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Abstract

Existing informal language-based (e.g., human language) Large Language Models (LLMs)
trained with Reinforcement Learning (RL) face a significant challenge: their verification
processes, which provide crucial training signals, are neither reliable nor scalable. In
fact, the prevalent large proprietary models could hardly generate verifiable programs. A
promising yet largely uncharted alternative is formal language-based reasoning. Grounding
LLMs in rigorous formal systems where generative models operate in formal language
spaces (e.g., Dafny) enables the automatic and mathematically provable verification of their
reasoning processes and outcomes. This capability is pivotal for achieving large-scale, reliable
formal software verification. It is a common practice to employ human-annotated chain-of-
thought and other human priors to induce the reasoning and coding capabilities of LLMs.
Unfortunately, it becomes unacceptably all-consuming to provide such priors for supervising
complex programming tasks. In this work, we systematically explore ways to reduce human
priors with the formal language, Dafny, as the main environment for our pilot study. Our
pipeline mainly relies on introducing an automatic and scalable data curation pipeline,
and careful RL designs integrated with feedback from the formal language verifier. We
introduce DafnyComp, a benchmark of compositional formal programs with auto-formalized
specifications for specification reasoning. Our supervised fine-tuning (SFT) stage enables even
small models (e.g., 0.5B) to generate syntactically valid and verifiable Dafny code, surpassing
proprietary models. RL with regularization further improves performance, achieving stronger
generalization to out-of-domain tasks and outperforming all strong baselines on the challenging
DafnyComp benchmark. Anonymized code and models are available at https://github.
com/ReFormDafny/ReForm and https://huggingface.co/ReFormDafny.

1 Introduction

Coding agents draw attention in the AI community amid claims that their emergent problem-solving abilities
may foreshadow broader general intelligence, since coding allows interaction with the real world (Silver &
Sutton, 2025), enforces deductive formal reasoning (Szegedy, 2020; Li et al., 2025a), and gives the ability
of compositionality to extreme generalization (Chollet, 2019; Li et al., 2024; Tang et al., 2024). Despite
the impressive progress in automated code generation due to recent advances in large language models
(LLMs) (AlphaCode Team, 2023; Li et al., 2022; Svyatkovskiy et al., 2020), ensuring the correctness of
such code remains a significant challenge (Dalrymple et al., 2024) — especially in safety-critical domains
such as healthcare, finance, and autonomous systems, where silent failures can have serious consequences.
Traditional safeguards such as unit testing or manual code review are inherently limited: they may miss
edge cases, fail to cover all execution paths, or rely heavily on human expertise. Instead, formal verification
offers a principled alternative. Misu et al. (2024) suggest expressing a program’s intended behavior as formal
specifications and verifying whether the code can be proved correct against the formal specifications. But
this alone can be insufficient: code proven against a specification may still exhibit uncaptured behaviors
outside the specification’s stated input domain. Therefore, we propose to independently auto-formalize the
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natural language query and the code, and then verify their derived specifications’ equivalence, to guarantee
behavioral alignment (Sun et al., 2024). This report targets a challenging subproblem: the formal specification
generation, requiring deep semantic understanding and exhaustive behavioral description of arbitrary code.
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Figure 1: Model Performance on DafnyComp benchmark. We roughly categorize the cases into four groups in
an ascending quality order: Syntax Error, Syntax Correct, Verified and Verified with Superior Specification.
The growing proportion of Verified with Superior Specification suggests a rudimentary of exploration capa-
bitliy to generate stronger specifcation than the ground-truth of the models incentivized by reinforcement
learning. For further model behavioural analysis, a more refined set of definition of benchmarking metrics is
provided in Section 3.1 as standard protocol.

A key question emerges: how can formal verification be achieved more systematically through computational
approaches, potentially discovering verification strategies that complement human expertise? Unlocking this
potential of scalable computational approaches (Sutton, 2019) remains difficult, primarily due to the extreme
data scarcity (Thakur et al., 2025; Dougherty & Mehta, 2025). This scarcity causes even powerful LLM
models, including GPT (Achiam et al., 2023), Gemini (Gemini Team, Google, 2025), Deepseek (Guo et al.,
2025) and Claude (Anthropic, 2025), to perform poorly on our task as revealed in Figure 1, necessitating the
development of a specific data curation and training pipeline. Looking at prevailing practice, training heavily
relies on extensive and costly human annotations: models are anthropomorphized to mimic human thought
processes (Ibrahim & Cheng, 2025) and finetuned to match human preference (Ouyang et al., 2022). Such
reliance may trap an agent in a “cocoon” without showing genuine reasoning (Shojaee et al., 2025; Varela
et al., 2025) and deriving its own strategy (Mancoridis et al., 2025). Furthermore, we cannot expect to scale
up the human annotation process easily. For example, annotating formal code specifications for 50 entry-level
programs can take two computer scientists approximately 220 hours (Misu et al., 2024; Austin et al., 2021),
while the cost of proving SeL4 (Klein et al., 2009) is about 20 person-years. Considering these difficulties,
Silver & Sutton (2025) propose a shift from human data-centric to a more scalable paradigm where learning
agents get trained on their own experience (Silver et al., 2021).

Therefore, our report aims at minimizing human priors1 and relies on reinforcement learning (RL) for
open-ended exploration, uncovering novel solutions without direct human supervision. The verification-aware
language Dafny2 is an ideal environment for our pilot study because its automated verifier provides a machine-
checkable correctness signal for reinforcement learning, directly addressing the difficulty of authoring formal
proofs and specifications beyond human knowledge (Novikov et al., 2025). First, we automatically generate
formal specifications using proprietary frontier LLMs to seed our training data, anticipating RL to
progressively improve solution quality. To further reduce the data dependence on human knowledge, we build a

1Other forms of human priors include model architecture choices, loss functions, etc.
2https://dafny.org/;We provide details about Dafny in Appendix A.1. An example illustrating both a Dafny implementation

and its corresponding specification is shown in Appendix A.3.
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pipeline to synthesize formal code by assembling current programs. Beyond the initial seed data, no additional
human knowledge is injected. The resulting synthetic dataset is held for out-of-domain generalization testing.
Next, lacking a clear template for the intermediate reasoning steps needed in formal verification, we have
chosen to eliminate natural-language chain-of-thought (CoT) from our pipeline, supported by evidence
that no chain-of-thought mode suffices for certain reasoning tasks (Ma et al., 2025). Furthermore, using
natural language CoT for coding with LLMs is analogous to natural language programming, which Edsger W.
Dijkstra critically examines in (Dijkstra, 1979), highlighting some potential challenges related to ambiguity
and precision. Finally, our RL feedback comes from world signals or system proxies (Silver et al.,
2021; Schaul, 2024): by operating entirely in a formal-language space, an automatic evaluation signal naturally
emerges (Yang et al., 2024; Misu et al., 2024), which is the correctness of formal statements. Moreover,
inspired by the recent success of Goedel-Prover-V2 (Lin et al., 2025), which achieves performance comparable
to DeepSeek-Prover-671B (DeepSeek-AI, 2025) on MiniF2F (Zheng et al., 2022) using only an 8B model,
we believe that small models are sufficient for reasoning tasks within specific domains, such as code and
mathematics. Therefore, we focus our training efforts on smaller models, ranging from 0.5B to 14B in size.

While our goal is to reduce human priors, we recognize that an entirely self-contained system without human
data would be infeasible. Without any inductive bias, an RL agent starts by treating all token sequences
equally, causing the subsequent exploration to be highly sample-inefficient (Mitchell, 1980). In practice, the
foundational biases encoded in LLMs have driven their breakthroughs in informal reasoning tasks (Petty
et al., 2025; Ruis et al., 2025). Accordingly, we retain the following minimal human priors:

• training data seeding at the existing Python code for generating formal specifications,
• a base model pre-trained on massive human data,
• a limited supervised fine-tuning process, and
• human-designed reward, but based on the system signal.

In our task, each piece of code presents a unique formalization challenge, shaped by its own implicit constraints
and logical structure. Faced with minimal guidance, our model must deeply understand arbitrary code
snippets and infer their formal specifications. To rigorously assess learning, our task introduces a novel metric
to measure the specifications’ quality and provides a synthetic benchmark tailored to the compositionality
generalization evaluation. Our results validate the viability of our minimal-prior+RL framework: the agent
indeed fosters effective exploration, leading to meaningful improvement from the seed data and dominating in
the out-of-domain performance. To accelerate progress in this emerging direction, we open-source the entire
pipeline, including data, code3, and model checkpoints4.

2 Pipeline

Our pipeline emphasizes scalable learning via exploration and generalization, deliberately restricting human
priors to the bare essentials:

• All natural-language CoT is eliminated from our pipeline;

• The data curation is based on LLM-generation without any human annotations;

• Reinforcement learning is driven by the automatic evaluation provided by the Dafny verifier without
human judgments or process supervision.

Although Transformer models augmented with CoT have proven to simulate a universal Turing machine
(Schuurmans et al., 2024), which lays the foundation for code emulation with LLMs, the precise form of
intermediate reasoning required for formal verification remains an open question. In order to reduce human
design and annotations, therefore, in this attempt, we eliminate natural language CoTs from our pipeline,
which has been shown to be overly lengthy (Wu et al., 2025b; Lee et al., 2025), ineffective (Stechly et al.,
2025), unreliable (Korbak et al., 2025; Chen et al., 2025b; Barez et al., 2025; Lanham et al., 2023), and even

3https://github.com/ReFormDafny/ReForm
4https://huggingface.co/ReFormDafny
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Figure 2: The Illustration of Re:Form Pipeline. Human prior is extensively removed across different
components of the pipeline. Heuristic cleansing rules and model-based conversion are introduced in the data
construction and benchmark annoation for scaling along with compute investment. The task is formalized as
a simple and flexible specification generation, providing the model a vast landscape of self-exploration under
the reinforcement learning paradigm.

dispensable (Ma et al., 2025) for some reasoning tasks. This experimental setting allows us to explore the
model’s capability within the formal language space without interference from natural language.

Building upon the aforementioned contexts, we now present the detailed design of our minimal-prior pipeline
in this section following the flow of training data curation (Section 2.1), synthetic compositionality benchmark
(Section 2.2), and two-stage training design (Section 2.3 and Section 2.4).

2.1 Data Curation

Table 1: Statistics of the Dataset.

Data Source N# N#Spec N#Token

MetaReflection 0.9 k 6.53 318.57
BigCode 0.3 k 24.5 766.13
Python2Dafny 16.3k 16.94 601.71 30.3%

26.6%

6.0% 16.8%

7.1%

13.1%

17.1 Ensures
15.0 Requires
9.5 Invariant
7.4 Modifies
4.0 Reads
3.4 Decreases

Figure 3: Specification Type Distribution.

Our dataset contains 20, 000 Dafny functions across common algorithmic domains such as sorting, searching,
arithmetic manipulation, and data structure operations (e.g., linked lists and arrays). Each function is
automatically annotated using Claude 3.5 Sonnet, which was selected based on a comparative evaluation
of several state-of-the-art proprietary models on a set of 100 examples. The results of this evaluation are
provided in Table 8. The specifications generated by the chosen annotator are then statically verified using
the Dafny verifier. We design two parallel, end-to-end automated pipelines according to the data source,
which eliminates per-example human annotation entirely. An illustrative example of our Python-to-Dafny
conversion process is presented in Appendix A.4. The detailed statistics of the final derived dataset are
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provided in Table 1 and Figure 3. Our statistics show quite obviously that most of the available data is not
from vanilla Dafny from the data sources.

The first pipeline is designed to extensively leverage existing publicly available Dafny resources (Poesia et al.,
2024; Lozhkov et al., 2024). We start with a public dataset data5, and implement a lightweight crawler
that scans and processes specific .dfy files in Dafny repositories. After merging the public dataset and
automatically downloaded code modules, we apply a series of deterministic cleaning steps: first, duplicate
files are detected and removed; next, all non-essential formatting (comments, redundant whitespace, custom
annotations) is stripped out; finally, any private or irrelevant log statements are pruned. Although substantial
effort has been made to collect Dafny data across the internet, only around 1.2k of samples can pass the data
cleansing filter and remain for further training and evaluation, which reflects the data scarcity nature shared
by formal languages.

This data scarcity motivated the development of an alternative pipeline to expand the dataset using weak
supervision. Thus we propose the second pipeline, targeting consuming Python source to produce sufficient
data, which proceeds as follows:

1. Specification Template Extraction
A lightweight parser analyzes each Python function’s header to extract its name, parameters (with
inferred types), return expression, and key control structures such as loops and conditionals. These
artifacts are then mapped into a Dafny specification skeleton that automatically generates precondi-
tions (e.g. input bounds or non-null assumptions), postconditions (e.g. relationships between inputs
and outputs), and loop invariants (e.g. bounds preservation and variable progression) to guide the
subsequent translation and verification process.

2. Initial Translation
The extracted template and the original Python snippet are combined into a single prompt for the
language model as described in Algorithm 1. The prompt instructs the model to emit a complete
Dafny method whose body implements the same logic and whose contract matches the template.
The model’s response is parsed to obtain the initial Dafny translation, which is then recorded for
verification.

3. Automated Verification and Debugging
As shown in Algorithm 2, the generated Dafny code is iteratively fed to the verifier, which checks
parsing, type correctness, and proof obligations. If any obligations fail, the pipeline gathers the
verifier’s error diagnostics and the current Dafny translation, then issues a targeted debugging prompt
asking the model to correct precisely those failures. The model’s revised Dafny code is re-run through
the verifier, and this cycle repeats automatically—up to a fixed maximum of ten iterations—until
the verifier reports zero errors.

At no point does a human engineer write per-sample preconditions, postconditions, or invariants. All patterns
are encoded once in reusable templates, and the LLM handles both specification synthesis and proof-driven
repair. Humans are involved only in (1) designing the initial message templates and (2) spot-checking final
proofs for quality control. This design amortizes expert effort across thousands of samples, achieving full
formal verification with zero per-example human annotation.

2.2 Benchmark

During the pilot study, we discover that the model can gain large improvements on DafnyBench (Loughridge
et al., 2024) after supervised fine-tuning, and even outperform proprietary models with enormous parameters.
This raises the concern that the existing evaluation metric could be biased and cannot reveal the actual
progress and the generalization ability. Since a flawed benchmark can impede progress by providing inaccurate
feedback, we develop a new evaluation protocol (Cheng et al., 2025) with newly designed metrics to measure the
compositional reasoning ability on formal language coding. To establish a comprehensive evaluation framework,

5https://huggingface.co/metareflection
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Algorithm 1: Python-to-Dafny Translation and Specification Generation
Require: A set of Python code samples P
Ensure: Verified Dafny code with specifications for each sample

1: for each Python program P ∈ P do
2: Translate P to Dafny code D without specifications
3: Verify D, repairing up to 10 iterations if needed
4: if D fails to verify then
5: Report failure and continue
6: end if
7: Separate D into main function Dmain and sub-functions Dsub

8: Insert specification into Dmain

9: Verify D, repairing up to 10 iterations if needed
10: if D fails to verify then
11: Report failure and continue
12: end if
13: for each sub-function f ∈ Dsub do
14: Insert specification into f
15: Verify D, repairing up to 10 iterations if needed
16: if D fails to verify then
17: Report failure and break
18: end if
19: end for
20: Save final verified Dafny code D
21: end for

we develop a benchmark, DafnyComp, which consists of synthetic Dafny programs with enhanced quality and
complexity (Hu et al., 2025; Patel et al., 2025), accompanied by auto-formalized ground truth specifications.

Our benchmark is structured into two distinct evaluation domains. The in-domain evaluation, as described in
Section 2.1, consists of pure natural Python data primarily designed for solving natural, small-scale problems of
moderate complexity that can typically be addressed using one to two functions. However, specifications should
not only be based on individual problem-solving requirements but also on multi-function cooperation patterns.

To address this, we develop an out-of-domain evaluation framework where test cases are randomly composed
from LeetCodeDataset (Xia et al., 2025) questions. While problems in this dataset are typically solved by
single functions, we randomly combine them using chain rules and employ Claude-4 to assemble each program,
creating unified specifications that require multi-function chains of calling. The assembled programs present
additional complexity as interacting functions require specifications that account for global constraints and
the intersection of individual function specification domains. This approach enables rigorous evaluation of
in-domain performance, out-of-domain generalization, and compositional reasoning capabilities (Chollet, 2019).

Our benchmark generation process takes two stages as outlined in Algorithm 3: Program Assembly and
Formal Translation. The assembly stage creates complex Python programs by automatically combining
simpler functions from existing datasets, while the translation stage converts these Python programs into
verified Dafny implementations through iterative refinement.

2.2.1 Program Assembly Stage

The assembly stage constructs complex Python programs through systematic function combination. We
begin by filtering functions from the LeetCode dataset (Xia et al., 2025) based on code complexity metrics,
specifically retaining only functions with single input and single output (1in1out) for controllability in the
initial version, and applying McCabe Cyclomatic Complexity filtering, preserving functions with complexity
scores above 5 to ensure adequate algorithmic sophistication. Using proprietary frontier language models
(Claude), we generate call graphs of varying complexity to serve as structural templates. Functions from
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Algorithm 2: Python-to-Dafny Translation with Iterative Verification and Repair
Require: A set of Python code samples P
Ensure: Verified Dafny code and logs for each sample

1: for each Python program P ∈ P do
2: Initialize message context for P
3: Generate initial Dafny code D by querying LLM
4: Attempt to verify D and record result
5: Initialize repair iteration counter iter ← 0
6: while D does not verify and iter < 10 do
7: Update message context with debugging information from P and D
8: Regenerate Dafny code D by querying LLM
9: Attempt to verify D and update result

10: Increment iter
11: end while
12: if D verifies successfully then
13: Save final verified Dafny code and corresponding log
14: else
15: Report failure for P
16: end if
17: end for

the filtered pool are then systematically combined according to these call graph templates, with multiple
structural variations generated for identical function sets to capture different data flow patterns. The
generated Python compositions undergo comprehensive processing, including format normalization, automatic
completion of implicit third-party library imports, constraint validation to resolve input-output mismatches
between composed functions, and test case validation using existing test cases from Xia et al. (2025).

2.2.2 Formal Translation Stage

The translation stage converts validated Python compositions into verified Dafny programs through structured
generation. Due to reduced success rates in direct generation, we employ a multi-step approach based on
Python program structure, generating and verifying individual node functions before incrementally combining
them according to the Abstract Syntax Tree (AST) structure. Each generated Dafny program undergoes
up to 10 rounds of refinement to optimize syntax correctness and specification reasonableness, continuing
until either the refinement limit is reached or the code passes Dafny verification. We collect only successfully
verified Dafny programs along with their corresponding Python implementations, ensuring benchmark quality
through automated verification.

2.3 Pattern Activation through Supervised Fine-tuning

Derived from the above discussions, we formally define the specification generation task as: given a set of
code implementations c as input, the model π is required to output the full code implementation with
corresponding specifications y, i.e., a mapping described as c⊕ y = π(c). While a more efficient formalization
like specification infilling is possible, our pilot study revealed a practical challenge: existing models struggle
to generate only the specification clauses and the position information for correctly inserting them back into
the code. Therefore, to isolate the challenge of specification generation from code insertion, we adopt the
full-program generation task. While supervised fine-tuning (SFT) lays the groundwork, it is suspected of
memorizing patterns rather than achieving a true understanding (Chu et al., 2025). Furthermore, overtraining
a model may cause a loss of learning plasticity, as shown on common math and coding benchmarks (Liu et al.,
2025b). Therefore, our pipeline starts with SFT on a deliberately small subset of examples and a limited
computational budget to instill Dafny syntax and basic semantics. During the SFT stage, our training data
is ensured to contain no natural language CoTs nor any code comments.

7
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Algorithm 3: Dafny Benchmark Generation Pipeline
Require: Functions F
Ensure: Verified Dafny pairs D

1: Program Assembly Stage:
2: Filter functions by complexity > 5
3: Generate call graph templates
4: for each template do
5: Combine functions according to the template
6: Process and validate the program
7: if validation passes then
8: Add to composition set C
9: end if

10: end for
11: Formal Translation Stage:
12: for each Python program p ∈ C do
13: Convert p to Dafny code d
14: Refine d up to 10 iterations
15: if d verifies then
16: Generate specifications for the main function
17: Generate specifications for sub-functions
18: Refine complete program up to 10 iterations
19: if final program verifies then
20: Add (p, d) to result set D
21: end if
22: end if
23: end for
24: return D

2.4 Exploration with Reinforcement Learning

The ultimate goal is for the agent to infer every program’s behavior and solve previously intractable problems.
Beginning with minimal domain knowledge imparted by SFT and without further human guidance, the
agent iteratively proposes candidate specifications and receives feedback through the reinforcement learning
framework (Sutton et al., 1998). Over successive trials, this feedback refines the policy (Sutton et al., 1999),
guiding the model toward generating formal specifications describing the code behavior.

Our RL interaction-and-feedback loop leverages the Dafny verifier, powered by the Z3 theorem prover
(De Moura & Bjørner, 2008), to deliver a sound, fully automated evaluation signal requiring no
additional annotations. Although the prover may not be complete - it occasionally fails to confirm some
valid specifications, it will never erroneously accept an invalid one, thus providing a strong correctness
guarantee. By minimizing reliance on human judgment, this mechanism enables the agent to iteratively refine
generated specifications beyond human knowledge (Novikov et al., 2025).

Leveraging the automatic verifier, we introduce two rule-based reward systems evaluated only at the end
of each generation. We do not rely on process supervision, as Jia et al. (2025) shows that outcome
supervision is as effective as process supervision, thus further reducing human priors.

To guide the model toward generating syntactically correct and verifiable specifications, our first reward
scheme is composed of two types of rewards:

• Syntax rewards: The syntax reward is assigned based on whether the generated specifications pass
compilation. This component ensures that the output adheres to the programming language syntax
and type rules, serving as a low-cost proxy for correctness, as similarly used in prior works (Chen
et al., 2021; Austin et al., 2021).

8
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• Verification rewards: The verification reward is determined by whether the generated specifications
are consistent with the given code, which can be checked by the Dafny verifier. This reward follows
the evaluation metric established in prior Dafny benchmarks, including Dafny-synthesis (Misu et al.,
2024) and DafnyBench (Loughridge et al., 2024).

These two reward designs align with practices in code generation and program synthesis, where compilation
feedback is commonly used as a cheap and scalable signal (Chen et al., 2021), and test-based correctness
serves as an effective supervision signal (Le et al., 2022).

However, we observe that the model exploits the verification reward by issuing weak specifications that
trivially satisfy the verifier. To address this, we introduce a third type of reward which exploits the logical
subset relation in formal languages:

• Subset rewards: The subset reward is granted when the generated specification is superior to or at
least as strong as the ground truth by simultaneously weakening its preconditions and strengthening
its postcondition.

This subset reward serves as a faithful measure of generated specification quality: it simultaneously drives
the model to infer the weakest admissible assumptions on inputs, which are preconditions, and the strongest
guaranteed output properties, which are postconditions, thereby describing code behaviors at least as precise
as the ground truth.

Inspired by the subset-prototype developed by previous benchmarks (Sun et al., 2024; Ye et al., 2025), we
leverage the Dafny verifier to certify a generated specification’s superiority via two logical-implication checks:

1. (Precondition relaxation) GTpre ⇒ GENpre ensures the candidate precondition admits at least the
same and potentially a superset of valid inputs.

2. (Postcondition strengthening) GTpre ⇒ (GENpost ⇒ GTpost) ensures that if the generated postcon-
dition holds, then the ground-truth postcondition must also hold. In effect, this proves the generated
postcondition is at least as strong as the ground truth.

where GTpre and GENpre denote the intersection of the ground truth’s preconditions and the generated
specifications, while GTpost and GENpost denote their corresponding postconditions’ intersections. An
example for verifying the superiority between the ground truth and our generated specification is shown in
Appendix A.5.
We adopt the Group Relative Policy Optimization (GRPO) algorithm (Shao et al., 2024) for RL training,
updating the policy with a group relative policy optimization objective. Given an input Dafny code c, we
sample a group of generated Dafny codes {y1, · · · , yG} and compute the objective JGRPO(θ), which is

E c∼P (C)
{yi}G

i=1∼πθold (·|c)

[
1
G

G∑
i=1

min
(

πθ(yi | c)
πθold (yi | c) Ai, clip

(
πθ(yi|c)

πθold (yi|c) , 1 − ϵ, 1 + ϵ
)

Ai

)
− β DKL(πθ∥πref)

]
, (1)

where πθ and πθold are the current policy model and data generation model and Ai is the group-wise advantage:

Ai =
ri −mean({rj}G

j=1)
std({rj}G

j=1)
. (2)

Moreover, Liu et al. (2025b) demonstrates that incorporating a KL-divergence penalty alongside an entropy
bonus mitigates mode collapse, since KL divergence can anchor the policy to the diverse SFT model and
the entropy term can inject stochascity. Thus, we also evaluate the impact of these two regularizers in our
specification generation experiments.

In summary, we mainly study three RL configurations:

1. verification reward model, using the syntax and verification rewards,

9
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2. subset reward model, which additionally adopts the subset reward, and

3. subset reward model with KL divergence and entropy bonus included.

3 Results and Analysis

This section evaluates the effectiveness of our pipeline in the generation of the Dafny specification. Our
experiments show that, with carefully designed reward functions, our minimal-prior+RL can indeed improve
verification outcomes, enhance the quality and novelty of the generated specifications, and even enable
compositional generalization.

3.1 Experiment Setup

Models We experiment with transformers based on the Qwen-2.5 architecture (Hui et al., 2024), ranging
from 0.5B6 to 14B parameters. Larger models are not considered since we observe no obvious performance
increment of 32B over 14B. All models are initialized from pretrained checkpoints, for example, Qwen-2.5-7B-
Base. The same architecture is used throughout both the SFT and RL phases.

Dataset As mentioned in Section 2.1, our dataset consists of 20, 000 Dafny programs paired with ground
truth specifications, including preconditions, postconditions, loop invariants, and other applicable clauses. We
use 3, 000 examples for SFT training, which has been proven to be enough to instill Dafny syntax and basic
semantics in the model. We then assign another 4, 500 example for RL training and use 512 holdout programs
for in-domain evaluation. The evaluation set remains unseen during both the SFT and the RL phases,
but the data originates from the same curated Python2Dafny pipeline. To test the model’s out-of-domain
generalization, we additionally select 300 synthetic codes from the DafnyComp benchmark. For alignment
with prior literature, we additionally evaluate on 100 programs sampled from DafnyBench, the previously
largest benchmark.

Training Details In SFT training, we perform a grid search over hyperparameters across different model
sizes to identify more effective cold-start models for the subsequent RL stage, with details given in the
Appendix A.7. During RL training, we use a sampling temperature of 1.0 to generate 4 samples for each input.
The training batch size is 1, 024 and the learning rate is 1e− 5. Our main results follow the subset reward
model as introduced in Section 2.4, augmented with KL divergence and entropy bonus. We further analyze
the effects of our first verification reward model and the effects of KL divergence and entropy regularizations
in the ablation study. When applied, the KL coefficient is 0.01 and the entropy coefficient is 0.02. All
experiments are conducted on A800-SXM4-80G GPUs. An RL training of the 3B model takes approximately
20 hours to reach 40 epochs using 4 nodes of 8× GPUs. The information for different model sizes is shown
in Table 2.

Table 2: This table reports the RL training requirements using the subset reward model, including the
number of GPUs and the approximate wall-clock training time for various model sizes.

Model Size 0.5B 1.5B 3B 7B 14B
Number of GPUs 16 16 32 64 64

Training Time (hours) ≈ 11 25 20 20 36

Evaluation Metrics This section reports the percentage of data gaining three types of rewards: validation
rate, measuring the syntax correctness; verification rate, referring to the Dafny verifier pass rate; and spec
superiority rate (SSR) for the percentage of generated specifications superior to or at least as strong as the

6We use a 0.5B model distilled from a larger model as the starting point for RL training, with further details provided in
Appendix A.6
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corresponding ground truth. Here, we emphasize the importance of SSR, which measures specification quality
beyond merely passing the verifier and is the key to stimulating exploration and generalization.

3.2 Main Experiment Results

We conduct experiments across models of various sizes, ranging from 0.5B to 14B parameters. Additionally,
we perform further experiments for exploration analysis and ablation studies. To balance model capacity
with computational efficiency, results are reported using the 3B model unless stated otherwise.

Absence of CoTs Models trained under our minimal-prior+RL framework directly generate annotated
Dafny codes without outputting any other tokens before the solution for both SFT and RL. Furthermore,
there are zero comments shown in SFT outputs, and only 2% of codes contain comments after RL training.
These comments either destroy the generation, leading to syntax incorrectness, or show up after generating
the complete Dafny code, with an example shown in Figure 4. Therefore, these rare comments do not contain
reasoning that leads to the performance lift. We conclude that the following results in this section show the
performance without any CoTs.

// This program prints Hello World !
// println !(" Hello World !");

Figure 4: The figure presents an example of comments generated during RL learning, which is not extended
reasoning and is inserted after the complete Dafny code.

Improvment from SFT We begin with results from our in-domain evaluation set. After the SFT stage,
our model is able to generate Dafny code with correct syntax. As shown in Figure 5 with detailed values
written in Table 9, even the 0.5B model achieves a validation rate exceeding 80%, outperforming GPT-4o (the
best performing proprietary LLM other than our data generator, Claude). Generating syntactically correct
code is a prerequisite for subsequent reinforcement learning, and our SFT models meet this requirement.
Meanwhile, SFT sets a solid stage for RL, providing a decent verification rate and SSR.

RL training yields further gains not only in pass@1 but also in pass@128, as shown in Figure 5 and Figure 6.
Our result aligns with recent discoveries in ProRL (Liu et al., 2025b) and further demonstrates that combining
two regularization terms, KL divergence and entropy, suffices to alleviate mode collapse. This result supports
that our SFT model is not over-trained to limit RL’s exploration; meanwhile, our result gives another evidence
that RL can indeed push the SFT model boundary.

Finally, Figure 5 also illustrates the scaling behavior across model sizes (0.5B to 14B). We observe steady
gains in syntactic validity, verification success, and specification strength as the model size increases. Training
curves for all model sizes are presented in Appendix B.2.3, and detailed pass@1 metrics are written in Table 10.

Exploration Analysis Where does the improvement over SFT originate? We first rule out data contami-
nation (Wu et al., 2025a): (1) our dataset is synthetic; (2) publicly available Dafny code and formal code
specifications are negligible; (3) proprietary LLMs and the Qwen base models all perform poorly.

Having excluded leakage as a possible factor, we proceed with qualitative examples. Though SFT already
generates semantically meaningful postconditions, when looking at 128 rollouts, most rollouts only generate
part of the verifiable postconditions, describing broader output ranges than the code behavior. In this example
shown in Appendix B.2.4, none of the SFT rollouts combine all verifiable postconditions together, while the
composition is done after RL and thus strengthens the specifications. We hypothesize that SFT may tend to
link these clauses in several fixed combination patterns, limiting the composition ability of SFT.

However, RL’s ability is not limited to recomposing SFT results. Figure 7 presents a completely novel
and semantically meaningful specification, uncovered by the training corpus and all 128 SFT rollouts but
generated by our RL model. This novel specification exactly captures the numerical manipulation for different
cases and demonstrates the effective exploration happening during RL learning.
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Figure 5: The figure shows the comparison between GPT-4o, our Qwen base models, SFT models and
RL-trained models scaling over model size on our in-domain evaluation set. The pass@1 improvement of SFT
and subsequent RL over our base models is substantial.
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Figure 6: The figure reports SFT and RL performance with 128 rollouts. The plotted rate measures whether
at least one rollout attains the corresponding reward. RL yields a clear improvement from SFT, indicating
genuine quality gains rather than mere compression of rollouts.

Quantitatively, Figure 19 shows that across 128 rollouts of the RL-trained model, about 8% of data generate
novel and semantically meaningful postconditions in at least one rollout. For our “best exploration” variant,
which is not trained by the verification reward (yielding a modest verification-rate drop relative to the
main RL model, yet still exceeding SFT and achieving comparable SSR), the fraction with at least one
novel postcondition exceeds 17%. Moreover, these generated specifications span a broader coverage of the
specification embedding space, encoded by Qodo-Embed-1-1.5B (Qodo AI, 2025), as shown in Figure 18.
Moreover, these exploration scores show a strong statistical correlation to the quality evaluation metric: our
spec superiority rate, as shown in Figure 20, and demonstrate that this exploration indeed lies at the root of
the performance gain. More details of our exploration scores can be found in Appendix B.3, and training
curves for our “best exploration” variant are shown in Appendix B.2.3.

OOD-generalization To evaluate the robustness and generalization ability of our model, we select 300
out-of-domain synthetic Dafny programs from the challenging benchmark DafnyComp in Section 2.2. This
benchmark presents compositional reasoning challenges where multi-function chains require specifications that
satisfy the intersection of individual function constraints, creating a more restrictive and complex specification
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method ApplyFading ( input : seq <real >, selective : bool) returns ( output : seq <Complex >)
ensures | output | == | input |
// ////// ⇓ The novel specification
ensures forall i :: 0 <= i < | input | ==> output [i].r == input [i] * (if selective then k

else 4.0)
// ////// ⇑

{
var result : seq <Complex > := [];
var i := 0;
while i < | input |

invariant 0 <= i <= | input |
invariant | result | == i
// ////// ⇓ The novel specification ( found in RL and SFT results , but not in ground

truth )
invariant forall j :: 0 <= j < i ==> result [j].r == input [j] * (if selective then k

else 4.0)
// ////// ⇑

{
var fadeValue := if selective then k else 4.0;
var complex := new Complex ( input [i] * fadeValue , 0.0);
result := result + [ complex ];
i := i + 1;

}
output := result ;

}

Figure 7: First example of novel specifications that never show up in the SFT model’s 128 rollouts.

space compared to single-function problems. As shown in Figure 1 and Figure 8, our best RL-trained
model of 14B size maintains leading performance on this OOD benchmark, achieving a pass@1 verification
success rate of 14.0%, compared to 8.3% for the SFT-only counterpart, 2.7% for Claude functioning as our
data generator and almost 0% for other zero-shot LLMs. This suggests that reinforcement learning not
only improves in-distribution performance but also encourages the model to acquire generalizable reasoning
patterns that transfer to structurally novel and harder programs.
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Figure 8: Our 14B RL model dominates the pass@1 performance over SFT and GPT-4o, the best performing
proprietary LLM other than our data-generator, Claude. Notably, GPT-4o attains the best score on
DafnyBench, highlighting an asymmetry toward that benchmark.
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Summary Figure 8 shows that our 14B RL model dominates the pass@1 performance over 14B SFT and
GPT-4o among all three evaluation datasets, including our synthetic in-domain, out-of-domain evaluation
datasets and DafnyBench. Notably, GPT-4o barely generates verifiable specifications on our synthetic data,
both in-domain and out-of-domain; yet it attains comparable performance to our 14B SFT model on Dafny-
Bench, highlighting an asymmetry toward that benchmark and implying a possibility of data contamination.

3.3 Ablation Study

Comparison between Reward Schemes In prior Dafny specification work, the verification rate (the
fraction of specifications passing the Dafny verifier) is the de facto standard (Loughridge et al., 2024; Misu
et al., 2024). However, Figure 9 shows that using the verification reward alone significantly improves the
verification success rate but gives a low quality of specifications, with the spec superiority rate continuing
to decrease. We observe that the model exploits the reward function by omitting unverifiable clauses and
producing trivial specifications that are easy to verify but semantically weak. Examples of such trivial
specifications are provided in Appendix B.4.1. While adding the subset reward slightly sacrifices the overall
verification success rate, it substantially improves the overall quality of the output.
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Figure 9: These figures present the training curves for different reward schemes and regularization choices.
The left figure shows that using the subset reward stops the quality drop, demonstrated by the spec superiority
rate. The right figure shows that entropy regularization leads to instability in training, and all regularization
choices show similar pass@1 performance before crashing.

Effects of Regularization As shown in Figure 9 and Figure 10, all regularization choices show similar
pass@1 performance up to the point of instability, yet differ in pass@128 performance. Entropy regularization
leads to highly unstable training dynamics but reduces the mode collapse, yielding higher pass@128 rates on
compared to the SFT. It aligns with previous findings that effective exploration drives the performance gain
for pass@128, which is activated by the noise injection from the entropy regularization.

In contrast, using KL divergence alone or without any regularization cannot exceed the best pass among
16 rollouts of the SFT model, implying insufficient exploration. Moreover, adding KL divergence on top
of the entropy bonus slightly improves the pass@128 performance compared to the results in Figure 6 and
thus, we stick to this configuration.

Another effect of adding the entropy bonus is that the model often continues generating tokens after a
syntactically complete Dafny module. This occurs in only ∼ 1% of SFT outputs but rises to ∼ 80% under RL
with entropy. Note that these trailing tokens cannot function as a reasoning trace, due to the auto-regressive
nature of our model. So our statement on the absence of CoTs still holds. Rather, it suggests that naive
entropy maximization can incentivize gratuitous token emission rather than meaningful exploratory diversity
and can be further improved.
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Figure 10: This figure compares the spec superiority rate (SSR) among three RL configurations: the subset
reward with entropy only, with KL divergence added only and without any regularization. Adding entropy
regularization is the key to an increasing pass@128 performance, which injects stochasticy and thus encourages
exploration. The combination with KL divergence can further improve the performance, and thus, we stick
to this configuration.

4 Conclusion and Discussion

This work presents a learning framework for specification generation under a minimal-human-prior setting.
To promote scalability and enable autonomous self-improvement, our pipeline reduces three common
human-dependent components:

• human-annotated training data,

• natural language chain-of-thoughts,

• outcome-based rewards dependent on human judgments or token-level supervision.

Despite the removal of these priors, our method outperforms state-of-the-art LLMs across all metrics and
achieves substantial improvements in pass@128 through novel specification discovery. In particular, our
model exhibits strong out-of-domain generalization, achieving a 63.8% relative gain in spec superiority rate
(SSR) over the SFT baseline on structurally complex synthetic benchmarks. However, we do not claim
that learning without human language CoT suffices for all reasoning tasks, especially those
complicated ones. It is not impossible that the effectiveness of our training pipeline might just reflect the
simplicity of current code tasks, which are dominated by variable manipulation. We are also aware of the fact
that recent human language-based reasoning models (DeepSeek-AI, 2025) rely on automatically generated
CoT data, but this capability still ultimately stems from training signals provided by humans. Human
language CoT might still be needed and effective for more complicated reasoning tasks like in (Liang et al.,
2025) at least serving as a form of initialization. Furthermore, transformer models augmented with CoT have
proven to simulate a universal Turing machine (Schuurmans et al., 2024), which lays the foundation for code
emulation with LLMs. More importantly, we argue that reducing human priors as much as possible,
like our current attempts, could pave the path to better learned CoT (e.g., latent CoT(Zhu et al.,
2025)) through experience (Silver & Sutton, 2025) from scratch (Chung, 2024). It should be also noted that
human language CoT is usually ineffective (Stechly et al., 2025) and unreliable (Korbak et al., 2025; Chen
et al., 2025b; Barez et al., 2025; Lanham et al., 2023).

Having demonstrated the effectiveness of our minimal-prior+RL training recipe, we now scrutinize how
we measure success. It is vital that our evaluation metric truly reflects the core task, generating formal
specifications that precisely describe code behavior. Prior Dafny benchmarks stick to the verification rate
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of data passing the Dafny verifier (Loughridge et al., 2024; Misu et al., 2024). However, verification rate
alone can fail to distinguish superficial correctness from genuine specification quality. Therefore, we propose
our own evaluation metric, the subset reward or the spec superiority rate, defined as the proportion of
cases earning our subset-based reward. Our results have shown that this metric accurately distinguishes
high-fidelity specifications and drives meaningful improvements in generation quality.

However, a limitation of the current metric is its dependence on a ground-truth specification. Crucially, it is
not a supervision signal: the model can and does surpass the Claude-generated ground truth, as qualitatively
illustrated in Figure 7 and Appendix B.2.4. This is enabled by the partial order over specifications: formal
specifications admit a natural subset relation. This order allows the agent to incrementally refine solutions
through curriculum learning, so the metric need not remain tied to an initial ground truth.

Data contamination remains a concern for common reasoning benchmarks (Wu et al., 2025a; Tu et al., 2024;
Riddell et al., 2024; Dong et al., 2024). In this case, the model’s performance is possibly overestimated, and
the generalization ability is hard to assess (Shojaee et al., 2025). Our task barely suffers from this issue, with
very little Dafny code and few formal code specifications available online, and this is reflected in the poor
performance of proprietary LLMs and the near-zero success rate of the base model. Equipped with a verified
evaluation metric and a synthetic dataset, we will investigate reasoning, exploration, and generalization more
deeply in the next stage.

5 Related Work

We review the most recent papers related to our study and highlight the key differences, which do not aim
for comprehensiveness. For recent progress in LLM reasoning, please refer to Chen et al. (2025a) and Kumar
et al. (2025).

5.1 LLMs in Software Engineering

Large Language Models (LLMs) have been applied to various software engineering tasks, including code
generation, program analysis, and formal verification. AlphaEvolve (Novikov et al., 2025) introduced an
evolutionary coding agent that combined the generative capability of LLMs with automated evaluators to
iteratively evolve complex algorithms beyond single-function solutions. However, its evaluation process relied
on executing the generated code and computing scores based on human-designed metrics and benchmarks,
which required domain-specific knowledge and manual effort. AutoTriton (Li et al., 2025b) targeted GPU
kernel optimization in the Triton language and applied SFT and RL on curated high-quality data. Despite its
effectiveness, it relied on a carefully designed reward function and remained limited to a narrow application
domain. LLMs have also been evaluated on their ability to understand and manipulate compiler intermediate
representations. Jiang et al. (2025) showed that current LLMs could parse IR syntax and recognize high-level
structures but consistently struggled with instruction-level reasoning. Their methodology, however, heavily
relied on human-annotated data.

In contrast, recent efforts have explored LLMs for generating artifacts for formal verification, avoiding human
annotation. Our approach follows this direction by leveraging formal verifiers to provide automated, verifiable
feedback during training, eliminating the need for manually crafted rewards or domain-specific supervision.
VeriFast (Jacobs et al., 2011) is a long-standing static verifier for C/Java based on separation logic. Rego
et al. (2025) found that GPT-4o could generate VeriFast specifications that preserved functional behavior but
were not verifiable. Rather than having LLMs directly produce verifiable outputs, Councilman et al. (2025)
proposed Astrogator, a system that verified LLM-generated code against a formal specification derived from
the user’s prompt and confirmed by the user. Their work focused on building the verifier, particularly for the
domain-specific language, Ansible (Red Hat, 2025), rather than using verifier signals for training.

5.2 Informal vs. Formal Reasoning in LLMs

Several recent works studied the reasoning capabilities of LLMs, contrasting informal, natural-language chains
of thought with formal, verifiable logic.
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For informal reasoning, Sun et al. (2025) evaluated LLMs on math word problems and found limited
compositionality. Huan et al. (2025) showed that RL-tuned models generalized better than SFT-tuned ones,
while Yue et al. (2025) argued that RL models lacked the ability to discover novel reasoning patterns due
to insufficient exploration. In contrast, ProRL (Liu et al., 2025b) demonstrated that extended RL training
could indeed produce novel strategies. The effectiveness of CoT has also been questioned. Stechly et al.
(2025) challenged the efficacy of CoT for reasoning tasks, and Barez et al. (2025) argued that CoT did not
necessarily reflect LLMs’ internal computation. Furthermore, these approaches often relied on high-quality
human-annotated answers and reasoning traces, which were time-consuming to produce and imposed strong
human priors. They also suffered from the issue of unverifiability.

Due to these limitations, our work focused on formal reasoning without CoT or human annotation. Our pipeline
uses verifiable outputs, allowing scalable training and eliminating the need for manually crafted supervision.
Current formal reasoning research has mostly concentrated on mathematical reasoning in languages such
as Lean 4 (De Moura et al., 2015), where correctness is determined by a formal kernel. Liu et al. (2025a)
used Lean 4 to validate each step of LLM-generated proofs, effectively detecting hallucinations or logical
errors. Kimina-Prover (Wang et al., 2025) and DeepSeek-Prover-V2 (DeepSeek-AI, 2025) demonstrated strong
performance on Lean-based proof generation. Although promising, many of these approaches rely heavily on
structured prompts, curated proof formats, and manually designed reward functions. Yu et al. (2025) argued
that human-written informal reasoning could introduce noise into formal reasoning, yet their pipeline still
depended on human-annotated CoT traces. This highlights a broader trend: most existing methods continue
to incorporate significant human priors, which may limit scalability and introduce unverifiable intermediate
steps. In contrast, our work sought to minimize such human intervention. Moreover, code—as a formal
language—can also be verified using systems like Dafny (Li et al., 2025c). Yet, existing code LLM methods,
such as AZR (Zhao et al., 2025), continued to rely on human-designed unit tests and task specifications to
define reward signals, thus introducing human priors.

To the best of our knowledge, we are the first to train a code LLM using reward signals directly from a formal
verifier and to scale up reinforcement learning for formal software verification, while also reducing reliance on
chain-of-thought reasoning.

Broader Impact Statement

Our effort on reducing human priors seems to remove humans from the training and inference loops,
accelerating the human disempowerment (Kulveit et al., 2025). Despite the counterintuitiveness, our approach
is a key element to the system described in (Dalrymple et al., 2024) and can be used to build a formalized
version of debate (Irving et al., 2018), not directly contributing to recursive self-improvement. This formalized
debate could, in principle, allow for more scalable oversight, where complex claims can be rigorously verified
without constant human intervention, as key principles are actually embedded in the formal language space.
It enables the system to rigorously self-correct by identifying logical inconsistencies or misalignments within a
structured and auditable framework. This method shifts the focus from intuitive human judgment to formally
verifiable and principled argumentation.
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Appendix

A Techinical Details and Methods

In this section, we provide technical details and supporting methodology. We begin with an introduction
to Dafny, followed by a list of notations used throughout the paper. Next, we present a toy example of
Dafny code that includes both a specification and an implementation to aid reader understanding. We then
provide a detailed example of our data curation process, illustrating the Python-to-Dafny conversion pipeline
in practice. This is followed by illustrative examples to clarify the subset reward mechanism. Additionally,
we describe the distillation procedure for the 0.5B model. We then report the hyperparameter grid search
settings used during SFT, and finally, we present the prompt templates used in data synthesis and SFT
training.

A.1 Brief Introduction to Dafny

Dafny (Leino, 2010), developed by Microsoft Research, is a programming language designed for formal
program verification. Unlike traditional languages where correctness is primarily established through testing,
Dafny enables developers to write code that is mathematically proven to meet its specifications. This is
achieved by integrating an automated program verifier into the development process. The aim is to identify
bugs during the design and coding phases, rather than solely during testing, thereby enhancing software
reliability.

How Dafny Works and Its Core Strengths. Dafny’s approach stems from its verification-aware design.
Developers embed formal specifications, such as preconditions, postconditions, and loop invariants, directly
within the code (Leino, 2010). These specifications are not merely comments; they are integral components
checked by the built-in verifier. The verifier translates Dafny code and its specifications into an intermediate
verification language, Boogie, which then generates proof obligations. These obligations are processed by
an SMT solver (e.g., Z3) to prove their validity. If all obligations are proven, the code is confirmed to be
correct according to its specifications. If a proof fails, Dafny provides precise feedback on the inconsistencies.
This methodology supports correctness by construction, helping to reduce common errors like null pointer
dereferences or array out-of-bounds access (Poesia et al., 2024). Once verified, Dafny code can be translated
into mainstream languages such as Python for execution (Li et al., 2025c).

Dafny vs. Python: A Fundamental Difference in Approach. To understand Dafny’s position, it’s
useful to compare it with a widely used language like Python. While both are effective, their fundamental
design philosophies and primary objectives differ, as shown in Table 3.

Table 3: Key differences between Dafny and Python.

Feature Dafny Python
Year Introduced 2010 (Microsoft Research) 1991 (Guido van Rossum)
Type System Static typing, compile-time checks Dynamic typing, run-time checks
Formal Verification Yes — built-in contracts and proofs No — only basic assert
Main Use Verified algorithms, critical systems General-purpose programming
Execution Model Compiled with verification Interpreted (e.g., CPython)

In summary, Dafny offers a distinct approach to software development by integrating formal verification into
the language itself. While Python excels in agile development and broad applicability, Dafny is particularly
suited for domains where software correctness and formal guarantees are critical. For more, please refer to
the Dafny official website7.

7https://dafny.org/dafny/OnlineTutorial/guide
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A.2 Notation List

In this section, we briefly introduce the notations used in this article as in Table 4.

Table 4: Notations and terms used in this paper

Symbol Description
Policy π The LLM Model or Policy
Code implementation c The raw code body without specifications
Spec/Specification y A formal description of what a program is supposed to do, acting as

a contract between the program and its clients to guide verification
Dafny verifier An automatic theorem prover to check the consistency of the

specifications with the code
Precondition A condition that must be true before running a piece of code, and

thus sets the admissible input domain
Postcondition A condition that must be true after running a piece of code and

guarantees the output ranges
requires A precondition in Dafny
ensures A postcondion in Dafny
invariant A condition that holds true during loop iterations
Clause One line specification, such as

ensures |nearbyStops| <= |stops|
GT The ground truth specifications generated by Claude
GTpre The intersection of preconditions in the ground truth
GENpre The intersection of generated preconditions
GTpost The intersection of postconditions in the ground truth
GENpost The intersection of generated postconditions
Syntax reward A reward assigned based on whether the generated specifications

pass compilation
Verification reward A reward assigned based on whether the generated specifications

are consistent with the given code, which can be checked by the
Dafny verifier

Subset relation For formal statements A and B, if A⇒ B, then A is a subset of
B, denoted as A ⊂ B

Superior specifications A set of specifications with weaker preconditions and stronger
postconditions

Subset reward A reward assigned based on whether the generated specifications
are superior to or at least as strong as the ground truth

Validation Rate Percentage of generated programs without syntax error
Verification rate Percentage of generated specifications that are verified to be con-

sistent with the code by Dafny
Spec Superiority Rate Percentage of generated specifications superior to or at least as

strong as the corresponding ground truth
Novel Specification A non-trivial postcondition unseen in any of the 128 SFT rollouts
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A.3 An Example of Specification and Implementation

In this section, we present an illustrative example to aid understanding of specifications and their relationship
to code implementations. Figure 11 shows a complete Dafny function annotated with specifications:

requires n >= -1
ensures s == n * (n + 1) / 2

for the precondition and postcondition, and

invariant s == i * (i - 1) / 2
invariant 0 <= i <= n + 1

as the loop invariants. These specifications describe the expected behavior of the implementation c, including
its input assumptions, output guarantees, and the correctness conditions maintained during iteration. For
comparison, Figure 12 shows the same code without any accompanying specifications.

method Sum(n: int) returns (s: int)
requires n >= -1 // Specification
ensures s == n * (n + 1) / 2 // Specification

{
var i := 0; // Implementation
s := 0; // Implementation
while i <= n // Implementation

invariant s == i * (i - 1) / 2 // Specification
invariant 0 <= i <= n + 1 // Specification

{
s := s + i; // Implementation
i := i + 1; // Implementation

}
}

Figure 11: A toy example of a Dafny implementation with full specification, including precondition, postcon-
dition, and loop invariants.

method Sum(n: int) returns (s: int)
{

var i := 0; // Implementation
s := 0; // Implementation
while i <= n // Implementation
{

s := s + i; // Implementation
i := i + 1; // Implementation

}
}

Figure 12: The same implementation as in Figure 11, shown without any specification annotations.

A.4 An Example of the Data Curation

This section illustrates a concrete example from our automated Python-to-Dafny translation pipeline, which
forms a crucial component of our data curation process described in Section 2.1. The example demonstrates
how our system automatically converts Python functions into formally verified Dafny programs with complete
specifications.

Figure 13 shows the transformation of a Python permutation generation function into a comprehensive Dafny
implementation. The original Python code implements a recursive permutation algorithm that generates all
possible arrangements of array elements by swapping elements and making recursive calls.
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Python Code

def perm_3 (k):
if k == N:

print (arr [0] , arr [1] , arr [2])
else:

for i in range (k, N):
arr[i], arr[k] = arr[k], arr[

i]
perm_3 (k+1)
arr[i], arr[k] = arr[k], arr[

i]

arr = [1, 2, 3, 4, 5, 6, 7]
N = len(arr)
perm_3 (0)

Generated Dafny Code

method Perm3 (arr: array <int >, k: int)
requires arr. Length >= 3
requires 0 <= k <= arr. Length
modifies arr
ensures arr [..] == old(arr [..])
decreases arr. Length - k

{
if k == arr. Length {

Print (arr [0] , arr [1] , arr [2]);
} else {

var i := k;
while i < arr. Length

invariant k <= i <= arr. Length
invariant arr [..] == old(arr [..])
invariant forall j, l :: k <= j < i

&& k <= l < i && j != l ==>
arr[j] ==

old(
arr[j
]) &&
arr[l]

==
old(
arr[l
])

{
Swap(arr , k, i);
Perm3 (arr , k + 1);
Swap(arr , k, i);
i := i + 1;

}
}

}

method Swap(arr: array <int >, i: int , j:
int)

requires 0 <= i < arr. Length && 0 <= j
< arr. Length

modifies arr
ensures arr[i] == old(arr[j]) && arr[j]

== old(arr[i])
ensures forall k :: 0 <= k < arr. Length

&& k != i && k != j ==>
arr[k] == old(arr[k

])
{

var temp := arr[i];
arr[i] := arr[j];
arr[j] := temp;

}

method Print (a: int , b: int , c: int)
{

print a, " ", b, " ", c, "\n";
}

method Main ()
{

var arr := new int [7];
arr [0] := 1; arr [1] := 2; arr [2] := 3;

arr [3] := 4;
arr [4] := 5; arr [5] := 6; arr [6] := 7;
Perm3 (arr , 0);

}

Figure 13: Example of Python-to-Dafny conversion from our data curation pipeline. The left side shows the
original Python permutation function, while the right side displays the automatically generated Dafny code
with formal specifications including preconditions, postconditions, loop invariants, and termination measures.
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A.5 An Example of the Subset Reward

The subset reward is given when the generated specification is superior to the ground truth with weaker
preconditions and stronger postconditions under the same input domain. Inspired by the subset-prototype from
Clover (Sun et al., 2024), we leverage the Dafny verifier to certify a generated specification’s superiority via
two logical-implication checks for preconditions and postconditions separately. We construct two comparison
clauses, reinsert them into the input code, and verify the relationship using the Dafny verifier.

Code

method main(n: int , k: int) returns ( k_out :
int)

{
k_out := k;
var j: int := 0;
while (j < n)
{

j := j + 1;
k_out := k_out - 1;

}
}

Ground Truth

requires n > 0
requires k > n
ensures k_out >= 0

Generated Specifications

requires n >= 0
requires k >= 0
ensures k_out == k - n

Comparison Clause

// Check whether generated specifications have weaker preconditions
assert ( (n >= 0) && (k >= 0) ) <== ( (n > 0) && (k > n) );

/* Check under the precondition of the ground truth ,
whether generated postconditions are stronger */
assert ( (n > 0) && (k > n) ) == >(( k_out == k - n) ==> k_out >= 0);

Figure 14: On the top right block, we present the input code and show the extracted method preconditions
and postconditions on the top left blocks. In the bottom block, we show the comparison clauses to check
the superiority of specifications. Then, we reinsert the comparison clause into the input code and verify the
relationship using the Dafny verifier.
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A.6 Distillation Details of the 0.5B Model

Since RL can further improve a model starting from a smaller base, and its cost decreases as the model size
decreases, we adopt multiple distillation methods to obtain a well-performing 0.5B model. Table 5 summarizes
the specific configurations used for distillation. Moreover, Table 6 presents the four distillation configurations
that yields the best performance. Notably, for SeqKD, the training data is obtained by selecting the most
appropriate response from the teacher model’s Rollout-8 outputs for each sample.

Table 5: Knowledge distillation experiment design space. Abbreviations: SKD = Supervised Knowledge
Distillation, SeqKD = Sequence-Level Knowledge Distillation, KLD = Forward KL divergence, RKL =
Reverse KL divergence, JSD = Jensen-Shannon divergence.

Category Options

Distillation Algorithm SKD, SeqKD

KL Loss KLD, RKL, JSD (α = 0.5)

Temperature T = 1, T = 2

Student Model SFTed 0.5B, Base 0.5B

Teacher Model SFTed 7B, SFTed 14B

Table 6: The four best-performing distillation configurations identified.

Distillation Algorithm KL Loss Temperature Student Model Teacher Model

SKD JSD (α = 0.5) 1 Base 0.5B SFTed 7B
SeqKD RKL 1 SFTed 0.5B SFTed 7B
SeqKD JSD (α = 0.5) 1 Base 0.5B SFTed 14B
SKD RKL 2 SFTed 0.5B SFTed 7B
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A.7 SFT Training Hyperparameter Grid Search Details

All SFT training experiments are conducted on a single server equipped with 8 NVIDIA A800-SXM4-80G
GPUs, utilizing Deepspeed’s ZeRO Stage 3 optimization strategy. We employ a cosine learning rate scheduler
with a 10% warm-up period. Considering the constraints of physical memory usage, we adjust the batch
size primarily by varying the gradient accumulation steps to compensate for the batch size dimension. The
batch size per device is fixed for each model size as follows: 8 for the 0.5B model, 4 for the 1.5B model, 4 for
the 3B model, and 1 for each of the 7B and 14B models. We set aside 5K samples from the entire training
data as the SFT training set, with the SFT training time for each model size kept under 40 minutes. Table 7
shows the detailed grid search space along with the final result achieved.

Table 7: Grid search space of hyperparameters explored across different model sizes during SFT training.
Hyperparameter values highlighted in green denote the optimal configuration identified through grid search,
which was subsequently adopted in the final SFT model training.

Model Size Hyperparameter Search Space

0.5B
Gradient Accumulation Steps {1, 2, 4, 8}
Learning Rate {0.1875e-4, 0.375e-4, 0.75e-4, 1.5e-4, 3e-4}
Number of Training Epochs {5, 10}

1.5B
Gradient Accumulation Steps {1, 2, 4, 8}
Learning Rate {0.125e-4, 0.25e-4, 0.5e-4, 1e-3, 2e-3}
Number of Training Epochs {4, 8}

3B
Gradient Accumulation Steps {1, 2, 4, 8}
Learning Rate {0.625e-5, 1.25e-5, 2.5e-5, 5e-5, 1e-4}
Number of Training Epochs {4, 8}

7B
Gradient Accumulation Steps {1, 2, 4, 8}
Learning Rate {5e-6, 1e-5, 2e-5}
Number of Training Epochs {2, 4}

14B
Gradient Accumulation Steps {1, 2, 4, 8}
Learning Rate {5e-6, 1e-5, 2e-5}
Number of Training Epochs {2, 4}
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A.8 Prompt Template

In this section, we present the prompt templates used for data synthesis and SFT.

A.8.1 Data Synthesis

The prompt templates used for annotating data with Claude 3.5 Sonnet are shown in the following boxes.

Prompt for Inital Dafny Code Generation

SYSTEM
You are an expert AI assistant that writes Dafny programs. You excel at writing code with formally
verified correctness, providing precise preconditions and postconditions, and finding the appropriate
loop invariants to ensure all verification conditions are met.

TASK
Below is the Python code:

```python
<python_code>
```

Please translate this Python code into Dafny, ensuring:

1. Method Signatures: Each piece of functionality should be expressed as a Dafny method
(or set of methods) with a well-defined signature.

2. Preconditions: Clearly state any ‘requires‘ clauses for each method (e.g., array length
constraints, non-null references, numeric domain restrictions, etc.).

3. Postconditions: State the logical guarantees about the returned values or final state as
‘ensures‘ clauses (e.g., correctness of returned results, absence of side effects, etc.).

4. Verification Details: Include all necessary loop invariants (or other verification hints) so
Dafny can prove the postconditions, along with a brief explanation. For example: - Explain
how you chose your invariants. - Describe how they ensure the correctness of the loop.

Return the final Dafny code as a self-contained snippet that can be verified by Dafny as-is, with a
short explanation of how it connects to the original Python functionality.

AI ASSISTANT
<The LLM’s generated Dafny code with specifications here.>
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Dynamic Debugging Prompt for Code Generation

SYSTEM
You are an expert AI assistant that writes and debugs Dafny programs. You excel at diagnosing and
fixing verification errors based on Dafny solver messages, while maintaining correct preconditions,
postconditions, and loop invariants.

TASK
Below is the Python code:

```python
<python_code>
```

And the Dafny code you previously provided (which I tried to verify):

```dafny
<main_spec>
```

I ran dafny verify *.dfy and received this error message:

```
<dafny_analysis_result>
```

Can you please fix the main function specification so that it parses successfully? Output the
corrected main function specification only, without any other text.

AI ASSISTANT
<The LLM’s generated Dafny code with specifications here.>
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A.8.2 SFT

The prompt template used for SFT is shown in the following box. Note that no chain-of-thought reasoning is
allowed; all model outputs are used directly for Dafny verification.

SFT Prompt for Dafny Specification Generation

SYSTEM
You are an expert in Dafny. You will be given tasks dealing with Dafny programs including precise
annotations. You should only return code body in all circumstances. No text is allowed.

TASK
Given a Dafny program with function signature, preconditions, postconditions, and code, but with
annotations missing. Please return a complete Dafny program with the strongest possible annotation
(loop invariants, assert statements, etc.) filled back in. Do not explain or output any text. If you
have to explain, put all explanations in comments form. There should only be code body in your
output. Please use exactly the same function signature, preconditions, and postconditions. Do not
ever modify the given lines.
Below is the program:

```dafny
<dafny_program_with_missing_annotations>
```

AI ASSISTANT

```dafny
<The LLM’s generated Dafny code with specifications here.>
```
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B Experimental Results and Analysis

In this section, we present selected experimental results from the data curation and training process, along
with accompanying analyses.

B.1 Comparison of Conversion Success Rates of LLMs

Table 8: Model Conversion Success Rate Comparison

Model Success ratio Success count
(%, out of 100 samples)

Claude 3.5 Sonnet 55.00 55
gpt-3.5-turbo 45.00 45
gpt-4o 31.00 31
gpt-4o-mini 41.00 41
o1 36.00 36
o1-mini 33.00 33
o3-mini 37.00 37
gemini-2.0-flash 38.00 38

To select an appropriate annotator LLM for data curation, we conduct a comparative evaluation of several
state-of-the-art proprietary models on a set of 100 samples at the beginning of our process. The results are
presented in Table 8. Based on its superior performance, we choose Claude 3.5 Sonnet as the annotator LLM.

B.2 More details about Results

In this section, we present additional results from the supervised fine-tuning and reinforcement learning
training processes.
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B.2.1 SFT Results

Table 9: Our SFT models already show a significant improvement from the base model and surpass the
powerful model, GPT-4o.

Model Validation Verificaion Spec Superiority
Rate (%) Rate (%) Rate (%)

GPT-4o 47.7 12.1 7.0
Qwen-Coder-0.5B 3.5 1.6 0.0
Qwen-Coder-1.5B 5.5 1.2 0.0
Qwen-Coder-3B 6.6 2.3 0.2
Qwen-Coder-7B 17.6 3.7 0.0
Qwen-Coder-14B 5.9 2.5 0.4

0.5B SFT 80.1 33.6 18.0
1.5B SFT 84.2 41.6 22.1
3B SFT 88.7 48.0 26.6
7B SFT 90.8 53.3 27.9
14B SFT 94.3 62.9 34.2

The results of supervised fine-tuning, shown in Table 9, demonstrate a substantial improvement over the base
model, outperforming the strong baseline GPT-4o across all evaluation metrics.
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B.2.2 RL Result Table

Table 10: Evaluation results of SFT model and RL model: Validity and Verification Success Rates for
Different Model Sizes and training process.

Model Size Training Method Validity Verification Spec Superiority
Rate (%) Rate (%) Rate (%)

0.5B Verification Reward 99.2 92.8 20.7
0.5B Subset Reward 96.3 65.8 30.1
0.5B +Entropy& KL 97.1 60.9 28.5
1.5B Verification Reward 98.8 86.0 27.0
1.5B Subset Reward 97.5 72.4 40.4
1.5B +Entropy& KL 94.3 59.0 31.8

3B Verification Reward 98.8 85.2 30.7
3B Subset Reward 97.7 75.0 44.7
3B +Entropy& KL 98.0 73.4 42.0
7B Verification Reward 99.6 89.1 30.7
7B Subset Reward 98.4 78.1 49.8
7B +Entropy& KL 98.2 74.0 44.1

14B Verification Reward 99.4 92.6 37.3
14B Subset Reward 99.0 85.9 55.3
14B +Entropy& KL 99.0 84.0 53.9

Table 10 presents the results of reinforcement learning under different reward settings. Notably, models
trained with the verification reward tend to achieve high verification rates but lower spec superiority rates.
This outcome is likely due to reward hacking: when trained with verification reward alone, the model
may learn to generate overly weak specifications that are easily accepted by the verifier. As a result, the
generated postconditions are less informative or meaningful compared to the ground truth, leading to reduced
specification superiority.
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B.2.3 RL Training Curves

Figure 15 and Figure 16 show the training curves for all model sizes with different rewards. Notably, entropy
regularization results in unstable training dynamics and causes training to collapse after approximately 100
steps. Our "explore variant" with the highest exploration score is trained under the syntax and subset reward
only, and thus gives a slightly lower verification rate drop but shows comparable SSR. The "explore variant"
is mainly tested on 3B model, and the results tested on the other two sizes are similar.
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Figure 15: Training curves with 0.5B, 1.5B and 3B models for verification reward model, subset reward model
without regularization, subset reward model with KL and entropy, and our "explore variant". Here, our
"explore variant" is trained under the syntax and subset reward without optimizing the verification reward or
adding any regularization, but gives the highest exploration scores shown in the next Section.
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Figure 16: Training curves with 7B and 14B models for verification reward model, subset reward model
without regularization, and subset reward model with KL and entropy.

B.2.4 Qualitative Analysis

Figure 17 compares example outputs from models trained with different reward signals. Notably, the model
trained with the subset reward produces a strictly stronger specification. It also captures an additional
behavior—specifically, the case where the grid contains no princess—that is not handled by the ground-truth
specification, demonstrating improved coverage of the program’s logic.
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Code
method findPrincess (n: int , grid: seq <seq <char >>) returns ( position : (int , int))
{

var i := 0;
position := (-1, -1);
while i < n
{

var j := 0;
while j < n
{

if grid[i][j] == ’p’ {
position := (i, j);
return ;

}
j := j + 1;

}
i := i + 1;

}
}

Ground Truth
requires n > 0
requires |grid| == n
requires forall i :: 0 <= i < n ==> |grid[i]| == n
requires exists i, j :: 0 <= i < n && 0 <= j < n && grid[i][j] == ’p’
ensures 0 <= position .0 < n && 0 <= position .1 < n
ensures grid[ position .0][ position .1] == ’p’

Verification Reward Generation
requires n > 0
requires |grid| == n && forall i :: 0 <= i < n ==> |grid[i]| == n
ensures -1 <= position .0 < n && -1 <= position .1 < n

Subset Reward Generation
requires n >= 0
requires |grid| == n && n >= 0
ensures position .0 == -1 && position .1 == -1 ==>

forall i, j :: 0 <= i < n && 0 <= j < n ==> grid[i][j] != ’p’
ensures position .0 != -1 && position .1 != -1 ==>

0 <= position .0 < n && 0 <= position .1 < n &&
grid[ position .0][ position .1] == ’p’

Figure 17: The top block shows the input code, followed by the extracted preconditions and postconditions
for three cases: the ground-truth specification, the output from the model trained with verification reward,
and the output from the model trained with subset reward. The subset reward model produces a strictly
stronger specification, capturing an additional behavior (the case with no princess in the grid) that is not
covered by the ground-truth, thus demonstrating superior logical coverage.
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B.3 More Exploration Analysis

In addition to correctness metrics, we also evaluate the quality of the model-generated content. To assess
whether the RL-trained model produces specifications that are not present in the ground-truth dataset or
those generated by the SFT model, we introduce the Novel Spec Rate.

B.3.1 Novel Spec Rate

Novel spec rate measures if a rollout contains stronger post-conditions than the intersection of all postconditions
from SFT 128 rollouts. So it is more than string matching. If a postcondition is a rephrasing, it does not
count as novel. If the postcondition is trivially true without narrowing the output domain, it does not count
as novel either. We are looking for semantical novelty which represents genuine reasoning. We again rely on
Dafny’s formal verifier to check if a specification is novel.

We combine all postconditions from SFT 128 rollouts, denoted as SFTall, and check whether adding the
generated postconditions, denoted as GENpost, into the combination still gives an equivalent output domain.
If not, a stronger postcondition is generated.

We further update the design to exclude an extra hacking by directly ensuring the precondition: we add
the generated precondition to both sides and check whether the following equivalence holds. If not, a novel
specification is generated.

SFTall + GENpre == SFTall + GENpre + GENpost.

B.3.2 Diversity Score

We also pay special attention to the diversity of the model outputs. A lack of diversity can lead to degraded
performance, particularly when multiple outputs share the same incorrect structure or failure mode (Zheng
et al., 2025). To quantify diversity, it is appropriate and common to embed generated code into a latent vector
space using a pretrained code encoder. This approach was used in code search, generation (Trivedi et al.,
2021), and semantic analysis (Han et al., 2022). Following this practice, we use the Qodo-Embed-1-1.5B
model (Qodo AI, 2025) to encode the postconditions of Dafny programs. We then measure diversity by
computing the variance of these embeddings across the generated programs.

To measure the diversity of postconditions in one generated Dafny program, we first apply an auxiliary
encoder (Qodo AI, 2025) to convert every postcondition into an embedding. To quantify diversity in the
embedding space, we compute the variance over all embeddings.

Concretely, for one generated Dafny program D we extract postcondition sentences P1, P2, . . . , Pn. Encoding
each sentence gives ei = Encode(Pi), i = 1, . . . , n, and thus the set of embeddings {ei}n

i=1. We define the
diversity score of the dafny program D as the variance of {ei}n

i=1. Namely, if we denote the mean embedding
as µ = 1

n

∑n
i=1 ei,, the diversity score is

Diversity(D) = V ar{ei}n
i=1 = 1

n

n∑
i=1

∥∥ei − µ
∥∥2

.

The diversity score, as an auxiliary metric, helps estimate the distance between generated programs in the
latent space, providing insight into the variety introduced by the model.

To examine how the diversity of generated postconditions changes with the number of rollouts, we compute a
diversity score for each rollout group. Given a rollout number G, we collect the postconditions from the G
generated programs and encode them into fixed-dimensional embeddings. We then calculate the variance of
these embeddings, which we use as a measure of diversity. This metric reflects how dispersed the generated
specifications are in the embedding space. By observing how the diversity score varies with G, we can assess
whether generating more rollouts leads to a wider range of specifications.

40



Under review as submission to TMLR

B.3.3 Quantitative Results

We evaluate models trained under different reward configurations, including subset reward with and without
the verification component, as well as a supervised fine-tuned (SFT) baseline. The results for all models are
presented in Figure 18 and Figure 19.
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Figure 18: Left: Novel specification generation rate versus rollout count across different models. The SFT
model yields zero novel specifications and serves as a baseline. Right: Diversity score (measured as embedding
variance) versus rollout count for the same models. These plots illustrate how novelty and diversity evolve
with increasing rollouts. All models with subset rewards shown here are trained without the verification
reward.
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Figure 19: Left: Novel specification generation rate versus rollout count across different models. The SFT
model yields zero novel specifications and serves as a baseline. Right: Diversity score (measured as embedding
variance) versus rollout count for the same models. These plots illustrate how novelty and diversity evolve
with increasing rollouts. All models with subset rewards shown here are trained with the verification reward.

As shown in Figure 18 and Figure 19, the diversity score increases with the number of rollouts. Notably,
in Figure 18, when both KL divergence and entropy regularization are applied during training without the
verification reward, the diversity score of the RL-trained model increases substantially—surpassing that of all
other models starting from two rollouts. This indicates that, as rollouts increase, the specifications generated
by this model become more dispersed in the embedding space, reflected by higher variance, compared to
those produced by the SFT model or RL-trained models without regularization. In contrast, RL-trained
models without KL divergence and entropy consistently achieve lower diversity scores than the SFT baseline,
suggesting that, without these regularization terms, reinforcement learning produces specifications with lower
variability.

However, when the verification reward is included in the subset reward, both the diversity score and the novel
specification rate drop significantly—even though the regularized model still slightly outperforms the others
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on novelty and maintains diversity comparable to the SFT model. These results suggest that excluding the
verification reward from the subset reward leads to better exploration, as reflected by increased diversity and
a higher rate of novel specifications.

To better understand the relationships among the evaluation metrics, we analyze pairwise correlations using
data from the 128 rollouts and compute the Pearson correlation coefficient for each model. The scatter plots
in Figure 20 visualize the relationships between selected metric pairs. Each point represents a rollout group,
with axes corresponding to different metrics.
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Figure 20: Left: Scatter plot of spec superiority rate versus novel specification rate. Right: Scatter plot of
diversity score versus spec superiority rate. Each data point corresponds to a rollout group. Different colors
indicate different models. Pearson correlation coefficients (r) are computed separately for each model.

The left plot in Figure 20 shows the correlation between the novel specification rate and the spec superiority
rate. The Pearson correlation coefficients range from rmin = 0.86 to rmax = 0.97, indicating a strong positive
correlation.

The right plot shows the relationship between the spec superiority rate and the diversity score, with correlation
coefficients ranging from rmin = 0.83 to rmax = 0.91. This suggests a strong positive association between
specification quality and diversity score.

B.3.4 Discussion about Diversity Score

Table 11: This table compares the diversity scores of different models at 128 rollouts with that of the ground
truth postconditions. At 128 rollouts, all trained models achieve higher diversity scores than the ground
truth.

Model SFT Verification Subset Subset+KL+entropy Ground Truth
Diversity Score 5700 5497 5493 5760 5275

Table 11 compares the diversity scores of different models at 128 rollouts with those of the ground truth
postconditions. The results show that all trained models produce postconditions with greater variance in the
embedding space than the ground truth.

B.4 Examples Before and After

This section presents example specifications before and after training: it first shows trivial statements, followed
by novel specifications discovered during training.
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B.4.1 Trivial Specifications

This section presents examples of trivial specifications. These specifications are easy to verify as true, but are
semantically weak and uninformative about the code’s intended behavior. As shown in Figure 21, statements
such as

ensures -1.111 == -1.111

represent simple facts that can pass the verifier but provide no meaningful information.

Similarly, as illustrated in Figure 22, statements like

ensures forall i :: 0 <= i < | rpn | ==> rpn[i].Number? || true

are vacuously true because A || true is always true, regardless of the condition A. Therefore, although such
statements pass the verifier, they lack semantic content and do not contribute to understanding or validating
the program’s behavior.

class Board {
var cells : array <int >;
ghost var Valid : bool;
constructor Init ()

// ////// ⇓ These postconditions are trivially true
ensures -1.111 == -1.111
ensures 500 <= 5000
ensures 0 <= 30
ensures "abc" == "abc"
ensures 11 > 10
ensures forall u,v :: u >=0 && v >0 ==> u+v!=u+v
ensures 123 > 122
ensures "abc" == "abc"
ensures forall w,x,y :: w >=0 && x >0 && y >0 ==> w*x*y >=0
ensures 456 > 455
ensures 789 > 788
ensures forall u,v,w :: u >=0 && v >0 && w >0 ==> u*v*w >=0
ensures -2.23 == -2.23
ensures -0.321 == -0.321
ensures 500 <= 5000
// ////// ⇑

{
cells := new int [9];
Valid := true;

}
}

Figure 21: An example of trivial specification. These postconditions are trivially true

B.4.2 Novel Spectifications

As shown in Figure 7, Figure 23, the specifications

ensures forall i :: 0 <= i < |input| ==>
output[i].r == input[i] * (if selective then k else 4.0)

and

invariant processedStudents == set x | 0 <= x < i :: enrollments[x].accountKey

are novel specifications generated by RL-trained model with the subset reward scheme, which did not show
up in the SFT model’s 128 rollouts.

In another example shown in Figure 24, the specification
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datatype Token = Number ( value : int) | Operator (op: char)
method ConvertToRPN ( tokens : seq <Token >) returns (rpn: seq <Token >)

ensures |rpn| >= 0
// ////// ⇓ These postconditions are trivially true
ensures forall i :: 0 <= i < |rpn| ==> rpn[i]. Number ? || true
ensures |rpn| == 0 ==> true
ensures |rpn| >= 0 ==> true
ensures forall i :: 0 <= i < |rpn| ==> rpn[i]. Number ? || true
ensures |rpn| >= 0 ==> true
ensures |rpn| == 0 ==> true
// ////// ⇑

{
var stack : seq <Token > := [];
rpn := [];
var i := 0;
while i < | tokens |

invariant 0 <= i <= | tokens |
invariant |rpn| >= 0
invariant | stack | >= 0
invariant |rpn| >= 0
// ////// ⇓ These invariants are trivially true
invariant forall j :: 0 <= j < |rpn| ==> rpn[j]. Number ? || true
// ////// ⇑

{
var token := tokens [i];
if token . Number ? {

rpn := rpn + [ token ];
} else {

while | stack | > 0 && Precedence ( stack [| stack | -1]) >= Precedence ( token )
invariant | stack | >= 0
invariant |rpn| >= 0
// ////// ⇓ This invariant is trivially true
invariant forall j :: 0 <= j < |rpn| ==> rpn[j]. Number ? || true
// ////// ⇑

{
rpn := rpn + [ stack [| stack | -1]];
stack := stack [..| stack | -1];

}
stack := stack + [ token ];

}
i := i + 1;

}
while | stack | > 0

invariant | stack | >= 0
invariant |rpn| >= 0
// ////// ⇓ This invariant is trivially true
invariant forall j :: 0 <= j < |rpn| ==> rpn[j]. Number ? || true
// ////// ⇑

{
rpn := rpn + [ stack [| stack | -1]];
stack := stack [..| stack | -1];

}
}

Figure 22: An example of trivial specification. These postconditions are trivially true.

modifies mask, prunedValues

is a novel specification generated by rl-trained model that specifies the exact set of variables that a or loop is
allowed to update, which did not show up in the SFT model’s 128 rollouts.

Besides, in the example plotted in Figure 25, the rl-trained model declares novel specifications

decreases nK_s - k
decreases hatk - i,
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datatype Enrollment = Enrollment ( accountKey : string , joinDate : int , cancelDate : int)
method CountProblemStudents (

enrollments : seq < Enrollment >,
engagedStudents : set <string >

) returns ( problemCount : int)
ensures problemCount >= 0
ensures problemCount <= | enrollments |

{
problemCount := 0;
var processedStudents := {};
var i := 0;
var problemStudents := {};
while i < | enrollments |

invariant 0 <= i <= | enrollments |
invariant problemCount <= i
invariant problemCount >= 0
// ////// ⇓ The novel specification
invariant processedStudents == set x | 0 <= x < i :: enrollments [x]. accountKey
// ////// ⇑
decreases | enrollments | - i

{
var enrollment := enrollments [i];
var student := enrollment . accountKey ;
if student !in engagedStudents &&

enrollment . joinDate != enrollment . cancelDate &&
student !in problemStudents

{
problemStudents := problemStudents + { student };
problemCount := problemCount + 1;

}
processedStudents := processedStudents + { student };
i := i + 1;

}
}

Figure 23: Second example of novel specifications that did not show up in the SFT model’s 128 rollouts.

which means the variables nK_s - k, hatk - i must strictly decrease on each loop to guarantee termination.
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method PruneWeights ( weights : Matrix , compressRate : real) returns ( result : Matrix , mask:
array2 <bool >)

requires weights .rows > 0 && weights .cols > 0
requires weights . values . Length0 == weights .rows
requires weights . values . Length1 == weights .cols
requires 0.0 <= compressRate <= 1.0
ensures fresh (mask)
ensures mask. Length0 == weights .rows
ensures mask. Length1 == weights .cols
ensures result .rows == weights .rows
ensures result .cols == weights .cols
ensures result . values . Length0 == weights .rows
ensures result . values . Length1 == weights .cols

{
mask := new bool[ weights .rows , weights .cols ];
var prunedValues := new real[ weights .rows , weights .cols ];
var threshold := 0.0;
var i := 0;
while i < weights .rows

invariant 0 <= i <= weights .rows
invariant mask. Length0 == weights .rows && mask. Length1 == weights .cols
invariant prunedValues . Length0 == weights .rows
invariant prunedValues . Length1 == weights .cols
// ////// ⇓ The novel specification
modifies mask , prunedValues
// ////// ⇑

{
var j := 0;
while j < weights .cols

invariant 0 <= j <= weights .cols
invariant 0 <= i < weights .rows
// ////// ⇓ The novel specification
modifies mask , prunedValues
// ////// ⇑

{
if abs( weights . values [i,j]) > threshold {

mask[i,j] := true;
prunedValues [i,j] := weights . values [i,j];

} else {
mask[i,j] := false ;
prunedValues [i,j] := 0.0;

}
j := j + 1;

}
i := i + 1;

}
result := Matrix ( weights .rows , weights .cols , prunedValues );

}

Figure 24: An example of novel specification "modifies" that did not show up in the SFT model’s 128
rollouts.
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method ARSEngine (nK_s: int , nT: int , K_g: int , sigma : real) returns ( pattern : array <int >)
requires nK_s > 0
requires nT > 0
requires K_g > 0
requires sigma >= 0.0
ensures fresh ( pattern )
ensures pattern . Length >= 1

{
var tempPattern := new int [2 * nK_s ];
var hatk := 0;
var n_hatk := 0;
var k := 0;
while k < nK_s

invariant 0 <= k <= nK_s
invariant 0 <= hatk <= 2 * nK_s
// ////// ⇓ The novel specification
decreases nK_s - k
// ////// ⇑

{
var x_k: real := GaussianRandom ();
var nstar_hatk := n_hatk + nT + (x_k * RealSqrt ( sigma ) * (nT as real)). Floor ;
if (0 < nstar_hatk <= K_g) {

n_hatk := nstar_hatk ;
if hatk < tempPattern . Length {

tempPattern [hatk] := n_hatk - 1;
hatk := hatk + 1;

}
}
k := k + 1;

}
if hatk == 0 {

pattern := new int [1];
pattern [0] := 0;

} else {
pattern := new int[hatk ];
var i := 0;
while i < hatk

invariant 0 <= i <= hatk
invariant pattern . Length == hatk
// ////// ⇓ The novel specification
decreases hatk - i
// ////// ⇑

{
pattern [i] := tempPattern [i];
i := i + 1;

}
}

}

Figure 25: An example of novel specification "decreases" that did not show up in the SFT model’s 128
rollouts.
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