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Abstract

A common approach for aligning language mod-
els to human preferences is to first learn a reward
model from preference data, and then use this re-
ward model to update the language model. We
study two closely related problems that arise in
this approach. First, any monotone transformation
of the reward model preserves preference ranking;
is there a choice that is “better” than others? Sec-
ond, we often wish to align language models to
multiple properties: how should we combine mul-
tiple reward models? Using a probabilistic inter-
pretation of the alignment procedure, we identify
a natural choice for transformation for (the com-
mon case of) rewards learned from Bradley-Terry
preference models. The derived transformation is
straightforward: we apply a log-sigmoid function
to the centered rewards, a method we term “LSC-
transformation” (log-sigmoid-centered transfor-
mation). This transformation has two important
properties. First, it emphasizes improving poorly-
performing outputs, rather than outputs that al-
ready score well. This mitigates both underfitting
(where some prompts are not improved) and re-
ward hacking (where the model learns to exploit
misspecification of the reward model). Second, it
enables principled aggregation of rewards by link-
ing summation to logical conjunction: the sum
of transformed rewards corresponds to the prob-
ability that the output is “good” in all measured
properties, in a sense we make precise. Experi-
ments aligning language models to be both helpful
and harmless using RLHF show substantial im-
provements over the baseline (non-transformed)
approach.
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Figure 1. Transforming the Bradley-Terry reward both mitigates
overfitting and makes addition behave as logical AND. This leads
to significant improvements in aligned model quality relative to
standard practice. Each point on the plot is a LLM aligned with a
different KL penalty weight. The y-axis shows improvement over
the base supervise finetuned (SFT) LLM in both helpfulness AND
harmlessness, as judged by an external evaluator model (not used
for RLHF). The baseline aggregates suboptimally (usually losing
on either helpfulness or harmlessness) and suffers reward hacking
(performance decays in the high KL regime). Details in Section 5.

1. Introduction
In this paper, we are interested in how to align large lan-
guage models in order to bias their outputs towards having
desired properties—e.g., to be helpful, harmless, factual, or
creative (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang
et al., 2022). We study the two-stage approach where we
first learn a reward model from human preferences, and then
align the language model so that its outputs have high values
under the reward model. In this context, we’re interested in
two fundamental problems:

1. The alignment step maximizes the expected learned
reward model. However, any monotone transforma-
tion of the reward preserves the interpretation of the
alignment procedure as biasing the language model
towards human-preferred outputs. Can we improve the
alignment step by transforming the learned reward?

2. We often wish to align language models to multiple
properties—e.g., outputs should be helpful, and harm-
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less, and factual. If we have reward models for each
property, how should we combine them?

A main challenge in answering these questions is that the
goal of alignment is not precisely defined. As a result, there
is no obvious principle to guide the choice of transforma-
tion or aggregation method. The conceptual idea in this
paper is to interpret alignment probabilistically. From this
perspective, the goal of aligning a model to a particular prop-
erty is to produce samples from the posterior distribution
conditional on the outputs being “good” on that property.
Similarly, the goal of aligning to multiple properties is to
produce samples conditional on the outputs being “good”
on all properties.

To make use of this idea, we need to define what it means
for an output to be “good”. In the context of rewards learned
from preference data, we take an output y be “good” if it has
reward r(x, y) greater than some prompt-specific reference
value rref(x). The first main result of the paper is that in the
(typical) case where the reward model is learned from pref-
erence data using a Bradley-Terry model and the language
model is aligned by maximizing expected reward subject to
a KL constraint, the natural choice of transformation is:

u(x, y) = log σ(r(x, y)− rref(x)), (1.1)

where σ(·) is the sigmoid function. Here, r is the learned
Bradley-Terry reward model, and u is the transformed re-
ward we use in the alignment step. We call this transforma-
tion the “LSC-transformation” (log-sigmoid-centered trans-
formation), and alignment using such transformation “LSC-
alignment”.

This transformation is motivated by a probabilistic interpre-
tation. It additionally turns out to have important practical
benefits relative to the baseline approach of using the raw
reward model. First, the transformed reward shrinks the
marginal utility of very high reward values. This has the ef-
fect in alignment of both encouraging the model to improve
poorly performing prompts, and of discouraging the model
from “reward hacking” by optimizing the reward model
outside the range of its validity. Second, the transformed
reward offers a natural way to combine multiple reward
models. Namely: the sum of the transformed rewards corre-
sponds to the logical AND of the outputs being “good” on
each property. So, after transforming the rewards, we can
simply sum them to aggregate multiple reward models.

In combination, these benefits can lead to substantial im-
provements in alignment performance. Figure 1 compares
aligning a language model to be both helpful and harm-
less using summation of transformed and untransformed
rewards. Varying the strength of KL regularization used in
the alignment step, we observe that the transformed reward
leads to substantial improvements at all KL levels.

2. Preliminaries
We first review the standard Reinforcement Learning from
Human Feedback (RLHF) two-step procedure for aligning
language models to human preferences.

Reward model training from pairwise data Reward
models are trained to emulate human feedback. A frequently
used type of feedback is pairwise preference data, consisting
of a prompt x and two generated responses y+, y−, where
y+ is preferred by the human annotator. Our discussion
mainly focuses on this case.

Commonly, rewards are learned using the Bradley-Terry
model (Bradley & Terry, 1952),

p(y− ≺ y+ | x) = σ(r(x, y+)− r(x, y−)). (2.1)

The function r is parameterized by a neural network (typ-
ically, another LLM) and fit using the standard maximum
log likelihood objective.

Alignment to reward model The next step is updating
the base LLM to bias it towards high-reward responses.

Usually, aligning the model to the reward function is pro-
ceeded by a “Supervised Finetuning” (SFT) step where the
base model is fine-tuned using the language modeling ob-
jective on the winning examples from the human preference
data. We denote this model as π0. Our interest is how to use
the reward model to further align π0.

The aim of the alignment step is to update π0 to a new model
π∗ that has high expected reward, while still being close
to π0 (to preserve information from the previous training
phases). Standard practice is to learn π∗ by maximizing the
expected reward of samples, regularized by a penalty on the
KL-divergence between π∗ and π0.

The main idea in this paper is to instead use a utility measure
u(x, y) that is a monotone transformation of r(x, y). We
leave the alignment procedure otherwise unchanged. Then,
mathematically, π∗ is the maximizer of:

Ex{Ey∼π(·|x)[u(x, y)]− γKL(π(·|x)∥π0(·|x))} (2.2)

Here, γ is a hyper-parameter that controls the trade-off
between maximizing rewards and aligning with π0.

3. Reward Transformation
We now turn to deriving the reward transformation.

Formalize Alignment Goal The first step is to formal-
ize the goal of alignment. This is necessary to identify
a “correct” transformation. Intuitively we want to modify
the initial policy π0(y|x) so that the generated samples are
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(a) Transformation Shape (b) Helpfulness Examples

Figure 2. Bradley-Terry rewards do not capture diminishing util-
ity, and log-sigmoid transforming can fix this. In the example
responses, moving from response 1 to response 2 substantially
increases utility, but from response 2 to response 3 only marginally
increases. However, the BT rewards treat each improvement the
same. A log-sigmoid transformation reflects diminishing returns.

considered “good” in some property by humans. To make
progress, we introduce a binary semantic random variable G
indicating whether response y is “good” for prompt x. Then
we define the alignment goal as producing a model that sam-
ples from the distribution of responses conditional on the
response being good; i.e., πtarget(· | x) = p(· | x,G = 1).

In fact, we slightly generalize this to allow finer grained
control of the reward vs KL tradeoff. By Bayes’ rule, we
may rewrite p(y|x,G = 1) ∝ π0(y|x)p(G = 1|x, y). That
is, we reweight the base LLM by a term that upweights
responses that are likely to be deemed good. It is natural to
introduce a hyperparameter to control the strength of this
upweighting. Anticipating the connection to Equation (2.2),
we again use γ for this hyperparameter. Then, we define our
alignment goal as producing an aligned model

πtarget
γ (y|x) ∝ π0(y|x)p(G = 1|x, y)1/γ (3.1)

Reward Transformation The next question is how to
produce an aligned model that satisfies our goal. This has
two parts: we must use the reward model to define the binary
goodness variable G, and we must determine how the utility
function used for alignment relates to G.

Target Utility Function We begin by connecting align-
ment utility and G. The idea is to use the well-known result
that the ideal optimizer of the KL-regularized RLHF ob-
jective Equation (2.2) is an exponential tilting of the base
policy (e.g., Korbak et al., 2022):

π∗(y | x) ∝ π0(y | x) exp (u(x, y)/γ) (3.2)

Comparing Equation (3.1) with Equation (3.2), we see that
in order to get the target policy through alignment, we must
set the utility function to be the log-probability of goodness:

u(x, y) = log p(G = 1|x, y). (3.3)

Pointwise Reward Models The next step is to relate the
Bradley-Terry model to p(G = 1|x, y). As a warmup, we
consider the case of reward models trained on pointwise
data; i.e., where each example is a prompt x, response
y, and a binary label G indicating whether the response
is good. In this case, we would train the reward func-
tion by minimizing a binary cross-entropy objective. This
is a proper scoring rule, so the learned reward would be:
r(x, y) = logit p(G = 1|x, y). Here, we take the reward to
be on the logit scale so that r(x, y) ∈ (−∞,∞), analogous
to Bradley-Terry rewards. In this case, the right utility is
u(x, y) = log σ(r(x, y)).

Pairwise Reward Models The pairwise case is more sub-
tle. It may be tempting to again apply the log(σ(·)) transfor-
mation to the Bradley-Terry rewards. This is incorrect for
two reasons. First, only reward differences are interpretable
as logit probilities—the rewards for individual prompts are
not. Second, in general the reward model r(x, y) is uniden-
tifiable from the data. For any r, we can shift it by any
arbitrary function of the prompt x without changing the
Bradley-Terry model. That is, r̃(x, y) ← r(x, y) + C(x)
has the same objective in Equation (2.1). However, any
non-linear transformation of the reward will be sensitive to
this unidentified C(x).

Happily, both problems are resolved by choosing a suitable
definition of what it means for a response to be good. Here,
we take a generated response y to be “good” if it is preferred
over a chosen reference output yref. For example, we may
say that y is harmless as long as it is preferred by the harm-
lessness reward to a canned response such as “I am unable
to answer that question”.

The LSC-transformation follows immediately:

Theorem 1. Suppose output y is deemed good for
prompt x if it would be preferred to reference out-
put yref(x). Then, if the Bradley-Terry model Equa-
tion (2.1) holds, and we align using KL-regularized
utility maximization Equation (2.2), then using utility

u(x, y) = log σ(r(x, y)− rref(x)) (3.4)

will satisfy the alignment goal Equation (3.1). Here
rref(x) := r(x, yref(x)).

That is, once we decide on a reference response, we get the
right utility function by applying log-sigmoid transforma-
tion to the centered reward.

Mechanistic Interpretation We derived the reward trans-
formation from a probabilistic argument. It is also insightful
to consider the mechanistic effect of the transformation.

One fundamental issue with the baseline approach, where
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u(x, y) = r(x, y), is that the utility gain for improvements
never diminishes. In the aligned model, taking γ = 1,
we have that the relative probabilities of two responses is
exponential in the difference of utilities.

π∗(y1 | x)
π∗(y0 | x)

= exp(u(y1, x)− u(y0, x))
π0(y

1 | x)
π0(y0 | x)

(3.5)

Now, consider the case where we have three candidate re-
sponses: yref, y0, y1 such that p(yref ≺ y0) = 0.99 and
p(yref ≺ y1) = 0.999. If we use the raw Bradley-Terry
logits as our utility, then using that r(y1, x) − r(y0, x) =
(r(y1, x)− r(yref, x))− (r(y0, x)− r(yref, x)) we have:

π∗(y1 | x)
π∗(y0 | x)

= exp(logit(0.999)− logit(0.99))
π0(y

1 | x)
π0(y0 | x)

≈ 10× π0(y
1 | x)

π0(y0 | x)

That is, when aligning to raw rewards, going from a very
good response to a marginally better response increases
probability by a factor of 10! However, if yref is already
good, a human would find little difference between the two
responses.1 Conversely, aligning to the transformed reward
model only increases the probability by a factor of 1.01.

This effect seems particularly salient when we consider that
the reward model is itself learned. It seems unlikely that the
model can actually reliably distinguish between y1 and y0.
Accordingly, when we align to the raw learned model, we
expect to induce enormous shifts according to preferences
that are anyways noisy.

Choosing reference response The reference reward acts
as a hyperparameter of the transformation. Essentially, the
transformation results in a utility that is linear below the
reference value, and rapidly diminishing above it. Accord-
ingly, we should set the reference to a value that represents
a good response, that we believe is achievable by the model,
and where we believe our learned reward function makes
meaningful predictions. We found that a good default choice
is the 85th quantile of examples from the base distribution.
We consider additional examples in Section 5.

4. Reward Aggregation
We now consider the case when we have multiple reward
models for different objectives r1, ..., rn.

Alignment Goal Again, the first step in deriving an op-
timal aggregation scheme is to formalize a goal. We make
the following natural choice: the aligned model should be

1Ultimately, the issue here is that Bradley-Terry rewards don’t
automatically correspond to utilities.

“good” on all target properties. E.g., we want to align our
model to be helpful AND harmless.

To formalize this idea, let Gi be binary random variable
indicating whether y is considered “good” for x in property
i. We introduce the binary random variable corresponding
to logical AND: GAND :=

∧n
i=1 Gi. Similar to the single re-

ward case, we formalize the goal as the posterior distribution
conditioned on all properties being “good”:

πtarget
AND,γ ∝ π0(y | x)p(GAND = 1 | x, y)1/γ (4.1)

Reward Aggregation With this goal, following Theo-
rem 1, we want to align using utility

u(x, y) = log p(GAND = 1 | x, y). (4.2)

The question is then how to construct this utility function
using the individual reward models.

In full generality, this is an impossible task. The reason is
that the individual rewards only tell us about the marginal
distributions of the properties, but the logical AND may
depend on interactions. Thus, we need an extra assumption:

Assumption 1 (Independent Judgements). Given a fixed
prompt x and response y, whether y is judged to be good for
x on each property is independent of all the judgements on
all other properties. That is, (G1, ..., Gn) are conditionally
independent given (X,Y ).

For example, this assumption says we can decide whether a
given response is helpful independently of deciding whether
it’s harmful. (Note: this is conditional on the prompt and
response. We do not require helpfulness and harmless to be
independent marginally.)

The reward aggregation formula follows immediately:

Theorem 2. Suppose output y is deemed good for
prompt x in aspect i if it would be preferred to refer-
ence output yref

i (x) in property i. Then, if Assumption 1
holds, the Bradley-Terry model Equation (2.1) holds
for all properties, and we align using KL-regularized
utility maximization Equation (2.2), then using utility

u(x, y) =

n∑
i=1

log σ(ri(x, y)− rref
i (x)) (4.3)

will satisfy the alignment goal Equation (4.1). Here
rref
i (x) := r(x, yref

i (x)).

Mechanistic Interpretation We derived the aggregation
scheme according to a probabilistic assumption. Similar to
the single-reward case, we consider the mechanistic effect.
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The baseline approach is to aggregate with a (weighted) sum
of the raw rewards. The key problem is that this approach
allows strong performance in one property to balance out
poor performance in another.

Consider the case where we have two properties A and B
we want to align to (e.g., helpfulness and harmlessness),
and 4 responses yref

A , yref
B , y0, y1 such that p(yref

A ≺ y1) =
p(yref

B ≺ y1) = 0.9, and p(yref
A ≺ y0) = 0.45 with p(yref

B ≺
y0) = 0.99. If we want the aligned distribution to generate
samples that are “good” in both aspects, then y1 should be
preferred to y0. However, if we use the sum of the raw
Bradley-Terry logits as utility (u = rA + rB), the relative
probability ratio under the aligned policy π∗ will be (with
γ = 1) π∗(y1 | x)

π∗(y0 | x) = 1 × π0(y
1 | x)

π0(y0 | x) . That is, the aligned
model does not upweight response y1. If we instead align
by the sum of the transformed reward, then we have that
the relative probability ratio is approximately 1.8—i.e., the
response that does well on both properties is preferred.

5. Experiments
We now turn to assessing the practical effect of using the
transformed reward to align LLMs. We experiment with
aligning models to be helpful, harmless, and both. We
find that the transformation alleviates reward hacking and
reward underfitting, and that aligning to transformed sum
acts as aligning to logical AND. This leads to substantial
improvements in LLMs aligned to the transformed reward.

5.1. Experimental Setup

We follow a standard RLHF pipeline; see Appendix A.4 for
full details.

Datasets We use the Anthropic Helpfulness and Harm-
lessness datasets (Bai et al., 2022). These are multi-turn
dialogues between a human and a digital assistant. Each
dataset consists of the beginning of the conversation, two
responses for the final turn of the AI side of the conversation,
and a label for the human preference on the target property.
We use the base datasets (44K examples for helpfulness
and 42K for harmlessness), where responses are generated
from a 52B context-distilled LM. For both tasks, we split
the training set into two: half for training the reward model,
and half for the alignment step.

Reward model training We train a Bradley-Terry reward
model for each of helpfulness and harmlessness by finetun-
ing a pretrained T5-base (220M parameters) model (Raffel
et al., 2020) on the Anthropic data.

SFT For our policy model, we use the instruction-
finetuned PALM-2-XXS model (Anil et al., 2023). Fol-

lowing standard practice, we first run supervised finetuning
(SFT) of the instruction tuned LLM on the ‘preferred’ re-
sponses from the helpfulness dataset. We use this SFT
model as the pre-alignment base for all experiments.

RLHF setup For alignment, we follow standard practice
and optimize expected utility subject to a KL penalty using
Proximal Policy Optimization (PPO) algorithm. For each
utility function and dataset, we sweep over multiple values
of the KL regularization strength γ. We run for 20000 steps,
which we find suffices for convergence in all cases.

5.2. LSC-Transformation Improves Alignment

Transforming the reward model should encourage the align-
ment to focus on improving lower-reward responses over
those with already high rewards. We expect this to both
reduce reward hacking, and to reduce the number of low-
reward responses (less underfitting).

Choice of reference reward The reference reward rref(x)
should capture the notion of a response that’s “good
enough”. For harmlessness, this is straightforward: a
generic response like “I can’t answer that” achieves the
goal. For the experiments, we sampled variations of “I can’t
answer that” as the reference reward.

For helpfulness, such canned responses won’t suffice. In-
stead, for each prompt we sample 64 responses from the
SFT model. We then use this data to build an estimator of
the 85th quantile of the sampled rewards for each prompt.
We use this estimated 85th quantile as the reference reward.
Details provided in Appendix A.1.

Transformation Improves Alignment Aligning to the
transformed reward should reduce reward hacking and un-
derfitting relative to aligning to the raw reward. Then, we
expect that the transformed alignment leads to larger gains
over the SFT model.

We have two main strategies for judging improvement rel-
ative to the SFT model. First, following past work (Gao
et al., 2023; Coste et al., 2023; Eisenstein et al., 2023), we
train a T5-XXL model using the same preference dataset
and the Bradley-Terry objective. This provides a proxy for
true preferences that we do not optimize against (so, it can
witness reward hacking). We say a sample from the aligned
model wins in helpfulness if it beats the 85th reward quan-
tile of samples from the SFT model. We say it wins in
harmlessness if it beats the 95th-quantile. (These numbers
are chosen to make winning hard enough to show a gap
between alignment strategies; results are consistent across
other choices of quantile.).

The second strategy evaluates wins by zero-shot querying
of an instruction-tuned PALM-2 medium model. Following
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(a) RLHF for single reward (Helpful)
(b) best-of-k for aggregation (Helpful and
Harmless)

(c) RLHF for single reward (Harmless)
(d) RLHF for aggregation (Helpful and Harm-
less)

Figure 3. Transformed reward obtains better trade-offs between KL/k and win-rate trade-offs, in single-reward and reward aggregation
(more significantly). In Figure 3a and Figure 3c, we show two win rates: 1) win rates judged from prompted PALM 2 evaluator, between
the aligned policy and random SFT samples, and 2) win rates judged by T5-XXL evaluator, against the SFT quantiles: we use 85%
for helpfulness and 95% for harmlessness for this plot. In Figure 3d and Figure 3b, we show win rates against SFT median rewards in
helpfulness and harmlessness, judged by T5-XXL evaluator.

previous work (Dubois et al., 2023; Singhal et al., 2023;
Eisenstein et al., 2023; Rafailov et al., 2023), we pass a
prompt, a response from the SFT model, and a response
from the aligned model and ask which is preferred (in terms
of helpfulness or harmlessness). Details in Appendix A.2.

Figure 3 shows the win rate of the aligned models over the
SFT model for each evaluation strategy. We average over
the prompts in the RLHF validation dataset. We see that
aligning to the transformed reward dominates aligning to
the raw reward, under both evaluation strategies and at all
levels of KL distance to the base policy model.

See Appendix A.2 for additional experiments evaluating
alignment-induced improvements.

Uniform Improvement of Rewards It is clear that align-
ing using the transformed reward improves over aligning us-
ing the raw reward. Intuitively, this is because of a reduction
in both reward hacking and underfitting. To check whether
this intuition holds, we plot the distribution of rewards of
samples from (approximately) KL-matched raw-aligned and
transformed-aligned models in Figure 4. As expected, the
reward distribution of samples from the transformed-aligned

model is more concentrated. That is, there are fewer very
high reward samples (less reward hacking) and fewer very
low reward samples (less underfitting).

In more detail: for each of helpfulness and harmlessness,
we choose a raw-aligned and transformed-aligned model
with approximately matched KL. We sample responses
from each model with the same prompts. Then, we compute
the (T5-base) reward for each of these responses, centered
by median reward of SFT samples (to make rewards
comparable across prompts). Figure 4 shows histograms
of these sampled rewards. We also compare across multiple
KL-values in Figure 10.

Transformation reduces shortcuts One symptom of re-
ward hacking is that the aligned model will start exploiting
“shortcuts” that are preferred by the reward model (but which
do not correspond to genuine improvements). We consider
the effect of reward transformation on two such shortcuts.
For helpfulness, Eisenstein et al. (2023) observe that raw-
aligned models have a tendency to format outputs as lists.
For harmlessness, we observe that raw-aligned models will
often give responses of the form “you should consult a [doc-
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(a) Helpfulness (KL ≈ 18) (b) Harmlessness (KL ≈ 7)

Figure 4. Reward Transformation leads to more uniform reward
improvements than baseline. We compare reward distributions in
the aligned policies that are matched on KL. Rewards are centered
by the SFT median in both helpfulness and harmlessness. Reward
distributions are more concentrated when using transformed re-
wards than using raw rewards.

(a) Helpfulness (b) Harmlessness

Figure 5. Transformed reward reduces shortcuts in generated re-
sponses. For helpfulness, we identify a shortcut pattern of using
lists, similar to (Eisenstein et al., 2023). In harmlessness, one
known shortcut pattern is recommending the users to seek therapy
or consult professional help (Bai et al., 2022). We extract these
shortcuts with heuristic methods. In the baseline approach, the
policy model exploits those shortcuts for higher reward values.
This is mitigated when we transform the reward.

tor/psychologist/lawyer/etc]” (a similar observation is made
by Bai et al. (2022)). In Figure 5, we plot the fraction of
responses that contain each shortcut, for each aligned model.
We see that the raw-reward aligned model does indeed ex-
ploit these shortcuts. Further, this behavior is substantially
mitigated by aligning to the transformed reward instead. See
Appendix A.3 for details.

5.3. Reward Aggregation using LSC-Transformation
Significantly Improves Alignment

We now turn to the second goal: aggregating rewards for
multiple distinct goals. To that end, we consider aligning a
LLM to be both helpful and harmless.

5.3.1. FURTHER EXPERIMENTAL SETUP

RLHF setup We use reward models trained for the help-
fulness and harmlessness tasks as discussed above. For
RLHF training, we use prompts only from the helpfulness
dataset. This decision is because of the observation of the
tension between helpfulness and harmlessness, which forced
(Bai et al., 2022) to use a higher proportion of helpfulness

prompts than harmlessness ones. We use the same policy
model as in experiments for single rewards (SFT-ed on help-
fulness data). The other training details are the same as in
single-reward experiments.

best-of-k setup In addition to RLHF experiments, we also
experiment with best-of-k sampling, as in Gao et al. (2023);
Eisenstein et al. (2023). That is, we draw k samples from the
SFT model, rank them by the combined reward, and return
the top ranked sample. This can be viewed as another align-
ment procedure, where the best-of-k sampling has some
(KL) divergence from the underlying policy, and produces
samples with higher expected reward. In our experiments,
we try k increasing from 1 to 191.

There are two main motivations for considering best-of-k ex-
periments. First, it demonstrates that the reward aggregation
method applies to methods beyond RLHF. Second, best-of-
k doesn’t involve complicated optimizations. This allows us
to disentangle the effect of having the ‘right’ reward from
the effect on solving the optimization problem.

Baseline In this setting, we take the baseline method to
be a weighted sum of the raw rewards; i.e.,

Rbaseline
∧ := wRhelp + (1− w)Rharm. (5.1)

We sweep over w = 0.1, ..., 0.9, and report the baselines
with best performance on our evaluation metrics.

Reference Rewards We combine the transformed rewards
by simple addition. Weighting this addition doesn’t have
a clear motivation or interpretation. Instead, the choice of
reference value used for each reward plays an analogous
role. Intuitively, if we set a lower reference value for reward
A then the reward becomes more easily saturated, and the
optimization focuses more on reward B.

For best-of-k, using w = 0.5 achieves the best performance
in the baseline method. Accordingly, we want to take the
reference rewards for helpfulness and harmlessness to be
comparable. To that end, we use the (estimated) SFT median
for both helpfulness and harmlessness. Note that this is a
lower reference than used for the individual optimizations.
This makes sense because the more difficult problem of
optimizing both goals simultaneously stops the model from
saturating the reward prematurely.

For RLHF, we observe that w = 0.6 gives the best result for
weighted-sum approach. Then, we want to set the reference
reward for helpfulness to be somewhat higher. We use the
(estimated) SFT 75%-quantile.

These choices are likely not optimal, and it’s possible that
further hyperparameter optimization could improve results.

Evaluation We want a metric that reflects Logical-AND.
That is, whether we’ve improved over the SFT model in both
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helpfulness and harmlessness. To that end, we’ll say that
a generation wins if it has helpfulness reward higher than
the median helpfulness of SFT samples, and harmlessness
higher than the median harmlessness of SFT samples.

5.3.2. AGGREGATION RESULTS

Transformed Aggregation Improves Alignment Sum-
ming the transformed reward should have two advantages
over the baseline method. First, it corresponds to logical
AND. Second, it retains the benefits of alleviating reward
overoptimization, as in the single-reward case. Together,
these should cause aligning by the transformed-combined
reward to outperform aligning by the baseline reward.

Figure 3b and Figure 3d shows improvement over the SFT
model for aligning using both rewards, for both best-of-k
and RLHF. As anticipated, we see significant improvement
from the transformed method.

It is noteworthy that the transformed-aligned model outper-
forms in best-of-k, and for low-KL in the RLHF alignment.
In these cases, there is little reward hacking (the aligned
model is too close to the SFT model to have very bad be-
havior). Thus, the win here is apparently due mainly to the
logical AND effect. In the high-KL regime, the reward hack-
ing effect kicks in and the transformed-reward dramatically
outperforms the raw-reward baseline.

Transformed Summation Corresponds to Logical AND
Next, we check directly whether the logical AND effect can
be witnessed in the aligned LLM. To that end, we exam-
ine the distributions of rewards in the aligned policies. In
Figure 6, our aggregation method leads to more balanced
reward distributions (two reward values are often similar),
whereas the baseline method leads to more unbalanced re-
ward distributions (one reward is much higher than the other
one). Note that best-of-k (k = 191) have quite different
reward distributions than RLHF at KL ≈ 14 (the former
reflects the anti-correlation of the two rewards in the initial
policy; the latter updates the policy to have high aggregated
reward values). But the transformed aggregation method
has consistent effects in both cases.

6. Ablation Studies
The LSC-transformation consists of two components: cen-
tering and log-sigmoid transformation. Centering is known
to reduce variance in policy gradient updates, while the
log-sigmoid transformation caps the reward values. To un-
derstand the contribution of each component, we investigate
their effects separately. As shown in Figure 7, applying
centering or log-sigmoid transformation in isolation does
not improve alignment.

(a) best-of-k (K = 191)

(b) RLHF (KL ≈ 14)

Figure 6. Summation of log-sigmoid transformed rewards corre-
sponds better to logical AND. Aligned policies using the former
method have more balanced reward distributions (concentrated
where the two reward values are similar), whereas the latter method
leads to more unbalanced reward distributions. We choose aligned
policies by matching K for best-of-k and KL for RLHF. The
rewards are centered by SFT median for both helpfulness and
harmlessness. We visualize the joint distribution by kernel density
estimate plot, with darker color indicating higher density.

Does centering alone help? This approach did not change
the RLHF performance relative to the baseline. Though
centering is known to reduce variance for policy gradient
update, it doesn’t change the optimization target of the KL-
regularized RLHF objective, as shown in Equation (3.2).

Does log-sigmoid transformation alone help? This es-
sentially sets a constant reference value (rref(x) = 0) for all
inputs x. This is found to hurt the performance relative to
baseline. The reference value is important, as can be seen in
the shape of utility function in Fig 2(a): when the reference
is too small, it saturates the utility when the reward is still
under-fitted; when the reference is too large, the nonlinear
transformation has no effect. More specifically, there are
two possible reasons why simply using log-sigmoid trans-
formation does not work:

1. First, r(x, y) is non-identifiable: any r(x, y) + c(x)
yields the same Bradley-Terry objective. Then,
any fixed constant reference reward (independent of
prompt) is fundamentally not meaningful.

2. Second, if the reference reward is set too high then
there will be no effect (for r ≪ rref, the transformation
is effectively a constant offset), and if the reference re-
ward is set too low then training will saturate too early.
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Figure 7. Log-sigmoid transformation or centering alone does not
improve alignment. The experiment is for the helpfulness task.

The issue with a constant reference level such as 0 is
that it’s unclear what this means in practical terms—is
it too high or too low or fine? By contrast, choosing
reference rewards based on generated responses (as in
the paper) makes it easy to set a meaningful threshold.

7. Discussion and Related Work
There is a growing body of work on mitigating reward
hacking in the RLHF pipeline. Techniques include forms
of reward model averaging (Eisenstein et al., 2023; Ramé
et al., 2024; Zhai et al., 2023), constrained optimization
(Moskovitz et al., 2023), and reward model regularization
(Shen et al., 2023), iterative human preference collection
(Bai et al., 2022; Stiennon et al., 2020; Fan et al., 2022),
or data bias mitigation (Singhal et al., 2023). These
approaches are complementary to the transformation
technique proposed here, and could be used in combination.

There have been several proposals for aligning language
models to multiple objectives. The most common approach
is to combine individual reward models via a weighted sum
(e.g., Wu et al., 2023; Moskovitz et al., 2023). Moskovitz
et al. (2023) identified a constraint threshold for individual
rewards, and formalized a constrained MDP problem, but
the identification of the threshold point relies on ground-
truth queries. Bakker et al. (2022) consider adapting social
welfare schemes for aggregating the dissenting preferences
of many individuals, in contrast with our goal of satisfying
all properties. Bai et al. (2022) train a single reward model
on both the helpfulness and harmlessness data, but discover
that this leads to reward hacking harmlessness. They change
the proportion of helpfulness data in the training to circum-
vent this. Combining by summing transformed rewards
allows us to circumvent such considerations.

The transformation technique in this paper is relevant to any
alignment strategy that explicitly maximizes an expected
utility. There are now also alignment methods (e.g., Rafailov
et al., 2023; Azar et al., 2023; Zhao et al., 2022) that use
preference labels directly without explicitly instantiating
reward models. Note, however, that if we want to align to
multiple properties, we still need to compute rankings from

an aggregate. The simplest approach is to train reward mod-
els for individual properties, combine these reward models,
and then rank samples using the combine reward. Our best-
of-k experiments show that the transformation can yield
significant gains even in this case.

Finally, we note that Azar et al. (2023) also emphasizes the
need for a bounded utility function. The work here can be
viewed, in part, as a way of incorporating this insight that
still maintains the standard utility maximization pipeline. It
is an interesting question for future work whether making ex-
plicit use of a (transformed) reward improves the alignment
step relative to using only ranked pairs.
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A. Additional Experiment Details
A.1. Implementation for reference value prediction

The goal is to develop models that can predict various quantiles of the sampled rewards for different prompts. Instead
of building separate models for each quantile, we assume the reward distribution for each prompt follows a Gaussian
distribution. Under this assumption, we build two models: Mean Prediction Model (rmean) and Standard Deviation
Prediction Model (rstd) to predict the mean and standard deviation of the reward distribution for each prompt.

To estimate a specific quantile for a prompt, the formula used is:

rmean(x) + s× rstd(x)

where s is a scaling factor corresponding to the desired quantile (e.g., using s = 0.7 approximately gives us the 75%
quantile).

The training data is collected by generating 64 responses per prompt using the SFT policy model. These responses are
scored to calculate the sample mean and standard deviation of the reward distribution for each prompt, which are then used
as the response variables in training the models rmean and rstd.

A.2. PALM-2 Evaluation Details

We evaluate the win-rates with zero-shot prompting. For each prompt, we sample (yπ, ysft) from the aligned and SFT policy,
then ask the PALM-2 model which is more helpful/harmless. The prompt template is Figure 8.

In order to counter positional bias (Hou et al., 2023), we run PALM-2 on the two possible orderings (yπ, ysft) and (ysft, yπ),
sample N = 8 outputs for each order and determine the winner by majority voting.

A.3. Heuristics for shortcut discovery

For the helpfulness task, we follow the same practice in (Eisenstein et al., 2023) and find responses in the format of a list.

For harmlessness task, we see the aligned policy starts to only generate similar generations to different questions as KL
gets larger. To find shortcuts, we analyze generations of the aligned policy (using raw reward as utility) at KL ≈ 14. Then
we perform topic modeling and identify one dominant topic characterized by the recurring theme of ”you should talk to
[profession].” From the most frequent 50 words in that topic, we find all the profession-related words: therapist, professional,
doctor, psychologist, counselor, lawyer, police. Then we find all responses containing profession-related words.

A.4. RLHF training details

We use Proximal Policy Optimization (PPO) to perform RLHF alignment. The specific hyperparameters are in Table 1 We

Table 1. Hyper-parameters for RLHF.

Parameter Value

Policy learning rate 5 · 10−6

Value learning rate 4 · 10−5

Learning schedule Constant (linear warm-up)
Training steps 20000
Warm-up steps 2000
Batch size 32
Input length 1024
Output length 256

sweep over γ’s to get aligned policies with different KL values. Since we want to match (converged) polices by their KL
values, we find some heuristic to predict converged KL for a chosen γ (so they may not look like regular linear or geometric
series). More specifically, we use the parameterization of α = γ

1+γ , and the values used are in Table 2. Note that to get the
same KL value, we use smaller KL regularization for reward transformation, than using the raw reward. This is intuitive as
the log-sigmoid transformation prevents using KL budgets once the reward saturates.
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Figure 8. Prompt for PALM-2 Evaluation
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Table 2. Alphas for Various Task-Methods.
Task-Method α := γ

1+γ

Helpfulness (u = reward) [0.081, 0.086, 0.092, 0.1, 0.114, 0.132, 0.161, 0.222]
Helpfulness (u = transformed reward) [0.02, 0.023, 0.028, 0.032, 0.039, 0.053, 0.075, 0.123]
Harmlessness (u = reward) [0.169, 0.182, 0.196, 0.218, 0.248, 0.32]
Harmlessness (u = transformed reward) [0.032, 0.041, 0.052, 0.079, 0.126, 0.222]
H+H (0.5rhelp + 0.5rharmless) [0.078, 0.08, 0.084, 0.088, 0.094, 0.102, 0.116, 0.134, 0.168]
H+H (0.6rhelp + 0.4rharmless) [0.068, 0.071, 0.074, 0.077, 0.082, 0.088, 0.1, 0.123, 0.163]
H+H (0.7rhelp + 0.3rharmless) [0.057, 0.06, 0.065, 0.07, 0.075, 0.084, 0.1, 0.126, 0.173]
H+H (sum of transformed reward) [0.014, 0.0145, 0.015, 0.017, 0.018, 0.02, 0.023, 0.026, 0.031, 0.034, 0.04, 0.048, 0.066, 0.096]

B. More Experiment Results
In Figure 4 we choose a pair of aligned policies matched on KL values to show that reward transformation leads to more
uniform improvement than using the raw reward. In Figure 9 we visually show reward overoptimization (in the same aligned
policies), and how reward transformation alleviates it. The mitigation is most obvious for responses with larger reward
values. It’s also important to note that reward aggregation exacerbates reward hacking with weighed sum of the raw reward:
the policy model is incentivized to generate responses with very high harmlessness score (despite having smaller weight
for harmlessness); to retain good scores in helpfulness, the policy model hacks the helpfulness reward model even more
(compare Figure 9a against Figure 9c). Using sum of transformed reward alleviates this by two mechanisms.

In Figure 10 we show reward transformation leads to more concentrated reward distribution than using raw reward, the same
trend across different KL values.

In Figure 3 we report win-rate against random sample under PALM-2, and against SFT 85%-quantile for helpfulness and
95%-quantile for harmlessness. In Figure 11, we report the extra evaluations.
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(a) Helpful (single reward): KL ≈ 18 (b) Harmless (single reward): KL ≈ 7

(c) Helpful (aggregated reward): KL ≈ 14 (d) Harmless (aggregated reward): KL ≈ 14

Figure 9. Reward transformation mitigates reward overoptimization, particularly for responses with larger reward values, and in reward
aggregation where reward hacking is more severe. We compare reward overoptimization patterns in policies aligned with raw reward and
transformed reward, in single reward (Figure 9a, Figure 9b) and reward aggregation (Figure 9c, Figure 9d) settings. The choice of aligned
policies and score centering are the same as in Figure 4. For each plot, we sort the centered scores from T5-base reward model into 20
equal-width bins. For each bin with more than 10 data points: in the x-axis we show the interval medium; in the y-axis, we visualize the
25%, 50% and 75% quantile of the corresponding centered scores from T5-xxl.
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(a) Helpfulness (b) Harmlessness

Figure 10. Reward Transformation leads to more uniform reward improvements than baseline. The reward values are centered by median
SFT rewards. This complements the results in Figure 4 for comparisons across KL values.

(a) SFT Random Sample (b) SFT 50%-quantile (c) SFT 75%-quantile (d) SFT 95%-quantile

(e) Helpfulness

(f) SFT Random Sample (g) SFT 50%-quantile (h) SFT 75%-quantile (i) SFT 85%-quantile

(j) Harmlessness

Figure 11. Transformed reward obtains better KL and win-rate trade-offs. These are win-rates compared against SFT random sample, and
q-th quantile of the rewards of SFT samples. See details in Figure 3.
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