
Under review as a conference paper at ICLR 2023

HOLDING MONOTONIC IMPROVEMENT AND GENER-
ALITY FOR MULTI-AGENT PROXIMAL POLICY OPTI-
MIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Proximal Policy Optimization (PPO) has achieved empirical successes in the field
of single-agent reinforcement learning thanks to guaranteed monotonic improve-
ment. The theoretical support makes its extension in multi-agent systems very
attractive. However, existing PPO-based algorithms in cooperative multi-agent re-
inforcement learning (MARL) either lack the theoretical monotonic improvement
guarantee or have inevitably restrictive settings, which greatly limit their appli-
cable scenarios. In this paper, we propose a theoretically-justified and general-
purpose multi-agent PPO algorithm for cooperative MARL called Full-Pipeline
PPO (FP3O). The core idea of FP3O is to dynamically allocate agents to different
optimization pipelines and perform the proposed one-separation trust region op-
timization for each pipeline. We prove in theory the monotonicity of joint policy
improvement when executing the policy iteration procedure of FP3O. In addition,
FP3O enjoys high generality since it avoids the restrictive factors that could arise
in other existing PPO-based algorithms. In our experiments, FP3O outperforms
other strong baselines on Multi-Agent MuJoCo and StarCraftII Multi-Agent Chal-
lenge benchmarks and also demonstrates its generality to the common network
types (i.e., full parameter sharing, partial parameter sharing, and non-parameter
sharing) and various multi-agent tasks.

1 INTRODUCTION

Proximal Policy Optimization (PPO) (Schulman et al., 2017) has been deemed as one of the most
effective algorithms in single-agent reinforcement learning (RL) with empirical successes in a wide
range of challenging domains, such as game playing (Bellemare et al., 2013), robotic control (Duan
et al., 2016) and human-level task (Berner et al., 2019). It was originally developed from Trust
Region Policy Optimization (TRPO) (Schulman et al., 2015), which enjoys the theoretical mono-
tonic improvement guarantee during the training process by restricting the Kullback-Leibler (KL)
divergence between the updated policy and the old one to a trust region. PPO significantly reduces
computational complexity by replacing the KL divergence constraint in TRPO with the clipping
mechanism. This improvement enables PPO to adopt the first-order optimizer to optimize the ob-
jective which greatly simplifies its implementation on deep neural networks.

Unfortunately, in multi-agent reinforcement learning (MARL), independently applying single-agent
RL algorithms to each individual agent is poorly suitable. This is because, for each agent, the state
transition and reward function will become non-stationary with the changing of other agents’ poli-
cies. The non-stationary environment makes each agent suffer from the problem of learning stability
(Hernandez-Leal et al., 2017; Papoudakis et al., 2019). Recently, the paradigm of centralized train-
ing with decentralized execution (CTDE) has been widely adopted to combat this challenge. Each
agent in CTDE has access to extra information (e.g., global information and policies of other agents)
to alleviate the non-stationary issue during the training phase, and only uses the local information
during the execution phase. Based on the CTDE framework, varieties of multi-agent algorithms
have sprung up (Lowe et al., 2017; Rashid et al., 2018; Mahajan et al., 2019; Wang et al., 2021a;c).

However, existing PPO-based algorithms in cooperative MARL either lack theoretical support or
have inevitably restrictive settings, which greatly limit their applicable scenarios. Both Independent

1

Under review as a conference paper at ICLR 2023

PPO (IPPO) (de Witt et al., 2020a) and Multi-Agent PPO (MAPPO) (Yu et al., 2021) simply applied
PPO to the multi-agent domains by optimizing every agent with trust region learning under the
full decentralization framework or the CTDE framework. Despite their empirical successes, the
direct extension could make the monotonic improvement guarantee no longer hold since an agent’s
payoff is also affected by other agents’ actions. This fact disturbs their performance even in some
simple cooperative multi-agent tasks (Kuba et al., 2022). For this, Kuba et al. (2022) proposed the
theoretically-justified Heterogeneous-Agent PPO (HAPPO) algorithm with guaranteed monotonic
improvement. HAPPO adopts a sequential update scheme: all agents are updated one by one, so
that the expected joint advantage can be improved sequentially. Unfortunately, HAPPO is limited to
a specific setting (i.e., non-parameter sharing). In other popular types of multi-agent tasks such as
training homogeneous agents with full parameter sharing (Yu et al., 2021) or training heterogeneous
agents with partial parameter sharing (Chenghao et al., 2021; Christianos et al., 2021), HAPPO will
suffer from the problems of uncontrolled KL divergence and poor data efficiency, which greatly
limit its generality. Specifically, if the policy networks of agents in HAPPO are associated with each
other, the former agents’ update will cause the latter agents’ policy networks to be changed. These
changes can be accumulated as the sequential update scheme progresses. As a result, even though
the latter agents have not initiated their update rounds, their policies are very likely to have reached
or even exceeded the boundary of the KL divergence trust region. This causes the sampling data of
the latter agents to have little positive impact on network optimization (see Appendix A for details).

In this paper, we propose a theoretically-justified multi-agent PPO algorithm called Full-Pipeline
PPO (FP3O) for cooperative MARL, which holds both theoretical monotonic improvement guaran-
tee and high generality. FP3O describes a joint policy iteration procedure where agents are dynam-
ically allocated to different optimization pipelines to be updated. Each basic optimization pipeline
follows the proposed one-separation trust region optimization, the key of which is separating an
arbitrary agent’s contribution from the joint advantage function. We prove in theory that this update
scheme guarantees the monotonic joint policy improvement at every iteration. Besides, it enables
FP3O to make full use of all sampling data to execute a trust region optimization step without the
restrictive factors that could arise in other existing PPO-based algorithms (e.g., the specific network
setting in HAPPO). In our experiments, Multi-Agent MuJoCo (MAMuJoCo) (de Witt et al., 2020b)
and StarCraftII Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019) benchmarks are used to
evaluate our algorithm against several strong baselines. The results demonstrate the superior perfor-
mances of FP3O and its generality to the common network types (i.e., full parameter sharing, partial
parameter sharing and non-parameter sharing) and various multi-agent tasks.

2 RELATED WORK

In this section, we will systematically introduce our related works: trust region learning in MARL.
IPPO (de Witt et al., 2020a) directly applied PPO algorithm to each agent in the multi-agent systems
and achieved high performances on some SMAC tasks. However, the property of full decentraliza-
tion makes IPPO suffer from the non-stationary issue. By extending IPPO to the CTDE framework
and designing the global agent-specific features for the centralized critic function, Yu et al. (2021)
proposed MAPPO algorithm with more stable and stronger performances in SMAC. However, both
IPPO and MAPPO ignore the interaction between agents and lack the theoretical monotonic im-
provement guarantee. Li & He (2020) theoretically extended TRPO to the multi-agent domain and
proposed MATRPO, but the KL divergence constraint is associated with the number of agents, which
greatly limits its application in scenarios with a large number of agents. This limitation also occurs in
the game-theoretical MATRL (Wen et al., 2021), which computes independent trust region learning
for each agent and tries to adopt meta-game Nash equilibrium to find the restricted optimization step
but can only deal with two-agent cases. Wu et al. (2021) proposed theoretically-justified CoPPO,
which directly updates the joint policy during optimization. However, the optimization objective
of each agent will constantly change after every mini-batch update leading to the non-stationary
problem. Recently, Kuba et al. (2022) proposed theoretically-justified HAPPO/HATRPO algorithm
with the sequential update scheme and achieved state-of-the-art performances with non-parameter
sharing on heterogeneous-agent tasks. However, the sequential update scheme suffers from the prob-
lems of uncontrolled KL divergence and poor data efficiency in some common cases such as training
homogeneous agents with full parameter sharing or training heterogeneous agents with partial pa-
rameter sharing. In summary, the aforementioned existing trust region learning methods in MARL
either lack the theoretical monotonic improvement guarantee or have inevitable restrictions.

2

Under review as a conference paper at ICLR 2023

3 PRELIMINARIES

Problem formulation. In this paper, we use a multi-agent version of discounted Markov de-
cision process (MDP) (Littman, 1994) to model a fully cooperative multi-agent task, which can
be described as a tuple M =< S,N ,A, P, r, γ, ρ0 >. s ∈ S is the state of the environment.
i ∈ N ≡ {1, ..., n} denotes the index of agent. A represents the joint action space, which is defined
by
∏n

i=1 Ai, the product of all agents’ action spaces. γ ∈ [0, 1) is the discount factor. ρ0 : S → R is
the distribution of the initial state s0 of environment. At each timestep t ∈ N, agent i will choose an
action ait ∈ Ai according to its policy πi(·|st). The joint action at =

{
a1t , ..., a

n
t

}
and the joint pol-

icy π(at|st) =
∏n

i=1 π
i(ait|st) can be formed by combining all agents’ actions and policies. Then,

the state of the environment is transferred to a new state according to the transition probability func-
tion P (st+1|st,at) : S × A × S → [0, 1], and all agents will receive a shared reward r(st,at) :
S×A → R. We let ρπ(s) =

∑∞
t=0 γ

tP (st = s) denote the (unnormalized) state visitation frequen-
cies. The optimization objective for all agents in the fully cooperative multi-agent task is maximizing
the discounted cumulative reward: J (π) ≜ Es0:∞∼ρπ,a0:∞∼π [

∑∞
t=0 γ

tr(st,at)]. Then, we define
the joint state value function as Vπ(s) ≜ Es1:∞∼ρπ,a0:∞∼π

[∑∞
t=0 γ

tr(st,at)
∣∣s0 = s

]
, the joint

state-action function as Qπ(s,a) ≜ Es1:∞∼ρπ,a1:∞∼π

[∑∞
t=0 γ

tr(st,at)
∣∣s0 = s,a0 = a

]
and the

joint advantage function as Aπ(s,a) ≜ Qπ(s,a)− Vπ(s).

Credit assignment. Quantifying agents’ contribution from the whole team’s joint reward is a cru-
cial challenge known as the credit assignment problem (Chang et al., 2003). Currently, there are
many efforts to address this issue from both value-based (Sunehag et al., 2018; Son et al., 2019)
and policy-based perspectives (Foerster et al., 2018). In this paper, we follow Kuba et al. (2022) to
deduce the contribution of different subsets of agents. We let i1:m be a subset {i1, ..., im} of N ,
and let −i1:m be the complement set of i1:m. In particular, i1:n represents the complete set N of all
agents. Then, the multi-agent state-action value function can be defined as

Qi1:m
π (s,ai1:m) ≜ Ea−i1:m∼π−i1:m [Qπ(s,a)] , (1)

which quantifies the contribution of agents i1:m to the joint reward by calculating the average return
if agents i1:m execute joint action ai1:m . It will degenerate into the joint state value function Vπ(s)
in case of m = 0, and the joint state-action function Qπ(s,a) in case of m = n. Then, for arbitrary
disjoint sets j1:k and i1:m, the multi-agent advantage function can be defined as

Ai1:m
π (s,aj1:k ,ai1:m) ≜ Qj1:k,i1:m

π (s,aj1:k,i1:m)−Qj1:k
π (s,aj1:k), (2)

which quantifies the additional contribution of agents i1:m to execute joint action ai1:m if agents
j1:k have executed joint action aj1:k . It is a general setup without extra assumptions for the credit
assignment problem in cooperative MARL and helps to establish an interaction between different
agents by describing how agents j1:k affect the payoff of agents i1:m.

Single-agent trust region learning. Single-agent trust region learning, such as TRPO and PPO,
can guarantee the discounted cumulative reward J (π) is non-decreasing by improving its lower
bound at each policy iteration process. The lower bound is given by the following theorem.

Theorem 1. (Schulman et al., 2015) Let π denote the old policy, π̃ denote the new pol-
icy that is obtained by optimizing π, Lπ(π̃) = J (π) + Es∼ρπ,a∼π̃[Aπ(s, a)], Dmax

KL (π, π̃) =

maxs DKL(π(·|s), π̃(·|s)), C =
4γ maxs,a |Aπ(s,a)|

(1−γ)2 . The following policy improvement bound holds:

J (π̃) ≥ Lπ(π̃)− CDmax
KL (π, π̃).

Theorem 1 describes an approximate optimization scheme: we can just improve the right-hand lower
bound by performing maximizeπ̃ [Lπ(π̃)− CDmax

KL (π, π̃)] at each policy iteration process, so that
the true objective J can also be improved (see Equation (10) in Schulman et al. (2015)). Thus, the
lower bound is also regarded as the surrogate objective for the true objective J .

To derive a practical algorithm, TRPO was proposed with parameterized policies πθ and the average
KL divergence constraint. However, it has expensive computing overhead and cannot adopt first-
order optimization for policy networks. To solve this problem, Schulman et al. (2017) replaced the

3

Under review as a conference paper at ICLR 2023

average KL divergence constraint with the clipping mechanism and proposed PPO algorithm, which
aims to maximize the PPO-clip objective as

maximize
θ

Es∼ρπθold
,a∼πθold

[
min

(
πθ(a|s)

πθold(a|s)
Aπθold

(s, a), clip

(
πθ(a|s)

πθold(a|s)
, 1± ϵ

)
Aπθold

(s, a)

)]
,

(3)
where πθold is the old policy that we want to improve, Aπθold

is the estimator of the advantage
function, and ϵ is a hyperparameter used to restrict the optimization step size to a trust region by
clipping the ratio πθ(a|s)/πθold(a|s). This clipping mechanism, together with the solid theoretical
support of Theorem 1, enables PPO to achieve stable performance faster than TRPO.

4 THE FP3O ALGORITHM

In this section, we will introduce our theoretically-justified Full-Pipeline PPO (FP3O) algorithm.
Subsection 4.1 introduces the basic optimization pipeline of FP3O: one-separation trust region opti-
mization. The key is to separate an arbitrary agent’s contribution and then perform the independence-
dependence optimization. In Subsection 4.2, we introduce the full-pipeline optimization and then
develop it into a practical form. In Subsection 4.3, we adopt the clipping mechanism and parame-
terized policies, which together yield the F3PO algorithm. In Subsection 4.4, we further analyze the
monotonic joint policy improvement of FP3O.

4.1 ONE-SEPARATION TRUST REGION OPTIMIZATION

At the beginning of each policy iteration process, each agent has no chance to know the actions
and the optimization directions of other agents. If the optimization objective of one agent is bound
by other agents at the beginning of the policy iteration, it will be very thorny. To address this
issue, we give the following lemma based on Equations (1) and (2) to separate one expected agent’s
contribution independent of other agents from the joint advantage function.
Lemma 1. (One-Separation Advantage Decomposition) Let ∅ denote the empty set. In cooperative
multi-agent tasks, for ∀ip ∈ i1:n = N , the joint advantage function Aπ(s,a) can be decoupled as

Aπ(s,a) = A
ip
π (s, a∅, aip) +A

−ip
π (s, aip ,a−ip).

The proof is in Appendix B.1. In Lemma 1, the joint advantage function is decoupled into two
parts: the contribution A

ip
π (s, a∅, aip) of agent ip which is independent of other agents −ip, and

the contribution A
−ip
π (s, aip ,a−ip) of agents −ip which depends on the action taken by agent ip.

It allows us to separate an arbitrary agent ip to start a basic policy iteration without considering the
influence of other agents, which is critical for full-pipeline optimization in Subsection 4.2.

Theorem 1 in single-agent trust region learning achieves the monotonic improvement of the true
objective by optimizing its surrogate objective. Similarly, before extending Theorem 1 to the multi-
agent domains, we give the following definition as our surrogate objective.
Definition 1. (Surrogate Objective) Let π denote the old joint policy, π̃ denote the new joint policy,
C =

4γ maxs,a |Aπ(s,a)|
(1−γ)2 . For any subset i1:m of i1:n, we take ∀ip ∈ i1:m or ip = ∅, and then define

Mπ
i1:m−ip(π̃ip , π̃i1:m−ip)

= Es∼ρπ,ai1:m∼π̃i1:m

[
A

i1:m−ip
π (s, aip ,ai1:m−ip)

]
−
∑

ik∈i1:m−ip
CDmax

KL (πik , π̃ik).

Then, we can derive the following theorem in MARL with Definition 1, Lemma 1 and Theorem 1.
Theorem 2. Let π denote the old joint policy, π̃ denote the new joint policy that is obtained by
optimizing π. For ∀ip ∈ i1:n, the following lower bound holds.

J (π̃) ≥ J (π) +M
ip
π (π̃∅, π̃ip) +M

−ip
π (π̃ip , π̃−ip).

The proof is in Appendix B.2. This theorem describes the joint policy improvement bound of true
objective J in multi-agent domains based on one-separation advantage decomposition. We can im-
prove the lower bound by maximizing the surrogate objectives M ip

π (π̃∅, π̃ip) and M
−ip
π (π̃ip , π̃−ip)

4

Under review as a conference paper at ICLR 2023

at each policy iteration to guarantee the monotonically improving true objective J . To this
end, we propose one-separation trust region optimization and describe the policy iteration pro-
cess in Algorithm 1. At each policy iteration k, we perform independence-dependence optimiza-
tion to make the lower bound raised and get the updated joint policy πk+1. Specifically, we do
maximizeπip [M

ip
πk(π

∅
k+1, π

ip)] for agent ip independently of agents −ip at independence step, and
do maximizeπ−ip [M

−ip
πk (π

ip
k+1,π

−ip)] for agents −ip dependently of agent ip at dependence step.
Then we can get non-decreasing true objective J (πk+1) ≥ J (πk). See Appendix B.3 for the proof
of independence-dependence optimization enabling improved lower bound and non-decreasing J .

Algorithm 1 Policy iteration of one-separation trust region optimization
1: Initialize the joint policy π0.
2: for k = 1, 2, ... until convergence do
3: Separate one arbitrary agent ip from i1:n.
4: Compute advantage values Aip

πk(s, a
∅, aip) and A

−ip
πk (s, aip ,a−ip).

5: Solve the independence-dependence optimization:
6: Independence step: πip

k+1 = argmaxπip [M
ip
πk(π

∅
k+1, π

ip)]

7: Dependence step: π−ip
k+1 = argmaxπ−ip [M

−ip
πk (π

ip
k+1,π

−ip)]
8: end for

4.2 PRACTICAL FULL-PIPELINE OPTIMIZATION

In the previous subsection, we have discussed that one-separation advantage decomposition provides
a critical insight that an arbitrary agent ip can be separated to start a policy iteration described by
Algorithm 1 without considering the influence of other agents. With this property, we can take one-
separation trust region optimization as the basic optimization pipeline, and then let ip = i1, ..., in
sequentially so that every agent can be the separated agent to start a one-separation trust region
optimization. As a result, we get n equivalent policy improvement lower bounds on n parallel
pipelines with p denoting the index of the pipeline:{

J (π) +M
ip
π (π̃∅, π̃ip) +M

−ip
π (π̃ip , π̃−ip)

}n

p=1
. (4)

We notice that agents i1:n are assigned to n different optimization pipelines, which means that these
pipelines can exactly cover all agents’ updates when they execute the basic one-separation trust
region optimization in parallel, so we call this process full-pipeline optimization. Different from
the sequential update scheme in HAPPO, full-pipeline optimization enables all agents to be updated
simultaneously with all collected data in one episode. However, the implementation of full-pipeline
optimization in Equation (4) is not practical. We next develop a practical full-pipeline optimization
through non-overlapping selection, importance sampling, and pipeline interaction.

Non-overlapping selection. For the one-separation trust region optimization of pipeline p, we
aim to optimize the joint policy π̃−ip at the dependence step, which involves the policy update of
agents −ip. Unfortunately, for each agent in −ip, the change of other agents’ policies will cause
its optimization objective M

−ip
π (π̃ip , π̃−ip) to be unstable. In our solution, we select one specific

agent’s policy from π̃−ip to optimize and take the remaining part as a constant instead of directly
optimizing the joint policy. The selection rule satisfies the below non-overlapping selection:

f : i1:n → j1:n, where jp ∈ −ip, j1:n = N . (5)

Specifically, it describes an optimization rule for one-separation trust region optimization of pipeline
p: policy π̃ip is optimized at independence step and only π̃jp is selected from π̃−ip to be optimized
at dependence step. Although the remaining agents’ policies π̃−ip−jp are fixed to enhance the
optimization stability of pipeline p, it does not mean that they will not be updated. Thanks to full-
pipeline optimization and non-overlapping selection, they can be optimized by other pipelines. This
is because j1:n = N ensures that n agents can be exactly selected by n different pipelines to be
optimized without overlapping at dependence step, which also retains the property of simultaneous
update of all agents in full-pipeline optimization.

5

Under review as a conference paper at ICLR 2023

Importance sampling. For the one-separation trust region optimization of pipeline p in Algorithm
1, each agent has to maintain advantage estimators for Aip

π (s, a∅, aip) and A
−ip
π (s, aip ,a−ip) with

the dynamic action inputs due to Eaip∼π̃ip [·] and Ea∼π̃[·] in surrogate objectives M ip
π (π̃∅, π̃ip) and

M
−ip
π (π̃ip , π̃−ip). After considering all pipelines, it will be more complicated and computationally

expensive. To combat this challenge, we apply the importance sampling method for the advantage
functions in M

ip
π (π̃∅, π̃ip) and M

−ip
π (π̃ip , π̃−ip) with π̃∗ denoting the candidate update policy and

get:

Eaip∼π̃ip

[
A

ip
π (s, a∅, aip)

]
= Ea∼π

[
π̃∗ip(aip |s)
πip(aip |s) Aπ(s,a)

]
, (6)

Ea∼π̃

[
A

−ip
π (s, aip ,a−ip)

]
= Ea∼π

[(
π̃∗jp(ajp |s)
πjp(ajp |s)

π̃−jp(a−jp |s)
π−ip(a−jp |s) − π̃ip(aip |s)

πip(aip |s)

)
Aπ(s,a)

]
, (7)

where the sampling of actions {a1, ..., an} is changed from {π̃1, ..., π̃n} to {π1, ..., πn}. The proof
is in Appendix B.4. The above two equations enable all agents at all pipelines to maintain a joint ad-
vantage estimator for Aπ(s,a) like GAE (Schulman et al., 2016), which can be easily implemented
under the CTDE framework with a shared centralized critic network and non-dynamic action input.

Pipeline interaction. For pipeline p, we cannot obtain π̃−jp(a−jp |s) and π̃ip(aip |s) in Equations
(6), (7) since they will be updated by other pipelines at dependence step and can only be determined
after all pipelines finish the independence-dependence optimization. Fortunately, the middle up-
date policies {π̂1, ..., π̂n} can be generated from different pipelines at the end of independence step.
Thus, by replacing π̃−jp(a−jp |s) and π̃ip(aip |s) with π̂−jp(a−jp |s) and π̂ip(aip |s), we can get
the approximations (i.e., Eaip∼π̂ip [A

ip
π (s, a∅, aip)] and Eajp∼π̃jp ,a−jp∼π̂−jp [A

−ip
π (s, aip ,a−ip)])

of Equations (6), (7). This approximation establishes the interaction between different pipelines
through mutual utilization of the middle policies, which is an effective solution to the above prob-
lem. More importantly, it does not break the monotonic improvement, which will be discussed in
Subsection 4.4. Algorithm 2 describes the policy iteration of practical full-pipeline optimization.

Algorithm 2 Policy iteration of practical full-pipeline optimization
1: Initialize the joint policy π0.
2: for k = 1, 2, ... until convergence do
3: Compute the joint advantage estimator Aπ(s,a).
4: Solve the independence-dependence optimization for all pipelines in parallel:

5: Independence step:
{
π̂
ip
k+1 = argmaxπip [M

ip
πk(π

∅, πip)]
}n

p=1

6: Select the policies to be optimized according to non-overlapping selection.
7: Replace the remaining policies with the middle policies π̂i1

k+1, ..., π̂
in
k+1.

8: Dependence step:
{
π
jp
k+1 = argmaxπjp [M

−ip
πk (π̂

ip
k+1,π

−ip)]
}n

p=1

9: end for

Independence step enables every agent to start an optimization pipeline simultaneously without con-
sidering the influence of other agents. It is the basis to achieve a general-purpose parallel update
scheme, which will be discussed in Subsection 4.3. However, independence step could cause de-
viation from the joint optimization objective (i.e., Aπ(s,a)) since the objective is just the first part
of it. Dependence step helps to correct the deviation from the joint optimization objective and also
establish an important interaction between different agents so that their updates can be coordinated.

4.3 THE ULTIMATE ALGORITHM

Finally, we parameterize the policies, and let πip
θip be the policy network of agent ip with parameter

vector θip , πθ be the joint policy with parameter vector θ = {θ1, ..., θn}. Then, we overload the
previous notation {π1, ..., πn} with parameterized policy {π1

θ1 , ..., πn
θn}. θold denotes the old policy

parameter set that we want to improve, θmid denotes the middle policy parameter set generated
by independence step, and θnew denotes the new policy parameter set generated by dependence
step. For M−ip

πθold
(π

ip

θ
ip
mid

,π
−ip
θ−ip) of pipeline p, the terms −π

ip
θip (a

ip |s)/πip

θ
ip
old

(aip |s) in Equation (7),

6

Under review as a conference paper at ICLR 2023

∑
ik∈−ip−jp

CDmax
KL (πik

θ
ik
old

, πik
θik

) can be omitted since they, as constant terms, have no contribution

to the gradients of θjp (see Appendix B.5). Thus, maximize
θjp

M
−ip
πθold

(π
ip

θ
ip
mid

,π
−ip
θ−ip) can be simplified

to

maximize
θjp

[
Es,a

[
π
jp

θjp
(ajp |s)

π
jp

θ
jp
old

(ajp |s)
·
π

−jp

θ
−jp
mid

(a−jp |s)

π
−jp

θ
−jp
old

(a−jp |s)
Aπθold

(s,a)

]
− CDmax

KL (π
jp

θ
jp
old

, π
jp

θjp
)

]
, (8)

where s ∼ ρπθold
,a ∼ πθold

. We replace KL divergence term with the clipping mechanism follow-
ing Schulman et al. (2017), and propose our Full-Pipeline PPO (FP3O), an efficient implementation
of Algorithm 2, as follows: for pipelines p = 1, ..., n, we obtain the middle policy parameters (i.e.,
θi1mid, ..., θ

in
mid) at independence step by

θ
ip
mid = argmax

θip
Es,a

[
min

(
π
ip

θip
(aip |s)

π
ip

θ
ip
old

(aip |s)
Aπθold

(s,a), clip
(π

ip

θip
(aip |s)

π
ip

θ
ip
old

(aip |s)
, 1± ϵ

)
Aπθold

(s,a)

)]
, (9)

and we obtains the final new policy parameters (i.e., θj1new, ..., θ
jn
new) at dependence step by

θ
jp
new = argmax

θjp
Es,a

[
min

(
π
jp

θjp
(ajp |s)

π
jp

θ
jp
old

(ajp |s)
·
π

−jp

θ
−jp
mid

(a−jp |s)

π
−jp

θ
−jp
old

(a−jp |s)
Aπθold

(s,a),

clip
(π

jp

θjp
(ajp |s)

π
jp

θ
jp
old

(ajp |s)
, 1± ϵ

)
·
π

−jp

θ
−jp
mid

(a−jp |s)

π
−jp

θ
−jp
old

(a−jp |s)
Aπθold

(s,a)

)]
.

(10)

FP3O enables all policy network parameters (i.e., θ1, ..., θn) to be optimized in parallel with all sam-
pling data in one epsilon, which is a highly general update scheme. To elaborate, let’s consider that
there are associated parameters θ∗ between θ1, ..., θn. In the sequential update scheme of HAPPO,
θ∗ will be cumulatively changed as agents are updated one by one. The changed θ∗ can easily cause
the ratio π

jp
θjp (a

jp |s)/πjp

θ
jp
old

(ajp |s) of the latter agents to reach or even exceed the clipping boundary

(i.e., 1 − ϵ or 1 + ϵ), thus resulting in the problems of uncontrolled KL divergence and poor data
efficiency. In FP3O, any iterative optimization of θ∗ can utilize all sampling data to update all agents
simultaneously thus avoiding the accumulated policy change and improving the data efficiency.

4.4 ADDITIONAL ANALYSIS ON THE MONOTONIC IMPROVEMENT OF FP3O

In the previous subsection, we carried out a series of operations (non-overlapping selection, impor-
tance sampling, pipeline interaction) to develop full-pipeline optimization from the theoretical level
to the practical level, then derived our FP3O algorithm. To prove that these practical operations and
the mutual influence between different pipelines in FP3O will not break the monotonic improvement
guarantee, we first convert FP3O to the KL penalty version similar to TRPO (Schulman et al., 2017):{

π̂ip = argmax
π̂ip

[
Es∼ρπ ,aip∼π̂ip

[
A

ip
π (s, a∅, aip)

]
− βDmax

KL (πip , π̂ip)
]}n

p=1

, (11){
π̃jp = argmax

π̃jp

[
Es∼ρπ ,ajp∼π̃jp ,a−jp∼π̂−jp

[
A

−ip
π (s, aip ,a−ip)

]
− βDmax

KL (πjp , π̃jp)
]}n

p=1

, (12)

where β is the penalty coefficient corresponding to ϵ of the clipping mechanism. Note that for the
theoretical analysis, we do not consider parameterized policies, and use the more rigorous max KL
divergence instead of the mean KL divergence used in TRPO. Then we give the following theorem:
Theorem 3. We let π1, ..., πn denote the old policies. π̂1, ..., π̂n and π̃1, ..., π̃n are the middle
policies and new policies, which are obtained from all pipelines (i.e., p = 1, ..., n) by Equation (11)
and Equation (12) respectively. Lπ(π̃

ip , π̃−ip) = J (π) + M
ip
π (π̃∅, π̃ip) + M

−ip
π (π̃ip , π̃−ip) is

the theoretical lower bound of pipeline p defined in Theorem 2. Given the assumption described in
Appendix B.6, the following inequalities hold for all pipeline p = 1, ..., n:{

Lπ(π̃
ip , π̃−ip) ≥ Lπ(π̂

ip , π̂−ip) ≥ Lπ(π
ip ,π−ip)

}n
p=1

.

The proof is in Appendix B.6. When jointly updating all pipelines, Theorem 3 guarantees that the
lower bounds can be monotonically improved in FP3O after considering non-overlapping selection,
pipeline interaction and the mutual influence between different pipelines on the joint policy change.

7

Under review as a conference paper at ICLR 2023

5 EXPERIMENTS

Environments and baselines. We aim to evaluate our algorithm on various types of cooperative
multi-agent challenges, thus choosing 1) Multi-Agent MuJoCo (MAMuJoCo) (de Witt et al., 2020b)
which involves heterogeneous agents with continuous actions; 2) StarCraftII Multi-Agent Challenge
(SMAC) (Samvelyan et al., 2019) which involves both homogeneous and heterogeneous agents with
discrete actions. More details of MAMuJoCo and SMAC are in Appendix C. We compare FP3O
to existing state-of-the-art PPO-based algorithms in cooperative MARL including HAPPO (Kuba
et al., 2022), MAPPO (Yu et al., 2021) and IPPO (de Witt et al., 2020a). For a fair comparison, the
settings of all algorithms are identical including all hyperparameters and network inputs.

Network types. We will adopt the common network types including full parameter sharing
(FuPS), partial parameter sharing (PaPS) and non-parameter sharing (NoPS) to evaluate the gen-
erality of our algorithm. FuPS means that different agents’ policy networks share the same set of
parameters, which is widely used to improve learning efficiency and reduce parameters, especially in
the case of large numbers of agents. For NoPS, each agent has an individual policy network, which
enables agents to make personalized decisions, especially for heterogeneous agents. PaPS combines
the properties of full parameter sharing and non-parameter sharing, and its implementation is di-
verse (Chenghao et al., 2021; Christianos et al., 2021). In our experiments, we let the last layers of
different agents’ policy networks have individual parameters enabling agents to make personalized
actions, while other layers share the same set of parameters to improve learning efficiency.

Performances on MAMuJoCo We select six representative tasks (i.e., 2-Agent Reacher [2×1],
2-Agent Ant [2×4], 2-Agent Walker [2×3], 3-Agent Hopper [3×1], 6-Agent HalfCheetah [6×1],
Manyagent Swimmer [8×2]), which efficiently cover most types of robotic control in MAMuJoCo.
Then, we evaluate our algorithm on these tasks with FuPS, PaPS and NoPS network types. More de-
tails and hyperparameter settings are in Appendix D.1. The results are shown in Table 1. It is worth
noting that the best performances of each algorithm mostly occur in the PaPS and NoPS network
types, which demonstrates the heterogeneity of MAMuJoCo agents and the necessity of PaPS and
the NoPS for such tasks. IPPO fails to learn effective policies in several tasks (e.g., 2-agent Walker
and Manyagent Swimmer) while MAPPO can achieve more stable performances benefitting from
the CTDE framework. However, both of them cannot perform well on these complex robotic control
tasks due to the lack of theoretical support. HAPPO with NoPS establishes the strongest baseline
on these heterogeneous-agent tasks in MAMuJoCo as indicated by the underlined values of NoPS
case in Table 1. Unfortunately, it is not general enough and cannot maintain its advantages under

Table 1: The average evaluation rewards and standard deviations on MAMuJoCo. We bold the best
performances and underline the second best performances. HE denotes heterogeneous agents.
Network Task FP3O HAPPO MAPPO IPPO Agent

FuPS

2-Agent Reacher [2×1] -29.3±4.2 -33.2±2.2 -45.4±11.3 -51.5±4.5 HE
2-Agent Ant [2×4] 2536.3±97.8 2296.2±181.3 1939.3±52.1 1584.8±192.3 HE

2-Agent Walker [2×3] 2410.5±459.9 907.0±280.8 1684.3±858.7 523.4±208.4 HE
3-Agent Hopper [3×1] 3545.9±148.2 3554.7±118.3 3373.3±238.3 2203.7±855.0 HE

6-Agent HalfCheetah [6×1] 4142.0±362.9 4058.8±129.7 3170.5±116.6 2683.5±431.3 HE
Manyagent Swimmer [8×2] 414.8±39.7 404.9±38.9 409.2±48.3 63.6±21.8 HE

PaPS

2-Agent Reacher [2×1] -35.6±3.8 -36.7±4.1 -33.4±4.8 -36.1±1.9 HE
2-Agent Ant [2×4] 3129.4±186.4 2809.5±61.9 2306.7±255.4 2026.6±207.2 HE

2-Agent Walker [2×3] 3161.1±790.9 2717.4±581.7 2748.7±734.1 651.7±266.0 HE
3-Agent Hopper [3×1] 2981.1±817.7 1547.0±321.7 2678.1±997.8 2486.8±712.3 HE

6-Agent HalfCheetah [6×1] 4593.8±759.5 4413.7±840.0 4432.6±196.1 4336.1±768.7 HE
Manyagent Swimmer [8×2] 391.7±30.5 353.9±15.4 366.0±27.0 76.1±2.8 HE

NoPS

2-Agent Reacher [2×1] -28.2±2.0 -34.9±4.3 -31.4±6.4 -31.7±5.4 HE
2-Agent Ant [2×4] 2824.8±353.6 2043.0±187.7 1825.4±157.0 1469.9±36.1 HE

2-Agent Walker [2×3] 3678.0±238.6 2461.8±368.3 2303.2±815.9 405.6±107.9 HE
3-Agent Hopper [3×1] 3565.1±109.1 3422.8±207.9 3390.1±225.9 1851.4±683.1 HE

6-Agent HalfCheetah [6×1] 4795.6±322.3 4408.7±170.2 4103.8±233.9 3831.3±131.5 HE
Manyagent Swimmer [8×2] 428.2±14.0 317.0±12.2 303.3±44.0 97.2±42.0 HE

8

Under review as a conference paper at ICLR 2023

FuPS and PaPS settings. We will demonstrate in SMAC that this problem will be more prominent on
homogeneous-agent tasks. Our FP3O significantly outperforms the baselines across all scenarios,
which demonstrates the advantages in theoretically-supported performance and generality.

Performances on SMAC We evaluate our algorithm on various types of maps in SMAC with
FuPS, PaPS and NoPS. We select six different maps (i.e., bane vs. bane, 2c vs. 64zg, 5m vs. 6m,
3s5z, corridor, 6h vs. 8z), which involve three difficulties, seven types of units, as well as both
homogeneous and heterogeneous tasks. More details and hyperparameter settings are in Appendix
D.2. The results are shown in Table 2. We can notice that MAPPO with FuPS achieves the strongest
baseline on SMAC, even for heterogeneous-agent maps. This shows the homogeneity of SMAC
agents and the high learning efficiency of FuPS while dealing with such tasks. However, MAPPO
cannot maintain its superiority in other scenarios, which further verifies its lack of theoretical per-
formance guarantee. Moreover, due to the problems of uncontrolled KL divergence and poor data
efficiency brought by the sequential update scheme, we can see that HAPPO with FuPS and PaPS
will suffer from serious performance degradation in most maps, especially in a large number of
agents cases (e.g., HAAPO with PaPS has only 65.6% win rate in easy map bane vs. bane, and 0.0%
win rate in map 3s5z). This further demonstrates the limitation of HAPPO’s application. Our FP3O
again gets the superior performances on all task types and network types, clearly demonstrating its
advantages in theoretically-supported performance and generality.

Table 2: The median evaluation win rates and standard deviations on SMAC. We bold the best
performances and underline the second best performances. HO and HE denote homogeneous and
heterogeneous agents respectively.

Network Scenario Difficulty FP3O HAPPO MAPPO IPPO Agent

FuPS

bane vs. bane Easy 100.0±1.3 100.0±1.9 100.0±3.5 100.0±2.3 HE
2c vs. 64zg Hard 100.0±3.4 96.9±2.4 100.0±2.5 96.9±2.3 HO

3s5z Hard 100.0±1.2 87.5±24.7 90.6±18.5 87.5±41.6 HE
5m vs. 6m Hard 93.8±7.3 18.8±12.8 81.3±19.0 62.5±19.1 HO

corridor Super Hard 100.0±1.5 96.9±35.3 100.0±2.9 96.9±4.3 HO
6h vs. 8z Super Hard 93.8±4.2 53.1±20.2 87.5±12.9 87.5±10.4 HO

PaPS

bane vs. bane Easy 100.0±0.0 65.6±26.4 100.0±0.0 100.0±0.0 HE
2c vs. 64zg Hard 100.0±3.1 96.9±3.3 100.0±3.1 100.0±4.3 HO

3s5z Hard 96.9±4.8 0.0±31.0 93.8±4.6 90.6±6.5 HE
5m vs. 6m Hard 93.8±8.2 31.3±15.4 87.5±7.7 90.6±11.1 HO

corridor Super Hard 90.6±9.2 78.1±22.7 93.8±10.9 90.6±3.6 HO
6h vs. 8z Super Hard 75.0±13.9 9.4±18.8 15.6±21.1 46.9±23.0 HO

NoPS

bane vs. bane Easy 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 HE
2c vs. 64zg Hard 100.0±2.7 100.0±1.9 100.0±1.9 100.0±1.3 HO

3s5z Hard 100.0±3.1 90.6±4.8 93.8±5.3 96.9±8.1 HE
5m vs. 6m Hard 90.6±5.2 68.8±16.8 62.5±10.0 62.5±11.3 HO

corridor Super Hard 96.9±6.1 96.9±3.0 93.8±7.2 93.8±27.2 HO
6h vs. 8z Super Hard 84.4±14.7 43.8±10.2 43.8±15.8 46.9±20.5 HO

6 CONCLUSION

Although PPO algorithm has got remarkable successes in single-agent RL, its existing extensions
in cooperative MARL fail to achieve the compatibility between the theoretical monotonic improve-
ment and generality. In this paper, we propose the theoretically-justified and general-purpose FP3O
algorithm, the key of which is to dynamically allocate agents to different one-separation trust region
optimization pipelines to be updated. FP3O enjoys the proved monotonic policy improvement guar-
antee and is general enough since it avoids the restrictive factors that could arise in other existing
multi-agent PPO algorithms. Experiments on MAMuJoCo and SMAC demonstrate the superior per-
formances of FP3O on continuous and discrete, homogeneous and heterogeneous-agent tasks with
three different network types. This ability of FP3O provides us with great opportunities to explore its
potential in more multi-agent fields such as offline settings (Levine et al., 2020) and its application
on elaborately designed networks (Vaswani et al., 2017; Fu et al., 2022; Wen et al., 2022).

9

Under review as a conference paper at ICLR 2023

7 REPRODUCIBILITY STATEMENT

By non-overlapping selection, importance sampling, pipeline interaction in Subsection 4.2 and
the parameterized policy networks and the clipping mechanism in Subsection 4.3, we develop a
programming-friendly FP3O algorithm. We provide the source code in the supplementary material.
After the review process, the code will also be released online. We specify all training details (e.g.
hyperparameter settings), repetitive experiments (e.g., the number of random seeds), and the type of
computing infrastructure (e.g. the type of GPUs) in Appendix D.

REFERENCES

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Yu-Han Chang, Tracey Ho, and Leslie Kaelbling. All learning is local: Multi-agent learning in
global reward games. Advances in Neural Information Processing Systems, 16, 2003.

Li Chenghao, Tonghan Wang, Chengjie Wu, Qianchuan Zhao, Jun Yang, and Chongjie Zhang. Cel-
ebrating diversity in shared multi-agent reinforcement learning. Advances in Neural Information
Processing Systems, 34:3991–4002, 2021.

Filippos Christianos, Georgios Papoudakis, Muhammad A Rahman, and Stefano V Albrecht. Scal-
ing multi-agent reinforcement learning with selective parameter sharing. In International Confer-
ence on Machine Learning, pp. 1989–1998. PMLR, 2021.

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020a.

Christian Schroeder de Witt, Bei Peng, Pierre-Alexandre Kamienny, Philip Torr, Wendelin Böhmer,
and Shimon Whiteson. Deep multi-agent reinforcement learning for decentralized continuous
cooperative control. arXiv preprint arXiv:2003.06709, 2020b.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International Conference on Machine Learning,
pp. 1329–1338. PMLR, 2016.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on Artificial
Intelligence, volume 32, 2018.

Wei Fu, Chao Yu, Zelai Xu, Jiaqi Yang, and Yi Wu. Revisiting some common practices in cooper-
ative multi-agent reinforcement learning. In International Conference on Machine Learning, pp.
6863–6877. PMLR, 2022.

Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz de Cote. A sur-
vey of learning in multiagent environments: Dealing with non-stationarity. arXiv preprint
arXiv:1707.09183, 2017.

Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
Yang. Trust region policy optimisation in multi-agent reinforcement learning. In International
Conference on Learning Representations, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Hepeng Li and Haibo He. Multi-agent trust region policy optimization. arXiv preprint
arXiv:2010.07916, 2020.

10

Under review as a conference paper at ICLR 2023

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine Learning Proceedings 1994, pp. 157–163. Elsevier, 1994.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. Advances in Neural Information Processing Systems, 32, 2019.

Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, and Stefano V Albrecht. Dealing with
non-stationarity in multi-agent deep reinforcement learning. arXiv preprint arXiv:1906.04737,
2019.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforce-
ment learning. In International Conference on Machine Learning, pp. 4295–4304. PMLR, 2018.

Mikayel Samvelyan, Tabish Rashid, Christian Schröder de Witt, Gregory Farquhar, Nantas Nardelli,
Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob N. Foerster, and Shimon Whiteson.
The starcraft multi-agent challenge. In Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, pp. 2186–2188, 2019.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In 4th International
Conference on Learning Representations, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning
to factorize with transformation for cooperative multi-agent reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 5887–5896. PMLR, 2019.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinı́cius Flores Zam-
baldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and Thore
Graepel. Value-decomposition networks for cooperative multi-agent learning based on team re-
ward. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent
Systems, pp. 2085–2087, 2018.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. QPLEX: duplex dueling
multi-agent q-learning. In 9th International Conference on Learning Representations. OpenRe-
view.net, 2021a.

Tonghan Wang, Tarun Gupta, Anuj Mahajan, Bei Peng, Shimon Whiteson, and Chongjie Zhang.
RODE: learning roles to decompose multi-agent tasks. In 9th International Conference on Learn-
ing Representations. OpenReview.net, 2021b.

Yihan Wang, Beining Han, Tonghan Wang, Heng Dong, and Chongjie Zhang. DOP: off-policy
multi-agent decomposed policy gradients. In 9th International Conference on Learning Repre-
sentations. OpenReview.net, 2021c.

11

Under review as a conference paper at ICLR 2023

Muning Wen, Jakub Grudzien Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong
Yang. Multi-agent reinforcement learning is a sequence modeling problem. arXiv preprint
arXiv:2205.14953, 2022.

Ying Wen, Hui Chen, Yaodong Yang, Zheng Tian, Minne Li, Xu Chen, and Jun Wang. A game-
theoretic approach to multi-agent trust region optimization. arXiv preprint arXiv:2106.06828,
2021.

Zifan Wu, Chao Yu, Deheng Ye, Junge Zhang, Hankz Hankui Zhuo, et al. Coordinated proxi-
mal policy optimization. Advances in Neural Information Processing Systems, 34:26437–26448,
2021.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of ppo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.

12

Under review as a conference paper at ICLR 2023

A THE LIMITATION OF SEQUENTIAL UPDATE SCHEME

If the policy networks of agents in HAPPO are associated with each other (e.g., full parameter shar-
ing, partial parameter sharing or other associative design), a problem will arise: the former agents’
update will cause the latter agents’ policy networks to be changed. These changes will be accumu-
lated as the sequential update scheme progresses. As a result, even though the latter agents have
not initiated their update rounds, their policies are very likely to have reached or even exceeded the
boundary of the KL divergence trust region causing the sampling data of the latter agents to have lit-
tle positive impact on the network optimization. To verify this, we train HAPPO with full parameter
sharing network type on 3s5z map of StarCraftII Multi-Agent Challenge (Samvelyan et al., 2019).
When each agent starts the update round at one policy iteration, we record the distribution of ratio
πim
θim (ai|s)/πim

θim
k

(ai|s) (see Equation (11) in Kuba et al. (2022)), which is demonstrated in Figure

1. PPO-clip operator clip(πim
θim (ai|s)/πim

θim
k

(ai|s), 1 ± ϵ) is used to restrict the optimization step

Agent 0 Agent 1 Agent 2 Agent 3

Agent 4 Agent 5 Agent 6 Agent 7

1.2*

1.0
0.8*

Figure 1: The distribution of ratio πim
θim (ai|s)/πim

θim
k

(ai|s) of each agent. The places where the ratio

equals 0.8, 1.0 and 1.2 are indicated by the black circles. ∗ denotes the clipping boundary 1 ± ϵ,
where ϵ = 0.2.

size to a trust region by clipping the ratio πim
θim (ai|s)/πim

θim
k

(ai|s), and we set ϵ = 0.2. Since the

former agents’ update will cause the latter agents’ policies to be changed, we can see in Figure 1
that there will be a gap (ratio not equal to 1) between the updated policies and the old policies before
the optimization for all agents except agent 0. Clearly, this policy change will be accumulated as
agents are updated one by one. For agents 4, 5, 6 and 7, a great proportion of ratios have reached
or even exceeded the clipping boundary 0.8 and 1.2 before their optimization, which will make the
sampling data have little positive impact on the network optimization.

In addition, when each agent finishes its update round at one policy iteration, we record the dis-
tribution of KL divergence between its updated policy and the old one, which is demonstrated in
Figure 2. We can notice that due to the accumulated policy changes, the later the agent is updated,
the greater the KL divergence between its updated policy and the old policy. Especially, for agents
6 and 7, the KL divergence between the new policy and the old policy has been too large, and this
uncontrolled KL divergence is very harmful to the trust region optimization.

13

Under review as a conference paper at ICLR 2023

Agent 0 Agent 1 Agent 2 Agent 3

Agent 4 Agent 5 Agent 6 Agent 7

0.12

0.08

0.04

Figure 2: The distribution of KL divergence between the updated policy and the old policy of each
agent in HAPPO. The darker the color is, the more data is distributed. The center represents that KL
divergence is equal to 0, and the outward direction represents that KL divergence gets greater. The
places where KL divergence equals 0.04, 0.08, and 0.12 are indicated by the black circles.

B PROOFS

B.1 PROOF OF ONE-SEPARATION ADVANTAGE DECOMPOSITION

We separate one expected agent’s contribution independently of other agents from the team through
Lemma 1. Now we give its derivation.
Lemma 1. (One-Separation Advantage Decomposition) Let ∅ denotes empty set. In the cooperative
multi-agent tasks, for ∀ip ∈ i1:n = N , the joint advantage funtion Aπ(s,a) can be decomposed as

Aπ(s,a) = A
ip
π (s, a∅, aip) +A

−ip
π (s, aip ,a−ip).

Proof. Based on Equations (1), (2), we have

A
ip
π (s, a∅, aip) +A

−ip
π (s, aip ,a−ip),

=
(
Q

ip
π (s,aip)− Vπ(s)

)
−
(
Q

ip,−ip
π (s,aip,−ip)−Q

ip
π (s,aip)

)
= Q

ip,−ip
π (s,aip,−ip)− Vπ(s)

= Qπ(s,a)− Vπ(s)

= Aπ(s,a).

B.2 PROOF OF THEOREM 2

Theorem 1. (Schulman et al., 2015) Let π denote the old policy, π̃ denote the new pol-
icy that is obtained by optimizing π, Lπ(π̃) = J (π) + Es∼ρπ,a∼π̃[Aπ(s, a)], Dmax

KL (π, π̃) =

maxs DKL(π(·|s), π̃(·|s)), C =
4γ maxs,a |Aπ(s,a)|

(1−γ)2 . The following policy improvement bound holds:

J (π̃) ≥ Lπ(π̃)− CDmax
KL (π, π̃).

Proof. See Appendix A in Schulman et al. (2015).

14

Under review as a conference paper at ICLR 2023

Theorem 2 describes the lower bound of the true objective in cooperative multi-agent domains based
on one-separation advantage decomposition. Before proving this theorem, we first give the following
lemma to describe the relationship between the maximum KL divergence of joint policy and the
maximum KL divergence of an individual policy.

Lemma 2. (Kuba et al., 2022) For the old joint policy π =
∏n

k=1 π
k and the new joint policy

π̃ =
∏n

k=1 π̃
k, the following inequality holds:

Dmax
KL (π, π̃) ≤

n∑
k=1

Dmax
KL (πk, π̃k).

Proof. See Lemma 8 in Kuba et al. (2022).

Then, we give the derivation of Theorem 2 as follows.

Theorem 2. Let π denote the old joint policy, π̃ denote the new joint policy that is obtained by
optimizing π. For ∀ip ∈ i1:n, the following lower bound holds.

J (π̃) ≥ J (π) +M
ip
π (π̃∅, π̃ip) +M

−ip
π (π̃ip , π̃−ip).

Proof. we give the equivalent form of Theorem 1 in multi-agent domains:

J (π̃) ≥ Lπ(π̃)− CDmax
KL (π, π̃)

= J (π) + Es∼ρπ,a∼π̃[Aπ(s,a)]− CDmax
KL (π, π̃),

which, by decomposing the joint advantage function Aπ(s,a) according to Lemma 1, equals

= J (π) + Es∼ρπ,a∼π̃[A
ip
π (s, aip) +A

−ip
π (s, aip ,a−ip)]− CDmax

KL (π, π̃),

then, introducing Lemma 2, the above equation satisfies

≥ J (π) + Es∼ρπ,a∼π̃[A
ip
π (s, aip) +A

−ip
π (s, aip ,a−ip)]−

n∑
k=1

CDmax
KL (πik , π̃ik)

= J (π) + Es∼ρπ,a∼π̃[A
ip
π (s, aip)]− CDmax

KL (πip , π̃ip)

+ Es∼ρπ,a∼π̃[A
−ip
π (s, aip ,a−ip)]−

∑
ik∈−ip

CDmax
KL (πik , π̃ik),

and by Definition 1, this is

= J (π) +M
ip
π (π̃∅, π̃ip) +M

−ip
π (π̃ip , π̃−ip).

B.3 PROOF OF INDEPENDENCE-DEPENDENCE OPTIMIZATION ENABLING MONOTONIC
IMPROVEMENT

Property 1. For any π̃ip , the surrogate objective defined in Definition 1 satisfies

M
i1:m−ip
π (π̃ip ,πi1:m−ip) = 0.

Proof. According to Definition 1, we have

M
i1:m−ip
π (π̃ip ,πi1:m−ip)

= Es∼ρπ,aip∼π̃ip ,ai1:m−ip∼πi1:m−ip

[
A

i1:m−ip
π (s, aip ,ai1:m−ip)

]
−

∑
ik∈i1:m−ip

CDmax
KL (πik , πik),

15

Under review as a conference paper at ICLR 2023

which, by Equations (1) and (2), equals

= Es∼ρπ,aip∼π̃ip ,ai1:m−ip∼πi1:m−ip

[
Qi1:m

π (s,ai1:m)−Q
ip
π (s,aip)

]
− 0,

= Es∼ρπ,aip∼π̃ip ,ai1:m−ip∼πi1:m−ip

[
Ea−i1:m∼π−i1:m [Qπ(s,a)]− Ea−ip∼π−ip [Qπ(s,a)]

]
= Es∼ρπ,aip∼π̃ip

[
Ea−i1:m,i1:m−ip∼π−i1:m,i1:m−ip [Qπ(s,a)]

− Ea−ip,i1:m−ip∼π−ip,i1:m−ip [Qπ(s,a)]
]

= Es∼ρπ,aip∼π̃ip

[
Ea−ip∼π−ip [Qπ(s,a)]− Ea−ip∼π−ip [Qπ(s,a)]

]
= 0.

Property 1 describes that if the policy πi1:m−ip has not been updated, the corresponding surrogate
objective will be 0, which means that it will have no affect on the lower bound.

Then, we let π be the old joint policy, π̃ be the updated joint policy, Lπ(π̃
ip , π̃−ip) = J (π) +

M
ip
π (π̃∅, π̃ip) +M

−ip
π (π̃ip , π̃−ip) represents the right-hand lower bound in Theorem 2. Then, we

first prove that independence-dependence optimization can improve Lπ .

At the beginning of the independence-dependence optimization (π̃1 = π1, ..., π̃n = πn), we have

Lπ(π
ip ,π−ip)

= J (π) +M
ip
π (π̃∅, πip) +M

−ip
π (πip ,π−ip)

then with Property 1, this can be written as

= J (π) + 0 + 0

= J (π).

Therefore, we obtain
Lπ(π

ip ,π−ip) = J (π). (13)

At independence step, we do maximizeπ̃ipM
ip
π (π̃∅, π̃ip) and obtain updated policy π̃ip . Thus, we

have M
ip
π (π̃∅, π̃ip) ≥ M

ip
π (π̃∅, πip). Then, the lower bound of independence step satisfies

Lπ(π̃
ip ,π−ip)

= J (π) +M
ip
π (π̃∅, π̃ip) +M

−ip
π (π̃ip ,π−ip)

then with Property 1, we get

= J (π) +M
ip
π (π̃∅, π̃ip) + 0 (14)

≥ J (π) +M
ip
π (π̃∅, πip)

= J (π) + 0

= Lπ(π
ip ,π−ip).

Therefore, we obtain
Lπ(π̃

ip ,π−ip) ≥ Lπ(π
ip ,π−ip). (15)

At dependence step, we do maximizeπ̃−ipM
−ip
π (π̃ip , π̃−ip) and obtain updated policies π̃−ip .

Thus, M−ip
π (π̃ip , π̃−ip) ≥ M

−ip
π (π̃ip ,π−ip), and then the lower bound of dependence step sat-

isfies

Lπ(π̃
ip , π̃−ip)

= J (π) +M
ip
π (π̃∅, π̃ip) +M

−ip
π (π̃ip , π̃−ip)

≥ J (π) +M
ip
π (π̃∅, π̃ip) +M

−ip
π (π̃ip ,π−ip),

then according to Property 1, we have

= J (π) +M
ip
π (π̃∅, π̃ip) + 0,

16

Under review as a conference paper at ICLR 2023

and with Equation (14), this is

= Lπ(π̃
ip ,π−ip).

Thus, we get

Lπ(π̃
ip , π̃−ip) ≥ Lπ(π̃

ip ,π−ip). (16)

Summarily, according to Equations (15), (16), we prove that Lπ(π̃
ip , π̃−ip) ≥ Lπ(π̃

ip ,π−ip) ≥
Lπ(π

ip ,π−ip), which means independence-dependence optimization can incrementally improve
the lower bound.

Then, we prove that independence-dependence optimization can improve the true object J . At each
policy iteration k in Algorithm 1, we have

J (πk+1) ≥ Lπk
(π

ip
k+1,π

−ip
k+1) // Theorem 2

≥ Lπk
(π

ip
k ,π

−ip
k) // Equation (15), (16)

= J (πk) // Equation (13)

Therefore, we prove that maximizing the surrogate objectives M ip
π (π̃∅, π̃ip) and M

−ip
π (π̃ip , π̃−ip)

through independence-dependence optimization method can improve the lower bound and the true
objective J .

B.4 PROOF OF EQUATION (6) AND EQUATION (7)

Dynamic action input of A
ip
π (s, a∅, aip) and A

−ip
π (s, aip ,a−ip) leads to high cost for agents to

maintain the advantage functions. Thus, we introduce Equations (6), (7) to address this issue. The
proof is as follows.

For the advantage function term Es∼ρπ,aip∼π̃ip

[
A

ip
π (s, a∅, aip)

]
in surrogate objective

M
ip
π (π̃∅, π̃ip), we have:

Eaip∼π̃ip

[
A

ip
π (s, a∅, aip)

]
which, by Equations (1), (2), equals

= Eaip∼π̃ip

[
Q

ip
π (s, aip)− Vπ(s)

]
= Eaip∼π̃ip ,a−ip∼π−ip [Ea−ip∼π−ip [Qπ(s,a)]− Vπ(s)]

= Eaip∼π̃ip ,a−ip∼π−ip [Qπ(s,a)− Vπ(s)]

= Eaip∼π̃ip ,a−ip∼π−ip [Aπ(s,a)] ,

then with importance sampling, this is

= Ea∼π

[
π̃ip(aip |s)
πip(aip |s)

Aπ(s,a)

]
.

17

Under review as a conference paper at ICLR 2023

For the advantage function term Es∼ρπ,a∼π̃

[
A

−ip
π (s, aip ,a−ip)

]
in surrogate objective

M
−ip
π (π̃ip , π̃−ip), we have

Ea∼π̃

[
A

−ip
π (s, aip ,a−ip)

]
which, by Equations (1), (2), equals

= Ea∼π̃

[
Q

ip,−ip
π (s,aip,−ip)−Q

ip
π (s,aip)

]
= Ea∼π̃ [Qπ(s,a)− Vπ(s)]− Ea∼π̃

[
Q

ip
π (s,aip)− Vπ(s)

]
= Ea∼π̃ [Aπ(s,a)]− Ea∼π̃ [Ea−ip∼π−ip [Qπ(s,a)]− Vπ(s)]

= Ea∼π̃ [Aπ(s,a)]− Eaip∼π̃ip ,a−ip∼π−ip [Qπ(s,a)− Vπ(s)]

= Ea∼π̃ [Aπ(s,a)]− Eaip∼π̃ip ,a−ip∼π−ip [Aπ(s,a)]

= Ea∼π

[
π̃(a|s)
π(a|s)

Aπ(s,a)

]
− Ea∼π

[
π̃ip(aip |s)
πip(aip |s)

Aπ(s,a)

]
(17)

= Ea∼π

[(
π̃jp(ajp |s)
πjp(ajp |s)

· π̃
−jp(a−jp |s)

π−ip(a−jp |s)
− π̃ip(aip |s)

πip(aip |s)

)
Aπ(s,a)

]
.

End of the proof. We achieve the change of the sampling of actions {a1, ..., an} from {π̃1, ..., π̃n}
to {π1, ..., πn} and avoid the dynamic action input problem. Moreover, all agents only need to
maintain a joint advantage estimator for Aπ(s,a).

B.5 PROOF OF EQUATION 8

M
−ip
πθold

(π
ip

θ
ip
mid

,π
−ip
θ−ip)

= Es,a

[π
jp
θjp (a

jp |s)
π
jp

θ
jp
old

(ajp |s)
·
π

−jp

θ
−jp
mid

(a−jp |s)

π
−jp

θ
−jp
old

(a−jp |s)
−

π
ip
θip (a

ip |s)
π
ip

θ
ip
old

(aip |s)

Aπθold
(s,a)

]
−
∑

ik∈−ip
CDmax

KL (πik

θ
ik
old

, πik
θik

),

= Es,a

[
π
jp
θjp (a

jp |s)
π
jp

θ
jp
old

(ajp |s)
·
π

−jp

θ
−jp
mid

(a−jp |s)

π
−jp

θ
−jp
old

(a−jp |s)
Aπθold

(s,a)

]
− CDmax

KL (π
jp

θ
jp
old

, π
jp
θjp)

− Es,a

[
π
ip
θip (a

ip |s)
π
ip

θ
ip
old

(aip |s)
Aπθold

(s,a)

]
−
∑

ik∈−ip−jp
CDmax

KL (πik

θ
ik
old

, πik
θik

),

where s ∼ ρπθold
,a ∼ πθold

. To execute maximize
θjp

M
−ip
πθold

(π
ip

θ
ip
mid

,π
−ip
θ−ip) in Pytorch or Tensorflow

framework, we take the derivative of θjp and then adopt the gradient boosting method to make

18

Under review as a conference paper at ICLR 2023

M
−ip
πθold

(π
ip

θ
ip
mid

,π
−ip
θ−ip) improved. Therefore, we have

∂M
−ip
πθold

(π
ip

θ
ip
mid

,π
−ip
θ−ip)

∂θjp

=

∂Es,a

[
π
jp

θ
jp

(ajp |s)

π
jp

θ
jp
old

(ajp |s)
·
π

−jp

θ
−jp
mid

(a−jp |s)

π
−jp

θ
−jp
old

(a−jp |s)
Aπθold

(s,a)

]
− CDmax

KL (π
jp

θ
jp
old

, π
jp
θjp)

∂θjp

−

∂Es∼ρπθold
,a∼πθold

[
π
ip

θ
ip

(aip |s)

π
ip

θ
ip
old

(aip |s)
Aπθold

(s,a)

]
+
∑

ik∈−ip−jp
CDmax

KL (πik

θ
ik
old

, πik
θik

)

∂θjp
,

=

∂Es,a

[
π
jp

θ
jp

(ajp |s)

π
jp

θ
jp
old

(ajp |s)
·
π

−jp

θ
−jp
mid

(a−jp |s)

π
−jp

θ
−jp
old

(a−jp |s)
Aπθold

(s,a)

]
− CDmax

KL (π
jp

θ
jp
old

, π
jp
θjp)

∂θjp
− 0 (18)

Note that we aim to optimize the policy network of agent jp, i.e., θjp with the policies of other
agents as constants (see non-overlapping selection). Therefore, as indicated in Equation (18),
−π

ip
θip (a

ip |s)/πip

θ
ip
old

(aip |s) and
∑

ik∈−ip−jp
CDmax

KL (πik

θ
ik
old

, πik
θik

) can be omitted since they, as con-

stant terms, have no contribution to the gradients of θjp .

B.6 PROOF OF THEOREM 3

Theorem 3 describes a process of monotonically improved lower bound in FP3O: Lπ(π̃
ip , π̃−ip) ≥

Lπ(π̂
ip , π̂−ip) ≥ Lπ(π

ip ,π−ip). To prove this, we first expand the lower bound into the form of
importance sampling:

Lπ(π̃
ip , π̃−ip)

= J (π) +M
ip
π (π̃∅, π̃ip) +M

−ip
π (π̃ip , π̃−ip)

and by Definition 1, this is

= J (π) + Es∼ρπ,a∼π̃[A
ip
π (s, aip)]− CDmax

KL (πip , π̃ip)

+ Es∼ρπ,a∼π̃[A
−ip
π (s, aip ,a−ip)]−

∑
ik∈−ip

CDmax
KL (πik , π̃ik),

which, by Equations (6), (7), equals

= J (π) + Es∼ρπ,a∼π

[
π̃ip(aip |s)
πip(aip |s)

Aπ(s,a)

]
// Equation (6)

+ Es∼ρπ,a∼π

[(
π̃jp(ajp |s)
πjp(ajp |s)

· π̃
−jp(a−jp |s)

π−ip(a−jp |s)
− π̃ip(aip |s)

πip(aip |s)

)
Aπ(s,a)

]
// Equation (7)

−
n∑

k=1

CDmax
KL (πik , π̃ik)

= J (π) + Es∼ρπ,a∼π

[
n∏

k=1

(
π̃ik(aik |s)
πik(aik |s)

)
Aπ(s,a)

]
−

n∑
k=1

CDmax
KL (πik , π̃ik). (19)

Note that we will analyze the monotonic improvement property of FP3O at the theoretical level.
Thus, we do not consider the parameterized policy πθ but theoretical policy π.

19

Under review as a conference paper at ICLR 2023

We first discuss the optimization direction for Equation (9), (10) in FP3O without parameterized
policy. At the beginning of one iteration, the initial optimization objective is

Es,a

[
min

(
πip(aip |s)
πip(aip |s)

Aπ(s,a), clip

(
πip(aip |s)
πip(aip |s)

, 1± ϵ

)
Aπ(s,a)

)]
= Es,a [Aπ(s,a)] =

∑
i

Pπ(si,ai)Aπ(si,ai)

=
∑
i

Pπ(si) · π1(a1i |si) · ... · πn(ani |si) ·Aπ(si,ai) (20)

where (si,ai) is the state-action pair and Pπ(si,ai) is the probability of pair (si,ai). How can
we make Equation (20) improved in these state-action pairs (si,ai)? We know that every state-
action pair (si,ai) corresponds to one Aπ(si,ai). Therefore, if we increase the probability (i.e.,
π =

∏
i π

i) of those state-action pairs with positive Aπ and decrease the probability of those state-
action pairs with negative Aπ , then the initial optimization objective, i.e., Equation (20) can be
effectively improved. However, the increase/decrease of joint policy probability π =

∏
i π

i does
not mean the increase/decrease of single policy probability πi. Now, we analyze the relationship
between single policy and joint policy in FP3O. At the end of independence step, the optimization
objective is

Es,a

[
min

(
π̂ip(aip |s)
πip(aip |s)

Aπ(s,a), clip

(
π̂ip(aip |s)
πip(aip |s)

, 1± ϵ

)
Aπ(s,a)

)]
=
∑
i

Pπ(si)π
1(a1i |si)... πn(ani |si)min

(
π̂ip(a

ip
i |si)

πip(a
ip
i |si)

Aπ(si,ai), clip

(
π̂ip(a

ip
i |si)

πip(a
ip
i |si)

, 1± ϵ

)
Aπ(si,ai)

)

=

∑

i Pπ(si)
∏

k∈−ip
πk(aki |si) · π̂ip(a

ip
i |si)Aπ(si,ai),

or∑
i Pπ(si)

∏
k∈−ip

πk(aki |si) · clip
(
π̂ip(a

ip
i |si), πip(a

ip
i |si)± ϵπip(a

ip
i |si)

)
Aπ(si,ai)

(21)

Comparing Equation (21) with the initial objective, i.e., Equation (20), we can see that probability
Pπ(si)

∏
k∈−ip

πk(aki |si) is exactly the same. This is because that we have taken
∏

k∈−ip
πk(aki |si)

as a constant at independence step of pipeline p. In this case, the increase/decrease of joint policy
probability π is completely equivalent to the increase/decrease of single policy probability πip .
Thus, at independence step in Equation (21), we can increase probability (i.e., πip /π) of those state-
action pairs with positive Aπ and decrease the probability (i.e., πip /π) of those state-action pairs
with negative Aπ to make Equation (20) effectively improved. We have discussed an optimization
direction at the independence step, and dependence step is similar to independence step. The initial
objective: ∑

i

Pπ(si) · π̂1(a1i |si) · ... · π̂n(ani |si) ·Aπ(si,ai) (22)

At the end of dependence step (note that we take policies π−jp as constants according to non-
overlapping selection), the optimization objective is

Es,a

[
min

(
π̃jp(ajp |s)
πjp(ajp |s)

π̂−jp(a−jp |s)
π−ip(a−jp |s)

Aπ(s,a), clip

(
π̃jp(ajp |s)
πjp(ajp |s)

, 1± ϵ

)
π̂−jp(a−jp |s)
π−ip(a−jp |s)

Aπ(s,a)

)]

=

∑

i Pπ(si)
∏

k∈−jp
π̂k(aki |si) · π̃jp(a

jp
i |si)Aπ(si,ai),

or∑
i Pπ(si)

∏
k∈−jp

π̂k(aki |si) · clip
(
π̃jp(a

jp
i |si), πjp(a

jp
i |si)± ϵπjp(a

jp
i |si)

)
Aπ(si,ai)

(23)

In this case, due to the equal item
∑

i Pπ(si)
∏

k∈−jp
π̂k(aki |si), the increase/decrease of joint pol-

icy probability π is completely equivalent to the increase/decrease of single policy probability πjp .
Thus, based on the above discussion, we give the following assumption as a reasonable optimization
direction for theoretical policy π.

20

Under review as a conference paper at ICLR 2023

Assumption 1. For pipeline p in FP3O, in case of Aπ(s,a) > 0, πip(aip |s) and πjp(ajp |s) tends
to increase at independence step and dependence step respectively to make optimization objective
improved; In case of Aπ(s,a) < 0, πip(aip |s) and πjp(ajp |s) tends to decrease at independence
step and dependence step respectively to make optimization objective improved;

Lemma 3. For n ∈ N positive numbers {lk}nk=1 = {l1, l2, ..., ln}, if lk ≥ 1, we have
∏n

k=1 lk ≥
1
n

∑n
k=1 lk. If lk ≤ 1, we have

∏n
k=1 lk ≤ 1

n

∑n
k=1 lk.

Proof. If lk ≥ 1, we take the maximum value lkmax
= max{l1, l2, ..., ln}, then we have

n∏
k=1

lk = lkmax
·

(
kmax−1∏
k=1

lk ·
n∏

k=kmax+1

lk

)
≥ lkmax

,

1

n

n∑
k=1

lk =
1

n

(
lkmax +

kmax−1∑
k=1

n∑
k=kmax+1

lk

)
≤ 1

n

(
n∑

k=1

lkmax

)
= lkmax ,

so we have
n∏

k=1

lk ≥ 1

n

n∑
k=1

lk.

If lk ≤ 1, we take the minimum value lkmin = min{l1, l2, ..., ln}, then we have
n∏

k=1

lk = lkmin ·

(
kmin−1∏
k=1

lk ·
n∏

k=kmin+1

lk

)
≤ lkmin ,

1

n

n∑
k=1

lk =
1

n

(
lkmin

+

kmin−1∑
k=1

n∑
k=kmin+1

lk

)
≥ 1

n

(
n∑

k=1

lkmin

)
= lkmin

,

so we have
n∏

k=1

lk ≤ 1

n

n∑
k=1

lk.

Theorem 3. We let π1, ..., πn denote the old policies. π̂1, ..., π̂n and π̃1, ..., π̃n are the middle
policies and new policies, which are obtained from all pipelines (i.e., p = 1, ..., n) by Equation (11)
and Equation (12) respectively. Lπ(π̃

ip , π̃−ip) = J (π) + M
ip
π (π̃∅, π̃ip) + M

−ip
π (π̃ip , π̃−ip) is

the theoretical lower bound of pipeline p defined in Theorem 2. Given the assumption described in
Appendix B.6, the following inequalities hold for all pipeline p = 1, ..., n:{

Lπ(π̃
ip , π̃−ip) ≥ Lπ(π̂

ip , π̂−ip) ≥ Lπ(π
ip ,π−ip)

}n
p=1

.

Proof. We have converted FP3O to KL penalty version by Equations (11) and (12).

At independence step of FP3O, we do

π̂ip = argmax
π̂ip

[
Es∼ρπ,aip∼π̂ip

[
A

ip
π (s, a∅, aip)

]
− βDmax

KL (πip , π̂ip)
]

= argmax
π̂ip

[
Es∼ρπ,a∼π

[
π̂ip(aip |s)
πip(aip |s)

Aπ(s,a)

]
− βDmax

KL (πip , π̂ip)

]
.

Thus, we can get

Es∼ρπ,a∼π

[
π̂ip(aip |s)
πip(aip |s)

Aπ(s,a)

]
− βDmax

KL (πip , π̂ip)

≥ Es∼ρπ,a∼π

[
πip(aip |s)
πip(aip |s)

Aπ(s,a)

]
− βDmax

KL (πip , πip).

⇔ Es∼ρπ,a∼π

[
π̂ip(aip |s)
πip(aip |s)

Aπ(s,a)

]
− βDmax

KL (πip , π̂ip) ≥ 0

⇔ Dmax
KL (πip , π̂ip) ≤ 1

β
Es∼ρπ,a∼π

[
π̂ip(aip |s)
πip(aip |s)

Aπ(s,a)

]
.

21

Under review as a conference paper at ICLR 2023

When jointly updating all pipelines p = 1, .., n, we have

{
Dmax

KL (πip , π̂ip) ≤ 1

β
Es∼ρπ,a∼π

[
π̂ip(aip |s)
πip(aip |s)

Aπ(s,a)

]}n

p=1

. (24)

This means that, by executing independence step of FP3O, we can get the above inequality relations.
Then we prove that executing independence step of FP3O can improve the theoretical lower bound
Lπ . For any pipeline p, we compare the lower bound at the end of independence step of FP3O with
the lower bound at the beginning:

Lπ(π̂
ip , π̂−ip)− Lπ(π

ip ,π−ip)

= Lπ(π̂
ip , π̂−ip)− J (π) // Equation (13)

and, by Equation (19), this is

= J (π) + Es∼ρπ,a∼π

[
n∏

k=1

(
π̂ik(aik |s)
πik(aik |s)

)
Aπ(s,a)

]
−

n∑
k=1

CDmax
KL (πik , π̂ik)− J (π) (25)

≥ Es∼ρπ,a∼π

[
n∏

k=1

(
π̂ik(aik |s)
πik(aik |s)

)
Aπ(s,a)

]

−
n∑

k=1

C
β
Es∼ρπ,a∼π

[
π̂ik(aik |s)
πik(aik |s)

Aπ(s,a)

]
// Equation (24)

= Es∼ρπ,a∼π

[
n∏

k=1

(
π̂ik(aik |s)
πik(aik |s)

)
Aπ(s,a)

]

− Es∼ρπ,a∼π

[
C
β

n∑
k=1

π̂ik(aik |s)
πik(aik |s)

Aπ(s,a)

]

= Es∼ρπ,a∼π

[(
n∏

k=1

π̂ik(aik |s)
πik(aik |s)

− C
β

n∑
k=1

π̂ik(aik |s)
πik(aik |s)

)
Aπ(s,a)

]

if we take
C
β

=
1

n
, then this is

≥ 0 // Assumption 1 and Lemma 3 (26)

Note that we have considered that all policies are changed when jointly updating all pipelines (see
the superscript). So far, we have proved that independence step of FP3O can improve the theoretical
lower bound:

{
Lπ(π̂

ip , π̂−ip) ≥ Lπ(π
ip ,π−ip)

}n
p=1

. Then, we prove that dependence step of
FP3O can further improve the theoretical lower bound.

At dependence step, we do

π̃jp = argmax
π̃jp

[
Es∼ρπ,ajp∼π̃jp ,a−jp∼π̂−jp

[
A

−ip
π (s, aip ,a−ip)

]
− βDmax

KL (πjp , π̃jp)
]

= argmax
π̃jp

[
Es∼ρπ,a∼π

[(
π̃jp(ajp |s)
πjp(ajp |s)

π̂−jp(a−jp |s)
π−ip(a−jp |s)

− π̂ip(aip |s)
πip(aip |s)

)
Aπ(s,a)

]
− βDmax

KL (πjp , π̃jp)

]
.

22

Under review as a conference paper at ICLR 2023

Thus, we have

Es∼ρπ,a∼π

[(
π̃jp(ajp |s)
πjp(ajp |s)

π̂−jp(a−jp |s)
π−ip(a−jp |s)

− π̂ip(aip |s)
πip(aip |s)

)
Aπ(s,a)

]
− βDmax

KL (πjp , π̃jp)

≥ Es∼ρπ,a∼π

[(
π̂jp(ajp |s)
πjp(ajp |s)

π̂−jp(a−jp |s)
π−ip(a−jp |s)

− π̂ip(aip |s)
πip(aip |s)

)
Aπ(s,a)

]
− βDmax

KL (πjp , π̂jp)

(27)

⇔ Dmax
KL (πjp , π̃jp)−Dmax

KL (πjp , π̂jp)

≤ 1

β

(
Es∼ρπ,a∼π

[(
π̃jp(ajp |s)
πjp(ajp |s)

π̂−jp(a−jp |s)
π−ip(a−jp |s)

)
Aπ(s,a)

]

− Es∼ρπ,a∼π

[(
π̂jp(ajp |s)
πjp(ajp |s)

π̂−jp(a−jp |s)
π−ip(a−jp |s)

)
Aπ(s,a)

])
⇔ Dmax

KL (πjp , π̃jp)−Dmax
KL (πjp , π̂jp)

≤ 1

β

Es∼ρπ,a∼π

 π̃jp(ajp |s)
πjp(ajp |s)

∏
ik∈−jp

π̂ik(aik |s)
πik(aik |s)

−
n∏

k=1

π̂ik(aik |s)
πik(aik |s)

Aπ(s,a)

When jointly updating all pipelines p = 1, .., n, we have

{
Dmax

KL (πjp , π̃jp)−Dmax
KL (πjp , π̂jp)

≤ 1

β

Es∼ρπ,a∼π

 π̃jp(ajp |s)
πjp(ajp |s)

∏
ik∈−jp

π̂ik(aik |s)
πik(aik |s)

−
n∏

k=1

π̂ik(aik |s)
πik(aik |s)

Aπ(s,a)

}n

p=1

(28)

After executing dependence step of FP3O, we get the above inequality. Then, for any pipeline
p, we compare the lower bound at the end of dependence step with the lower bound at the end of

23

Under review as a conference paper at ICLR 2023

independence step:

Lπ(π̃
ip , π̃−ip)− Lπ(π̂

ip , π̂−ip)

= Es∼ρπ,a∼π

[(
n∏

k=1

π̃ik(aik |s)
πik(aik |s)

−
n∏

k=1

π̂ik(aik |s)
πik(aik |s)

)
Aπ(s,a)

]

−
n∑

k=1

(
CDmax

KL (πik , π̃ik)− CDmax
KL (πik , π̂ik)

)
// Equation (19) (29)

which, by Equation 28, is

≥ Es∼ρπ,a∼π

[(
n∏

k=1

π̃ik(aik |s)
πik(aik |s)

−
n∏

k=1

π̂ik(aik |s)
πik(aik |s)

)
Aπ(s,a)

]

−
n∑

p=1

C
β

(
Es∼ρπ,a∼π

[(
π̃jp(ajp |s)
πjp(ajp |s)

∏
ik∈−jp

π̂ik(aik |s)
πik(aik |s)

−
n∏

k=1

π̂ik(aik |s)
πik(aik |s)

)
Aπ(s,a)

])
(30)

if we take
C
β

=
1

n
, this is

= Es∼ρπ,a∼π

 n∏
k=1

π̃ik(aik |s)
πik(aik |s)

− 1

n

n∑
p=1

 π̃jp(ajp |s)
πjp(ajp |s)

∏
ik∈−jp

π̂ik(aik |s)
πik(aik |s)

Aπ(s,a)

= Es∼ρπ,a∼π

[
1

n

n∑
p=1

{

π̃jp(ajp |s)
πjp(ajp |s)

 ∏
ik∈−jp

π̃ik(aik |s)
πik(aik |s)

−
∏

ik∈−jp

π̂ik(aik |s)
πik(aik |s)

}Aπ(s,a)

]
≥ 0 // Assumption 1

Note that we have considered that all policies are changed when jointly updating all pipelines, and
also considered the non-overlapping selection and the policy approximation defined by pipeline
interaction (see the superscript). Therefore, we have proved that dependence step of FP3O can fur-
ther improve the theoretical lower bound:

{
Lπ(π̃

ip , π̃−ip) ≥ Lπ(π̂
ip , π̂−ip)

}n
p=1

. Thus, we have
proved that the lower bounds of all pipelines can be monotonically improved at both independence
step and dependence step in FP3O:

{
Lπ(π̃

ip , π̃−ip) ≥ Lπ(π̂
ip , π̂−ip) ≥ Lπ(π

ip ,π−ip)
}n
p=1

. It
can be derived from Equation (19) that the lower bounds of all pipelines are equivalent:

Lπ(π̃
i1 , π̃−i1) =, ...,= Lπ(π̃

in , π̃−in). (31)

This means that the improved lower bounds of all pipelines are also equivalent. With non-decreasing
lower bounds, the true objectives of all pipelines can be also improved.

We worry that C
β = 1

n (i.e., penalty coefficient β = nC) will impose too strict restrictions on KL
divergence with the increase of the number of agents. Fortunately β = nC is just a soft condition.
If a more lenient penalty coefficient is adopted (e.g., β = C), the new policy will tend to be far
away from the old policy when we optimize Equations (11), (12). To be specific, if π(a|s) tends
to decrease, π̃(a|s)

π(a|s) will tend to be smaller after the update. If π(a|s) tends to increase, π̃(a|s)
π(a|s) will

tend to be larger after the update. Therefore, we only need to take a more lenient coefficient to make
Equation (26) hold with the following Lemma 4.
Lemma 4. For n ∈ N positive numbers {lk}nk=1 = {l1, l2, ..., ln}, there is a coefficient ξ that makes
the equation

∏n
k=1 lk = 1

ξ

∑n
k=1 lk holds. If lk ≥ 1 and another larger n numbers {l′k}nk=1 satisfies

24

Under review as a conference paper at ICLR 2023

l′k > lk, there will be a smaller coefficient ξ′ < ξ that makes the equation
∏n

k=1 l
′
k = 1

ξ′

∑n
k=1 l

′
k

holds. Similarly, if lk ≤ 1 and another smaller n numbers {l′k}nk=1 satisfies l′k < lk, there will be a
smaller coefficient ξ′ < ξ that makes the equation

∏n
k=1 l

′
k = 1

ξ′

∑n
k=1 l

′
k holds.

Similarly, a more lenient coefficient can be also applied to Equation (30). Specifi-
cally, we can simplify Equation (30) to Z(π̃−jp) −

∑n
p=1

C
βZ(π̂−jp), where Z(π̃−jp) =

Es∼ρπ,a∼π

[(∏n
k=1

π̃ik (aik |s)
πik (aik |s) −

∏n
k=1

π̂ik (aik |s)
πik (aik |s)

)
Aπ(s,a)

]
. We always have Z(π̃−jp) >

Z(π̂−jp), and their difference will increase if a small β is adopted. This is because, under this
setting, π̃ tend to get much smaller or much larger. Thus, a more lenient coefficient penalty can
guarantee Lπ(π̃

ip , π̃−ip)− Lπ(π̂
ip , π̂−ip) ≥ 0 to hold.

In our experiments, we also demonstrate in Table 2 that FP3O can achieve 100% performances on
bane vs. bane involving 24 agents without more strict coefficient on PPO-clipping (ϵ = 0.2).

C ENVIRONMENTS

C.1 MAMUJOCO

MAMuJoCo benchmark (de Witt et al., 2020b) is a continuous and partially observable task. MA-
MuJoCo groups different joints of a robot in the MuJoCo simulator (Todorov et al., 2012) and
models them as different agents. For instance, as shown in Figure 3 (a), MAMuJoCo regards six
joints of HalfCheetah as six different agents, and then lets each agent control its joints based on its
local observation. Because of the diversification of body part control, the agents are regarded as
heterogeneous.

①①

④

⑤

⑥
②③

①

④

⑤

⑥
②③

①

②

③

①
②

①
②

(a) (b) (c)

Figure 3: Examples of MAMuJoCo. Different agents are depicted in different colors. (a) 6-Agent
HalfCheetah [6×1]. (b) 3-Agent Hopper [3×1]. (c) 2-Agent Reacher [2×1]
.

C.2 SMAC

SMAC benchmark (Samvelyan et al., 2019) is a discrete and partially observable task. There are
a variety of maps involving three difficulties: Easy, Hard, and Super-Hard. The goal is to train
a team of ally units to defeat an opponent team of enemy units. Table 3 lists the types of units in
different scenarios. According to whether the types of ally units are the same or not, the scenarios be
classified into homogeneous-agent or heterogeneous-agent tasks. For example, agents are regarded
to be heterogeneous in scenarios bane vs bane and 3s5z since the ally contains two different types
of units. While agents are regarded to be homogeneous in the remaining scenarios (i.e., 2c vs 64zg,
5m vs 6m, corridor, 6h vs 8z) because of the single type of units.

25

Under review as a conference paper at ICLR 2023

Table 3: Unit types in SMAC benchmark.
Scenarios Ally Units Enemy Units Type

bane vs bane 20 Zerglings & 4 Banelings 20 Zerglings & 4 Banelings HE
2c vs 64zg 2 Colossi 64 Zerglings HO

3s5z 3 Stalkers & 5 Zealots 3 Stalkers & 5 Zealots HE
5m vs 6m 5 Marines 6 Marines HO
corridor 6 Zealots 24 Zerglings HO
6h vs 8z 6 Hydralisks 8 Zealots HO

D TRAINING DETAILS

Computing infrastructure. We implement our FP3O algorithm in the PyTorch framework ver-
sion 1.9.0 with GPU acceleration. All of our models are trained on TITAN X GPU, running 64-bit
Linux 4.4.0.

Repetitive experiments. In our experiments on MAMuJoCo, the score is averaged over 32 test
episodes after each training iteration. The final evaluation score is further averaged over 5 different
seeds. In SMAC, We follow the median win rate evaluation metric adpoted in Wang et al. (2021b);
Yu et al. (2021). The win rate is computed over 32 test episodes after each training iteration and the
final evaluation result is averaged over 5 different seeds.

D.1 HYPERPARAMETER SETTINGS IN MAMUJOCO DOMAIN

The hyperparameter settings in MAMuJoCo are shown in Table 4 and Table 5.

Table 4: Common hyperparameters in MAMuJoCo.
hyperparameter value hyperparameter value

actor lr 1e-5 gain 0.01
critic lr 3e-4 episode length 1000
gamma 0.99 rollout threads 4

gae lamda 0.95 batch size 4000
optimizer Adam num mini-batch 32

optimizer epsilon 1e-5 gradient clip norm 10
weight decay 0 hidden layer dim 64

activation ReLU num hidden layer 2
network initialization Orthogonal num layer after 1

training threads 8 value loss huber loss
ppo epochs 5 huber delta 10.0

stacked frames 1 entropy coef 0.001
std x coef 1 std y coef 0.5

obsk 5

26

Under review as a conference paper at ICLR 2023

Table 5: Adopted hyperparameters for different tasks in MAMuJoCo. FuPS, PaPS, and NoPS denote
full parameter sharing, partial parameter sharing, and non-parameter sharing respectively.

task ppo clip actor network steps

FuPS PaPS NoPS

2-Agent Reacher [2×1] 0.2 mlp 10e6 10e6 10e6
2-Agent Ant [2×4] 0.2 mlp 10e6 10e6 10e6

2-Agent Walker [2×3] 0.05 mlp 10e6 10e6 10e6
3-Agent Hopper [3×1] 0.05 mlp 10e6 10e6 10e6

6-Agent HalfCheetah [6×1] 0.2 mlp 10e6 10e6 10e6
Manyagent Swimmer [8×2] 0.2 mlp 10e6 10e6 10e6

D.2 HYPERPARAMETER SETTINGS IN SMAC DOMAIN

The hyperparameter settings in SMAC are shown in Table 6 and Table 7.

Table 6: Common hyperparameters in SMAC.
hyperparameters value hyperparameters value

actor lr 5e-4 gain 0.01
critic lr 5e-4 episode length 400
gamma 0.99 rollout threads 8

gae lamda 0.95 batch size 3200
optimizer Adam num mini-batch 1

optimizer epsilon 1e-5 gradient clip norm 10
weight decay 0 hidden layer dim 64

activation ReLU num hidden layer 2
network initialization Orthogonal num layer after 1

training threads 32 value loss huber loss
ppo epochs 5 huber delta 10.0

stacked frames 1 entropy coef 0.01

Table 7: Adopted hyperparameters for different maps in SMAC. FuPS, PaPS, and NoPS denote full
parameter sharing, partial parameter sharing, and non-parameter sharing respectively.

map ppo clip actor network steps

FuPS PaPS NoPS

bane vs. bane 0.2 rnn 2e6 2e6 2e6
2c vs. 64zg 0.2 rnn 5e6 5e6 5e6

3s5z 0.2 rnn 5e6 5e6 5e6
5m vs. 6m 0.05 rnn 8e6 10e6 10e6

corridor 0.2 mlp 8e6 10e6 10e6
6h vs. 8z 0.2 mlp 10e6 15e6 20e6

10m vs. 11m 0.2 rnn 8e6 - -
3s5z vs. 3s6z 0.05 rnn 12e6 - -

27

Under review as a conference paper at ICLR 2023

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 KL DIVERGENCE DISTRIBUTION IN FP3O

To verify that FP3O will not suffer from the limitation in HAPPO that has been discussed in Ap-
pendix A, we execute the same experiment to train FP3O with full parameter sharing network type
on 3s5z map in SMAC. we demonstrate in Figure 4 the distribution KL divergence between the
updated policy and the old policy of each agent after finishing their optimization at one policy in-
teration. Different from the KL divergence in HAPPO that gradually becomes larger during the
update process, FP3O can effectively control KL divergences of all agents within the trust region,
which is essential for the monotonic improvement guarantee to be valid in a variety of tasks and
settings. Moreover, we want to emphasize that every agent has to start a one-separation trust region
optimization pipeline in FP3O so that all agents can be updated in parallel (see Equation (4)). Thus,
the update policies of all agents start from their old policies at one policy iteration (i.e, the ratio
π
ip
θip (a

ip |s)πip

θ
ip
old

(aip |s) of all agents is equal to 1). Compared with Figure 1, each agent in FP3O

can make full use of the collected data to update in the expected optimization direction, which is a
data-efficient update scheme.

Agent 0 Agent 1 Agent 2 Agent 3

Agent 4 Agent 5 Agent 6 Agent 7

0.04

0.08

0.12

Figure 4: The distribution of the KL divergence between the updated policy and the old policy at
one policy interation of FP3O. The darker the color is, the more data is distributed. The center
represents that KL divergence is equal to 0, and the outward direction represents that KL divergence
gets greater. The places where KL divergence equals 0.04, 0.08, and 0.12 are indicated by the black
circles.

E.2 ADDITIONAL RESULTS ON SMAC

We perform additional experiments with CoPPO baseline (Wu et al., 2021) on more SMAC scenar-
ios. As we can see in Figure 5, due to the constantly changing of each agent’s optimization objective
after every mini-batch update, the training process of CoPPO is non-stationary, even in the easy
scenarios (i.e., bane vs. bane and 2c vs. 64zg). Our FP3O gets superior performances on all tasks.

28

Under review as a conference paper at ICLR 2023

.00.00 0.5 1.0 1.5 2.0
Steps 1e6

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

bane vs. bane (FuPS)

FP3O
HAPPO
MAPPO
IPPO
CoPPO

0 1 2 3 4 5
Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

2c vs. 64zg (FuPS)

FP3O
HAPPO
MAPPO
IPPO
CoPPO

0 1 2 3 4 5
Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

3s5z (FuPS)

FP3O
HAPPO
MAPPO
IPPO
CoPPO

0 2 4 6 8
Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

5m vs. 6m (FuPS)

FP3O
HAPPO
MAPPO
IPPO
CoPPO

0 2 4 6 8
Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

corridor (FuPS)

FP3O
HAPPO
MAPPO
IPPO
CoPPO

0 2 4 6 8
Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

10m vs. 11m (FuPS)

FP3O
HAPPO
MAPPO
IPPO
CoPPO

0.00.0 0.2 0.4 0.6 0.8 1.0 1.2
Steps 1e7

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e
3s5z vs. 3s6z (FuPS)

FP3O
HAPPO
MAPPO
IPPO
CoPPO

FP3O
HAPPO
MAPPO
IPPO
CoPPO

0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

6h vs. 8z (FuPS)

Figure 5: Additional results on SMAC.

E.3 THE TRAINING RESULTS OF TABLES 1 AND 2

29

Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

150

100

50

Ep
is

od
e

R
ew

ar
d

Reacher [2x1] (FuPS)

FP3O
HAPPO
MAPPO
IPPO

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

150

100

50

Ep
is

od
e

R
ew

ar
d

Reacher [2x1] (PaPS)

FP3O
HAPPO
MAPPO
IPPO

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

150

100

50

Ep
is

od
e

R
ew

ar
d

Reacher [2x1] (NoPS)

FP3O
HAPPO
MAPPO
IPPO

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

1000

2000

3000

Ep
is

od
e

R
ew

ar
d

Ant [2x4] (FuPS)

FP3O
HAPPO
MAPPO
IPPO

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

1000

2000

3000

Ep
is

od
e

R
ew

ar
d

Ant [2x4] (PaPS)

FP3O
HAPPO
MAPPO
IPPO

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

1000

2000

3000

Ep
is

od
e

R
ew

ar
d

Ant [2x4] (NoPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

1000

2000

3000

Ep
is

od
e

R
ew

ar
d

Walker [2x3] (FuPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

1000

2000

3000

Ep
is

od
e

R
ew

ar
d

Walker [2x3] (PaPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

1000

2000

3000

Ep
is

od
e

R
ew

ar
d

Walker [2x3] (NoPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

1000

2000

3000

4000

Ep
is

od
e

R
ew

ar
d

Hopper [3x1] (FuPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

1000

2000

3000

4000

Ep
is

od
e

R
ew

ar
d

Hopper [3x1] (PaPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

1000

2000

3000

4000

Ep
is

od
e

R
ew

ar
d

Hopper [3x1] (NoPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

1000

2000

3000

4000

5000

Ep
is

od
e

R
ew

ar
d

HalfCheetah [6x1] (FuPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

1000

2000

3000

4000

5000

Ep
is

od
e

R
ew

ar
d

HalfCheetah [6x1] (PaPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

1000

2000

3000

4000

5000

Ep
is

od
e

R
ew

ar
d

HalfCheetah [6x1] (NoPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.2 0.4 0.6 0.8 1.0
Steps

10

0

100

200

300

400

Ep
is

od
e

R
ew

ar
d

Manyagent Swimmer [8x2] (FuPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.2 0.4 0.6 0.8 1.0
Steps

10

0

100

200

300

400

Ep
is

od
e

R
ew

ar
d

Manyagent Swimmer [8x2] (PaPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.2 0.4 0.6 0.8 1.0
Steps

10

0

100

200

300

400

Ep
is

od
e

R
ew

ar
d

Manyagent Swimmer [8x2] (NoPS)

FP3O
HAPPO
MAPPO
IPPO

Figure 6: Average evaluation reward in the MAMuJoCo domain.

30

Under review as a conference paper at ICLR 2023

00.0 0.5 1.0 1.5 2.0
Steps 1e6

0.

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

bane vs. bane (FuPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.5 1.0 1.5 2.0
Steps 1e6

0.

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

bane vs. bane (PaPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.5 1.0 1.5 2.0
Steps 1e6

0.

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

bane vs. bane (NoPS)

FP3O
HAPPO
MAPPO
IPPO

0 1 2 3 4 5
Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

2c vs. 64zg (FuPS)

FP3O
HAPPO
MAPPO
IPPO

0 1 2 3 4 5
Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

2c vs. 64zg (PaPS)

FP3O
HAPPO
MAPPO
IPPO

0 1 2 3 4 5
Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

2c vs. 64zg (NoPS)

FP3O
HAPPO
MAPPO
IPPO

0 1 2 3 4 5
Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

3s5z (FuPS)

FP3O
HAPPO
MAPPO
IPPO

0 1 2 3 4 5
Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

3s5z (PaPS)

FP3O
HAPPO
MAPPO
IPPO

0 1 2 3 4 5
Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

3s5z (NoPS)

FP3O
HAPPO
MAPPO
IPPO

0 2 4 6 8
Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

5m vs. 6m (FuPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

5m vs. 6m (PaPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

5m vs. 6m (NoPS)

FP3O
HAPPO
MAPPO
IPPO

0 2 4 6 8
Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

corridor (FuPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

corridor (PaPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

corridor (NoPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.2 0.4 0.6 0.8 1.0
Steps

0.

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

6h vs. 8z (FuPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.5 1.0 1.5
Steps

0.

0.2

0.4

0.6

0.8

1.0

W
in

 R
at

e

6h vs. 8z (PaPS)

FP3O
HAPPO
MAPPO
IPPO

00.0 0.5 1.0 1.5 2.0
Steps

0.

0.2

0.4

0.6

0.8

1.0

Ep
is

od
e

R
ew

ar
d

6h vs. 8z (NoPS)

FP3O
HAPPO
MAPPO
IPPO

Figure 7: Median evaluation win rate in the SMAC domain.

31

	Introduction
	Related Work
	Preliminaries
	The FP3O Algorithm
	One-Separation Trust Region Optimization
	Practical Full-Pipeline Optimization
	The Ultimate Algorithm
	Additional Analysis on The Monotonic Improvement of FP3O

	Experiments
	Conclusion
	Reproducibility Statement
	The Limitation of Sequential Update Scheme
	Proofs
	Proof of One-Separation Advantage Decomposition
	Proof of Theorem 2
	Proof of independence-dependence optimization enabling monotonic improvement
	Proof of Equation (6) and Equation (7)
	Proof of Equation 8
	Proof of Theorem 3

	Environments
	MAMuJoCo
	SMAC

	Training Details
	Hyperparameter Settings in MAMuJoCo Domain
	Hyperparameter Settings in SMAC Domain

	Additional Experimental Results
	KL Divergence Distribution in FP3O
	Additional Results on SMAC
	The Training Results of Tables 1 And 2

