.8
= 5 v3 39.30 8483 1358
2 V1 97.5100.0 76.5 68.5 87.2 842 80.4 79.7 85.7 81.3 B ovi 78.28 9578  142.1
=3 X , > :
T V2 685 644 680752 68.4 669 750 77.0 68.269.4 e 0,006 0009 0.009
S V3 66.4 629 762 78.1 68.8 661 80.281.6 71.0 69.7 g v L9088 5790  10.74
E V4 67.1 66.6 76.4 77.5 69.5 694 809 8.9 714 71.7 =3 v3 21.90 40.82  66.59
3 vy o
2 V1 96.0 847 63.0 64.6 80.2 765 751 76.0 76.1 73.3 z V4 3634 6998 10.51
§ V2 925 89.9 61.9 62.2 785 77.6 73.0 73.4 74.2 735 = V1 0001  0.001  0.002
V3 98.5 983 28.0 28.0 63.8 63.8 41.4 40.6 43.6 43.6 % V2 0.002  0.002  0.003
= V4 95.3 934 594 59.6 783 77.7 714717 73.2 727 z V3 0.0010.002  0.003
= V4 0.001 0.001 0.002

MC-max yields higher recall. These results suggest MC-max’s practical applicability despite
its simpler design. (More result analysis in Appendix )

Rule Extraction. We implemented Algorithm [2] for faithful rule extraction for MC-max.
Table [B] reports its runtime for each dataset, which was under 3 minutes in all cases. Table [4]
presents examples of extracted rules (more analysis in Appendix . We also implemented
Section [4-3]s database-specific rule extraction algorithm for MC. We recorded rule extraction
time for every 100 facts predicted by MC on each test dataset, which finished within 5
minutes in all cases (Appendix . These results validate the feasibility of our approaches.

Table 4: Example Rules Learned by MC-max from Tabular Datasets.

Deceased-Place-Country(zy,x,y) < Deceased-Place-Country®(z;,z) A Deceased-Place-Country(wy,z,y)
Member-Membership-Role(z1,x,y) < Member-Membership-Role®(zy,x) A Member-Membership-Role(wy, z,y)
Person-Sibling-Kinship(z,y, ¥2) < Person-Sibling-Kinship?(z,z2) A Person-Sibling-Kinship(y, =, w;)
Politician—Position—Predecessor—Successor(m.‘r‘z, y,f:s) —

Politician-Position-Predecessor-Successor® (;l:, T, 1:3) A Politician—Fosition—Predecessor—Successor(y, wy, wa, .’1:)

WP-IND

Country-Player-Olympics(y, x,22) < Country-Player-Olympics'(z,22) A Country-Player-Olympics(y, =, w:)
Player-Event-Player(z,y,r) + Player-Event-Player?(z,,r) A Player-Event-Player(z,y, w;)
Player-Event-Team(z,zs,y) < Player-Event-Team?(x, z2) A Team-Player-Event(y,z,w;)
Team-Player-Event(z, 72, y) < Team-Player-Event®(z,22) A Team-Player-Event(z, w1, y)

JF-IND

Ethnicity-Language-Person(zy,y,z)

Ethnicity-Language-Person’ r) A Ethnicity-Language-Person(z;,w;,z) A Ethnicity-Language-Person(z1,y, wa)
Music-Artist-Place(z1,,y) ¢ Music-Artist-Place®(z1,z) A Music-Artist-Place(w:,z,y)
Music-Genre-Subgenre(y, r,z;) < Music-Genre-Subgenre'(z,z1) A Music-Genre-Subgenre(w;, T, 2;) A Music-Genre-Subgenre(y, 21, w2)
Type-Singer-Instrument(y,z,72) < Type-Singer-Instrument!(z,22) A Type-Singer-Instrument(wi,x, 21) A Type-Singer-Instrument(y,ws, 21)

MFB-IND

7 LIMITATIONS AND FUTURE WORK

Our models currently capture only path-like relationships between constants; hence, future
work could focus on learning rules with more complex structures. Furthermore, since existing
datasets typically use random data splits for evaluation, we plan to develop more effective
and informative benchmarks based on rule-driven fact generation.



Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We have reviewed the ethics guidelines and we believe our research complies with the ICLR
Code of Ethics at https://iclr.cc/public/Code0fEthics in every respect. No human
subjects or sensitive data were involved, and we do not foresee any ethical, privacy, or fairness
concerns arising from this research.

REPRODUCIBILITY STATEMENT

The proofs of all the lemmas and theorems are provided in Appendix[C] The datasets and
source codes used in our experiments are available at the anonymous GitHub repository with
documentation: https://anonymous.4open.science/r/HARL.

REFERENCES

Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-Wesley,
1995. ISBN 0-201-53771-0.

Ahmad Ahmadov, Maik Thiele, Julian Eberius, Wolfgang Lehner, and Robert Wrembel.
Towards a hybrid imputation approach using web tables. In Proc. 2nd IEEE/ACM Int.
Symp. on Big Data Computing (BDC 2015), pp. 21-30, 2015. doi: 10.1109/BDC.2015.38.

Yoshua Bengio, Patrice Y. Simard, and Paolo Frasconi. Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157-166,
1994. doi: 10.1109/72.279181.

Can Chen and Yangyu Liu. A survey on hyperlink prediction. IEEE Transactions on Neural
Networks and Learning Systems, 2023. doi: 10.1109/TNNLS.2023.3286280.

Tianlang Chen, Charilaos I. Kanatsoulis, and Jure Leskovec. RelGNN: Composite message
passing for relational deep learning. In /2nd Int. Conf. on Machine Learning (ICML 2025),
2025.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu Li, Rahul Nadkarni, Yushi Hu, Caiming
Xiong, Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer, Noah A. Smith, and Tao
Yu. Binding language models in symbolic languages. In 11th Int. Conf. on Learning
Representations, (ICLR 2023), 2023.

Fei Chiang and Renée J. Miller. Discovering data quality rules. Proc. VLDB Endow., 1(1):
1166-1177, 2008. doi: 10.14778/1453856.1453980.

Xu Chu, Thab F. Ilyas, Paolo Papotti, and Yin Ye. RuleMiner: Data quality rules discovery.
In Proc. of the 30th Int. Conf. on Data Engineering (ICDE 2014), pp. 1222-1225, 2014.
doi: 10.1109/ICDE.2014.6816746.

William W. Cohen, Fan Yang, and Kathryn Mazaitis. Tensorlog: A probabilistic database
implemented using deep-learning infrastructure. Journal of Artificial Intelligence Research,
67:285-325, 2020. doi: 10.1613/JAIR.1.11944.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional
2D knowledge graph embeddings. In Proc. of the 32nd AAAI Conf. on Artificial Intelligence
(AAAT 2018), pp. 1811-1818, 2018. doi: 10.1609/AAAI.V32I1.11573.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. In Proc. of the Annual Conference on Neural Information
Processing Systems (NeurIPS 2023), 2023.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. Journal
of Artificial Intelligence Research, 61:1-64, 2018. doi: 10.1613/JAIR.5714.

Bahare Fatemi, Perouz Taslakian, David Vazquez, and David Poole. Knowledge hypergraphs:
Prediction beyond binary relations. In Proc. of the 29th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2020), pp. 2191-2197, 2020. doi: 10.24963/1JCAI.2020/303.

10


https://iclr.cc/public/CodeOfEthics
https://anonymous.4open.science/r/HARL

Under review as a conference paper at ICLR 2026

Jodo Ferreira, Manuel de Sousa Ribeiro, Ricardo Gongalves, and Joao Leite. Looking inside
the black-box: Logic-based explanations for neural networks. In Proc. of the 19th Int.
Conf. on Principles of Knowledge Representation and Reasoning (KR 2022), 2022.

Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson,
Rex Ying, Jiaxuan You, and Jure Leskovec. Position: Relational deep learning - graph
representation learning on relational databases. In /1st Int. Conf. on Machine Learning
(ICML 2024). OpenReview.net, 2024.

Stefan Hegselmann, Alejandro Buendia, Hunter Lang, Monica Agrawal, Xiaoyi Jiang, and
David A. Sontag. TabLLM: Few-shot classification of tabular data with large language
models. In Int. Conf. on Artificial Intelligence and Statistics (AISTATS 2023), volume
206 of Proceedings of Machine Learning Research, pp. 5549-5581, 2023.

Samuel Kolb, Sergey Paramonov, Tias Guns, and Luc De Raedt. Learning constraints
in spreadsheets and tabular data. Machine Learning, 106(9-10):1441-1468, 2017. doi:
10.1007/510994-017-5640-X.

Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions.
In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus,
S. V. N. Vishwanathan, and Roman Garnett (eds.), Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pp. 4765-4774, 2017.

Meta. Llama 3.1. Model released under the Llama 3.1 Community License, 2024. Pretrained
large language model (8B / 70B / 405B parameters).

OpenAl. GPT-5 mini. https://openai.com, 2025. Large language model.

Meng Qu, Junkun Chen, Louis-Pascal A. C. Xhonneux, Yoshua Bengio, and Jian Tang.
RNNLogic: Learning logic rules for reasoning on knowledge graphs. In Proc. of the 9th
Int. Conf. on Learning Representations (ICLR 2021), 2021.

Ali Sadeghian, Mohammadreza Armandpour, Patrick Ding, and Daisy Zhe Wang. DRUM:
end-to-end differentiable rule mining on knowledge graphs. In Proc. of the Annual Conf.
on Neural Information Processing Systems (NeurIPS 2019), pp. 15321-15331, 2019.

Daniel J Stekhoven and Peter Biihlmann. MissForest—mnon-parametric missing value impu-
tation for mixed-type data. Bioinformatics, 28(1):112-118, 2012.

Yige Sun, Jing Li, Yifan Xu, Tingting Zhang, and Xiaofeng Wang. Deep learning versus
conventional methods for missing data imputation: A review and comparative study.
Expert Systems with Applications, 227:120201, 2023. ISSN 0957-4174. doi: https://doi.
org/10.1016/j.eswa.2023.120201.

David Jaime Tena Cucala, Bernardo Cuenca Grau, Egor V. Kostylev, and Boris Motik.
Explainable GNN-based models over knowledge graphs. In Proc. of the 10th Int. Conf. on
Learning Representations (ICLR 2022), 2022a.

David Jaime Tena Cucala, Bernardo Cuenca Grau, and Boris Motik. Faithful approaches to
rule learning. In Proc. of the 19th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR 2022), 2022b.

David Jaime Tena Cucala, Bernardo Cuenca Grau, Boris Motik, and Egor V. Kostylev.
On the correspondence between monotonic max-sum gnns and datalog. In Proc. of the
20th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2023), pp.
658-667, 2023. doi: 10.24963/KR.2023/64.

Komal K. Teru, Etienne G. Denis, and William L. Hamilton. Inductive relation prediction

by subgraph reasoning. In Proc. of the 37th Int. Conf. on Machine Learning (ICML 2020),
pp- 9448-9457, 2020.

11


https://openai.com

Under review as a conference paper at ICLR 2026

Kristina Toutanova and Danqgi Chen. Observed versus latent features for knowledge base
and text inference. In Proc. of the 3rd Workshop on Continuous Vector Space Models and
their Compositionality (CVSC 2015), pp. 57-66, 2015. doi: 10.18653/V1/W15-4007.

Stef Van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation by chained
equations in r. Journal of statistical software, 45:1-67, 2011.

Chenxu Wang, Xin Wang, Zhao Li, Zirui Chen, and Jianxin Li. Hyconve: A novel embedding
model for knowledge hypergraph link prediction with convolutional neural networks. In Proc.
of the ACM Web Conf. (WWW 2023), pp. 188-198, 2023a. doi: 10.1145/3543507.3583256.

Xiaxia Wang, David Jaime Tena Cucala, Bernardo Cuenca Grau, and Ian Horrocks. Faithful
rule extraction for differentiable rule learning models. In Proc. of the 12th Int. Conf. on
Learning Representations (ICLR 2024), 2024a.

Xinyu Wang, Isil Dillig, and Rishabh Singh. Synthesis of data completion scripts using
finite tree automata. Proc. ACM Program. Lang., 1(OOPSLA):62:1-62:26, 2017. doi:
10.1145/3133886.

Zihao Wang, Yangqgiu Song, Ginny Y. Wong, and Simon See. Logical message passing
networks with one-hop inference on atomic formulas. In Proc. of the 11th Int. Conf. on
Learning Representations (ICLR 2023), 2023b.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin Eisenschlos, Vincent Perot, Zifeng
Wang, Lesly Miculicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee, and Tomas Pfister.
Chain-of-table: Evolving tables in the reasoning chain for table understanding. In 12th
Int. Conf. on Learning Representations, (ICLR 2024), 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H.
Chi, Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large
language models. In Proc. of the Annual Conf. on Neural Information Processing Systems
(NeurIPS 2022), 2022.

Wenhan Xiong, Thien Hoang, and William Yang Wang. DeepPath: A reinforcement learning
method for knowledge graph reasoning. In Proc. of the 2017 Conf. on Empirical Methods
in Natural Language Processing (EMNLP 2017), pp. 564-573, 2017. doi: 10.18653/V1/
D17-1060.

Naganand Yadati. Neural message passing for multi-relational ordered and recursive hyper-
graphs. In Proc. of the Annual Conf. on Neural Information Processing Systems (NeurIPS
2020), 2020.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and
Partha P. Talukdar. Hypergen: A new method for training graph convolutional networks

on hypergraphs. In Proc. of the Annual Conf. on Neural Information Processing Systems
(NeurIPS 2019), pp. 1509-1520, 2019.

Mohamed Yakout, Kris Ganjam, Kaushik Chakrabarti, and Surajit Chaudhuri. Infogather:
entity augmentation and attribute discovery by holistic matching with web tables. In Proc.
of the ACM SIGMOD Int. Conf. on Management of Data (SIGMOD 2012), pp. 97-108,
2012. doi: 10.1145/2213836.2213848.

Fan Yang, Zhilin Yang, and William W. Cohen. Differentiable learning of logical rules for
knowledge base reasoning. In Proc. of the Annual Conf. on Neural Information Processing
Systems (NeurIPS 2017), pp. 2319-2328, 2017.

Shichang Zhang, Jiani Zhang, Xiang Song, Soji Adeshina, Da Zheng, Christos Faloutsos, and
Yizhou Sun. PaGE-Link: Path-based graph neural network explanation for heterogeneous
link prediction. In Proc. of the ACM Web Conf. 2023 (WWW 2023), pp. 3784-3793, 2023.
doi: 10.1145/3543507.3583511.

Shuo Zhang and Krisztian Balog. Auto-completion for data cells in relational tables. In
Proc. of the 28th ACM Int. Conf. on Information and Knowledge Management (CIKM
2019), pp. 761-770, 2019. doi: 10.1145/3357384.3357932.

12



Under review as a conference paper at ICLR 2026

A  EXTENDED RELATED WORKS

Rule Learning. Rule learning aims to automatically provide rules that explain the
predictions of ML models. A number of approaches (Yang et al., |2017; [Evans & Grefenstette),
[2018; [Sadeghian et al. [2019; [Qu et all 2021} [Ferreira et all, [2022; [Zhang et al., [2023} [Wang]
et al., |2023b) have been proposed to extract such rules, but many of them lack formal
guarantees establishing the relationship between the model and the extracted rules. Instead,
they often rely on informal claims that the rules “approximate” the model’s behavior
let all [2017; |[Evans & Grefenstette, |2018} |Sadeghian et all [2019} |Qu et all 2021).

To fill the gap, faithful rule learning (Tena Cucala et all |2022ajbj 2023; Wang et al., 2024a)
has been investigated to not only provide rule-based explanation, but also ensure theoretical
equivalence between the model and the extracted rules. However, these methods are typically
restricted to binary relational data (Tena Cucala et al., 2022b; [Wang et al.| [2024a)), such as
knowledge graphs. Extending them to tabular data is nontrivial due to the more complex
relations among data cells described by each row. To the best of our knowledge, no prior
work has investigated faithful rule learning for tabular data cell completion.

Data Quality Rule Discovery. Data quality rule discovery focuses on extracting sta-
tistical dependencies that profile tables or detect inconsistencies (Chiang & Miller) 2008;
. These methods typically take a table as input and output rules describing
frequent patterns, optimizing for metrics such as rule quality or confidence. Our work
differs from data quality rule discovery in multiple aspects. Despite the different input, the
extracted rules in our work serve as an explanatory mechanism for ML models, rather than
as stand-alone quality indicators, and directly support the task of completing missing cells
in multi-relational databases.

Extending GNN to Relational Tables. Our task is closely related to hypergraph link
prediction (Chen & Liul [2023; |[Fatemi et al., 2020; Yadati et al., 2019; Wang et al., 2023a),
since a database can be viewed as a hypergraph. Recent ML approaches extend Graph Neural
Networks (GNNs) and propose hypergraph neural networks (Yadati et al.l 2019; |Yadati, [2020)),
where tabular data is represented as a hypergraph with cell values as nodes and rows as
hyperedges. While effective, these methods generally lack interpretability, motivating our
focus on explainable alternatives. Another line of work is relational deep learning
[2024; (Chen et all [2025), which also adapts GNNs to relational databases but they represent
a database differently: rows are nodes and edges are defined by primary—foreign key relations.
In contrast, both hypergraph neural networks (Yadati et all, 2019; Yadati, [2020) and our
approach operate at the cell level, treating individual data values as nodes, which is more
suitable for cell completion tasks.

LLM-based Table Understanding. Recent works have explored the use of large language
models for table understanding and reasoning (Hegselmann et al., 2023} |Cheng et al.l [2023;
|Wang et all 2024b). However, as generative models may produce hallucinated values
and cannot provide faithful explanations for their results, such uncertainty is especially
problematic in safety-critical or legally regulated settings. In contrast, our approach offers
provably faithful explanations for the results.

B FaAiTHrUuL RULE EXTRACTION FOR THE MC MODEL WITH FIXED
DATASET

Algorithm [3| outlines the process of extracting the program Rq,p for a given MC model M
and dataset D. It begins with initializing R aq,p as an empty set (line 1). P,y is initialized
with all existing constants in any incomplete facts in D (line 2), which can also be intuitively
viewed as paths of length 0. Then for length j from 1 to L (line 3), P,y iteratively adds
expanded paths with length j (lines 3-9), by considering all possible extensions for current
paths with length j — 1 (lines 7-8). The next part of the algorithm constructs a MC
rule for each fact Pp(cs,, €51, CuyCsypyy o+ 5 Cs)p, ) Predicted by M (line 10), such that
applying the rule to D is able to derive the same facts. The rule body is a conjunction of ¢,

13



© o N, A W N

L el v v
N O oA W N HE O

18
19

20
21

Under review as a conference paper at ICLR 2026

with 1 <r < |Py| and r # t (line 11), and each ¢, corresponds to the paths connecting c;,
and ¢,. Each ¢, is initialized as T, and a function count(-) is initialized as 0 for any path
schema and T (line 12). Then the algorithm counts all paths in Py from ¢, to ¢, (line 13),
grouped by the same path schema (lines 14-15). The corresponding multichain conjunction
is added into ¢, in lines 16-17. Additionally, for each ¢,., the variable z is updated to
match the equivalence between ¢, and ¢, (line 18). After obtaining all ¢, for 1 < r < |P,|
and r # t to constitute the rule body, and updating the variables accordingly in the rule
head (line 19), the rule is added to the result program (line 20).

Algorithm 3: Rule Extraction with Fixed Datasets.

Input: A MC model M, and a dataset D.
Output: A multichain program R, p.

Rm,p :=0;
Prext := {[c] | c appear in any incomplete fact Pi(---) from D}, Pan := Pnext;
foreach j € {1,--- ,L} do
Pcurrent = Pnezt 5 Pnext = @,
while Peyrrent s not empty do
pop [ -+ ,cs] from Peurrent;
foreach Py(-- - YCrt 3Gty Cpt -) €D do
‘ Prext = Prext U {[ o 7CS'7dk7P*>¢Z7crf1] ‘ 1<qg< |Pk|7q # p};
Pant := Pan U Prext;
foreach Py (- ,cs,_y,Cu,Cspyq, ) completed from P,’i(csl,~ S Csy_yyCayqrr ’CS\Ph\) do
foreach r € {1,--- ,t—1,¢+1,--- | |P4|} do
or(z,y) :==T; count(w) := 0 for w as any path schema or T;
foreach [cs,.,d1,- - ,de, cu] € Pau do
foreach j € {1,--- ,¢} do (kj,pj,q;) := the triple corresponding to d;;
w = (k1,p1,q1), -, (ke, pe, qu), count(w) := count(w) + 1
foreach w : count(w) > 0 do
or(z,y) append a multichain conjunction with cardinality min(count(w), Cw) and
core being the chain pattern corresponding to w;
if s, # u then ¢, := p.{z — 2,} else ¢, := p.{z — y};
H:=Py(z1, - ,T—1,Y, Teq1, -+ T p, | ){2r — y foreach s, = u},
A= Pl(x1, ,Ti—1,Te41, 2P, | ) {xr > y foreach s, = u};
Rm,p :=RmpU{H <+ AN AlST‘S‘Ph‘,’P#t wrk;
return Ry, p;

C PROOFS

Lemma 3.4. Let Py(c) be an incomplete fact in D with a null value in position 1 <t < |Ppl.
Then, vector viv' is equal to Y owea WEM(W) - Vo D, where wtag @ Q = Rxg is a function
that depends only on the parameters of M, and v, pc i a non-negative vector of dimension
e defined as follows: (1) if w =T, then vy, p.c(u) is the number of occurrences of ¢, in c,
for each 1 <wu <e¢; (2) if w is a path schema of length £ > 1, then v,, p c(u) is the number
of distinct paths in D connecting constants in ¢ to ¢, and matching w, for each 1 < u < e.

Proof. Let D be an arbitrary incomplete database as defined in the paper that contains
constants ¢y, - - -, ¢.. Consider the computation of the MC model as Equation [I} for simplicity,
we denote each adjacency matrix My, with 1 < k < 6, 1 < p,q¢ < |Pg| and p # ¢

as l\A/Idkwq where 1 < dj pq < K — 1. Besides, let My € {0, 1}*¢ be an identity matrix,

in which MK (i,i7) =1 for 1 <i < e and 0 elsewhere. Then Equation |l| can be written as
Equation

K
(VE)T = (viI )Ty MG d) - My (4)
d=1

14



Under review as a conference paper at ICLR 2026

Also, the computation of the result vector vt can be written as Equation

N L
(ve)T =2 (v H (Zb“ (i,],d) - M) . (5)

1=1 csEc

The distributive and associative properties of the sum and product operators in Equation [5]
allow us to rewrite it as Equation [f]

(Vf:b t) = Z (Zth’t(ivﬁ d])) : (Z(VCS) > Mdl 'Mdz """ 1\A/IClL . (6)
K}L

[dy,-+,dp]e{1,-, =1 j=1 [
Each list [dy,--- ,dr] with 1 < d; < K for 1 <4 < L corresponds to a path schema or T
as follows. Let [d},-- ,d}] be the list of removing all occurrences of Ks from [dy,--- ,d].

Then the list corresponds to T if £ = 0, or a path schema if £ > 1, where each d satisfying
1 < d} < K —1 corresponds to a unique triple as (k;, p;, ¢;) by definition, and the i-th item
of the path schema is (Py,, p;, ¢i), respectively, for 1 < i < .

For a path schema w with 1 < ¢ < L, let S be the set of all lists [dy,- -+ ,dy] that can be
obtained from [dk, p,—q1> > Qky,pe—qe] Dy Padding it (if needed) with the value K. Then
Equation [0] can be written as Equation

N L

(8 (ST ) () s
weN [dl,l.lydL]esb% i=1 j=1 cs€c

. . . . ™

Each vector (vi9)T- My, - My, - --- - My, for ¢, € ¢ is equal to (vi0)T- Mgy, - --- My, by

removing all occurrences of Mg. If £ > 1, a simple inductive argument shows that the vector
describes the number of paths of length ¢ from ¢, to each constant. In particular, the u-th
element of the vector is the number of paths with length ¢ from c, to cy. Based on that, the u-
th element of the vector obtained by adding up ¢, € c as (ZC cc(VEDT). My, -Mg, -----Myg,
is the total number of paths with length { from ¢, € c to each constant. If ¢ = 0, the
vector (Zc Ec( ) ) l\/Id1 Md2 MdL is simply (Ec EC(v“o) ) in which the u-th element
for1 <u<eis the number of ¢, that appears in c. Moreover for each conjunction w € Q2
with ¢ > 1 and for each [dy,--- ,d] € SE, there is a one-to-one correspondence between each
mapping of w that grounds x to each Cs E c and y to ¢, and each chain of length { from c;
to ¢y. Therefore, for each [dy,--- ,dL] € S%, the vector (32, o (vE")T)- Mgy, Mg, My,
is always v, p,c. Besides, for w = T, there is a unlque list [K ,K] € SL. For this list, as

introduced above, the vector (3, o (Vvi0)T)- My, - My, - --- - My, is also equal to v, pe.

Therefore, in Equation [7| we can replace the vector (3-, o (vi9)T) - My, - Mg, ----- Mg,

with v, p.c, as it is equal for each [dy, -+ ,dy] € SL of a given w. Then the rlght side of
Equation |7| becomes ) .o Wt (w) - Vi, p,c, Which finishes our proof with

N L
wim@ = > | [IP"Gady |- (8)

[d1,+-dr]€SE \i=1j=1

O
Corollary C 1 The equation vt = Y owea WEm(W) - Vo pe in Lemma can be equally
written as vi't = D e.ce ZweQ wtpm(w) - VD, where Q and wtaq(w) are the same as

Lemmaﬂ whzle Vu.D,c, 18 a vector that depends on w, D, and the constant cs € c.

Proof. The proof of Lernma 4 shows that v, p.c = (ZC cc(VEDT). Mgy, - Mg, - - My, .

Let vy pe, = (V4 O)T Mdl Md2 MdL for each ¢ € ¢. Then the distributive property
of the sum and product operators allows us to exchange the order of two sum operators,
which completes the proof. O

15



Under review as a conference paper at ICLR 2026

Theorem 4.4. The program R extracted by Algorithm[1 is faithful to M when v = S.
Algorithm terminates in O (C5L”2L) steps with v = maxi<p<s | Pr|, C = maxi<;j<|jo|-1 C;.

Proof. Let R be the output of Algorithm [1] of input M with v = 3. Let L and N be the
depth and rank of M, respectively. To compare MC models to MC rules, we view each MC
model M as defining a transformation T’y over datasets: given a dataset D representing
a database, where incomplete rows are facts over auxiliary predicates, Txq maps D to the
set of all facts corresponding to new rows obtained by applying M for tabular data cell
completion. We will compare T with the operator Tz induced by a set of rules R. A set
of rules R is faithful to M if Tyy(D) = Tr(D) for each dataset D representing a database.

Auxiliary Proposition 1. We first prove an auxiliary proposition that, for each element
w € Q) being either a path schema or T, the value wt(w) computed in Algorithm (1] lines 3-8,

satisfies wt(w) = wtrq(w) after the whole iteration over [dy,--- ,dr] with d; € {1,--- , K}.
Let w = (k1,p1,q1) - - - (ke, pe, o) (vesp. w = T) where £ > 1 (resp. £ =0). Let [d},--- ,d}] =
[Aky pr—qrs - > kg pe—qe] (resp. []), where each 1 < dg, p,—q, < K — 1 is the position of

(ki, pi, ¢i) as defined in the paper. Note that wt(w) is only updated within the iteration of h, ¢
. g N 1L o

(line 8). Meanwhile, lines 3-8 ensure that wt(w) =>4, .. 4,1es (Zi:l | bMt(i, 7, dk)>

where S contains all lists of length L, satisfying that [d,--- ,dr] becomes [d},--- ,d}] by

removing all occurrences of K. Therefore, when performing the iteration in lines 5-6 with the

list [d},--- ,d}] from [dy,- - ,dg], the w is constructed in line 7, and wt(w) is defined. Besides,

to prove wt(w) = wt pq(w), with Equation We need to show S = SL, which straightforwardly
follows the definitions of S and SL.

Auxiliary Proposition 2. Next, we prove another auxiliary proposition that, in each
iteration with a pair of h,¢ (lines 2-20), the set © (initiated in line 11) consists of all
conjunctions of the form ¢ = g1 A--- A ¢, and p{z =y} = {z =y} A Adp{z — y}
with 0 < n < |Q|—1, satisfying (1) for n > 1, each ¢; for 1 <4 < n is a multichain conjunction
for z and y with a distinct core, (2) for n =0, ¢ = T and p{z — y} = T{z — y} are two
distinct elements in ©. Besides, for each element ¢ € ©, the value of wt'(y) is defined in
line 15. Notice that each path schema (i) for 1 <14 < |Q] — 1 corresponds to a distinct chain
pattern. By enumerating all the lists [Cy,--- ,C|g—1] with 0 < C; < CO'Z-, line 12 produces
all possible combinations ¢1,- -, ¢|gj—1 With each ¢; being T or a multichain conjunction
with core corresponding to (i) and cardinality C; for 1 < ¢ < |Q] — 1. Then, for each
combination ¢1,---,¢q—1, the disjoint conjunctions ¢ and ¢{z — y} are constructed,
respectively (lines 13-14), along with the values wt’(¢) and wt'(¢{x — y}) (line 15).

Soundness. We prove the soundness of R to M by taking an arbitrary dataset D that
encodes a database, and showing that Tr (D) C Ty (D).

Let Pp(csys " €1y CuyCoyyay "+ 5 Csp, () be an arbitrary fact in T (D). To derive the fact,
there exists Pf(Cs,, 5 Csy_ysCoppyy - ,Cs;p, 1) € D, and a MC rule R € R such that the
body of R is of the form AA @1 A~ A1 Apiy1 A== App,|, where A is an atom with
predicate P} describing the structure of the incomplete fact, and each ¢, for 1 <r < |Py|
and r # t is either (Case 1) ¢, = T, or (Case 2) ¢, = ¢1 A---A¢p with P > 1 and each ¢,
for 1 < p < P being a multichain conjunction with a distinct core; meanwhile, there exists a
mapping o from the variables in R to constants in D that grounds x, (resp. y if ¢, is of
the form ¢, {x — y}) to ¢, and y to ¢, such that, for each multichain conjunction ¢,, if its
core is a chain pattern ®” = M A--- A )\Zj where each A? for 1 < j <4, is an atom with
predicate Py, variables z;_1,2; on the p;-th, g;-th positions while variables elsewhere are
pairwise distinct, and the cardinality of ¢, is Cp,, then )\g o €D foreach 1 < j </, and for

each pair j,j’ with 1 < j < j' < Cp, there exists 1 < k < ¢, such that zio + zila.

As each ¢, in the body of R corresponds to the constant ¢, for 1 <r < |P|, r # ¢, and is
independent to each other, we analyze each ¢, by the two cases as mentioned above. Besides,

by Corollary the vector ve' = D 1< < Pyt 2owen TEM(W) - Vo D, can be viewed

16



Under review as a conference paper at ICLR 2026

as the sum of |P,| — 1 independent parts as v/>' =3 o wtaq(w) - Ve, p.c, , each of which

corresponds to a constant cs;, with 1 <r < |P,| and r # ¢. We consider the contribution of
hit

each part to the value ve'"(u) as follows.

Case 1. If ¢, = T, the wt'(¢,) and wt’'(¢,.{z — y}) are computed in line 15, respectively,
with [C1,---,Clg—1] = [0,---,0]. The auxiliary proposition 1 shows that wt(T) = wt(T).
Therefore, if u = s, the value of v/! (u) = wt x4 (T) = wt'(¢,) and ¢, is of the form ¢, {z —
y} = T{z > y}; if u # s,, the value of v! (u) = 0 = wt'(¢,) and ¢, is of the form ¢, = T.
Both cases satisfy that v! (u) > wt’(¢,).

Case 2. If ¢, is of the form ¢, A--- A ¢p with P > 1, for each multichain conjunction ¢,
with 1 < p < P, we can use o to produce Cj, mappings o1, -+ ,0¢, defined as 0;(2]) = z0
foreach 0 < ¢ </fand 1 <j <)y If Cp > 1, then all mappings are necessarily pairwise
distinct (i.e., they differ in the assignment of at least one variable) because line 10 ensures
that Cp > 1 can only occur when the length of path schema has length > 2, namely, the
corresponding chain pattern contains at least two body atoms. Thus, for each pair of 7, ;'
satisfying 1 < j < j' < C), there exists 1 < k < ¢ — 1 such that zjo # z?a. Therefore,
these mappings provides at least C), distinct paths of the same path schema connecting
¢s, and ¢,. Let w, be the path schema corresponding to the core of ¢,, then we have
Vi, D.c., (u) > Cp. By construction, w, € Q for each ¢, with 1 < p < P. By Corollary

Vit =% cqwtm(w) - Ve, - Both wty(w) and vy, b, for all w € Q are non-negative,

CS’F
S0 v?;f (u) > > cpcpWtm(wy) - Cp if u # s, or v?;f () > 32 <pcpWtm(wp) - Cp+utad(T)
if u = s, (with ¢, of the form ¢,.{z — y}). The auxiliary proposition 1 shows that
wt(w) = wtp(w) for each w € Q. The auxiliary proposition 2 shows that © consists of all
candidates for ¢, with their score wt’(¢,). Therefore, we have v/ (u) > wt/(¢,.).

Csp

Finally, as each vector v’jt for 1 <r < |P,| and r # t are independent to each other, the

valtie VA (1) = 3y, <y o VI (1), Therefore, we have vE4(u) > 3, o, iy o0 98/ (9))
R € R indicates Zl<r<|Ph\ 2 WE'(¢r) > 7. Given B = v, we have vit(u) > B, indicating
the fact Pp(csy, 5 Csy 1y CurCoryrst 5 Csip ) € Tmma(D).

Completeness. We prove the completeness by taking an arbitrary dataset D that encodes
a database, and showing that Tx(D) C Tr (D).

Let Ph(Coyyr v s CopyyCurCoppqs 7cslphl) be an arbitrary fact predicted by M to com-
plete the fact Pf(ce,, s CopyrCopirs - 7CS\Ph,|) € D with the constant c,. We show
that there exists a MC rule in R which derives the same fact from D. Specifically,
we consider two cases. In each case, we construct a rule of the form [2| with head
Pu(x1,- s T4-1,Y, Tey1, - 2 p, | ){@r + y foreach s, = u}, and the body being the con-
junction of ¢, for 1 < r < |Py| and r # ¢, and show that (1) this rule is in R, and (2) this
rule can be grounded in D with each z, (or y if s, = u) mapped to ¢,, and y to ¢,. Therefore,

Ph(csl, ctt 3 Csy 15 Cuy Cst+1a e 7CS‘p}L‘) S TR(D)

hit .
By Corollary Ve =D << Pyt 2owen ToM(W) - Vo Doc,, can be viewed as the sum
of |P,| — 1 independent parts as vt =3 o wty(w) - VD, . For each vt let Q, be

the set of all path schemas w € ) satisfying v, pc, (u) > 0, and let w € Q, be such an
arbitrary path schema. By definition, if w = T, then v, p ¢, (u) =1if s, = wand 0if s, # u;
otherwise, v, p ¢, (u) is the number of distinct paths of schema w in D that connects cs,
and ¢,. Besides, in the case of w # T, let w = Q(k), line 10 computes a corresponding
value Cj, for it. To simplify the notations, in the following we also denote the value computed
in line 10 for each w as Cz,.

Case 1. There exists » and w € €, such that v, p., (u) > C,,. Note that this is not

the case for w = T, because Ct is not defined. Also, this is not the case for w with
a single atom, because in this case v, p., (u) < 1 while C, = 1. Therefore, w must
have length > 2. Let ¢, be a multichain conjunction with core being the chain pattern

17



Under review as a conference paper at ICLR 2026

corresponding to w and cardinality Ci,. Since Vu,De,.. (u) > Cow, there exist at least (i,
mappings that ground ¢, in D with x to c,, and y to ¢,. By definition, in a multichain
conjunction, each ®’ shares no variables other than x and y. We can take the union of
those CL mappings to obtain a new mapping o, which clearly grounds ¢, in D with x
to ¢s,. and y to ¢,. Next, as w is a unique element in Q, let w = Q(k). Consider the list
[C1,- -+, Clg|—1] where Cy = C,oand C; =0for1 <i< |2] =1 and 4 # k, since this list is in
the iteration of lines 12-15, we have ¢, € © with wt’(¢,) computed in line 15. Specifically,
we have either (1) wt/(p,) = wt(w) - C,, > B (as the first part of line 15 if u # s,.), or
(2) wt'(¢,) = wt(w)-Cy +wt(Q(]Q])) > S (as the second part of line 15 if u = s,.). In this case,
consider the rule Py (1, -+ ,i—1,Yy, Te1, -+, T|p,|) Ph(zy, -1, Tp1, o X1 Py ) APy
(or replace z;, both in the rule head and body with y if u = s,.). The comparison in line 17
shows 31 << p, izt WE (0) = wt' () > B. With 3 =~ we prove the rule is in R. Besides,
we have produced a mapping as above that grounds the rule body in D with x mapped
to cs, and y mapped to c,.

Case 2. For all 1 < r < |Py] and r # t, there is no w € Q, such that v, p., (u) > C..
For each 1 < r < |Pyl, and r # t, let ¢, be a conjunction of multichain conjunctions, such
that for each element w € . and w # T, ¢, contains a multichain conjunction with core
corresponding to w, and cardinality v, p.,, (u). Such multichain conjunction is well-defined
since the definition of . ensures v pc, (u) > 0. Then we omit any ¢, = T, and consider
the MC rule whose rule body consists of remaining ¢, # T with 1 < r < |Py|, r # t,
written as Ph(xla o T—1,Y, T, ax|P;L|) — P}i(:rl? oy T—1y T4yt 7‘7;\Ph|) A Pry A
-+ A pr {xr — y for each s, = u}, where {ry, -+ ,r} C{1,--- ;¢ —=1,t+1,--- | Pnl}.

We first consider each ¢,, with 1 < ¢ < k, which consists of MC conjunctions for z,,
and y if s, # w or ¢, {z,, — y} if s,, = u. For each w € Q,, and w # T, there
exists at least v, p e, (u) distinct paths of schema w in D that connects Cs,., and ¢,. By
Definition each of these paths forms a (pairwise distinct) grounding in D of the chain
pattern corresponding to w. Note that, in a multichain conjunction by definition [1.2] each
element ®/ shares no variables other than z and y (i.e., z,, and y in ¢,.). Meanwhile, each
multichain conjunction in ¢,, also shares no variables other than x,, and y. Therefore,
we can take the union of the substitutions to produce a new substitution o, which clearly
grounds ¢,, in D that maps z,, to cs, and y to c,. Let [C1,---,Cig_1] be the list
where C; = 0 if Q(j) € Q,, and Cj = va(j),p,c,, (u) elsewhere for 1 < j < [Q[ — 1. This list
is well-defined since each w € €2, is a unique element in €. Also, this list is in the loop of
line 12, as vy pc,, (u) < C., for all w € Q,,. We have ¢, {z,, — z} € ©. Besides, line 15

computes wt' (., {z,, — z}) = leﬂz‘;l C;-wt(Q(j)). By Lemmaand the definition of 2,,,

we have wt' (¢, {2, = 2}) = > cq Wtm(w) VoD, (u). Analogously, line 15 computes
wt' (o {r, = y}) = LI G- wt(2(5) +wH(Q(12]) = oo, mEm@) Vo, (W).

For the rule Pp(x1,- -+ ,&—1,Y, Te41, - 2|p,|) < Ph(x1, Tt @eg1, 2y ) Ay A
-+ A pp {xr — y for each s, = u}, the analysis above shows that for each ¢,,, there exists
a substitution o, to ground ¢,, in D with z,, mapped to ¢,, and y to ¢,. Definition
ensures that all ¢, for 1 < i < k share no variables other than y. Therefore, we can take the
union of these substitutions to produce a new substitution ¢’, which grounds each ¢,, in D
that maps z,, to c;, and y to ¢,. This shows the fact Pp(Coys- 3 CopysCusCopyrs 7CS‘P’L|)

can be derived by the rule, given the fact Pf(cs,, - 3Csy_15Coyyrs " ’CS|Ph|) eD.

To show the rule is in R, the value compared with ~ in line 17 is ), -, ., wt' (). With the
above analysis, we have 3, ;< wt'(or,) = 21 <i<p 2oweq,, WoMm(W) - Vupe,, (u). By the
definition of 2, for 1 < r < |P7h|7and 7 # t, this score is equal to D 1< < Pyt 2wen ToM(W)-
Vu,De,, (1), since v, p e, (u) = 0 other than w € €2, for each 1 <r < |Py|, r # t. By Corol-
lary this score is equal to v (u). Since the fact Py (cs,, -+ ,Cs, . Cus Corsrr' " +Csip, )
is predicted by M, we have vi'(u) > 8. With 8 = v, we have Y 1<i<k Wt (pr,) > 7, which
shows the rule is in R. This completes our proof.

18



Under review as a conference paper at ICLR 2026

Time Complexity. Let v = maxj<;<s|P;| be the maximum arity of all the predicates
Py, -+ Ps. Each path schema w € 2 has length at most L, and each element of which is of
the form (P, p,q), satisfying 1 < k <, 1 <p <|Py| and 1 < g < |Pg|. Therefore,

[ EL: <:1|Pk| (1P — 1)>£+ 1=0 (f: (&ﬁ)") — O (6" 171 .

=1 =1

The cost to compute € and initialize wt(w) in line 1 is O(|Q2] - L). We analyze the time
complexity of the main loop (lines 2-20) as follows. The number of loops over all the h,t
is 22:1 |Pi| = O(§-v). The loop in lines 3-8 considers KL different lists. For each list, line 4
requires O(L) steps, and the same for lines 5-7. The computations in line 8 requires N - L
steps. The total cost of this part is O(KY - (L+L+1+ N-L)) = O(KF-N-L). By
definition of the MC model, K = 22:1 |Pe|(|Pe] —1) +1 = O(6 - v?). So the total cost
becomes O(§L - 2L - N - L)

The loop in lines 9-10 has |2| — 1 iterations, each of which requires a constant number of
operations. The overall cost is O(|€]).

For the loop in lines 12-15, let C' = max;<;<jo|—1 C;. The number of lists [C1,-- -, Clo)-1]
with 0 < C; < C; is bounded by (C + 1)I®l, which is an upper-bound for the number of
iterations. In each iteration, line 13 constructs at most |2 — 1 multichain conjunction, where
each conjunction has at most L - C atoms and (g) -L = O(C?- L) inequalities. Lines 14-15

combines the multichain conjunctions and computes a score with O(|€?|) operations. The
total cost of this part is

o((C+1) (9l (L-C+C?- L) +|a))) =0 (C?2.jq] L) .

For the loop in lines 1620, the size of © is bounded by the number of iterations as lines 12-15.
In each iteration with a list [C1,--- , C|g|—1], two elements are added into ©. Therefore, we

have |©] = O((C'+1)I®l). The number of lists [p1, -+ , @11, P41, ,¢|p,|] With each p € ©
is |©[1P»1=1 which is bounded by O(C!2I'*=1)). Line 17 requires at most v operations, and
the same is for lines 18-19. Line 20 requires a constant time to finish. The total cost of this
part is O(CI9=1) . ),

Therefore, the overall time complexity of Algorithm [I] is
0 (|Q| L+6-v- (5L LN L4 Q]+ O Q) L ol u)) . ()
By replacing |Q| with O (6% - v2%), the expression can be simplified as

O (5L+1 2L N L L gE 2l bttt 2 | s 0 .C(vay2L-(V—1))

=0 (L Lol R (N + C‘;L'”u“) NP5 05””%-(%1)) e (CgL.Vu) . (10)

O

Theorem 4.5. For MC model M and dataset D, a program Rap C R that returns the
same output as M on D can be obtained with worst time complexity O (6L -2k '€L+V'), for
v =maxi<k<s |Pi| and € the number of distinct constants in D.

Proof. Let R, p be the output of Algorithm@ for the input model M and dataset D. Let L
and N be the depth and rank of M, respectively. Besides, let T\ be the transformation
defined by M over datasets: given a dataset D, T'hy maps D to the set of all facts correspond-
ing to new rows obtained by applying M for completion. A set of rules R p is faithful to
M if Tyy(D) = Tr (D) for each dataset D representing a database.

Soundness. We prove T, (D) C T (D) by pointing out that Raq,p is a subset of the
MC program extracted by Algorithm[I] Let R be the program extracted by Algorithm[I] We
have Ra,p € R by construction, so T, (D) C Tr(D). Meanwhile, Theorem {4.4| ensures
that R is sound for M, i.e., Tr (D) € Taq(D). Therefore, we have Tz, , (D) C T (D).

19



Under review as a conference paper at ICLR 2026

Completeness. To prove Ty(D) C Tr, (D), we consider an arbitrary fact
Pr(Csyy 3 CsioasCusCspgns " 5 Cspy ) € Tama(D), predicted by M by completing the
fact Pi(coys 3 Cop 1y Corprs " +Csp ) € D with the constant ¢,, and show that there
exists a rule produced by Algorithm which is able to derive this fact from D.
Let H «+— AA Algrg\Ph\,r;ét ¢, be the rule added to Raqp within the iteration
of Pp(Csyy 1 Csi 1 CusCopprr - ,CS‘Ph‘) in lines 10-20. We consider each ¢, in the rule
body with 1 < r < |P,| and r # t. For each multichain conjunction in ¢, with core
corresponding to path schema w, count(w) counts distinct paths with schema w from cg
to ¢, in D, which is greater or equal to the cardinality of this multichain conjunction. The
corresponding facts in D of these paths form count(w) pairwise distinct groundings of the
chain pattern corresponding to w. This ensures that ¢, can be grounded in D by mapping x,
to ¢, and y to ¢,. Besides, as each ¢, for 1 < r < |P,| and r # t shares no variables
except y, each ¢, can be grounded in D without affecting each other. Therefore, the whole
rule can be grounded in D with x, mapped to ¢, for 1 < r < |P,|, r # ¢, and y mapped
to ¢,. This completes our proof that Py (csy, €, 1 Cus Corins " 5 Csp, ) € TR0 (D)

Time Complexity. In the worst case, the number of possible paths in P,y reaches O(e

KL). With K = 22:1 |Pe|(|Pr] —1) + 1 = O(5 - v?), the size of P,y can be written
as O(el - 6% - v2L). Consider the iteration of Algorithm [3| lines 10-20, the size of T (D)
is O(e” - §) in the worst case (line 10), and the number of iterations over r as line 11 is at
most v. In lines 13-15, each loop with a specific chain [c;,,dy, -+ ,dp, ¢,] costs at most O(L)
steps. The computation in lines 16-17 has at most the same cost as lines 13-15, since
each specific chain [cs, ,dy, -+ ,dy, ¢,] grounds at most one specific chain pattern in some
multichain conjunction. The aggregation in lines 19-20 costs at most O(L) steps. Besides,

the computation of all the values C,, for each chain pattern w requires O(6% - 2L . N - L)
steps. Therefore, the worst case complexity of Algorithm [3]is

(’)(GL-(SL-VQL-e”-d-u-L+5L-V2L-N-L):O(dL-VzL-eL+”-).

Additionally, let T (D) = {Pn(Csy, s Csi 15 CusCspyrst 1 Cspp, )} € Taa(D). By replac-
ing Ta((D) with Tay (D) in Algorithm [3] the algorithm terminates with time complex-
ity O(6% - v?F . €l), and the result program R’ contains a single rule p. The above
complexity analysis for Algorithm [3| ensures that this rule can be grounded in D and
derive Pp(Coyy 3 Csy i CurCspyys ) Cs\p, ‘) € T,(D). O

Theorem 5.2. The program R ¢ extracted by Algorithm %zs faithful to the input MC-max
model M when ~v = 3. Algorithm |9 terminates in O (5L steps with v = maxi<g<s | Pkl

Proof. Let R be the output of Algorithm [2]on input M. Let L and N be the depth and
rank of M, respectively. Besides, let T’y be the transformation defined by M over datasets:
given a dataset D, Ty maps D to the set of all facts corresponding to new rows obtained
by applying M for tabular data cell completion. A set of rules Raq is faithful to M if
Tm(D) = Tr,, (D) for each dataset D representing a database.

Soundness. We prove the soundness of Ry to M by taking an arbitrary input dataset D
that encodes a database, and showing that T, (D) C Ta(D).

Let Pp(csy, 1 CoiorsCusCsypyy " 5 Cspp, ) De an arbitrary fact in Tr,, (D). To derive the
fact, there exists a rule in Raq of the form Py(x1,--- 21,9, Teq1, -, Tp,)) < AN
)‘khm—ﬂh (xTv zl)/\' : '/\/\kbm—ﬂn(zf—la y)7 or Ph(mh =1, Y T4, ’xIPhl){xT = y} —
A{z, — y}, where 1 <r < |Py|, 7 #t, and A = P{(x1, - , 241, %441, ,T|p,|)- Bach

M ps—qi (Ziz1, z;) for 1 <4 < ¢ denotes an atom with predicate Pj,, variables z;_1, z; on its
pi-th, ¢;-th positions, and pairwise distinct variables on the other positions, respectively, with
20 = Xy, z¢ = y. Meanwhile, there exists a fact Pf(cs,, -+, Cop_1sCoppyy- - ’CS\PM) € D to
ground the atom A. Besides, in the first case where the rule body contains g, p, —q, (Zr, 21) A

A Megpe—qe(Ze—1,y) with £ > 1, there exists a substitution ¢ that ground it in D by
mapping x, to cs, and y to c,.

20



Under review as a conference paper at ICLR 2026

For w = Mgy p1—sqr (Trs 21) A Ay pp—sqe (20—1,y) With 0 < £ < L (w = T for £ = 0), let S% be
the set of all lists [dq, - - - ,dy] of length L that can be obtained from [dg, py g5 s Qkp.pe—sqe]
(resp. [] for £ = 0) by padding it (if needed) with the value K. Let

L

/ r1 hitr: -

[dy,---,d,] = argmax max Hb (4,7,d;)
[di,,dL]€SE == j=1

Since the rule is in R, we have Hle bt (i, 7, d) > 7.

For simplicity, we denote each adjacency matrix My, ,, with 1 < k <, 1 < p,q < | Py
and p # q as I\A/Idkﬁp_,q where 1 < dj pq < K —1. Besides, let Mg € {0,1}%¢ be an identity
matrix, in which MK(i,i) =1for 1 < i < e and 0 elsewhere. Then we can rewrite the
Equation |3| and compute VQ t(u) as Equation

L
h,t hit/- -
v (u) = max max b"™*(i,5,d;) | - 11
¢ (u) [max .~ |7| (4,7, d;) (11)
1<r<| Pyt J=1

Mg, ® ®Mq, (sr,u)=1

If the rule body contains A, p,—q, (@r, 21) A -+ A Mgy pp—sq.(2e—1,y) with £ > 1, the exis-
tence of substitution o ensures that l\A/IUl/1 R ® MdlL (sr,u) = 1 for some r with 1 <
r < |Py| and r # t. Otherwise, if the rule body only contains A, then s, = u,
[dy,---,d;] = [K, -, K], and l\A/[d/1 ®-® l\A/Id/L(sr,u) = 1 holds as well by definition.

This means the list [d},---,d}] is included in the max operation of Equation S0 we
have v’é’t(u) > Hle b"t(i, j, d;) > ~. Therefore, we have vg’t(u) > 3 with 8 = v, which
ensures Py (cs,, -, Cs,_ 15 CusCsyypyy ’CS\Ph\) € Tm(D).
Completeness. We consider an arbitrary fact Py(cs,, - ,Cs, 15 CusCspypyy e ’Csuvh\) €
Tam(D) by completing the fact Py(cs,, -+, €5, 15Cs,4157 " 1 Csp, ) € D with constant ¢, and
prove the fact is in T, (D).
Let [d},--- ,d}] and corresponding values of ¢’ and ' be
L
[d/h 7dlL]7i/aT/ = argmax th’t(ivjv d]) : (12)
1ST§|Ph‘aT7£t:1SiSN7 j=1

[d1,,dr]€{l,- K}*,

My, ®+@Mq; (sr,u)=1

Clearly, at least one such sequence [d},---,d}] with corresponding ¢’ and r’ must exist
because P, (Csy, - 5 Coy_yyCur Copprs " ,cs‘Ph‘) € Tm(D). By Equation we have vZ’t(u) =
Hle b, g, d) > B and Mg ©- - @My (sp7,u) = 1. Let [df, -, dj] be the list obtained

from [d},---,d}] by removing all K. Then we consider two cases with { = 0 and ¢ > 1,
respectively.

If £ = 0, we consider the rule Py (21, ,%i—1,Y, Teq1, - 2y p, H2r = y} — A{zy —
y}, where A = Pi(z1, -+, Tp—1,Teq1, - ,leph‘) describes the structure of the incomplete

fact. We have Hle bt (i, 5, d;) >~ with 8 = v, which ensures the rule is in the result
program R rq. Meanwhile, Mg @- - -®Md/L (8y7,u) = 1 ensures that the rule can be grounded

in D with ¢, , = ¢, to derive the fact Py(cs,, " ,Cs, 15 CusCspyyy ,cs‘Ph‘) € Tr, (D).
If £ > 1, we consider the rule P (21, ,Tt—1,Y Teg1, TP, |) < AN My pr g0 (T, 21) A
A Akppesqe (201, Y), where A = Pf(xy,--+ @1, %441, ,2|p,|), and (k;, p;, ¢;) uniquely

correspond to each index dj by definition for each 1 < ¢ < ¢. Analogous to the case of £ = 0, we
have Hle b™t(i', 4, d;) > v = (3 to ensure the rule is in the result program R . Meanwhile,
by definition of the adjacency matrices M, for 1 < d < K, we have l\A/Id/1 R ® Md’L =

21



Under review as a conference paper at ICLR 2026

I\A/Id/l/ R ® l\A/Idz/. Therefore, we have 1\A/Id/1/ R ® I\A/Id;z/(s,«/, u) = 1, which ensures that there
exists a substitution to ground the rule body in D by mapping z;,+ to ¢s , and y to ¢,. This
rule derives the fact Py (cs,, -+ Cs, 15 CusCspsyy ,cS‘Ph‘) and completes our proof.

Time Complexity. In Algorithm [2] the number of iterations over all h,¢t with 1 < h <,
1<t<|Psjandrank 1 <i < N is O(0-v - N) with v = maxi<k<s|Pg|. The iteration of
lines 4-7 costs O(K*) steps to compute all possible scores for each chain pattern, with K =
22:1 |Pi|(|Pe] — 1) + 1 = O(6 - v?). The iteration of lines 8-14 loops over all the O(KT)
elements of §’, and each loop costs at most O(L + v) steps. Therefore, the time complexity
of Algorithm [2] is

O@-v-N-K'-(L+v))=0("-v").

O
D ANALYTICAL EXPRESSION OF dj 4
Given predicates Py, - -+, Ps with arity |P;| > 2 for 1 <4 < ¢, the position dj ,—, of triple
(k,p,q) is computed as
k—1
(I1Pel=1)-(p—1) +4q ifg<p
d = Pl -(|P| -1 . . 1
wp ;' |- (8 )+{(|Pk—1)-(p—1)+q—l if g >p (13)
In turn, the triple (k,p, q) can be obtained for a given d satisfying 1 <d < K — 1 as
kzmin{aez>o Y IR (1Pl = 1) >d} :
i=1
k-1
p = min {b €Zso | Y IP|-(IP| = 1) +b- (|2 - 1) > d} ; (14)
i=1

k—1
g=d=Y [Pl (Pl =1~ (-1 (P ~1).
i=1

E COMPARISON OF EXPRESSIVE POWER OF MC AND MC-MAX

The following proposition shows that the expressive power of MC models is not equivalent
to MC-max models, as MC models can capture rules that cannot be captured by MC-max.

Proposition E.1. There exists a MC model such that no MC-max model is equivalent to it,
where equivalent means they produce the same result for each input dataset D.

Proof. We prove this proposition by giving an example of such MC model, and a specific
input dataset D. Then we show that no MC-max model is able to produce the same result
as the MC model on this dataset.

We assume a signature consisting of a single predicate P with arity 4, and a set of constants
{a1,a9,as3,a4,b,c,d, e, f,g,h}. The input dataset has an incomplete fact and three complete
facts as D = {P*(ay, b, ¢), P(ag,b, c,d), P(as,b,e, f), P(as, g,c,h)}. Let the MC model M =
(bbt bl2 b3 bl4 B) of rank N =1 and depth L = 1, where 3 = 0.9, all elements of the
tensors are 0 except b14(1,1,d; 2 44) = bb*(1,1,d;.3-,4) = 0.5. Following the computation
process of the MC model as Equation [I} we are able to obtain the (only) constant d to
replace the null value in the incomplete fact. The completed fact is P(aq,b, ¢, d), which can
be explained by the rule [I5] containing two chain patterns of length 1.

P(.'El,l'g,x?,,y) — P4(.1317$2,$3) /\P(U,JjQ,’U,y) A P(w,z,ajg,y) . (15)

Then we prove by contradiction that no MC-max model can produce the same result as M
on D. To this end, suppose there exists a MC-max model M’ that yields the same result as

22



Under review as a conference paper at ICLR 2026

M on D. Then M’ must predict the constant d for the incomplete fact, since d is predicted
by M. By definition of the MC-max model, it only utilizes one path with the highest weight
from any existing constants (i.e., aj, b, ¢ in this case) from the incomplete fact to the target
constant. We consider the following cases.

1. The model utilizes a path connecting a; and d in D. As there is no such path in D,
this cannot be true.

2. The model utilizes a path connecting b and d in D. In this case, we can find another
path with the same path schema that connects b and f. In particular, by applying
the mapping {as,as — as; g — b;c+— e;d, f — h} to the path, i.e., replacing each
constant with the one on the same position of predicate P as the fact P(as, b, e, f).
It is easy to see that the new path exists, and connects b and f. Besides, as the
path schema is unchanged, the weight of new path is the same as the one connecting
b and d. Therefore, if the model M’ derives d, it must also derives f in the result.
This contradicts with that M only derives d as result.

3. The model utilizes a path connecting ¢ and d in D. Analogous to case 2, we can find
another path with the same path schema that connects ¢ and h, with the mapping
{ag,a3 — a4;b — g;e — ¢;d, f — h}. Therefore, if the model M’ derives d, it must
also derives h in the result. This contradicts with that M only derives d as result.

As we have enumerated all possible cases for M’ to derive d, while none of them satisfies
the requirement that M’ produces the same result as M. This contradiction completes our
proof that no such MC-max model exists that can produce the same result as M on D. [

F ApprLyiING MC AND MC-MAX TO COMPLETE MULTIPLE NULL VALUES

In this part, we explain that our models can be applied to incomplete facts with multiple null
values as a direct extension. Figure [3|shows an example of this case, where some row(s) in
the input tabular data contain more than one null value to be completed. As we introduced
in Section [2], input tabular data can be viewed as facts with predicates. In this example, we
have predicates Name-0rg.-Country, Name-City-Country-Org (abbreviated as N-0-C and
N-C-C-0 in the rest of this section, respectively), two complete facts N-0-C(Emma, MIT, US),
N-C-C-0(Alice, Boston, US, Amazon), and an incomplete fact N-C-C-0( Emma, Boston,?, 7).

Name Org. Country Name City Country Org.
Emma MIT Us Alice Boston Us Amazon
Emma Boston ? ?

Figure 3: An example of tabular data cell completion with multiple null values in an
incomplete fact, where each ‘7’ denotes a missing value for the data cell.

Following the same definition of data predicates Py, - -, Ps and auxiliary predicates {P/ |
1 <t < |P;|} introduced in Section |4} we analogously represent the input tabular data
as a dataset D. Apart from keeping the same representation for facts with zero or one
null value, we extend it for facts with multiple null values. Specifically, we introduce a
special constant ¢y that is distinct from all the constants from the input tabular data,
which intuitively denotes an ‘unknown’ constant. Then for each incomplete fact with
predicate P, and m null values on its py,--- ,p,;, positions with 1 < k< dand 1 <m <
|P|, D contains m facts of the form Pf(cy, -+ ,ci—1,¢q1, -+ ,¢p,|) for t € {p1,--- ,pm},
where each ¢; = ¢y for j # t and j € {p1, - ,pm}. In the example of Figure (3| the
incomplete fact N-C-C-0(FEmma, Boston,?,7) is represented by two facts in D, namely,
N-C-C-0%( Emma, Boston, co) and N-C-C-0%( Emma, Boston, cg).

As the above formulation of dataset D has the same form as our input introduced in Section [3]
we can apply our model as Definition to D. In particular, by additionally encoding the
constant co as vi? = {0}°, Equation [1[is well defined. Observe that, as cg is distinct from

23



Under review as a conference paper at ICLR 2026

all constants in the input tabular data, introducing ¢y will not affect any of the adjacency
matrices My, ,—,q. Besides, as ¢ is initiated as a zero vector in Equation [I} the existence of

¢op has neither contribution nor effect on the final results of vz’t.

Finally, to obtain complete facts by eliminating the existence of ¢y, we post-process the
Trm(D) (i.e., the result of applying model M to dataset D) as follows. For each set of m
facts Py(ci,- -+, ci—1,¢t,Ceq1, -7+ ,¢p,|) in Taq(D) with a distinct ¢ € {p1,--- ,pm}, satisfy-
ing ¢; = co for j # t and j € {p1,--- ,pm}, and other constants ¢; for 1 < i < |P| and
¢i ¢ {p1, -+ ,pm} are the same for the m facts, we merge them into a single fact without ¢,
by substituting all ¢y on the t-th position for ¢ € {p1,--- ,pm} with the (only) constant ¢; €
{c1, -+, cs} on the same position among these m facts. For example, in Figure if the model
produces Th(D) = {N-C-C-0(Emma, Boston, US, cq),N-C-C-0( Emma, Boston, co, MIT)},
the complete fact is obtained by merging the two facts as N-C-C-0(Emma, Boston, US, MIT).

To apply the MC-max model for incomplete facts with multiple null values, recall that the
MC-max model has the same form and input as the MC model (see Section ; therefore, the
above extension also applies to the MC-max model. Analogously, by adding the initializing
vector of constant ¢y as v = {0}°, the transformation of MC-max model as Equation [3| is
well defined. Then we are able to conduct the same post-process as above to eliminate cg
and obtain the complete fact.

Note that, any extension discussed in this section only involves pre-processing the input
(i-e., how to get D) and post-processing the output (i.e., how to handle Tx((D)), while the
definition of models and rule extraction algorithms are unchanged. Therefore, Theorem [4.4]
and Theorem are not affected under this extended scenario. The faithfulness between
the model and extracted rules still holds.

G EXPERIMENT SETTINGS

Additional details about the experiments are provided in this section, including the statistics
of datasets, and the configurations used for training and evaluation.

G.1 STATISTICS OF DATASETS

For relational tabular datasets, we reused the three inductive datasets WP-IND, JF-IND,
and MFB-IND from |Yadati (2020), as well as a transductive dataset FB-AUTO from [Fatemi
et al.| (2020). Each dataset consists of train, validation, and test sets, where the test set of
each inductive dataset contains the same predicates but also unseen constants w.r.t. the train
and validation sets. Table 5] presents the statistics of each dataset. Compared with WP-IND,
JF-IND, and FB-AUTO, MFB-IND has a similar number of constants but significantly more
facts, indicating a much higher density than the others. In addition to the number of facts,
predicates, and the arity of each predicate, we also calculated the number of occurrences
for each constant in the dataset. The constants in MFB-IND exhibited a higher median
frequency of occurrence than those in the other datasets. This also suggests that MFB-IND
has a denser structure with more chains between pairwise constants within a given length
constraint.

Table 5: Statistics of Tabular Datasets.

#Train Facts #Validation Facts #Test Facts #Constants #Predicates & Constant Frequency

median  max (median)

‘WP-IND 4,139 1,138 1,139 4,463 32 3 1
JE-IND 6,167 659 645 4,785 31 3 4 2
MFB-IND 336,733 15,052 15,056 3,783 12 3 3 45
FB-AUTO 6,778 2,255 2,180 3,388 8 5 5 4

To use these datasets for tabular data cell completion, each train set was randomly split
into an incomplete set of facts D and a set of positive examples with a 3 : 1 ratio. For
inductive datasets, the test set was similarly split in an 1 : 1 ratio. The incomplete facts
with a missing value were then obtained by masking one constant at each position in the

24



Under review as a conference paper at ICLR 2026

positive examples. Besides, to evaluate model performance with negative examples, for each
dataset we randomly sampled negative facts by replacing the constant at each position of a
positive example in the test set. Finally, an equal number of positive and negative examples
were combined during the evaluation process.

For binary datasets, we reused the 12 benchmark datasets for inductive knowledge graph
completion from |Teru et al|(2020). Table |§| presents the statistics of each dataset. Analogous
to the hypergraph datasets, we computed the number of occurrences for each constant in the
dataset. Compared with NELL-995 and WN18RR, FB15k-237 datasets in general have more
predicates and a higher frequency of constants, indicating a greater diversity of incomplete
facts and binary connections between pairwise constants. To use these datasets for our task,
we reused the splits in [Wang et al.| (2024a)) for each train set and test set, including the
incomplete set of facts, positive examples, and negative examples.

Table 6: Statistics of Binary datasets.

#Train Facts #Validation Facts #Test Facts #Predicates Constant Frequency (median)

Vi 1245 489 2,198 180 3
V2 9,739 1,166 1623 200 4
FBIk-237 g 17,986 2194 8271 215 5
Vi 27203 3.352 13138 219 7

Vi 1,687 414 933 14 2

V2 8,219 922 5,062 88 2
NELL-995 75 16,393 1,851 8.857 142 2
Vi 7,546 876 7.804 76 2

Vi 5,410 630 1,806 9 3

V2 15.262 1,838 14452 10 3

WNISRR v 25.901 3,097 6.932 11 3
Vi 7,940 934 13,763 9 3

G.2 MoDEL CONFIGURATIONS

For baseline models, we reused the original implementation of HyperGCN layersﬂ from |Yadati
et al.| (2019), and adapted it to the tabular data cell completion task by adding an extra
linear layer for binary classification to predict the correctness of an input fact. We used the
standard version for better performance on WP-IND, JF-IND, FB-AUTO, while using the
fast version on MFB-IND, as a single training epoch of the standard version on this dense
dataset cost more than 24 hours.

For GMPNN models (Yadati, [2020), we reused their original implementatiorﬂ for our task.
We reused the default hyperparameter settings for all the baseline models.

For LLM baselines, we implement Chain-of-Thought (Wei et al., |2022)) with customized
prompts and 3-shot examples. Each input contains an incomplete tabular data instance and
a candidate fact, where the model is prompted to judge the validity of the candidate fact and
output a binary answer. We accessed the GPT-5 mini model (OpenAl, 2025) via its official
API. For TabLLM (Hegselmann et al.| [2023)), we followed the original implementationﬂ
and adapted it to our task. We further replaced its backbone LLM with a more advanced
open-sourced model Llama-3.1-8B-Instruct (Metal 2024). We accessed the model from
HuggingFaceﬁ and deployed it locally for fine-tuning and evaluation. The model was fine-
tuned with QLora (Dettmers et al., [2023)) for binary classification of the candidate fact.

We implemented the MC and MC-max models based on Python 3.éf| and PyTorch Q.dﬂ For
training the MC and MC-max models, we applied the Adam optimizer with cross-entropy
loss, and tuned the learning rate between 0.01 and 0.0001 for each model. Each model

"https://github.com/malllabiisc/HyperGCN
Zhttps://github.com/naganandy/G-MPNN-R
3https://github.com/clinicalml/TabLLM/tree/main
“https://huggingface.co/meta-1lama/Llama-3.1-8B-Instruct
Shttps://www.python.org/downloads/release/python-3817/
Shttps://pytorch.org/get-started/pytorch-2.0/

25


https://github.com/malllabiisc/HyperGCN
https://github.com/naganandy/G-MPNN-R
https://github.com/clinicalml/TabLLM/tree/main
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://www.python.org/downloads/release/python-3817/
https://pytorch.org/get-started/pytorch-2.0/

Under review as a conference paper at ICLR 2026

was trained for up to 10 epochs, and an early stopping strategy was employed when the
validation loss increased during the training process.

For MC and MC-max, we set depth L = 2 and evaluated ranks 1 < N < 3. The threshold 8 €
(0,1) was tuned for each model to maximize the F1 score on validation sets. On binary
datasets, we compared their best performance by tuning rank N between 1 and 3.

For rule extraction, we implemented Algorithm [3] for the MC model on all datasets used in
our experiments. We also implemented Algorithm [2] for the MC-max models and set the
rule extraction threshold v = f3.

All the experiments were performed on a workstation with an Intel Xeon E5-2670 CPU and
a Quadro RTX 8000 GPU.

H ADDITIONAL EVALUATION RESULTS

We provide more evaluation results in this section, including the training time of each model
on every dataset, and rule extraction time of MC and MC-max models.

H.1 EXTENDED RESULT ANALYSIS FOR TABULAR DATA CELL COMPLETION

Sum vs. Max Aggregation. Results in Table|l|and Table [2]reflect the different behaviors
of the two models. The MC model, with sum aggregation, often achieves higher recall by
leveraging all evidence paths, which is beneficial when multiple weak signals contribute to a
correct prediction, but may be more susceptible to noise from irrelevant paths. In contrast,
the MC-max model, with max aggregation, considers only the strongest path, making it
more robust in noisy settings and yielding more precise and concise rules, at the cost of
reduced expressivity.

Few-shot Prompting vs. Fine-tuning LLMs. Table[I]also demonstrates the unbalanced
and unstable performance of LLM-based methods. In particular, predictions by few-shot
prompting models are often overly conservative, leading to frequent failures in identifying
the correct constant to fill the missing cell. In contrast, fine-tuned models tend to be overly
optimistic, producing a large number of false positives. The results highlight the difficulty
of calibrating LLM predictions for tabular data cell completion, where both under- and
over-prediction significantly undermine reliability.

In our task, the candidate space is large and evidence is distributed across multiple tables
or hops. Therefore, correct completions often require aggregating several weak, schema-
constrained clues. With fixed few-shot prompting, the LLM’s probability distribution is
spread over many candidates and it struggles to bind constants across hops, so many true
positives are filtered out, yielding conservative behavior and frequent failures to identify
the correct constant. In contrast, fine-tuning makes the model internalize spurious co-
occurrences and frequency priors (e.g., frequent values in the table) and loses its implicit
“abstain” behavior, leading to overconfident predictions and inflated false positives. We
observe that few-shot models often fail when correct predictions require multi-hop joins,
while fine-tuned models frequently produce false positives by predicting overly common
values for the missing cell. This contrasts with our approach that explicitly aggregates paths
under schema constraints, thus improving calibration.

Compared with LLM-based methods, our models not only achieve a more balanced overall
performance across all metrics, but also provide faithful, human-understandable explanations.

H.2 TRAINING TIME

Table [7] reports the training time for each model on the WP-IND, JF-IND, MFB-IND,
and FB-AUTO datasets. Generally, all models were able to finish training within several
minutes to a few hours, varying among datasets. The HyperGCN model spent less training
time than the GMPNN models, despite its less satisfying performance for our task. The

26



Under review as a conference paper at ICLR 2026

GMPNN-sum, GMPNN-mean, and GMPNN-max models used similar training time, since
their only difference is the strategy for aggregating neighborhood information.

For the MC and MC-max models, the number of learnable parameters grows linearly with
the rank, resulting in the longer training time as the rank N increases. This indicates the
model’s flexibility to scale to larger datasets by adjusting the rank as a hyperparameter.
The MC-max model spent longer training time than the MC model with the same rank,
primarily due to the computation of max-product and max aggregation. Additionally, MC
models were observed to early stop more frequently than MC-max models with increments
of validation loss. Overall, both MC and MC-max models demonstrated comparable training
time to the baseline models, suggesting the practical feasibility of our approaches.

Table 7: Training Time (minutes) for Each Model.

WP-IND JF-IND MFB-IND FB-AUTO

HyperGCN 9.3 18.4 225.0 39.7
GMPNN-sum 21.7 24.5 439.9 31.6
GMPNN-mean 21.6 24.4 438.0 79.0
GMPNN-max 21.3 24.2 432.1 7T
TabLLM (Llama 3.1) 95.6 110.3 150.8 100.2
MC (N =1) 9.0 7.5 131.6 4.0
MC (N =2) 19.7 15.7 307.5 6.2
MC (N =3) 29.4 24.4 408.1 12.0
MC-max (N =1) 27.1 38.6 301.2 16.1
MC-max (N = 2) 52.4 76.2 620.7 33.3
MC-max (N = 3) 75.0 112.9 828.0 50.3

H.3 SIGNIFICANT TEST

Based on the results in Table [T} we conducted paired t-tests for each pair of baseline and
our proposed models across all evaluation metrics where MC and MC-max outperformed
the baselines. A paired t-test typically indicates a statistically significant difference when
p < 0.05. Table [§ reports the results of p-values, with all values of p < 0.05 marked with an
asterisk (*). Overall, the results reveal significant differences between our proposed models,
MC and MC-max, and the baseline models. In particular, both MC and MC-max significantly
outperform all baseline models in terms of precision and accuracy, and also significantly
outperform GMPNN-sum in terms of F1 score. Additionally, MC-max significantly exceeds
most baseline models except GMPNN-max in terms of precision, recall, and AUC.

Table 8: p-values of Paired t-Test for Results in Table

MC(N=1) MC(N=2) MC(N=3) MCmax(N=1) MCmax(N=2) MCmax (N =3)

P 0.029% 0.033* 0.045% 0.002* 0.002* 0.002*
HvnorGON Acc 0.046* 0.050 0.055 0.017% 0.017* 0.021*
yperts AUC 0.070 0.079 0.076 0.034% 0.033* 0.039*
F1 0.063 0.067 0.063 0.051 0.049% 0.056
P 0.017* 0.019% 0.028* 0.007* 0.008* 0.006*
CMPNN-sum Acc 0.016* 0.016* 0.023* 0.005% 0.005* 0.004*
i AUC 0.016* 0.016* 0.017* 0.002* 0.001* 0.001*
F1 0.038* 0.036* 0.042* 0.020% 0.022% 0.021*
P 0.018* 0.019% 0.029% 0.006* 0.007* 0.005*
CMPNN-mean Acc 0.021* 0.021* 0.031* 0.004% 0.005* 0.003*
’ AUC 0.166 0.202 0.192 0.029* 0.024* 0.031%
F1 0.576 0.598 0.579 0.386 0.366 0.402
P 0.036* 0.040% 0.055 0.029% 0.029% 0.024*
CMPNNmax Acc 0.050 0.056 0.070 0.024% 0.021* 0.022*
AUC 0.414 0.486 0.459 0.083 0.074 0.061
F1 0.640 0.696 0.659 0.280 0.261 0.301
P 0.560 0.578 0.567 0.119 0.109 0.135
. R 0.014* 0.014* 0.014* 0.021* 0.022* 0.020%

=
CoT (GPT-5 mini) — yo 0.006* 0.005% 0.005% 0.007* 0.007* 0.005%
F1 0.015* 0.014* 0.014* 0.014% 0.015% 0.013*
P 0.004* 0.004* 0.005* 0.000% 0.000* 0.000*
P R 0.072 0.065 0.073 0.125 0.144 0.108
TabLLM (Llama 3.1) 5. 0.010% 0.010% 0.012% 0.004* 0.005* 0.005*
F1 0.029% 0.029% 0.029% 0.023* 0.024% 0.025%

27



Under review as a conference paper at ICLR 2026

H.4 ANALYSIS OF THE EXTRACTED RULES FROM MC-MAX

Table [4 presents examples of top-weighted rules extracted by MC-max from the WP-IND,
JF-IND, and MFB-IND datasets. Most extracted rules demonstrate binary relationships
between constants, such as the first two rules from WP-IND. The model also captured
symmetrical binary relationships, exemplified by the third rule from WP-IND, as well as
transitive binary relationships, such as the first rule from MFB-IND. Additionally, it exhibits
the ability to ‘align’ specific positions across different predicates. For example, in the third
rule extracted from JF-IND, it aligns the positions of Team and Player across different
predicates Player-Event-Team and Team-Player-Event.

H.5 RULE EXTRACTION TIME FOR MC MODEL OVER A SPECIFIC DATASET

Table [0 presents the runtime of Algorithm [3]for MC models with each input tabular dataset.
Since the number of results obtained by applying M to D varies across datasets, we measured
the average rule extraction time per 100 result facts obtained by applying M to D, to enable
a consistent comparison across datasets.

In all cases, Algorithm [3| completed rule extraction within a few minutes. Besides, increasing
the rank N did not significantly affect the time for rule extraction. These results confirm
the practical feasibility of our rule extraction approach. Additionally, we observed that the
majority of the runtime was spent on computing the weights of every chain pattern and their
cardinality upper bounds, while the time increment would remain limited with growing size
of the result set by applying M to D.

Table 9: Rule Extraction Time of MC on Fixed Datasets (seconds per 100 result facts).

N=1 N=2 N=3

WP-IND 11.89  14.61 15.70
JF-IND 11.34 13.78  14.48
MFB-IND 5.66 5.95 6.27
FB-AUTO 0.61 0.70 0.78

V1 9580 105.02 117.08
V2 134.17 149.70 169.26

FBISK-237 Vo 17461 19680 227.41
Vi 18842 21778 246.52
Vi 017 020 024
V2 1071 1259 14.30
NELL-995  y3 4718 5708  64.25
Vi 697 845 942
Vi 003 005 006
WNisRr V2 005 007 010

V3 008 012 020
V4005 008 0.6

28



	Introduction
	Background
	Model for Tabular Data Cell Completion
	Model Definition
	Model Interpretation

	Faithful Rule Extraction for the MC Model
	Multichain Rules
	Faithful Rule Extraction for an MC Model
	Faithful Rule Extraction over a Specific Database

	Model Variant with Simplified Rule Extraction
	Evaluation
	Limitations and Future Work
	Extended Related Works
	Faithful Rule Extraction for the MC Model with Fixed Dataset
	Proofs
	Analytical Expression of dk, p q
	Comparison of Expressive Power of MC and MC-max
	Applying MC and MC-max to Complete Multiple Null Values
	Experiment Settings
	Statistics of Datasets
	Model Configurations

	Additional Evaluation Results
	Extended Result Analysis for Tabular Data Cell Completion
	Training Time
	Significant Test
	Analysis of the Extracted Rules from MC-max
	Rule Extraction Time for MC model over a Specific Dataset


