Are Large Reasoning Models Good Translation Evaluators? Analysis and Performance Boost

Runzhe Zhan¹ Zhihong Huang¹ Xinyi Yang¹ Lidia S. Chao¹ Min Yang² Derek F. Wong^{1 \boxtimes}

¹NLP²CT Lab, Department of Computer and Information Science, University of Macau ²Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences nlp2ct.{runzhe,zhihong,xinyi}@gmail.com min.yang@siat.ac.cn,{derekfw,lidiasc}@um.edu.mo

Abstract

Recent advancements in large reasoning models (LRMs) have introduced an intermediate "thinking" process prior to generating final answers, improving their reasoning capabilities on complex downstream tasks. However, the potential of LRMs as evaluators for machine translation (MT) quality remains underexplored. We provides the first systematic analysis of LRM-as-a-judge in MT evaluation. We identify key challenges, revealing LRMs require tailored evaluation materials, tend to "overthink" simpler instances and have issues with scoring mechanisms leading to overestimation. To address these, we propose to calibrate LRM thinking by training them on synthetic, human-like thinking trajectories. Our experiments on WMT24 Metrics benchmarks demonstrate that this approach largely reduces thinking budgets by $\sim\!\!35\mathrm{x}$ while concurrently improving evaluation performance across different LRM scales from 7B to 32B (e.g., R1-Distill-Qwen-7B achieves a +8.7 correlation point improvement). These findings highlight the potential of efficiently calibrated LRMs to advance fine-grained automatic MT evaluation.

Code: ThinMQM Models: A ThinMQM Models

1 Introduction

The development of reliable automated metrics that accurately mimic human judgments of translation quality is vital for advancing machine translation (MT) models [1, 2, 3, 4, 5]. However, modeling the comprehensive and complex "evaluation process" inherent in human assessment is challenging. Previous research has explored various paradigms to capture this process, from deterministic rule-based metrics [6, 7] and embedding-space similarities [8] to end-to-end neural networks [9, 10]. More recently, the rise of large language models (LLMs) as a judge [11, 12] has marked a substantial leap forward. LLMs provide a convenient mechanism for customizing the evaluation process through both natural language, marking a significant advancement in evaluation methodology [13, 14, 15].

Despite these advancements, assessing translation quality is rarely a simple "0-1" binary matching task. It often requires a deliberate, analytical cognitive effort, which is akin to "System 2" thinking [16], even for human annotators [17]. This suggests that emerging large reasoning models (LRMs) [18], which enhance reasoning capabilities by generating intermediate "thoughts" before producing final solutions, similar to human reflective thinking, may offer a stronger foundation for modeling the complex process of MT evaluation. While LRMs have often demonstrated remarkable performance boosts in solving mathematical and scientific challenges [19, 20], their potential as judges, i.e., LRM-as-a-judge in the specific context of MT evaluation remains largely unexplored.

[™]Corresponding author.

To provide a comprehensive understanding and practical insights into the application of LRM-as-a-judge for MT evaluation, this paper is the first to systematically address the following key questions:

1) How do current LRMs perform in MT evaluation tasks when compared to human judgments?

2) What are the specific failure modes or inefficiencies encountered when applying LRMs to MT evaluation?

3) How can we develop an efficient and effective alignment strategy to tailor LRMs specifically for MT evaluation?

To this end, we employ LRMs in MT evaluation under the multidimensional quality metrics (MQM) framework [21, 22], following previous state-of-the-art LLM-as-a-judge design principles [13, 14]. We then perform a meta-evaluation and analysis across a wide range of model series and sizes, including DeepSeek-R1 671B [19], QwQ 32B [23], and R1-Distilled models [19]. Through careful examination of critical factors in designing LRM-as-a-judge, our findings reveal several key insights. We observe a disagreement between LLMs and LRMs in their perception of evaluation materials, with strong LRMs benefiting more significantly from alignment with human-like evaluation protocols. Our results also suggest a need to rethink the design of multi-stage scoring mechanisms, as there are pitfalls related to overestimation problems and ambiguous contributions from auxiliary scoring models. Moreover, concerning thinking behaviors, we reveal that LRMs are not always efficient in allocating their thinking budget and tend towards "overthinking" for easier evaluation instances.

Furthermore, based on these findings, we propose a simple yet effective method to steer LRM perform **Thin**king-calibrated **MQM** (ThinMQM) scoring by training them on synthetic evaluation trajectories designed to mimic human-like scoring rubrics. Experimental results on the most recent WMT24 Metrics benchmarks [24, 25] show that this method can largely reduce thinking budgets by approximately ~35x while improving the evaluation performance of LRMs at different model scales (notably, R1-Distill-Qwen-7B achieves a +8.7 correlation point improvement), as shown in Figure 1. Follow-up analysis reveals that such trajectory steering calibrates the scoring distribution and reduces the overestimation problem. These results align with our analysis, revealing substantial potential in developing LRM-as-a-judge for MT evaluation, yet highlight the necessity of controlling thinking budgets and performing careful calibration to fully realize this promise.

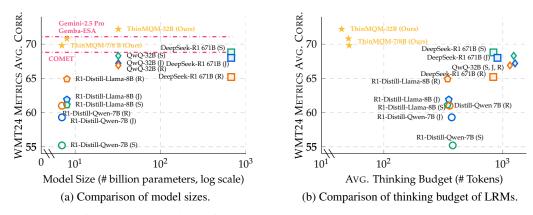


Figure 1: Performance comparison of various evaluation models on WMT24 metrics tasks. The ThinMQM models (Ours) achieve strong performance with competitive efficiency. "S, R, J" denote different evaluation inputs: Source-only, Reference-based, and Joint evaluation materials, respectively.

2 Preliminaries

2.1 Paradigms in Machine Translation Evaluation

Formally, traditional automatic evaluation metrics for machine translation can be abstractly defined as a mapping m from a set of input materials X to an output score y. The metric m may take the form of a rule-based text matching algorithm [6, 7, 26, 27] or a parameterized model [8, 9, 28, 29, 10]. Typically, the input set X, i.e., the materials required for machine translation evaluation, comprises three elements: the machine translation hypothesis h, the reference translation r, and the source text s in the original language. Evaluation is generally based on combinations of these elements, falling into two main categories: reference-based and reference-free. In the reference-based setting, the model hypothesis is compared directly with the reference translation (Ref.), i.e., $X_{\rm Ref.} = (h, r)$. In

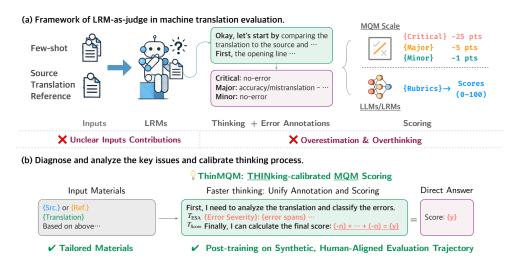


Figure 2: Overview of our research framework. (a) We decompose the general LRMs-as-judge pipeline for MT evaluation and identify key issues. (b) Guided by analytical findings, we propose ThinMQM, which establishes a more effective reasoning process.

the reference-free setting, evaluation is performed by comparing the hypothesis with the source text (Src.), i.e., $X_{Src.} = (h, s)$. Additionally, it is also possible to use all three components jointly (Jonit.), i.e., $X_{Joint.} = (h, s, r)$, for scoring. In contrast, the emerging LLM-as-a-judge paradigm does not strictly conform to an end-to-end $X \to y$ paradigm, as it is not a parameterized regression model but rather a generative language model. Although such models can provide more detailed output information, such as explanations for the given scores, in most cases the desired score y must be extracted post hoc from the model outputs using rule-based extractor or auxiliary scoring models.

2.2 MQM Framework and Related Work

Even we can list all the possible combinations of evaluation materials, modeling detailed scoring process remains a challenge. Earlier automated metrics focused on providing a single score value [6, 30], but they lacked consideration or transparency in aligning with human evaluation process, especially for neural metrics. Previous practices in collecting human annotations centered around direct assessment scores [31, 32], neglecting to establish a fine-grained, unified framework for score annotation. MQM is a professional scoring framework for translation quality assessment, designed to guide multi-dimensional evaluation of translations, including aspects such as fluency, terminology, and style [17, 22]. Typically, human annotators perform error span annotations, assign severity levels (e.g., major or minor), and finally, the score is aggregated by certain severity weights. In most cases, a major error incurs a penalty of -5 points, while a minor error results in a deduction of -1 point (or -0.1 for fluency errors). Critical errors, such as non-translation, are generally penalized by -25 points. The total score for an instance is computed by aggregating the penalties of all identified errors.

To develop more fine-grained machine translation evaluation metrics, recent research has focused on constructing automated methods aligned with MQM scoring. This has emerged as the primary evaluation task in the recent WMT leaderboard [33, 25]. The end-to-end approach [34, 9, 35, 29] essentially constructed upon pre-trained language models by finetuning on MQM scoring data. The LLM-as-judge approach to perform MQM scoring largely mirrors human annotation procedures: first, the model is instructed with MQM guidelines, and then it either extracts error span annotations to compute a score, or directly outputs a quality score. Currently, one of the most widely adopted and effective methods is the GEMBA series [13, 14] based on prompting GPT models. Its GEMBA-MQM variant further leverages in-context learning (ICL) [36, 37] by using three-shot demonstrations to assist in the evaluation process. We adapt it to LRM scope and conduct analysis in this paper.

3 Understanding LRM Behaviors in MT Evaluation

Figure 2 illustrates our research framework. In this section, we aim to address the first two research questions: how well LRM performs in MT evaluation and what failures occur in the practice.

3.1 Experimental Setup

Methodology As introduced earlier, following the successful SOTA practice in LLMs, we replicate GEMBA-MQM methodology on LRM as the basis for our analysis. We first instruct the LRM to annotate error spans in the translation according to the MQM framework, categorizing them into critical, major, and minor errors. Based on these error spans, we then apply a rule-based scoring mechanism to compute the final score for each translation. The penalty scheme for each type of error follows the approach described in Section 2.2.

Building on this, we conduct experiments with all possible input material combinations $X_{\text{Src.} \lor \text{Ref.} \lor \text{Joint.}}$ to investigate the influence of evaluation materials in Section 3.2. Meanwhile, the demonstrations used in ICL follow the same format as those in the GEMBA-MQM. It is worth noting that, since the MQM variant in the GEMBA series is reference-free, for reference-based setups (i.e., Ref. and Joint.), we supplement the demonstrations with reference information and adjust the prompt templates accordingly. Detailed prompts are provided in the Appendix C.2. We report the main results based on rule-based scoring mechanism and will discuss alternative model-based scoring methods (the logic is the same as the ESA prompting variant of GEMBA) in Section 3.3.

Models Setups We employ several mainstream LRM models across different sizes and architectures, including Deepseek-R1 671B, QwQ 32B, as well as distilled variants of R1 trained via knowledge distillation: R1-Distill-LLaMA 8B and R1-Distill-Qwen 7B. These models have demonstrated strong performance on complex reasoning tasks. Due to computational constraints, we are unable to deploy the open-source version of the R1 model locally and instead access it via API for experiments. All other models are deployed using the vLLM framework 2 . The decoding parameters are set as follows: temperature is set to 0.6, top_p and top_k is set to 0.95, 20. Our selection of DeepSeek-R1 is driven by its transparency of reasoning trajectories. In contrast, other frontier models, such as o3 and Gemini-2.5 Pro, do not expose their internal reasoning processes. This limitation makes them unsuitable for fair and fine-grained analysis. Nevertheless, we report the evaluation performance of Gemini-2.5 Pro in Section 4.2, but exclude it from the analytical sections.

Data We chose the WMT24 Metrics Shared Task [24] for our evaluation data in order to prevent potential issues with data contamination [38, 39, 40]. We confirmed that the release date for the WMT24 MQM data is after the knowledge cutoff for the models aforementioned. This task involves assessing the correlation between the evaluation models' scores and the human expert MQM scores, both at the system and segment levels. The WMT24 Metrics task includes three language pairs: English-German (En-De), English-Spanish (En-Es), and Japanese-Chinese (Ja-Zh), with around 20 machine translation systems for each pair.

Meta-Evaluation Metrics We used the same meta-evaluation settings as WMT24 official, focusing on key metrics such as system-level soft pairwise accuracy [41] (SPA) and tie-calibrated segment-level pairwise accuracy [42] (Acc_{eq}^*). Specifically, for SPA, it can be formally expressed as:

$$SPA = {N \choose 2}^{-1} \sum_{i=0}^{N-1} \sum_{j=i+1}^{N-1} \left(1 - \left| p_{ij}^h - p_{ij}^m \right| \right)$$
 (1)

where N is the number of systems. p_{ij}^h is the p-value that system i is better than system j based on human judgments, and p_{ij}^m is the same based on metric scores. $\binom{N}{2}^{-1}$ normalizes over all pairs. Higher values of these metrics indicates stronger agreement between human and metric rankings. We used the MTME³ to maintain consistency with the official calculations. We also report permutation-based significance testing with 1,000 resampling times [42] in comparison experiments.

3.2 Impact of Evaluation Materials

Contribution Quantification In MT evaluation, since the translation hypothesis h is present in all evaluation scenarios, it is necessary to assess the impact of source and reference information on evaluation performance. While it is feasible to enumerate and experiment with all combinations of

²https://github.com/vllm-project/vllm

³https://github.com/google-research/mt-metrics-eval

evaluation materials, denoted as $X_{\mathrm{Src.}\vee\mathrm{Ref.}\vee\mathrm{Joint.}}$, quantitatively isolating the contribution of each component remains challenging due to the overlapping presence of source and reference across multiple evaluation settings. To address this, we adopt the Shapley Value [43] as a principled measure to quantify the individual contributions of source and reference information to evaluation outcomes across different models and evaluation settings.

Formally, the Shapley Value of the source information ϕ_s is defined as:

$$\phi_s = \sum_{s' \subseteq N \setminus \{s\}} \frac{|s'|!(|N| - |s'| - 1)! \cdot (v(s' \cup \{s\}) - v(s'))}{|N|!}$$
(2)

where $N=\{s,r\}$ denotes the set of all materials that may affect evaluation (source s and reference r). The translation hypothesis h is always present and thus not part of the combinatorial set. The function $v(\cdot)$ represents the evaluation performance under a specific evaluation setting, which we quantify using system-level and segment-level metrics. The set s' refers to all subsets of N excluding s, i.e., $\{\emptyset,r\}$. In particular, the case \emptyset corresponds to an evaluation setting with neither source nor reference (i.e., translation-only). v(h) is a invalid value as translation-only is not a valid input, thus we only approximate it using an available configuration, namely $v(\{h,r\})$, to estimate v(h). Therefore, taking into account the practical constraints of machine translation evaluation, we refer the approximated Shapley Value here as $\phi_s^{\rm MT}$ in order to distinguish from the strict definition in Eq.2. The calculation of $\phi_r^{\rm MT}$ follows analogously.

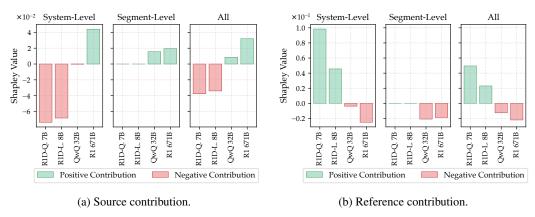


Figure 3: Shapley value analysis of input contributions of evaluation materials at different evaluation granularities. "R1D-L./O." refers to the R1-Distill-Llama/-Owen models.

Results and Discussion The results presented in Table 1 along with the significance tests, intuitively suggest that using either source or reference information as evaluation materials represents the most effective choice for LRM-based evaluation. However, this observation is contingent on model scale. The illustrative results shown in Figure 3, derived from Shapley Value $\phi^{\rm MT}$ analysis, reveal a pattern: for smaller-scale LRMs (7/8B), source information is detrimental to evaluation quality, whereas reference information contributes positively. This trend is reversed in larger LRMs, such as QwQ 32B and R1 671B, where source information becomes beneficial and reference information less so.

Previous work [44] on the LLM-as-a-judge observed that LLMs tend to become "lost in source" during MT evaluation, regardless of model size. However, our findings suggest that this phenomenon may not generalize to the LRM-as-a-judge setting. This distinction is plausible, given that LRMs typically have stronger reasoning capabilities on complex tasks [45, 19, 20] compared to general-purpose LLMs. Earlier LLMs may have lacked the capacity to effectively model the cross-lingual relationships between source and translation.

As for the observed adverse impact of reference information on LRM-based evaluation, we hypothesize two possible factors. First, MQM human annotations are inherently reference-free, focusing solely on the source and translation without relying on references. Second, the quality of the reference itself significantly affects the correlation of automatic metrics with human judgment, as prior work [46, 33] has pointed out, "BLEU (or Metrics) might be guilty, but reference not innocent". These findings highlight the need for scale-aware design evaluation setups: the choice of evaluation materials should be informed by the capabilities and limitations of the model size in question.

Table 1: Comparison of different evaluation material setups. The hig	thest value in each model is
bolded. and \dagger indicates results that are significantly better ($p < 0.05$) by	ased on permutation tests.

	En-l	De	En-l	Es	Ja-Z	Zh		Avg.	
Materials	SPA (%)	Acc^*_{eq}	SPA (%)	Acc^*_{eq}	SPA (%)	Acc^*_{eq}	SPA (%)	Acc_{eq}^*	All
			De	eepseek-I	R1 671B				
Src.	82.1	47.4^{\dagger}	77.8	68.0	90.4	46.8^{\dagger}	83.4	54.1	68.8^{\dagger}
Ref.	80.4	43.0	67.3	68.0	88.6	43.6	78.8	51.5	65.2
Joint.	82.4	46.6	75.6	68.0	91.1	44.0	83.0	52.9	68.0
				QwQ 3	32B				
Src.	79.8	46.8^{\dagger}	76.1^{\dagger}	68.0	91.9	46.9^{\dagger}	82.6	53.9	68.3^{\dagger}
Ref.	84.2	42.9	68.7	68.0	94.3	43.5	82.4	51.5	66.9
Joint.	81.7	44.2	72.2	68.0	92.5	44.3	82.1	52.2	67.2
			R1	-Distill-L	lama 8B				
Src.	72.3	42.9	65.9	68.0	74.2	43.5	70.8	51.5	61.1
Ref.	71.8	42.9	78.5^{\dagger}	68.0	84.7	43.5	78.3	51.5	64.9^{\dagger}
Joint.	72.9	42.9	65.1	68.0	78.7	43.5	72.2	51.5	61.9
			R1	-Distill-0	Qwen 7B				
Src.	52.6	42.9	53.9	68.0	68.3	43.5	58.3	51.5	54.9
Ref.	67.3^{\dagger}	42.9	61.0	68.0	83.8	43.5	70.7	51.5	61.1
Joint.	58.4	42.9	57.0	68.0	86.1	43.5	67.2	51.5	59.3

3.3 Pitfalls of Scoring Mechanisms

Table 2: Effect of changing the rule-based scoring weights on average correlation Avg. Δ (Acc_{eq}^* , SPA) metrics.

Model	Src.	Joint.	Ref.	Avg. Δ
R1 671B	+0.60	+0.60	-0.50	+0.23
QwQ 32B	+0.20	+0.50	+0.30	+0.33
R1D-L.8B				-0.73
R1D-Q.7B				
Avg. Δ	-0.13	+0.15	-0.53	-

Figure 4: Significance testing of the contribution of the auxiliary scoring model (Qwen-2.5 32B). Test results (p < 0.05) are highlighted in distinct colors and scales.

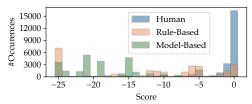
Dilemma in Post-Scoring Since LRM-based evaluators generate descriptive outputs in an autoregressive manner, an additional critical factor influencing scoring is how error spans are extracted and scored. In this work, we consider two commonly adopted paradigms: rule-based and model-based re-scoring. The rule-based scoring introduced before aggregate scores under MQM standard, offering transparency. In contrast, the model-based scoring paradigm allows for an additional stage of reflection but lacks transparency. Naturally, for a rule-based scorer, the robustness to rule changes is worth noticing. Furthermore, when auxiliary models are used for scoring, it becomes difficult to disentangle whether observed improvements stem from the LRM or auxiliary scorer.

We first investigate using the LRM itself to score error spans annotated via the GEMBA-ESA protocol. The results show no improvement over the rule-based scorer; in fact, we observe a slight performance drop (e.g., QwQ 32B yields a mean performance $68.3 \rightarrow 68.1$), along with significantly higher inference costs. Next, we employ an auxiliary model (Qwen-2.5 32B) to perform the same scoring procedure. In this setting, we find that the meta-evaluation results of LRM closely align with the that of the auxiliary model itself. This raises a critical question: are the observed gains attributable to the LRM outputs, or simply to the auxiliary model? To address this, we conduct statistical significance testing and in-depth comparison of score distributions.

Results and Discussions To answer above question, we perform significance testing between the scores produced by the "LRM + auxiliary" setup and those from the auxiliary model alone. The results in Figure 4 demonstrate that the re-scoring process using an external model fails to provide clear attribution regarding the source of evaluation performance. This finding highlights the need to either

enhance the scoring capabilities of the original LRM or adopt transparent, rule-based extraction and scoring mechanisms. Figure 5 further compares the distributions of two scoring paradigms.

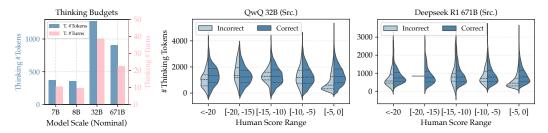
The results reveal a persistent overestimation issue in model-based evaluation. The instances that human annotators consider error-free are still judged as erroneous by the LRM. This indirectly confirms that the improvements brought by auxiliary models do not fundamentally resolve the shortcomings of LRM-based scoring and are insufficient to mitigate the overestimation problem, requiring for a Figure 5: Distribution of evaluation scores more human-centric evaluation process that mirrors human judgment rules for better correlations.



across different scoring paradigms.

Another remaining concern with a rule-based scorer is how sensitive the results are to the choice of scoring scheme. To study this, we conducted an experiment using an alternative severity weighting scheme (i.e., -3/-2/-1). Table 2 reports the average change Δ across all correlation metrics. We observe that although adjusting the weights does slightly shift the absolute correlation values, the differences are modest. A likely explanation is that meta-evaluation metrics are primarily sensitive to the rank order of segments. As long as the ordinal structure of the penalties is preserved, the rankings remain relatively stable, supporting the robustness of the rule-based scoring approach.

"Overthinking" Process: When More is Not Better



- (a) Budget statics across all languages.
- (b) Budget allocations across varying evaluation difficulties.

Figure 6: Analysis of thinking budget attribution across model scale and evaluation difficulty. Appendix B.4 includes all the results under different settings.

Thinking Budgets LRMs typically benefit from scaling test-time thinking budget. Intuitively, we investigate whether such scaling is both effective and efficient in MT evaluation. We quantify the thinking budget along two dimensions: 1) the number of tokens generated during the reasoning process, and 2) the number of reasoning turns⁴. Additionally, since two of the used LRMs also have corresponding general-purpose LLMs, we also examine their performance to assess whether LRM post-training contributes to improved performance⁵.

Results and Discussions The results in Figure 6(a) show that reasoning cost is not necessarily tied to model size. For example, QwQ, despite not being the most powerful LRM-as-a-judge model, incurs the highest reasoning cost.

Moreover, the thinking budget is also unrelated to instance difficulty. As shown in Figure 6(b), median thinking tokens remain stable across difficulty levels. An exception appears at the extremes of evaluation difficulty, where human scores are either very high or very low. The correctly aligned (i.e., model scores consistent with human judgment) predictions require more effort, while misaligned ones are cheaper. This is the only case where the thinking budget shows a hint of rational allocation.

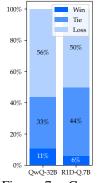


Figure 7: Comparison between LRM and its corresponding LLM.

⁴Empirically, we observe that these LRMs use output delimiter across reasoning turns.

⁵We exclude R1-Distill-Qwen 7B from this comparison, as its original model is not general-purpose LLM.

On the other hand, we compute meta-evaluation metrics across different languages and evaluation levels, comparing LRMs with their corresponding general-purpose LLMs. Statistical significance testing is used to categorize outcomes as wins, ties, or losses, shown in Figure 7. "Tie" is considered as failed significance test. The results show that LRMs underperform in nearly half of the evaluation settings, indicating that current general-purpose LRMs, despite their "slow-thinking" process, still struggle to consistently enhance evaluation performance.

4 Improving LRM via Human-Aligned Thinking Trajectory

4.1 Methodology

Motivations Our analysis reveals that standard practices of LLMs in MT evaluation are not universally optimal for LRMs. The unconstrained "thinking" processes within LRMs can be inefficient and may lead to overestimated score. Key insights derived from this analysis include: 1) Reference-free evaluation is preferable for strong LRMs, while reference-based evaluation remains suitable for weaker LRMs. 2) Aligning the LRM's reasoning process with specific scoring rubrics is crucial. 3) Extensive budget allocated to LRM "thinking" do not consistently improve performance.

ThinMQM Drawing from previous observations, we introduce **Thin**king-calibrated **MQM** (Thin-MQM) scoring method, a methodology designed to adapt LRMs to emulate human evaluation process. The core idea is intuitive: generating synthetic data that mirrors the human MQM workflow, thereby calibrating and aligning the LRM's internal thinking process with the pipeline of human evaluation.

Given human MQM annotations which consist of error spans $E = \{e_1, e_2, \ldots, e_n\}$ and their associated severity levels $L = \{l_1, l_2, \ldots, l_n\}$, we aim to model the human two-phase evaluation process. This process involves an initial error span annotation (ESA) stage, $T_{\text{ESA}}: X \to (E, S)$, followed by a scoring stage based on a rubric, $T_{\text{score}}: (E, S) \to \text{Score}_{MQM}$. We transform this sequence into a concise yet effective structured thinking chain, intended to serve as a proxy for human annotation steps. The resulting synthesized data, $\mathcal{D}_{\text{synth}} = \{(X_{\text{Src.}\vee\text{Ref.}}, [T_{\text{ESA}}(X), T_{\text{score}}(T_{\text{ESA}}(X))]\}$, adheres to the structure shown in Figure 2 (b). The LRM, denoted by M_{θ} , would be post-trained on the dataset $\mathcal{D}_{\text{synth}}$, with parameters θ producing the output sequences. The fine-tuning process seeks to update θ to θ' by minimizing the cross-entropy loss function \mathcal{L}_{CE} over all instances in $\mathcal{D}_{\text{synth}}$:

$$\theta' \leftarrow \arg\min_{\theta} \sum_{\mathcal{D}_{\text{svnth}}} \mathcal{L}_{\text{CE}}(M(X_{\text{Src.}\vee\text{Ref.}};\theta), [T_{\text{ESA}}(X), T_{\text{score}}(T_{\text{ESA}}(X))])$$
 (3)

4.2 Experiments

Data We synthesized ThinMQM training data based on the human-annotated MQM dataset from WMT23, which includes two evaluation tasks: English–German and Chinese-English. Synthetic data instances were constructed based on the methodology described above and the prompt templates detailed in Appendix C.4. Due to an imbalance distribution across the two language pairs, we downsampled the larger set to ensure balanced training data. The final dataset consists of approximately 5,980 instances per language pair, yielding a total of 11,960 training instances.

Model and Setups To verify the effectiveness of ThinMQM on various model sizes, we fine-tune 7B, 8B, and 32B models. Based on earlier analysis, we adopt a reference-based evaluation setup (Ref.) for the 7B and 8B models in both training and inference, while the 32B model employed a reference-free setup (Src.). All models are fine-tuned for 4 epochs with a learning rate of 1e-5, and the total batch size is 32. Other training hyper-parameters are detailed in Appendix C.1.

Main Results The results in Table 3 clearly demonstrate that post-training calibration with Thin-MQM significantly improves LRM performance under the same evaluation setups. Specifically, the 7B model shows gains of up to +8.7 points in meta-evaluation metrics, while the 32B model achieves a +3.9 points improvement, reaching performance comparable to state-of-the-art metrics such as xCOMET, despite those relying on training on large-scale MQM data and have different model architectures. Notably, within the LLM/LRM evaluation paradigm, our ThinMQM-32B model achieves superior average performance compared to the baselines, though not necessarily on every individual language pair.

Table 3: Performan	ce comparison of diffe	erent models.	The highest	value is b	olded, and th	e second-
best is underlined.	denotes significantly	better $(p < 0)$	0.05) results	based on 1	permutation te	ests.

	Avg.	En-De		En-Es		Ja-Zh	
Metric/Model	All	SPA (%)	Acc^*_{eq}	SPA (%)	Acc^*_{eq}	SPA (%)	Acc^*_{eq}
BLEU [6]	58.9	73.7	43.1	51.4	68.0	73.6	43.5
COMET-22 [9]	68.9	<u>87.9</u>	48.2	77.9	68.3	81.4	49.6
xCOMET [10]	<u>71.9</u>	90.6	53.0^{\dagger}	78.9	68.8	88.9	51.0
GEMBA-ESA [13]	71.1	79.1	50.7	84.0	68.3	90.8	<u>53.9</u>
Gemini-2.5-Pro [47]	71.0	82.3	51.2	76.9	68.0	94.8	53.1
Deepseek-R1 [19]	68.8	82.1	47.4	77.8	68.0	90.4	46.8
QwQ 32B	68.3	79.8	46.8	76.1	68.0	<u>91.9</u>	46.9
+ ThinMQM	72.2 _{+3.9}	$83.2_{+3.4}$	$52.5_{+5.7}$	$80.7_{+4.6}$	$69.2^{\dagger}_{+1.2}$	91.3 _{-0.6}	56.1 [†] _{+9.2}
R1-Distill-Llama-8B	64.9	71.8	42.9	78.5	68.0	84.7	43.5
+ ThinMQM	$70.8_{+5.9}$	$85.5_{+13.7}$	$48.6_{+5.7}$	$81.3_{+2.8}$	$68.2_{+0.2}$	$90.5_{+5.8}$	$51.0_{+7.5}$
R1-Distill-Qwen-7B	61.1	67.3	42.9	61.0	68.0	83.8	43.5
+ ThinMQM	$69.8_{+8.7}$	$84.5_{+17.2}$	$48.5_{+5.6}$	$77.8_{+16.8}$	$68.0_{\pm 0.0}$	$89.0_{+5.2}$	51.3+7.8

4.3 Analysis

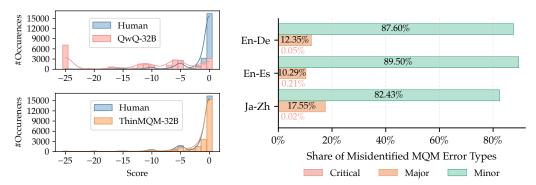


Figure 8: Comparison of scoring distribu- Figure 9: Distribution of ThinMQM-32B-human judgtions between ThinMQM and QwQ-32B. ment discrepancies across MQM error types.

Scoring Distribution As shown in Figure 8, the primary reason behind the improvement brought by ThinMQM lies in the calibrated scoring distribution⁶. Specifically, ThinMQM effectively mitigates the overestimation problem, aligning the model predicted scores more closely with the human MQM distribution, particularly in cases with non-error cases. This finding echoes the earlier observations in Figure 5, indicating that the performance gains from ThinMQM are both meaningful and justified.

Error Typology To analyze cases where ThinMQM-32B diverges from human judgments, we categorize these discrepancies according to the MQM translation error taxonomy (Critical, Major, Minor), as shown in Figure 9. The analysis shows that the largest misalignment arises from Minor-level errors. Moreover, within the Minor category, *accuracy/mistranslation* accounts for the highest proportion of discrepancies, highlighting areas where future improvements should be targeted.

Efficiency As illustrated in Figure 1 (b), ThinMQM reduced the unnecessary thinking budget while maintaining high evaluation performance. This indicates that post-training alignment not only improves effectiveness but also enhances efficiency. In practice, This represents a substantial decrease in the computational cost of LRM-based translation evaluation. For example, when evaluating English–German translations with QwQ 32B under the vLLM framework using four A100 GPUs, inference time is reduced from 12 minutes per 1,000 examples to 40 seconds on average.

⁶Please refer to Appendix B.1 for detailed language-specific distributions due to space limitation.

Table 4: Multi-run evaluation of ThinMQM at temperature 0.6. Table 5: Performance compari-Each score is presented as Mean_{Std.} over 3 independent runs.

	Avg.	En-De		En-	Es	Ja-Zh		
Model	All	SPA (%)	Acc^*_{eq}	SPA (%)	Acc^*_{eq}	SPA (%)	Acc^*_{eq}	
ThinMQM 32B	72.0.003	80.7.026	53.1.006	80.8.002	68.9.002	92.5.011	55.9.002	
ThinMQM 8B	70.4.004	83.1.021	$48.6_{.003}$	81.3.020	68.2.001	90.3.013	51.0.001	
ThinMQM 7B	$70.0_{.002}$	85.4.011	$48.2_{.004}$	77.6.002	$68.1_{.001}$	89.3.004	51.4.003	

son in Hindi-Chinese MQM.

Model	Sys. ρ	Seg. τ
XCOMET-XXL	62.5	47.8
ThinMQM 32B	63.4	57.4
ThinMQM 7B	51.3	49.1
ThinMQM 8B	50.3	47.5

Ablation Study

Stability Figure 10 demonstrates that ThinMQM is robust to test-time hyperparameter choices. We evaluate performance under various decoding settings and compare meta-metrics' scores. For example, QwQ-32B's system-level evaluation is sensitive under greedy decoding, whereas ThinMQM remains stable, nit with only a drop at the segment level. To further verify stability, we conduct three runs at a fixed temperature of 0.6. As shown in Table 4, the low standard deviation confirms that ThinMQM's performance is consistent and not subject to significant random fluctuations. Overall, these results validate our chosen decoding configuration as a broadly robust setup for LRM-based evaluation.

Generalization To perform a more stringent out-of-distribution test on a low-resource language pair, we sourced a recently released Hindi-Chinese dataset with MOM annotations [48], which was published after our LRMs' knowledge cutoff date. Since this dataset contains translations from fewer than four systems, we use system-level Pearson ρ and Kendall correlation τ as meta-

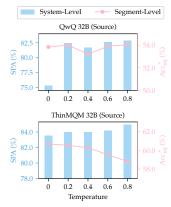


Figure 10: Performance of different models under varying temperature setups.

evaluation metrics. As shown in Table 5, ThinMQM demonstrates generalization capabilities under low-resource scenarios, outperforming the xCOMET-XXL baseline.

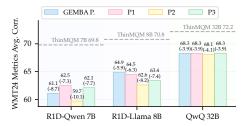


Figure 11: Comparison of ThinMQM with baselines using paraphrased prompts.

Prompting Templates To further strengthen the comparison between our proposed ThinMQM and alternative baseline prompting templates, we used GPT-40 to paraphrase our GEMBA-MQM prompt and generated three additional variants, which we denote as P1-P3. Figure 11 (details in Section B.3) shows that ThinMOM consistently maintains a performance advantage across model sizes. Besides, additional interesting observations emerge from these results. For LRM baselines, large models (32B) are relatively insensitive to prompt variation, exhibiting

only minimal differences in performance. In contrast, smaller models (7-8B) are more sensitive to prompts. However, the resulting fluctuations are limited and still do not surpass the ThinMQM.

Conclusions

In this paper, we presented a systematic investigation into LRM-as-a-judge for machine translation evaluation, exploring their capacity to model the process of MQM assessment task. Our analysis across various LRMs revealed that there is a need to tailor evaluation materials for evaluation and they "overthink" simple instances, exhibiting overestimation biases. To address this, we introduced a simple yet effective method of calibrating LRM thinking by training them on synthetic, humanlike MOM evaluation trajectories. This approach substantially reduced thinking budgets while improving evaluation performance on WMT24 Metrics benchmarks, primarily by calibrating scoring distributions and reducing overestimation. Our findings demonstrate the potential of LRMs for MT evaluation but highlight the critical need for controlled thinking and careful calibration to realize their full potential in translation evaluation, paving the way for future advancements in developing better LRM-as-a-judge in MT evaluation. Future work will extend evaluation to more diverse languages.

Acknowledgments

This work was supported in part by the Science and Technology Development Fund of Macau SAR (Grant No. FDCT/0070/2022/AMJ, China Strategic Scientific and Technological Innovation Cooperation Project Grant No. 2022YFE0204900), the Science and Technology Development Fund of Macau SAR (Grant No. FDCT/0007/2024/AKP), the Science and Technology Development Fund of Macau SAR (Grant No. FDCT/060/2022/AFJ, National Natural Science Foundation of China Grant No. 62261160648), the UM and UMDF (Grant Nos. MYRG-GRG2023-00006-FST-UMDF, MYRG-GRG2024-00165-FST-UMDF, EF2023-00151-FST, EF2023-00090-FST, EF2024-00185-FST), and the National Natural Science Foundation of China (Grant No. 62266013). We would like to thank the anonymous reviewers for their insightful comments.

Bibliography

- [1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. In Yoshua Bengio and Yann LeCun, editors, *3rd International Conference on Learning Representations, ICLR 2015*, 2015.
- [2] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 5998–6008, 2017.
- [3] Felix Stahlberg. Neural machine translation: A review. *Journal of Artificial Intelligence Research*, 69:343–418, 2020.
- [4] Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, and Luke Zettlemoyer. Multilingual denoising pre-training for neural machine translation. *Transactions of the Association for Computational Linguistics*, 8:726–742, 2020.
- [5] Marta R Costa-jussà, James Cross, Onur Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe Kalbassi, Janice Lam, Daniel Licht, Jean Maillard, et al. No language left behind: Scaling human-centered machine translation. *ArXiv preprint*, abs/2207.04672, 2022.
- [6] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin, editors, *Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics*, pages 311–318. Association for Computational Linguistics, 2002.
- [7] Maja Popović. chrF: character n-gram F-score for automatic MT evaluation. In Ondřej Bojar, Rajan Chatterjee, Christian Federmann, Barry Haddow, Chris Hokamp, Matthias Huck, Varvara Logacheva, and Pavel Pecina, editors, *Proceedings of the Tenth Workshop on Statistical Machine Translation*, pages 392–395. Association for Computational Linguistics, 2015.
- [8] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating text generation with BERT. In 8th International Conference on Learning Representations, ICLR 2020. OpenReview.net, 2020.
- [9] Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon Lavie. COMET: A neural framework for MT evaluation. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 2685–2702. Association for Computational Linguistics, 2020.
- [10] Nuno M Guerreiro, Ricardo Rei, Daan van Stigt, Luisa Coheur, Pierre Colombo, and André FT Martins. xcomet: Transparent machine translation evaluation through fine-grained error detection. *Transactions of the Association for Computational Linguistics*, 12:979–995, 2024.
- [11] Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. *ArXiv preprint*, abs/2411.15594, 2024.

- [12] Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled alpacaeval: A simple way to debias automatic evaluators. ArXiv preprint, abs/2404.04475, 2024.
- [13] Tom Kocmi and Christian Federmann. GEMBA-MQM: Detecting translation quality error spans with GPT-4. In Philipp Koehn, Barry Haddow, Tom Kocmi, and Christof Monz, editors, *Proceedings of the Eighth Conference on Machine Translation*, pages 768–775. Association for Computational Linguistics, 2023.
- [14] Tom Kocmi and Christian Federmann. Large language models are state-of-the-art evaluators of translation quality. In Mary Nurminen, Judith Brenner, Maarit Koponen, Sirkku Latomaa, Mikhail Mikhailov, Frederike Schierl, Tharindu Ranasinghe, Eva Vanmassenhove, Sergi Alvarez Vidal, Nora Aranberri, Mara Nunziatini, Carla Parra Escartín, Mikel Forcada, Maja Popovic, Carolina Scarton, and Helena Moniz, editors, *Proceedings of the 24th Annual Conference of the European Association for Machine Translation*, pages 193–203. European Association for Machine Translation, 2023.
- [15] Patrick Fernandes, Daniel Deutsch, Mara Finkelstein, Parker Riley, André Martins, Graham Neubig, Ankush Garg, Jonathan Clark, Markus Freitag, and Orhan Firat. The devil is in the errors: Leveraging large language models for fine-grained machine translation evaluation. In Philipp Koehn, Barry Haddow, Tom Kocmi, and Christof Monz, editors, *Proceedings of the Eighth Conference on Machine Translation*, pages 1066–1083. Association for Computational Linguistics, 2023.
- [16] Keith Frankish. Dual-process and dual-system theories of reasoning. *Philosophy Compass*, 5(10):914–926, 2010.
- [17] Markus Freitag, George Foster, David Grangier, Viresh Ratnakar, Qijun Tan, and Wolfgang Macherey. Experts, errors, and context: A large-scale study of human evaluation for machine translation. *Transactions of the Association for Computational Linguistics*, 9:1460–1474, 2021.
- [18] Fengli Xu, Qianyue Hao, Chenyang Shao, Zefang Zong, Yu Li, Jingwei Wang, Yunke Zhang, Jingyi Wang, Xiaochong Lan, Jiahui Gong, et al. Toward large reasoning models: A survey of reinforced reasoning with large language models. *Patterns*, 6(10), 2025.
- [19] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *ArXiv preprint*, abs/2501.12948, 2025.
- [20] Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Jiaxin Zhang, Zengyan Liu, Yuxuan Yao, Haotian Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al. From system 1 to system 2: A survey of reasoning large language models. *ArXiv preprint*, abs/2502.17419, 2025.
- [21] Aljoscha Burchardt. Multidimensional quality metrics: a flexible system for assessing translation quality. In *Proceedings of Translating and the Computer 35*. Aslib, 2013.
- [22] Arle Lommel, Serge Gladkoff, Alan Melby, Sue Ellen Wright, Ingemar Strandvik, Katerina Gasova, Angelika Vaasa, Andy Benzo, Romina Marazzato Sparano, Monica Foresi, et al. The multi-range theory of translation quality measurement: Mqm scoring models and statistical quality control. *ArXiv preprint*, abs/2405.16969, 2024.
- [23] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *ArXiv preprint*, abs/2412.15115, 2024.
- [24] Tom Kocmi, Eleftherios Avramidis, Rachel Bawden, Ondřej Bojar, Anton Dvorkovich, Christian Federmann, Mark Fishel, Markus Freitag, Thamme Gowda, Roman Grundkiewicz, et al. Findings of the wmt24 general machine translation shared task: the llm era is here but mt is not solved yet. In *Proceedings of the Ninth Conference on Machine Translation*, pages 1–46, 2024.

- [25] Markus Freitag, Nitika Mathur, Daniel Deutsch, Chi-Kiu Lo, Eleftherios Avramidis, Ricardo Rei, Brian Thompson, Frédéric Blain, Tom Kocmi, Jiayi Wang, et al. Are llms breaking mt metrics? results of the wmt24 metrics shared task. In *Proceedings of the Ninth Conference on Machine Translation*, pages 47–81, 2024.
- [26] Matthew Snover, Bonnie Dorr, Rich Schwartz, Linnea Micciulla, and John Makhoul. A study of translation edit rate with targeted human annotation. In *Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers*, pages 223–231. Association for Machine Translation in the Americas, 2006.
- [27] Matthew G Snover, Nitin Madnani, Bonnie Dorr, and Richard Schwartz. Ter-plus: paraphrase, semantic, and alignment enhancements to translation edit rate. *Machine Translation*, 23:117–127, 2009.
- [28] Thibault Sellam, Dipanjan Das, and Ankur Parikh. BLEURT: Learning robust metrics for text generation. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault, editors, *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pages 7881–7892. Association for Computational Linguistics, 2020.
- [29] Juraj Juraska, Mara Finkelstein, Daniel Deutsch, Aditya Siddhant, Mehdi Mirzazadeh, and Markus Freitag. MetricX-23: The Google submission to the WMT 2023 metrics shared task. In Philipp Koehn, Barry Haddow, Tom Kocmi, and Christof Monz, editors, *Proceedings of the Eighth Conference on Machine Translation*, pages 756–767. Association for Computational Linguistics, 2023.
- [30] Eirini Chatzikoumi. How to evaluate machine translation: A review of automated and human metrics. *Natural Language Engineering*, 26(2):137–161, 2020.
- [31] Tharindu Ranasinghe, Constantin Orasan, and Ruslan Mitkov. TransQuest at WMT2020: Sentence-level direct assessment. In Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian Federmann, Mark Fishel, Alexander Fraser, Yvette Graham, Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, and Matteo Negri, editors, *Proceedings of the Fifth Conference on Machine Translation*, pages 1049–1055. Association for Computational Linguistics, 2020.
- [32] Qingsong Ma, Johnny Wei, Ondřej Bojar, and Yvette Graham. Results of the WMT19 metrics shared task: Segment-level and strong MT systems pose big challenges. In Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, André Martins, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Marco Turchi, and Karin Verspoor, editors, *Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers)*, pages 62–90. Association for Computational Linguistics, 2019.
- [33] Markus Freitag, Nitika Mathur, Chi-kiu Lo, Eleftherios Avramidis, Ricardo Rei, Brian Thompson, Tom Kocmi, Frederic Blain, Daniel Deutsch, Craig Stewart, Chrysoula Zerva, Sheila Castilho, Alon Lavie, and George Foster. Results of WMT23 metrics shared task: Metrics might be guilty but references are not innocent. In Philipp Koehn, Barry Haddow, Tom Kocmi, and Christof Monz, editors, *Proceedings of the Eighth Conference on Machine Translation*, pages 578–628. Association for Computational Linguistics, 2023.
- [34] Chi-kiu Lo. YiSi a unified semantic MT quality evaluation and estimation metric for languages with different levels of available resources. In Ondřej Bojar, Rajen Chatterjee, Christian Federmann, Mark Fishel, Yvette Graham, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, André Martins, Christof Monz, Matteo Negri, Aurélie Névéol, Mariana Neves, Matt Post, Marco Turchi, and Karin Verspoor, editors, *Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers)*, pages 507–513. Association for Computational Linguistics, 2019.
- [35] Yu Wan, Dayiheng Liu, Baosong Yang, Haibo Zhang, Boxing Chen, Derek Wong, and Lidia Chao. UniTE: Unified translation evaluation. In Smaranda Muresan, Preslav Nakov, and Aline

- Villavicencio, editors, *Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 8117–8127. Association for Computational Linguistics, 2022.
- [36] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu, Tianyu Liu, et al. A survey on in-context learning. ArXiv preprint, abs/2301.00234, 2023.
- [37] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang, editors, *Proceedings of the* 2022 Conference on Empirical Methods in Natural Language Processing, pages 11048–11064. Association for Computational Linguistics, 2022.
- [38] Shahriar Golchin and Mihai Surdeanu. Time travel in llms: Tracing data contamination in large language models. In *The Twelfth International Conference on Learning Representations, ICLR* 2024, 2024.
- [39] Simone Balloccu, Patrícia Schmidtová, Mateusz Lango, and Ondrej Dusek. Leak, cheat, repeat: Data contamination and evaluation malpractices in closed-source LLMs. In Yvette Graham and Matthew Purver, editors, *Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 67–93. Association for Computational Linguistics, 2024.
- [40] Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin Gu, Mengfei Yang, and Ge Li. Generalization or memorization: Data contamination and trustworthy evaluation for large language models. *ArXiv preprint*, abs/2402.15938, 2024.
- [41] Brian Thompson, Nitika Mathur, Daniel Deutsch, and Huda Khayrallah. Improving statistical significance in human evaluation of automatic metrics via soft pairwise accuracy. In Barry Haddow, Tom Kocmi, Philipp Koehn, and Christof Monz, editors, *Proceedings of the Ninth Conference on Machine Translation*, pages 1222–1234. Association for Computational Linguistics, 2024.
- [42] Daniel Deutsch, George Foster, and Markus Freitag. Ties matter: Meta-evaluating modern metrics with pairwise accuracy and tie calibration. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pages 12914–12929. Association for Computational Linguistics, 2023.
- [43] Alvin E Roth. *The Shapley value: essays in honor of Lloyd S. Shapley*. Cambridge University Press, 1988.
- [44] Xu Huang, Zhirui Zhang, Xiang Geng, Yichao Du, Jiajun Chen, and Shujian Huang. Lost in the source language: How large language models evaluate the quality of machine translation. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, *Findings of the Association for Computational Linguistics: ACL 2024*, pages 3546–3562. Association for Computational Linguistics, 2024.
- [45] Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. ArXiv preprint, abs/2412.16720, 2024.
- [46] Markus Freitag, David Grangier, and Isaac Caswell. BLEU might be guilty but references are not innocent. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu, editors, *Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)*, pages 61–71. Association for Computational Linguistics, 2020.
- [47] Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit S. Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, Luke Marris, Sam Petulla, Colin Gaffney, Asaf Aharoni, Nathan Lintz, Tiago Cardal Pais, Henrik Jacobsson, Idan Szpektor, Nan-Jiang Jiang, Krishna Haridasan, Ahmed Omran, Nikunj Saunshi, Dara Bahri, Gaurav Mishra, Eric Chu, Toby Boyd, Brad Hekman, Aaron Parisi, Chaoyi Zhang, Kornraphop Kawintiranon, Tania Bedrax-Weiss, Oliver Wang, Ya Xu, Ollie Purkiss, Uri Mendlovic, Ilaï Deutel, Nam

Nguyen, Adam Langley, Flip Korn, Lucia Rossazza, Alexandre Ramé, Sagar Waghmare, Helen Miller, Nathan Byrd, Ashrith Sheshan, Raia Hadsell Sangnie Bhardwaj, Pawel Janus, Tero Rissa, Dan Horgan, Sharon Silver, Ayzaan Wahid, Sergey Brin, Yves Raimond, Klemen Kloboves, Cindy Wang, Nitesh Bharadwaj Gundavarapu, Ilia Shumailov, Bo Wang, Mantas Pajarskas, Joe Heyward, Martin Nikoltchev, Maciej Kula, Hao Zhou, Zachary Garrett, Sushant Kafle, Sercan Arik, Ankita Goel, Mingyao Yang, Jiho Park, Koji Kojima, Parsa Mahmoudieh, Koray Kavukcuoglu, Grace Chen, Doug Fritz, Anton Bulyenov, Sudeshna Roy, Dimitris Paparas, Hadar Shemtov, Bo-Juen Chen, Robin Strudel, David Reitter, Aurko Roy, Andrey Vlasov, Changwan Ryu, Chas Leichner, Haichuan Yang, Zelda Mariet, Denis Vnukov, Tim Sohn, Amy Stuart, Wei Liang, Minmin Chen, Praynaa Rawlani, Christy Koh, JD Co-Reyes, Guangda Lai, Praseem Banzal, Dimitrios Vytiniotis, Jieru Mei, and Mu Cai. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. *CoRR*, abs/2507.06261, 2025.

[48] Jianhao Yan, Pingchuan Yan, Yulong Chen, Jing Li, Xianchao Zhu, and Yue Zhang. Benchmarking gpt-4 against human translators: A comprehensive evaluation across languages, domains, and expertise levels. *arXiv preprint arXiv:2411.13775*, 2024.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer [Yes], [No], or [NA].
- [NA] means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "[Yes]" is generally preferable to "[No]", it is perfectly acceptable to answer "[No]" provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "[No]" or "[NA]" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",
- · Keep the checklist subsection headings, questions/answers and guidelines below.
- Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The first two research questions were answered in Section 3, and the last one was answered in Section 4.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of this work in the Appendix A. Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: For the purpose of approximating Shapley Value, we provided justifications based on the evaluation scenarios used in the MT evaluation.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have introduced the details of data, models and hyper-parameters for all the experiments.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We will attached the code in supplemental materials.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We have included the details of data, models and hyper-parameters for all the experiments in this paper.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes. We conducted statistical significance test for all comparison results and report them in the Table.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The compute infrastructure is described in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.

- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have followed the NeurIPS Code of ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [NA]

Justification: It is a foundational research in large reasoning model.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The research conducted in this paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We followed the licenses for existing assets.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the
 package should be provided. For popular datasets, paperswithcode.com/datasets
 has curated licenses for some datasets. Their licensing guide can help determine the
 license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We tend to use Open Source License.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We reported it in the submission system.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

Appendix

A Limitations

Our proposed calibration method relies on synthetic thinking trajectories designed to be "human-like" and "findings-driven". However, these synthetic datasets may not fully capture the diversity of human cognitive processes during MT evaluation. Additionally, since WMT24 includes MQM human ratings for only three language pairs, previous benchmarks have faced risks of data contamination. Our evaluations were primarily conducted using the WMT24 benchmarks, which may not represent all language pairs or domains equally. Lastly, this work follows an "understanding and then improving" approach. While we focus on analyzing the behavior of the LRM, the current calibration method primarily targets the efficiency of the thinking process (reducing "overthinking") and calibrating scoring distributions. More nuanced aspects of the reasoning process, such as the LRM's ability to consistently identify specific error types with fine granularity, may require more targeted or advanced alignment techniques.

B Supplementary Details

B.1 Language-specific Scoring Distributions

Figure 12 presents all the scoring distributions when evaluating instances of different languages.

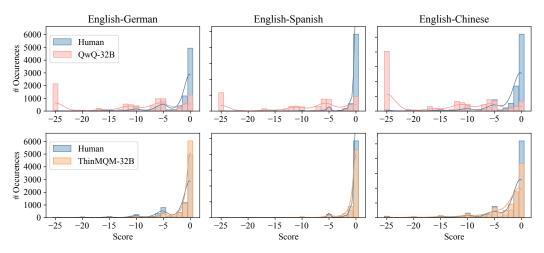


Figure 12: Distribution of MQM scores for QwQ-32B (top row) and ThinMQM-32B (bottom row) compared to human evaluations across different language pairs.

B.2 Data Contamination Prevention

To ensure the integrity of our evaluation and prevent data contamination, we implemented the following rigorous measures. For all LRMs evaluated, we rigorously verified that their official knowledge cutoff date or public release date precedes the release date of our evaluation benchmarks. This chronological separation guarantees that the models were not exposed to the test data during their original training phase. Our synthetic training data, ThinMQM, is derived from the WMT23 dataset. The source data utilized for the synthesis of the synthetic set was finalized prior to the public release of the WMT24 MQM evaluation benchmark. This temporal order ensures no overlap between our training data and the final test set. To provide full transparency, we detail the relevant dates for all major components used in this study in Table 6.

B.3 Supplementary Ablation Results

Effect of ICL Demonstrations We further analyze the effects of ICL on the baseline model in Table 7 using QwQ-32B model. The results indicate that ICL is generally beneficial, improving the

Table 6: Knowledge cutoff and release dates for all models, data sources, and benchmarks used in this work. This chronology confirms the prevention of data contamination.

Component	Type	Release Date / Knowledge Cutoff			
WMT24 MQM	Evaluation Benchmark	Oct 4, 2024			
Hindi-Chinese Expert MQM	Evaluation Benchmark	Nov 26, 2024			
QwQ 32B	LRM	Sep 19, 2024 (Qwen 2.5 Base)			
R1-Distill-Llama 8B	LRM	Dec, 2023 (Llama 3.1 Base)			
R1-Distill-Qwen 7B	LRM	Sep 19, 2024 (Qwen 2.5 Base)			
WMT23	Training Data Source	Aug 10, 2023			

Table 7: Effects of ICL. The highest value in each block is **bolded**.

	En-De		En-Es		Ja-Zh		Avg.			
Model	SPA (%)	Acc^*_{eq}	SPA (%)	Acc^*_{eq}	SPA (%)	Acc^*_{eq}	SPA (%)	Acc^*_{eq}	All	
	QwQ 32B									
Joint	81.7	44.2	72.2	68.0	92.5	44.3	67.2	82.1	52.2	
\hookrightarrow w/o ICL	80.6	42.9	68.4	68.0	90.2	43.5	65.6	79.7	51.5	
Src.	79.8	46.8	76.2	68.0	91.9	46.9	68.3	82.6	53.9	
\hookrightarrow w/o ICL	78.0	44.8	76.5	68.0	92.6	45.7	67.6	82.4	52.8	
Ref.	84.2	42.9	68.8	68.0	94.2	43.5	66.9	82.4	51.5	
\hookrightarrow w/o ICL	74.8	42.9	64.0	68.0	90.0	43.5	63.9	76.3	51.5	

average score for both the *Joint* and *Src.* settings, with the *Src.* variant achieving the best overall performance. The effect on the *Ref.* setting is more nuanced; while ICL significantly boosts the average SPA (%) (82.4 vs. 76.3), it has no discernible impact on the Acc_{eq}^* score, resulting in an identical average score of 51.5 for both configurations. These results confirm that ICL is generally an effective strategy for improving overall model performance.

Table 8: Details of Training configuration.

Hyperparameter	Value
Batch size per device	2 for 7B/8B, 1 for 32B
Gradient accumulation steps	4
Learning rate	1.0×10^{-5}
Training epochs	4.0
Learning rate scheduler	cosine
Warmup ratio	0.1
Mixed precision (bfloat16)	Enabled

Detailed Results of Prompt Variation As shown in Table 9, the ThinMQM model family still establishes a strong performance baseline when changing the prompt templates of baselines, outperforming all other tested model variants across all the scales. Our investigation into prompt sensitivity for the QwQ and R1-Distill models reveals inconsistent effects. For the QwQ 32B model, performance is relatively stable, with prompts P1 and P3 matching the GEMBA prompt baseline. Conversely, for the R1-Distill-Qwen 7B model, prompt P1 provides a notable improvement, boosting the average score from 61.1 to 62.5. Prompt P2, however, consistently degrades performance across all models. Most strikingly, for both the 8B and 7B models, the Acc_{eq}^* scores remain completely static regardless of the prompt, suggesting that while prompt engineering can influence SPA (%), it fails to improve Acc_{eq}^* for these models, supporting the choice of GEMBA prompting template.

Table 9: Performance comparison of baseline using different prompts. The highest value in each model is **bolded** and the second-best is <u>underlined</u>.

	En-De		En-Es		Ja-Zh		Avg.		
Model	SPA (%)	Acc^*_{eq}	All						
ThinMQM 32B	83.2	52.5	80.7	69.2	91.3	56.1	85.1	59.3	72.2
QwQ 32B (Gemba P.)	<u>79.8</u>	46.8	76.1	68.0	91.9	46.9	82.6	53.9	<u>68.3</u>
\hookrightarrow w/ P1	77.8	<u>47.4</u>	<u>79.3</u>	68.0	89.8	47.4	82.3	54.3	<u>68.3</u>
\hookrightarrow w/ P2	77.0	46.9	74.4	68.0	93.7	<u>48.4</u>	81.7	<u>54.4</u>	68.1
\hookrightarrow w/ P3	79.3	46.9	78.2	68.0	90.9	46.4	<u>82.8</u>	53.8	<u>68.3</u>
ThinMQM 8B	85.5	48.6	81.3	68.2	90.5	51.0	85.8	55.9	70.8
R1D-L. 8B (Gemba P.)	71.8	42.9	<u>78.5</u>	68.0	84.7	43.5	<u>78.3</u>	51.5	<u>64.9</u>
\hookrightarrow w/ P1	<u>74.5</u>	42.9	72.3	68.0	<u>85.7</u>	43.5	77.5	51.5	64.5
\hookrightarrow w/ P2	71.1	42.9	65.5	68.0	84.3	43.5	73.6	51.5	62.6
\hookrightarrow w/ P3	70.2	42.9	72.2	68.0	83.3	43.5	75.2	51.5	63.4
ThinMQM 7B	84.5	48.5	77.8	68.0	89.0	51.3	83.8	55.9	69.8
R1D-Q. 7B (Gemba P.)	67.3	42.9	61.0	68.0	83.8	43.5	70.7	51.5	61.1
\hookrightarrow w/ P1	<u>70.8</u>	42.9	<u>70.0</u>	68.0	79.6	43.5	<u>73.5</u>	51.5	<u>62.5</u>
\hookrightarrow w/ P2	63.1	42.9	58.5	68.0	82.4	43.5	68.0	51.5	59.7
\hookrightarrow w/ P3	66.5	42.9	69.6	68.0	81.9	43.5	72.7	51.5	62.1

B.4 Scoring Distribution of Different Evaluation Difficulty

Figure 13 presents all the scoring distributions when evaluating instances at varying difficulty level.

C Supplementary Setups

C.1 Training Setups

We train the 7B/8B models using 4 A100 GPUs and the 32B model using 8 A100 GPUs. To enhance training efficiency, we utilize the DeepSpeed (Zero3) framework⁷ for offloading. The settings are detailed in Table 8.

⁷https://github.com/deepspeedai/DeepSpeed

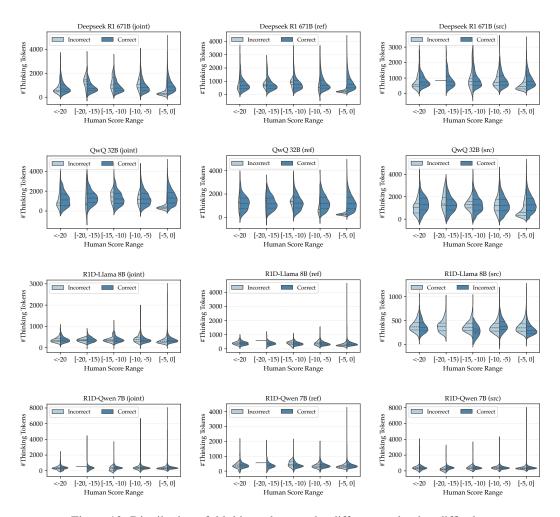


Figure 13: Distribution of thinking tokens under different evaluation difficulty.

C.2 LRM-as-a-judge Prompt

For different prompting templates, we present only one specific evaluation setup as a demonstration. For the others, we simply remove or add some information.

LRM-as-a-judge Prompt (Adapted from GEMBA-MQM, Joint. Setting)

```
{Source Language} source:
{Source Text}
{Target Language} human reference:
{Reference Text}
{Source Language} translation:
{Translation Text}
```

Based on the source segment, human reference and machine translation surrounded with triple backticks, identify error types in the translation and classify them. The categories of errors are: accuracy (addition, mistranslation, omission, untranslated text), fluency (character encoding, grammar, inconsistency, punctuation, register, spelling), style (awkward), terminology (inappropriate for context, inconsistent use), non-translation, other, or no-error. Each error is classified as one of three categories: critical, major, and minor. Critical errors inhibit comprehension of the text. Major errors disrupt the flow, but what the text is trying to say is still understandable. Minor errors are technically errors, but do not disrupt the flow or hinder comprehension. Strictly output error classification results in this format:

Critical:

```
[error_type]-[error_spans] (one per line, use no-error if empty)
```

Major:

[error_type]-[error_spans] (one per line, use no-error if empty)

Minor:

[error_type]-[error_spans] (one per line, use no-error if empty).

C.3 Auxiliary Scoring Model

LLM Post-scoring Prompt (Adapted from GEMBA-ESA, Ref. Setting)

Given the translation from {Source Language} to {Target Language} and the annotated error spans, assign a score on a continuous scale from 0 to 100. The scale has following reference points: 0="No meaning preserved", 33="Some meaning preserved", 66="Most meaning preserved and few grammar mistakes", up to 100="Perfect meaning and grammar". Score the following translation from

```
{Source Language} source: "'{Source Text}" {Target Language} translation: "'{Translation Text}" Annotated error spans: "'{ESA Details}" Score (0-100):
```

C.4 ThinMQM Template

ThinMQM Template (Src. Setting)

```
INPUT:
{Source Language} source:
{Source Text}
{Target Language} translation:
{Translation Text}
```

Based on the source segment and machine translation surrounded with triple backticks, identify error types in the translation, classify them and give a score. The categories of errors are: accuracy (addition, mistranslation, omission, untranslated text), fluency (char-

acter encoding, grammar, inconsistency, punctuation, register, spelling), style (awkward), terminology (inappropriate for context, inconsistent use), non-translation, other, or no-error. Each error is classified as one of three categories: critical, major, and minor. Critical errors inhibit comprehension of the text. Major errors disrupt the flow, but what the text is trying to say is still understandable. Minor errors are technically errors, but do not disrupt the flow or hinder comprehension. For each error span, please deduct corresponding points based on following reference points: -25="Cirtical", -5="Major", -1="Minor", -0.1="Minor/Fluency/Punctuation:0.1", 0="No-error".

OUTPUT:

<think>\n Okay, let's tackle this translation quality assessment task. First, I need to analyze the translation and classify the errors.

Critical: {Critical Error ESA} Major: {Major Error ESA} Minor: {Minor Error ESA}

Finally, I can calculate the final score: {Score Calculation Process}

<\think>

Score: {Final Score}