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Abstract

Collecting robotic manipulation data is expensive, making it impractical to acquire demon-
strations for the combinatorially large space of tasks that arise in multi-object, multi-robot,
and multi-environment settings. While recent generative models can synthesize useful data
for individual tasks, they do not exploit the compositional structure of robotic domains
and struggle to generalize to unseen task combinations. We propose a semantic composi-
tional diffusion transformer that factorizes transitions into robot-, object-, obstacle-, and
objective-specific components and learns their interactions through attention. Once trained
on a limited subset of tasks, we show that our model can zero-shot generate high-quality
transitions from which we can learn control policies for unseen task combinations. Then, we
introduce an iterative self-improvement procedure in which synthetic data is validated via of-
fline reinforcement learning and incorporated into subsequent training rounds. Our approach
substantially improves zero-shot performance over monolithic and hard-coded compositional
baselines, ultimately solving nearly all held-out tasks and demonstrating the emergence of
meaningful compositional structure in the learned representations.
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Figure 1: Iterative Compositional Data Generation.

1 Introduction

Augmenting model training with self-generated data is a promising approach to improve sample efficiency
in domains where collecting real data is expensive. In the context of robotic manipulation, gathering new
experience requires operating a physical robot—a process that is labor- and time-intensive, and incurs wear,
maintenance, and energy costs. Consequently, collecting data from scratch for every possible new manip-
ulation task quickly becomes impractical as evidenced by various large-scale data collection efforts (Walke
et al., 2023; O’Neill et al., 2024; Khazatsky et al., 2024). Recent work has shown that current generative
models can produce data of sufficient quality to enable training models with substantially reduced real-world
experience, including in control settings (Yu et al., 2023; Lu et al., 2023; Liang et al., 2023). However,
most existing approaches focus on improving sample efficiency within a single task, and do not leverage
self-generated data to accelerate learning on entirely new tasks (Janner et al., 2022; Lu et al., 2023).
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In this work, we investigate whether a robot learning system can iteratively improve its ability to solve
unseen tasks by generating artificial training data for those unseen tasks with a self-improving generative
model (Figure 1). We leverage the insight that cross-embodiment robotic manipulation domains exhibit
an inherent compositional structure, whereby each task solution involves a unique composition of reusable
models of objects, skills, and controllers. Our central hypothesis is that constructing model architectures
that explicitly exploit this compositionality enables zero-shot generation of high-quality synthetic training
data for novel task compositions, mitigating the need to relearn every task from scratch on a physical robot.

We focus on a reinforcement learning (RL) setting in which tasks are defined compositionally (Mendez
et al., 2022a; Hussing et al., 2024), constructed by combining a small number of elements such as robots,
objects, obstacles, and goals. Intuitively, machine learning approaches can exploit the inherent combinatorial
structure of these domains to generalize to unseen task configurations. Yet, standard single-and multi-task
agents require vast amounts of data in such settings, struggling to exploit the compositional structure when
the available data is small. Learners are better able to exploit the structure when the policy architecture
mirrors the underlying task factorization (Devin et al., 2017; Andreas et al., 2017; Mendez et al., 2022a;b).

One outstanding challenge is that pre-defining such architectures requires strong prior knowledge about
the correct decomposition. While much prior engineering knowledge is available for the robotics tasks we
consider, it is unclear that these priors are optimal. In this work, we instead train a transformer to learn
the compositional structure directly from data, leveraging the transformer interpretation as a graph neural
network (GNN). Instead of training a policy on a subset of task combinations and evaluating its zero-
shot capabilities, we train a diffusion transformer on the same subset of tasks to generate training data
for the policies of unseen task combinations, thereby reducing the amount of data required to learn novel
behaviors. The model learns a separate tokenizer for each individual task module (e.g., a specific robot,
object, or environment) and uses cross-attention to infer the graph that connects these encoders. This yields
a representation that is analogous to the hard-coded compositional network used in earlier work (Mendez
et al., 2022a), but the structure is learned from data rather than specified a priori.

We first demonstrate that our task-conditional diffusion transformer enables superior zero-shot generalization
capabilities compared to monolithic architectures. We then highlight the need for compositional tokenization
by showing that models with factor-specific tokenizers achieve improved zero-shot performance relative to
models that rely on a single shared tokenizer. Next, we show that models that properly learn the underlying
task decomposition can be iteratively trained on their own generated data for unseen tasks to produce
training data for solving more new tasks without requiring additional real data. Finally, we analyze the
learned representations and find that the model discovers a decomposition that differs from previous work,
indicating that effective compositional structure can emerge automatically from data.

2 Preliminaries

We formulate our problem as generating data of and learning policies in a Markov decision process (MDP)
Mn = (Sn, An, Rn,Pn, T ) where Sn is the state space, An is the action space, Rn is the reward function
mapping state-action pairs (s, a) to a scalar r, Pn is the transition probability function determining the next
state s′ given the current state-action pair (s, a), and T is the task horizon. The rewards are bounded to the
range r ∈ [0, 1]. We say a agent succeeds if, at any state in a trajectory, it achieves the maximum reward of
r = 1. We also define the function Dn : Sn 7→ An which outputs a termination signal d that indicates if the
agent has moved to an absorbing, non-rewarding state. We consider a set of N such MDPs {Mn}N−1

n=0 and
our goal is to learn a policy π∗ = {π∗

n}N−1
n=0 that maximizes the average probability of success over this set,

that is, π∗ ∈ arg maxπ 1
N

∑N−1
n=0 Eπn,Mn

[
1[max0≤t≤T rt = 1]

]
.

2.1 CompoSuite Benchmark

CompoSuite (Mendez et al., 2022a) is a simulated robotic manipulation benchmark for evaluating compo-
sitional reinforcement learning (RL) agents. CompoSuite provides a family of 4 × 4 × 4 × 4 = 256 distinct
manipulation tasks by composing exactly one out of four elements from each of the following four axes:

• Robot arms KUKA’s IIWA, Kinova’s Jaco, Franka’s Panda, Kinova’s Gen3.
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(a) IIWA, Box,
None, PickPlace

(b) Jaco, Dumbbell,
ObjectWall, Push

(c) Panda, Plate,
ObjectDoor, Shelf

(d) Kinova3,
Hollowbox, GoalWall,

Trashcan

Figure 2: Four example CompoSuite tasks, each defined by selecting one element from each axis.
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Figure 3: Overview of the 16-dimensional task indicator. For every task in CompoSuite, the model receives
a binary vector formed by concatenating four one-hot segments: a 4-dimensional robot ID, 4-dimensional
object ID, 4-dimensional obstacle ID, and 4-dimensional subtask ID. Each segment activates exactly one
entry corresponding to the chosen element along that axis. The example demonstrates how the task Kinova3,
Plate, None, Push is encoded into the final 16-element vector.

• Objects Box, Dumbbell, Plate, Hollow box.
• Obstacles No obstacle, Wall blocking object, Doorway near object, Wall blocking goal.
• Objectives Pick and place, Push, Place on shelf, Place in trash can.

For each task, states are provided as symbolic representations containing proprioceptive robot features (joint
and gripper positions and velocities) together with absolute and relative Cartesian positions of the object,
obstacle, and goal in the scene. Each task is defined by selecting exactly one unique element from each of the
four axes: Robot, Object, Obstacle, and Objective. To illustrate the compositional structure, Figure 2 shows
four example tasks from CompoSuite. The state vector also contains a binary indicator vector of length 16
that identifies a task via four one-hot sub-vectors, one for each axis. Figure 3 illustrates this layout. Rewards
are defined with dense, stage-wise rewards to guide the learning.

Hussing et al. (2024) released 1 million transitions for every task in CompoSuite across four dataset variants
(approximately 1 billion transitions in total). The four datasets span a range of performance levels, from
early training to expert proficiency, and were generated using policies trained with Proximal Policy Opti-
mization (Schulman et al., 2017) and Soft Actor-Critic (Haarnoja et al., 2018). Trajectories are stored as
transition tuples ⟨s, a, r, s′, d⟩. For our experiments, we focus exclusively on the expert datasets.

2.2 Diffusion Models

A diffusion model is a generative model that learns to reverse a gradual noising process applied to data (Ho
et al., 2020). We use diffusion models to generate artificial data for training. More precisely, we use the
Elucidated Diffusion framework (Karras et al., 2022). Given a data vector x0 ∈ Rd, we consider a collection
of noise levels {σt}Tt=1 with σt > 0. For each t, the forward process q produces a noised sample xt by adding
Gaussian noise of magnitude σt:

xt = x0 + σtε , ε ∼ N (0, I) , log σt ∼ N (Pmean, P
2
std) , t = 1, . . . , T ,

so that, for any fixed noise level σt, the conditional distribution of xt given x0 is q(xt | x0, σt) = N
(
x0, σ

2
t I

)
.

Here, Pmean ∈ R and Pstd > 0 are scalar hyperparameters that control the mean and standard deviation of
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the log-noise distribution log σt. A neural network εθ is trained to predict the clean sample x0 from a noised
sample xt and its associated noise level σt. The training objective is a noise-weighted reconstruction loss:

Ldiff(θ) = Ex0∼pdata, σt, ε∼N (0,I)

[
∥εθ(xt, σt)− x0∥2

2 w(σt)
]
, w(σ) = σ2 + σ2

data
(σ σdata)2 ,

where σdata > 0 is a hyperparameter representing the typical data scale. At generation time, the model
constructs a reverse denoising process over a decreasing sequence of noise levels {σt}Tt=1. Starting from a high-
noise initialization xT ∼ N (0, σ2

T I), the model iteratively applies the denoiser to define reverse transitions
pθ(xt−1 | xt) until it obtains a synthetic sample x0 that approximately follows the data distribution.

3 Task-Graph Compositional Transformer for Iterative Data Generation

We assume a functionally compositional task graph. Mendez et al. (2022b) define a hard-coded set of modules,
each representing a task element, and define task solutions as fixed paths through that graph. We instead
assume that each task consists of basic elements, each of which is a random variable corresponding to one
component of the transition, such as a factor of the state or next state, an action, a reward, or a termination
indicator. Let F denote the set of all such basic elements. Then, each element f ∈ F is associated with an
input space Xf and a representation space Y f . An encoder-decoder pair (ef , of ) maps raw variables into
the representation space ef : Xf 7→ Y f and back of : Y f 7→ Xf . We define a computation graph G = (V,E)
that captures the shared structure across all tasks, where the vertices V = Y f f∈F are the representation
spaces and the edges E are transformations that specify how information can flow between representations.
A specific MDPMn is characterized by a subset of elements present in that task, Fn ⊆ F , and the induced
subgraph of G on their representation spaces, with a joint distribution over their values. The CompoSuite
benchmark fits this view: a task is obtained by selecting one element along the robot, object, obstacle, and
objective axes, thereby instantiating a particular set of state-factor vertices and their interactions.

As the graph operates in representation space, it can be used to instantiate a variety of learned functions on
an MDP, such as a policy or a conditional generative model. A probabilistic model defined on G can specify
a conditional distribution over the unobserved basic elements given the values of any subset of observed ones.

3.1 Transformers as Graphs

Hard-coding the structure of the computation graph requires extensive domain knowledge and may result
in a suboptimal architecture. In consequence, we would like to learn the graph structure directly from
data. For this, we rely on the finding that the well-known transformer architecture (Vaswani et al., 2017)
can be interpreted as a GNN (Joshi, 2025). In particular, a transformer with L layers maps a sequence
of input tokens x1, . . . , xK to a sequence of output representations hL1 , . . . , hLK by repeatedly applying self-
attention and feed-forward layers. For each token i and layer ℓ, the model computes queries, keys, and
values qℓi = WQh

ℓ−1
i , kℓj = WKh

ℓ−1
j , vℓj = WV h

ℓ−1
j where WQ,WK ,WV are learned weight matrices. The

model then assigns the i-th token’s attention weights over each other token j as αℓij = softmaxj
(
qℓ⊤i kℓj/

√
d
)

and aggregates other tokens’ values into an updated representation hℓi = FF
(∑

j = 1Nαℓijvℓj
)
, where FF

implements a feed-forward layer and h0
i = xi. In the interpretation of the transformer as a GNN, each token

i corresponds to a node with a feature vector hℓ−1
i ∈ Rdh, and self-attention implements message passing

on a fully connected directed graph over these nodes. By learning the weight matrices WQ,WK ,WV , the
transformer learns to assign high attention from token i to token j exactly when the graph should contain
a strong directed edge from node j to node i.

Interpreting the transformer as a GNN suggests that a transformer can automatically discover the underlying
graph structure of a set of problems that are related compositionally. This reduces the architectural challenge
of designing an appropriate graph to designing a tokenization scheme that enables representing such a graph.

3.2 Semantic Compositional Diffusion Transformers

Thus, we set out to encode our task graph in a diffusion model by implementing ϵθ as a diffusion transformer
(DiT; Peebles & Xie, 2023). This model processes noised inputs (xt,1, . . . , xt,K) in the original transition

4



Under review as submission to TMLR

space and outputs denoised predictions ϵθ(xt, t) ∈ RK×dx at each diffusion step, which is interpreted as a
prediction of the added noise for each component. Our diffusion transformer architecture internally uses
factor-specific encoders to map inputs to token embeddings, processes these through self-attention, and
decodes back to the original space at each step of the reverse diffusion process.

We construct the input sequence for each transition by associating each component of our task graph f ∈ F
with the elements of CompoSuite as described in Section 2.1. For both the state and next state, we treat
each element per axis as one factor—e.g. each robot arm is one factor. In addition, we add one factor each
for the action, reward, and termination signal. This yields a DiT that can learn directly on top of the task
graph. For representation learning, we equip each factor with a parametric encoder-decoder pair (ef,θ, of,ψ),
both instantiated as neural networks. The encoder maps the inputs into a learned embedding yf = ef,θ(zf ),
which we interpret as living in the representation space Y f . The collection (yf )f∈F is treated as the K
tokens processed by the transformer. Self-attention over this factor-specific set of tokens implements graph-
compositional inference: at each diffusion step, the representation of every factor f is updated by attending
to all other factors f ′ ∈ F , so that, for example, the current robot token can condition on the current object,
obstacle, and objective tokens in a way that mirrors the edges of G = (V,E). At each diffusion step, the
transformer outputs denoised token embeddings ȳf , which are then mapped back to the original variable
domains with the decoders, yielding predictions (of, ψ(ȳf ))f ∈ F in the original transition space.

For conditioning, the original DiT injects variables such as the diffusion step t through adaptive layer normal-
ization. This produces per-block scale and shift parameters that gate the self attention and feed-forward up-
dates. We implement our task conditioning via an additional input embedding that modulates all transformer
blocks. For each diffusion step t and task index n, we form a context embedding u(t, n) = Et(t) + En(n) and
pass it through a small network that produces adaptive normalization and gating parameters for every block
of the DiT. This pathway injects (t, n) into the model only through these adaptive transforms, and leaves
the compositional semantics of the factor-specific tokenization unchanged. The resulting network provides
us with a diffusion model that can be trained to generate RL transitions for each task by simply selecting
the correct encoders and conditioning. We visualize our proposed architecture in Figure 4.

Using this architecture for diffusion modeling induces a joint representation over factor-specific component
embeddings. For each task index n, the learned diffusion model defines a distribution pθ(x0 | n) over
denoised transitions x0 in the original transition space. Within the denoiser, factor-specific encoders map
each component to token embeddings (ȳf )f ∈ F , the shared diffusion transformer blocks (modulated by task
conditioning through adaptive layer normalization) process these through self-attention to learn relationships
between factors, and decoders map the embeddings back to the original space. As this joint representation
over component embeddings is shared across tasks, we can use structure learned from one task to improve
the marginals for others and incrementally refine each factor’s predictive distribution as new tasks are added.

3.3 Self-Refining Compositional Distributions

We use our trained DiT to produce training data for two purposes: training behavior policies for unseen tasks
(for which we do not have real training data), and updating the DiT itself. By virtue of the compositional
graph structure, our model can train on a set of compositional tasks, generate data for new task combinations
zero-shot, and use the generated data to improve the DiT. Notably, because we learn factorized pieces of a
distribution to improve their marginals, the generator improves not only on the tasks for which we generate
data, but also on tasks that share some of these factors. As an illustrative example, consider tasks that vary
on the robot and object (e.g., a subset of CompoSuite). Suppose the dataset contains transitions for three
tasks: (Panda, Box), (Jaco, Box), and (Panda, Plate), but no real data for (Jaco, Plate). Our compositional
DiT can generate plausible transitions for (Jaco, Plate) by combining the learned Jaco and Plate factors.
Retraining on these additional samples increases the effective data available for the shared Plate factor and
constrains it across multiple robotic contexts, so that any downstream task involving Plate —e.g., (IIWA,
Plate)—benefits from a sharper object marginal than would be possible from the original tasks alone.

We summarize our procedure in Algorithm 1. The algorithm starts with a set of (real) data from a sub-set of
training tasks and proceeds in rounds. In every round, we fit our DiT to all training data. We then generate
data for all existing validation and test tasks, train a policy using TD3-BC (Fujimoto & Gu, 2021) on the
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Figure 4: Visualization of our semantic compositional transformer architecture. We factorize each transition
into state factors, actions, reward, and terminal indicators. State factors represent the compositional dimen-
sions along which tasks can vary (for example, different robots). Each state factor has its own encoder-decoder
pair, providing partial parameter separation. The encoded tokens, augmented with positional embeddings,
are processed by several diffusion transformer layers. The diffusion transformer uses adaptive statistics condi-
tioned on timestep and task indicator embeddings. Its output tokens are then decoded by the factor-specific
decoders, with state encoder-decoder pairs shared between current and next state.

generated data, and evaluate the policy online in the environment. If the success rate (sr) for any task is
larger than some threshold τ , we add the data generated for this task to the training set. This performance-
based filter only admits synthetic data that is useful for training high-quality policies. If no tasks surpass
the quality threshold, we increase a patience parameter c. When the patience exceeds a predefined threshold
C, we decrease the quality threshold τ .

The approach in Algorithm 1 uses self-generated data to train a data generator. One question is whether
adding sub-optimal data for a single task might lead to degraded performance across all tasks. Training on
iteratively generated data of prior versions of a generative model often results in the performance of the model
decreasing over time, a phenomenon known as model collapse (Shumailov et al., 2024). Our compositional
transformer architecture from Section 3.2 uses the data generated for a particular task exclusively to train the
encoder-decoder pairs specific to that task’s elements. In consequence, each generated dataset contributes
only to a subset of all transformer weights (e.g., data generated for the Panda encoder-decoder is not used
to update the parameters of the Jaco encoder-decoder). This mechanism inherent to our compositional
architecture partially guards our DiT against model collapse.

4 Experimental Evaluation of the Semantic Compositional Transformer

This section empirically evaluates our compositional transformer for generating robotic data of unseen tasks.
Because our algorithm generates millions of synthetic transition tuples for each task, we restrict our experi-
ments to a subset of 64 tasks of the CompoSuite benchmark, chosen by using one fixed robot arm: IIWA. We
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Algorithm 1 Compositional Iterative Bootstrapping with Synthetic Data
Require: Initial dataset D; target task set Ttarget; initial threshold τ0 with lower bound τmin; threshold step

size ∆τ ; patience C; maximum iterations K
1: D(0)

train ← D, T (0)
solved ← ∅, τ ← τ0, c← 0

2: for k = 0, 1, . . . ,K do
3: Train diffusion model ε(k)

θ on D(k)
train

4: for all t ∈ Ttarget \ T (k)
solved do

5: Generate synthetic data D(k)
syn(t) using ε(k)

θ

6: Train and evaluate TD3-BC policy π(k)
ϕ (t) on D(k)

syn(t) to obtain success rate sr(k)(t)
7: end for
8: T (k+1)

solved ← T
(k)

solved ∪ {t : sr(k)(t) > τ}
9: if T (k+1)

solved = T (k)
solved then c← c+ 1 else c← 0 end if

10: if c ≥ C then τ ← max(τ −∆τ , τmin), c← 0 end if
11: D(k+1)

train ← D ∪
⋃
t∈T (k+1)

solved
D(k)

syn(t)

12: if Ttarget ⊆ T (k+1)
solved then break end if

13: end for
14: return ε

(k)
θ , {π(k)

ϕ (t)}t∈Ttarget , T
(k)

solved,D
(k)
train

consider a setting where we only have training data for 14 of the 64 tasks, which we show empirically to be
insufficient for zero-shot generalization of a non-compositional data-generating baseline (Appendix A). We
use our method to iteratively generate data for the remaining 50 tasks, and report performance on a test set
consisting of 32 of the 50 held-out tasks. Note that Algorithm 1 requires online evaluation on the zero-shot
tasks, for which we perform 10 trajectory rollouts per task (500 transitions per rollout) every round.

4.1 Baselines

We first compare against two static offline RL approaches, which cannot generate data for new tasks, to
demonstrate the value of iterative data generation.

• Hardcoded Compositional RL We train the multi-task compositional architecture of Mendez et al.
(2022a) via offline RL using TD3-BC. This architecture was designed specifically to solve CompoSuite
tasks, but it employs a hard-coded compositional structure.

• Semantic Compositional RL To test the benefits of learned connections in compositional represen-
tations, we also implement a semantic compositional RL approach based on our architecture. We use
TD3-BC to train a multi-task model which uses our semantic compositional transformer for the encoder.
However, rather than decoding each element with its own decoder, we use mean pooling over all output
tokens and process the concatenated vector with an additional feed-forward layer to obtain an action.

We then consider three baseline architectures that iteratively generate data per Algorithm 1.

• Monolithic To highlight the difficulty of compositional generalization for monolithic architectures, we
consider a variant of Synthetic Experience Replay (SynthER; Lu et al., 2023). SynthER trains a diffusion
model on the data collected by an off-policy RL algorithm (e.g., TD3) to augment the RL batch with
artificial transitions. We are specifically interested in the neural network architecture for diffusion, as it
has shown promise for generating useful transitions for RL training. In particular, SynthER employs a
monolithic architecture that parametrizes the diffusion denoiser ϵθ via several residual feed-forward layers.
We adapt this architecture to the multi-task setting by conditioning the denoiser ϵθ on the task indicator.
At each layer, the noisy transition is augmented by additive embeddings encoding both timestep and task
information x̃t = xt+Et(t)+Ec(c), where Et(t) encodes the diffusion timestep through sinusoidal features
and Ec(c) linearly projects the multi-hot task indicator into the same latent space. This conditioning
strategy injects task information into the residual computation without modifying the architecture.
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Figure 5: Zero-shot success rate for non-iterable RL models and RL models trained on synthetic data
of a generative model at iteration iteration 0, and best zero-shot success rate for RL models trained on
synthetic of a generative model after 4 iterations of self-improvement. Overall, the semantic compositional
architecture leads to large improvements in the RL as well as generative model setting. (Left) The semantic
compositional architecture improves over the hard-coded compositional RL architecture by almost doubling
the success rate. (Middle) In the generative model setting, the semantic tokenization approaches beat the
architectures that are not adapted to the task. (Right) After 4 rounds of self-improvement, the semantic
compositional DiT method achieves highest performance across all other approaches.

• Standard DiT We then compare against a standard DiT without semantic or compositional tok-
enization (Peebles & Xie, 2023). This DiT simply chops the input into patches of roughly size 15 and
computes the tokens using a shared encoder. This yields a transformer with the same amount of tokens
as our compositional semantic encoder but without compositional structure.

• Semantic DiT Our tokenization scheme splits the input into semantic patches (e.g., robot state, object
state, action) and uses a separate encoder-decoder pair for each element (e.g., one for the IIWA and one
for the Jaco). To verify the need to train separate encoder-decoders to learn the different representation
spaces for each element, we compare against a DiT that splits the input into semantic patches but trains
one shared encoder-decoder across elements of an axis (e.g., one for all robots). While this carries the
semantic meaning of the input, it does not model the nodes that constitute the CompoSuite task graph.

In each round of data generation, the diffusion model generates data for the held-out tasks that have not
surpassed the threshold τ (i.e., unseen tasks for the diffusion model). We use the generated data to train
task-specific RL policies using TD3-BC for 50,000 steps, rolling out 10 evaluation trajectories every 5,000
steps. We keep the best-performing policy for a task across evaluation steps and data generation iterations.

4.2 Zero-shot Generalization

To verify the zero-shot abilities of our approach, we pre-train all models on the training tasks and report
success on the held-out test tasks. RL baselines directly use a zero-shot policy, while diffusion approaches
generate synthetic data and train policies on the generated data. We also run four iterations of iterative
self-improvement (Algorithm 1) on diffusion approaches. Performance of RL algorithms is averaged across
tasks over 15 seeds. For generative models, we keep the best-performing policy across the four iterations.
We train the diffusion model over three independent seeds, and for each seed we train the policies over five
RL training seeds; we report the average across tasks, diffusion seeds, and RL seeds. Error bars indicate
standard error across 15 RL seeds and three diffusion seeds. We report the results in Figure 5.

Reinforcement learning performance The compositional RL baseline of Mendez et al. (2022a), which
was specifically designed for these tasks, achieves some zero-shot generalization. However, the composition
learned by our compositional transformer succeeds twice as often. This provides evidence that our architec-
ture can extract meaningful compositional structure from data. The improved performance suggests that the
graph structure learned by our architecture more effectively connects relevant vertices than the hard-coded
architecture of Mendez et al. (2022a).

Initial generative performance After the first round of training the first diffusion models, RL based
on the data generated by the monolithic architecture performs worse than all compositional variants (RL or
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Figure 6: Performance of different diffusion architectures over iterations of our self-improvement procedure.
(Left) Zero-shot best success rate achieved so far. RL agents trained on synthetic data from the semantic
compositional diffusion architecture consistently achieve higher success rates than agents trained on data
from all other diffusion architectures and quickly surpass the semantic compositional RL baseline. (Middle)
Number of tasks solved at least once across iterations: RL trained on synthetic data from the semantic
compositional diffusion transformer outperforms both baselines and solves nearly all tasks at least once.
(Right) Zero-shot best success rate achieved so far, separated by initial task difficulty. Tasks are partitioned
into those that exhibit non-zero success at iteration 0 and those that were entirely unsolved. The semantic
compositional architecture particularly improves performance on tasks on which it already obtains initial
success in iteration 0. Shaded regions indicate standard error over 3 diffusion seeds.

diffusion), demonstrating the usefulness of composition for efficient zero-shot data generation. The standard
DiT model performs worst across all models, indicating that a proper tokenization of the input space is
needed. In consequence, any improvement from our method is not a direct result of the transformer being a
stronger representation learning architecture. Our semantic compositional data generation process performs
nearly on par with the semantic compositional RL baseline. Critically, as we discuss next, the DiT can then
generate data for new tasks and iteratively improve its own performance.

Iterated generative performance Our iterative self-improvement algorithm increases all architectures’
success rates. The monolithic architecture improves by 17%, standard DiT by 15%, semantic DiT by 16%, and
semantic compositional DiT by 22%—the semantic compositional architecture achieves the largest absolute
improvement. These marked improvements indicate that the nature of compositional data is useful for out-
of-distribution generation. As our approach can self-improve, it quickly outperforms the static RL baseline
without any additional real training data. Note that we can view the threshold τ as a soft upper bound on
success rate, since we generate data that enables as little as τ success rate per task, and it is challenging
to train policies that outperform this level of data quality. With τ reaching 0.7 at iteration four and our
semantic compositional DiT achieving a success rate of 55%, the gap to this soft upper bound closes.

4.3 Iterative Compositional Data Generation

Next, we investigate each round of the iterative procedure for data generation. In every round of Algorithm 1,
we evaluate five runs of TD3-BC for each unsolved task (sr < τ) to average out the randomness from RL
training and track the best success rate so far for each task. Figure 6 reports the average success rate in
every iteration and the number of tasks that achieve success at least once (i.e. sr > 0).

Success rate over time Figure 6 (left) reiterates the finding that all architectures consistently im-
prove when artificial data is added. All architectures improve at a similar rate, and so the fact that only
semantic architectures eventually outperform the RL version of our architecture is largely due to their sig-
nificantly higher initial success rate. Our compositional semantic architecture only requires one round of
self-improvement to exceed the performance of its RL counterpart. This interplay between initial generative
performance and downstream RL performance highlights the importance of studying the two in tandem.

Solved tasks over time Figure 6 (middle) shows that the semantic compositional approach generates data
that yields at least one successful trajectory more consistently than the monolithic approach. In addition,
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after four iterations of refinement, we solve almost every task at least once. This suggests that our approach
could serve as a powerful starting point for fine-tuning new policies, since it can drastically reduce the
exploration challenge of online RL. Interestingly, while RL using our architecture achieves a higher zero-shot
success rate than our generative approach at iteration 0, this success rate is concentrated on a smaller fraction
of tasks. This suggests that the diffusion model generalizes more broadly across tasks, but the initial data
quality is insufficient to extract good policies in all parts of the state space.

Given that the semantic compositional model yields the most significant improvement in total success but also
has a smaller improvement on tasks solved, one might conclude that our architecture is better at iteratively
deriving information from successful tasks by refining marginals. To verify this, we analyze whether iterative
improvements appear on tasks that see some success or tasks that are not yet solved. In Figure 6 (right), we
show that the monolithic architecture improves roughly at the same rate on both the already successful and
unsuccessful tasks. While our semantic compositional model also improves in both regimes, it obtains a much
larger jump in performance on tasks that see some initial success at iteration 0. In part, this stems from the
fact that there are few tasks left on which no success is achieved initially. Yet, it also provides evidence that
our semantic compositional model improves encoder-decoder pairs point-wise using self-generated data.

4.4 Analyzing Compositional Structure

This section studies the compositional structure learned by our architecture. As discussed in Section 2.2, we
use the Elucidated Diffusion approach (Karras et al., 2022), which parameterizes the diffusion process using
continuous noise levels σ rather than discrete timesteps, with default noise range σ ∈ [σmin, σmax]. For our
analysis, we evaluate the model’s behavior at a noise level σmidpoint corresponding to the midpoint of the
generation schedule, computed per the sampling schedule formula (Karras et al., 2022):

σi<N =
(
σ1/ρ

max + i

N − 1

(
σ

1/ρ
min − σ1/ρ

max

))ρ

, σN = 0 ,

where i denotes the step. σmidpoint represents a moderate noise level the model encounters during generation.
Throughout this section, we use the DiT trained at iteration 0, using only real data.

Intervention influence To analyze the compositional dependencies that our model learns, we compute
an influence matrix that measures how inputs to each encoder module affect the outputs of each decoder
module. For a given task, we generate random Gaussian noise inputs and compute the outputs at σmidpoint.
We then systematically intervene on each encoder module by zeroing out its output patches and measure the
resulting change in each decoder module’s output. The influence of encoder module i on decoder module j is
quantified as the L2 norm of the normalized difference between the intervened and nominal decoder outputs.
Averaging these normalized differences across many noise samples yields an influence matrix whose entries
quantify the causal effect of one module on another while remaining comparable across decoders of different
dimensionality. This allows us to measure, for example, which predictions are most affected if the object
information is missing. Figure 7 presents the average intervention influence matrix over all training tasks.

As expected, the largest deviations happen on the diagonal, as masking a certain element at the encoder
makes it difficult to accurately generate that element itself. For example, if the object embedding is masked,
the transformer relies exclusively on task conditioning to generate object information. Variations across
state components further expose a particular dependency structure among elements. For instance, task
input influences object prediction more than it does obstacle prediction. Yet all components depend on each
other to some degree. This is not particularly surprising, since the state representation contains relative
information (e.g., relative poses). More interestingly, many decoder outputs rely heavily on the robot arm
encoding. This highlights the crucial importance of the robot arm in our model for generating data. The
largest influence outside the diagonal is for the robot arm input and reward prediction. In general, the
reward predictions greatly depend on the state components but not so much on the action, which is correctly
inferred by the model since the reward in CompoSuite is only a function of the state. The terminal signal
depends exclusively on its own input, since the dataset released by Hussing et al. (2024) contains expert
trajectories for almost all tasks, making failure terminations rare in the training data.
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Attention masks Now, we shift our focus to the state encoder structure, the central piece of our archi-
tecture design. We study the DiT attention structure by capturing the full 11×11 self-attention matrices.
To inspect which encoder outputs map to which decoders, we trained a single-layer transformer. We draw
100 Gaussian inputs, run the model at σmidpoint, and compute per-head attention weights from every Multi-
Head Self-Attention block. We do this for the 14 training tasks and average across samples and attention
heads. We are mostly interested in the state decomposition, which is the main distinguishing feature of our
architecture. Figure 8 shows the entries of the attention matrix corresponding to state elements.

The state attention mask reveals that there exists a non-trivial mapping between the state encoder and
decoder pairs. First, every decoder pays some attention to its corresponding encoder (the diagonal). Then,
we observe an ordering of importance across state elements. Every encoder pays greatest attention to the
robot, then the objective, then the object, then the obstacle. The ordering we find is contrary to the
hard-coded architecture of Mendez et al. (2022a), where the robot modules are stacked onto the remaining
modules last, implying that other encoders cannot access robot information. This difference may be stem
from fundamentally different computations required to learn an RL policy compared to generating RL data.

5 Related Work

Compositional Generalization in Robotics and RL In robotics, compositional generalization has
been pursued through a variety of mechanisms. Some approaches introduce modularity or architectural bi-
ases aimed at composing semantic units such as instructions or high-level skills (Xu et al., 2018; Devin et al.,
2019; Kuo et al., 2020; Wang et al., 2023). Other work targets the control layer directly, designing modu-
lar, factorized, or entity-centric policy architectures that encourage reuse of behavioral components across
tasks (Devin et al., 2017; Mendez et al., 2022b; Zhou et al., 2025). Some approaches seek to automatically
identify and decompose policies into functional modules (Yang et al., 2020; Mittal et al., 2020; Goyal et al.,
2021). A complementary direction exploits scene-centric formulations that use structured object-relational
representations to compose low-level visuomotor skills in novel physical configurations (Qi et al., 2025).
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These approaches demonstrate the importance of leveraging task structure, but they typically assume a
hand-designed decomposition of robots, objects, and goals. In contrast, our method learns this structure
directly from data by interpreting a diffusion transformer as a GNN and equipping it with factor-specific
tokenizers. Whereas prior work uses compositionality to structure policies, we instead use it to structure a
generative model of transitions, enabling zero-shot synthesis of data for unseen task compositions.

Generated Data in Robotics and RL Synthetic data has become a key idea for scaling robotic
learning. One line of work expands imitation datasets through trajectory-level augmentations, where expert
demonstrations are perturbed, resampled, or regenerated to increase coverage (Mandlekar et al., 2023; Wang
et al., 2024; Ameperosa et al., 2025; Jiang et al., 2025). Although these methods enrich demonstration sets,
they remain constrained to variations of the same underlying tasks without expanding into new compositions.

Complementary efforts in reinforcement learning explore generative replay, where learned generative models
synthesize transitions to supplement or replace entries in an agent’s replay buffer (Huang et al., 2017;
Ludjen, 2021; Imre, 2021; Lu et al., 2023; Voelcker et al., 2025). As generative modeling techniques
have advanced—from variational autoencoders (Kingma & Welling, 2014) and generative adversarial net-
works (Goodfellow et al., 2014) to, more recently, diffusion models (Karras et al., 2022)—the fidelity of
replayed experience and the sample efficiency of these approaches have improved accordingly. However,
these methods still generate data only for the same tasks observed during training. They do not attempt to
produce transitions for unseen combinations of factors that fall outside the original task distribution.

Another orthogonal direction emphasizes visual augmentation, including render-driven and vision-only
pipelines that procedurally generate synthetic video datasets (Bonetto et al., 2023; Singh et al., 2024; Yu
et al., 2024; Han et al., 2025; Yu et al., 2025), as well as generative and diffusion-based methods that augment
images while holding actions constant (Chen et al., 2023; Yu et al., 2023). While effective for increasing
visual diversity, these approaches do not provide transition-level data reflecting novel task semantics.

Our work is complementary to all of these efforts but differs fundamentally: we generate full state-action-next-
state transitions for unseen tasks. Moreover, our iterative procedure evaluates the usefulness of generated
data via offline RL, creating a closed-loop mechanism for self-improving compositional data generation.

Compositional Data Generation in Robotics Recent work has shown that exposing robots to composi-
tional factors of variation can significantly improve generalization and reduce data requirements in manually
collected datasets (Gao et al., 2024). In parallel, compositional generative models have emerged that syn-
thesize novel object and task combinations to expand the space of training experience (Zhou et al., 2024;
Barcellona et al., 2025). These approaches demonstrate the utility of factoring environments into reusable
components, but they operate on image representations and often rely on predefined decompositions. More
importantly, prior compositional generative approaches do not address the challenge of improving a genera-
tive model using its own compositional synthesized data. In contrast, our approach introduces an iterative
self-refinement procedure in which the generative model synthesizes transitions for unseen task compositions.

6 Conclusion

In this work, we introduce an iterative compositional data generation framework that uses a semantic com-
positional diffusion transformer and a self-improvement loop to synthesize and curate manipulation data.
This data is of sufficient quality to train policies that solve novel combinations of compositional tasks. Our
work shows that compositional data generation can turn limited real interaction into policies that generalize
across many tasks. This has the potential to reduce data collection and engineering costs for real-world
robotic systems, making it easier to deploy flexible manipulation skills in diverse environments.

At present, our method decides whether a generated task dataset is added to the training pool by running an
online evaluation loop. We deploy an RL agent on the newly generated task and include the corresponding
data only if its success rate exceeds a fixed threshold. This makes our procedure dependent on online
interaction with the environment, which can be costly in many real-world settings. Note that our approach
is not tied to this particular choice and any suitable scoring function that assesses the utility of generated
data could be used instead. An important direction for future work is to replace this online evaluation with
interaction-free or partially offline proxies that can reliably predict the utility of newly generated data.
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A Regime to Study Compositionality in CompoSuite
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Figure 9: Return difference between RL
policies trained on data generated by the
monolithic architecture and policies trained
on ground-truth data over varying number
of training tasks. As the number of training
tasks approaches 56 (∼ 20%), there is steep
increase in the performance gap indicating
the sub-optimality of generated data from
the diffusion model.

When sufficient expert data is available, standard feed-forward
policies trained with behavioral cloning on the CompoSuite
datasets achieve non-trivial zero-shot generalization (Hussing
et al., 2024). However, this assumes access to expert tra-
jectories for hundreds of tasks, which is unrealistic in many
robotics applications. As data becomes sparser, exploiting
the compositional structure of the tasks becomes more rel-
evant. Here, we verify that the data regime of 14 training
tasks from Sections 4.2–4.4 is appropriate for studying compo-
sitionality. Using all 10 task-lists from the experimental setup
suggested by Hussing et al. (2024), we construct subsets of
training tasks using the first N tasks from each list, where
N ∈ {56, 98, 140, 182, 224}, keeping the set of 32 test tasks
fixed across values of N . We then train the SynthER-based ar-
chitecture introduced in section 4.1 on each subset of training
tasks. We generate one million transitions for each test task
and train a per-task TD3-BC agent on the generated data. We
measure the difference in accumulated return over a set of eval-
uation trajectories relative to a TD3-BC agent trained on real
data. We expect that when the amount of available training
data becomes small, the TD3-BC performance should decrease
as the generated data quality on out-of-distribution tasks decreases. We report the results in Figure 9.

The results show that when more than 182 tasks are available for training the diffusion models, the mean
gap to the ground-truth policy performance is less than 15%. While even the diffusion model trained on 98
tasks achieves high zero-shot generalization, we see a downward trend below this point. As expected, when
we move to 56 tasks (roughly 20% of the tasks) the performance gap increases drastically, and the model
is unable to zero-shot generalize meaningfully. This is a similar data regime to the 14/64 tasks we used to
show the ability of our compositional DiT to learn the underlying graph compositional structure.
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Figure 10: Performance of the monolithic SynthER-based diffusion architecture and the semantic compo-
sitional diffusion transformer over iterations of the self-improvement procedure in the 56/256-task training
regime. (Left) Zero-shot best success rate achieved so far. RL agents trained on synthetic data from the
semantic compositional diffusion architecture consistently achieve higher success rates than agents trained
on data from the monolithic SynthER-style diffusion architecture. (Middle) Number of tasks solved at
least once across iterations. The semantic compositional diffusion transformer enables policies to solve a
substantially larger fraction of tasks at least once compared to the monolithic baseline. (Right) Zero-shot
best success rate achieved so far, separated by initial task difficulty. Tasks are partitioned into those that
exhibit non-zero success at iteration 0 and those that were entirely unsolved. The semantic compositional
architecture particularly improves performance on tasks for which some initial success is already obtained.
Shaded regions indicate standard error over 3 diffusion seeds.
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To further validate that this regime exhibits behavior consistent with our IIWA-only setting, we repeat the
iterative data generation procedure in the 56/256-task regime and directly compare the monolithic SynthER-
style diffusion model with our semantic compositional diffusion transformer architecture. Figure 10 reports
the evolution of zero-shot success rates and solved-task coverage over iterations of Algorithm 1.

We observe similar trends to those in Figure 6: both architectures benefit from iterative self-improvement,
while policies trained on data generated by the semantic compositional model consistently achieve higher
zero-shot success rates and solve a larger fraction of tasks at least once across iterations. Notably, the
performance gap between the monolithic and semantic compositional model is slightly reduced in the 56/256
setting. This is expected, as increasing the number of compositional axes while preserving a comparable
training-task ratio exposes the monolithic model to a broader set of task combinations, partially alleviating
the severity of the generalization challenge. Importantly, the compositional model continues to exhibit a clear
advantage, indicating that the benefits of exploiting task structure persist beyond the IIWA-only setting.

Finally, separating tasks by initial difficulty reveals a similar asymmetry to that observed in the main exper-
iments. While the semantic compositional model improves in both regimes, it exhibits substantially larger
gains on tasks that achieve non-zero success at iteration 0, with more gradual improvements on initially
unsolved tasks. This behavior is consistent with the interpretation that the model refines factor-specific
encoder–decoder representations using self-generated data. Overall, these results support the conclusion
that the 14/64 IIWA-only setting constitutes a particularly challenging low-data regime, and that the qual-
itative self-improvement dynamics of the semantic compositional diffusion model are stable as the number
of compositional task axes increases.

B Additional Experimental Details

This section provides details of the experimental setting used to obtain all results in the paper.

Computational Requirements All experiments were conducted on a SLURM-managed GPU cluster
equipped with NVIDIA RTX 2080 Ti, RTX 3090, RTX A10, RTX A40, RTX A6000, and L40 GPUs.
Training jobs were distributed across these node types, and all model and batch-size configurations were
selected to run reliably within the memory constraints of this mixed hardware environment.

B.1 Compositional Data Generation

B.1.1 Diffusion Model Training

We train diffusion models on transition tuples (s, a, r, s′, d) with total dimension 164: a 77-dimensional state,
an 8-dimensional action, a scalar reward, a 77-dimensional next state, and a binary terminal indicator. All
continuous dimensions are standardized (zero mean, unit variance) using statistics computed from the pooled
dataset of all training tasks. The terminal indicator remains unnormalized and is discretized with a threshold
of 0.5. All model variants use the same Elucidated Diffusion schedule; differences arise only from the denoiser
architecture and a small number of optimization hyperparameters.

During training, noise levels are sampled from a log-normal distribution with mean Pmean = −1.2 and
standard deviation Pstd = 1.2. The loss weighting function uses σdata = 1.0, and the noise schedule spans
σ ∈ [0.002, 80] with curvature parameter ρ = 7. Tasks are encoded as 16-dimensional binary indicator
vectors, as illustrated in Figure 3, and these task indicators condition the denoiser during both training
and generation. The complete set of architectural and optimization hyperparameters for the Monolithic
baseline (Lu et al., 2023) and our Semantic + Compositional DiT (S+C DiT) model is listed in Table 1.

B.1.2 Data Generation

After each diffusion model is trained, we generate synthetic transition datasets for individual tasks us-
ing the EMA (Exponential Moving Average) version of the model. Each task is specified as a 4-tuple
(Robot,Object,Obstacle,Objective) and encoded using the same 16-dimensional task indicator from Fig-
ure 3. The Monolithic and S+C DiT pipelines use identical sampling configurations, except for the generator
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Table 1: Diffusion model hyperparameters.

COMPONENT MONOLITHIC (Lu et al., 2023) S+C DiT (Ours)

Architecture 6-layer MLP,
width 2048

8-layer DiT, hidden size 416, 8 heads
(patch size 15 in standard DiT ablation)

Network capacity 25.88M parameters 26.22M parameters
Batch size 1024 1024
Learning rate 3× 10−4 1× 10−4

Weight decay 0.0 0.01
Optimizer AdamW AdamW
LR scheduler Cosine Cosine
Training steps 100,000 100,000

Table 2: Synthetic data generation hyperparameters.

COMPONENT MONOLITHIC (Lu et al., 2023) S+C DiT (Ours)

Generated samples per task 1,000,000 1,000,000
Sampling steps 128 128
Noise perturbation strength 80 80
Minimum noise level for perturbation 0.05 0.05
Maximum noise level for perturbation 50 50
Relative perturbation noise scale 1.003 1.003
Generator batch size 100,000 25,000
Batches per task 10 40

batch size, which is reduced for S+C DiT to satisfy GPU memory constraints. The hyperparameters used
for synthetic data generation are summarized in Table 2.

B.1.3 Policy Training

We train TD3-BC policies (Fujimoto & Gu, 2021) on the synthetic transition datasets generated for each
task. The same TD3-BC configuration is used across all experiments, including both the monolithic and
S+C DiT pipelines and all iterations. The only exception is the compositional RL baselines, which use
different compositional policy architectures that are described in Appendix B.2. All policies are trained
offline on synthetic data and are then evaluated online in the corresponding CompoSuite environment.

For all test tasks, we train policies using five random seeds and report the mean success rate. States are
normalized using the mean and standard deviation computed from each task’s synthetic training dataset.
The complete set of TD3-BC hyperparameters used in all experiments is provided in Table 3.

B.1.4 Iterative Bootstrapping

The iterative bootstrapping procedure follows Algorithm 1. We initialize the success threshold at τ0 = 0.8.
If no new tasks satisfy this threshold for one iteration (C = 1), the threshold is automatically reduced by
∆τ = 0.1, with a lower bound of τmin = 0.5. The IIWA-only task list used for this experiment is described
in Appendix B.3. The complete set of hyperparameters for this procedure is reported in Table 4.

B.2 Compositional RL Baselines

We compare against two compositional RL baselines that train multitask TD3-BC policies on expert demon-
strations from the same 14 training tasks used for diffusion training. Their train/test split matches the
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Table 3: TD3-BC offline RL training hyperparameters.

COMPONENT VALUE

Algorithm TD3-BC
Actor network MLP with 2 hidden layers of width 256
Critic networks MLP with 2 hidden layers of width 256
Learning rate (actor, critics) 3× 10−4

Optimizer Adam
Batch size 1024
Training steps 50,000
Discount factor (γ) 0.99
Target network update (τ) 0.005
Regularization coefficient (α) 2.5
Policy noise 0.2
Noise clip 0.5
Policy update frequency 2
Evaluation frequency 5,000 steps
Evaluation episodes 10
State normalization Yes
Reward normalization No
Training seeds 0–4

Table 4: Compositional iterative bootstrapping hyperparameters.

COMPONENT VALUE

Initial success threshold (τ0) 0.8
Minimum threshold (τmin) 0.5
Threshold reduction amount (∆τ ) 0.1
Patience (C) 1 iteration
Training tasks (|T train|) 56 of 256 tasks, or 14 of 64 IIWA-only tasks
Diffusion seeds 0–2

diffusion setup to allow a fair zero-shot generalization comparison. The list of training and test tasks is
described in Appendix B.3. All baselines are evaluated on the corresponding 32 held-out test tasks using
15 random seeds. Both baselines follow the TD3-BC configuration in Table 3, but differ in three ways: (1)
they train on a multitask dataset that combines demonstrations from all 14 training tasks, (2) they employ
compositional policy architectures, and (3) their batch sizes are scaled with the number of training tasks
(i.e., a multiple of the number of tasks), following the strategy used in Mendez et al. (2022a).

The Hardcoded Compositional RL (HC RL) baseline uses the modular architecture of Mendez et al.
(2022a) with component-specific networks for each task element. The hardcoded architecture follows a
hierarchical graph structure with the ordering Obstacle → Object → Subtask → Robot. Hidden layer sizes
are (32) for Obstacle, (32, 32) for Object, (64, 64, 64) for Subtask, and (64, 64, 64) for Robot.

The Semantic Compositional RL (S+C RL) baseline uses a transformer with semantic tokens corre-
sponding to the object, obstacle, goal, and robot. Compositional encoders produce token embeddings, and
task conditioning is applied using Adaptive Layer Normalization (AdaLN). The transformer uses hidden size
72, depth 1, 4 attention heads, MLP ratio 1.20, and no dropout. For this baseline, the batch size is further
reduced by one half compared to Mendez et al. (2022a) to satisfy GPU memory constraints.

The full set of hyperparameters is listed in Table 5.
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Table 5: Compositional RL baseline hyperparameters for multitask TD3-BC training.

COMPONENT HC RL (Mendez et al., 2022a) S+C RL (Ours)

Algorithm TD3-BC TD3-BC
Training tasks 14 14
Test tasks 32 32
State dimension 93 (with task IDs) 93 (with task IDs)
Action dimension 8 8

Actor architecture Hardcoded compositional
MLP

Semantic compositional
transformer

Actor output dimension 8 8

Critic architecture Hardcoded compositional
MLP (state+action)

Semantic compositional
transformer (state+action)

Critic output dimension 1 1
Compositional module sizes (32), (32, 32), (64, 64, 64), (64, 64, 64) –
Compositional hierarchy Obstacle → Object → Subtask → Robot –
Transformer hidden size – 72
Transformer depth – 1
Transformer heads – 4
Transformer MLP ratio – 1.20
Policy network capacity 107.94K parameters 106.29K parameters
Learning rate 3× 10−4 3× 10−4

Optimizer Adam Adam
Batch size 3584 (14 tasks × 256) 1792 (14 tasks × 128)
Training steps 50,000 50,000
Discount factor (γ) 0.99 0.99
Target network update (τ) 0.005 0.005
Regularization coefficient (α) 2.5 2.5
Policy noise 0.2 0.2
Noise clip 0.5 0.5
Policy update frequency 2 2
Evaluation frequency 5,000 steps 5,000 steps
Evaluation episodes 10 per test task 10 per test task
State normalization Yes Yes
Reward normalization No No
Training seeds 0–14 0–14

B.3 Task List

For the results in Appendix A, we use the ten task lists released by Hussing et al. (2024). For the IIWA-
only experiments in Section 4, we construct a train/test split over the full IIWA task space, defined by all
combinations of the IIWA robot with:

• Object: Box, Dumbbell, Hollowbox, Plate,

• Obstacle: GoalWall, None, ObjectDoor, ObjectWall,

• Objective: PickPlace, Push, Shelf, Trashcan.

This yields 4× 4× 4 = 64 tasks. We generate a random split using seed 0, producing 32 training and 32 test
tasks with no overlap. We use the first 14 training tasks for all diffusion and multitask policy experiments,
and evaluate on all 32 held-out test tasks. Table 6 lists the tasks, and Figures 11 and 12 visualize the split.
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Table 6: Training and test tasks used for IIWA-only experiments.

Training Tasks (14) Test Tasks (32)
1. IIWA, Box, ObjectDoor, Trashcan
2. IIWA, Hollowbox, ObjectDoor, PickPlace
3. IIWA, Dumbbell, ObjectDoor, PickPlace
4. IIWA, Dumbbell, ObjectWall, Push
5. IIWA, Plate, None, Shelf
6. IIWA, Box, GoalWall, Trashcan
7. IIWA, Plate, ObjectWall, Shelf
8. IIWA, Hollowbox, GoalWall, Trashcan
9. IIWA, Box, ObjectWall, Shelf
10. IIWA, Box, None, Trashcan
11. IIWA, Plate, ObjectWall, PickPlace
12. IIWA, Box, GoalWall, PickPlace
13. IIWA, Box, None, Push
14. IIWA, Box, ObjectDoor, Shelf

1. IIWA, Dumbbell, GoalWall, Shelf
2. IIWA, Box, None, PickPlace
3. IIWA, Box, GoalWall, Shelf
4. IIWA, Hollowbox, None, PickPlace
5. IIWA, Dumbbell, ObjectDoor, Push
6. IIWA, Box, None, Shelf
7. IIWA, Plate, None, PickPlace
8. IIWA, Dumbbell, None, Shelf
9. IIWA, Dumbbell, ObjectDoor, Shelf
10. IIWA, Hollowbox, GoalWall, PickPlace
11. IIWA, Dumbbell, GoalWall, Trashcan
12. IIWA, Plate, ObjectDoor, Push
13. IIWA, Plate, ObjectDoor, Shelf
14. IIWA, Hollowbox, None, Trashcan
15. IIWA, Box, ObjectDoor, PickPlace
16. IIWA, Box, ObjectDoor, Push
17. IIWA, Hollowbox, None, Shelf
18. IIWA, Dumbbell, ObjectWall, Shelf
19. IIWA, Hollowbox, GoalWall, Shelf
20. IIWA, Box, ObjectWall, Push
21. IIWA, Hollowbox, ObjectWall, Shelf
22. IIWA, Hollowbox, None, Push
23. IIWA, Plate, GoalWall, Shelf
24. IIWA, Plate, ObjectDoor, PickPlace
25. IIWA, Plate, GoalWall, Trashcan
26. IIWA, Dumbbell, GoalWall, PickPlace
27. IIWA, Hollowbox, ObjectDoor, Trashcan
28. IIWA, Dumbbell, ObjectWall, Trashcan
29. IIWA, Plate, None, Push
30. IIWA, Plate, GoalWall, Push
31. IIWA, Dumbbell, None, Push
32. IIWA, Plate, GoalWall, PickPlace

Figure 11: Visualization of the 14 training tasks used in the IIWA-only split. Tasks are shown in numerical
order (1–14), arranged left-to-right and top-to-bottom. Each image depicts one unique combination of Object,
Obstacle, and Objective paired with the IIWA robot.
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Figure 12: Visualization of the 32 held-out test tasks used for zero-shot evaluation. Tasks are displayed
in numerical order (1–32), arranged left-to-right and top-to-bottom. Each image corresponds to a distinct
unseen combination of Object, Obstacle, and Objective in the IIWA environment.
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