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Abstract

Trustworthy Al is crucial to the widespread adoption of AI in high-stakes applications
with fairness, robustness, and accuracy being some of the key trustworthiness metrics. In
this work, we propose a controllable framework for data-centric trustworthy AI (DCTAI)-
VTruST, that allows users to control the trade-offs between the different trustworthiness
metrics of the constructed training datasets. A key challenge in implementing an efficient
DCTALI framework is to design an online value-function-based training data subset selection
algorithm. We pose the training data valuation and subset selection problem as an online
sparse approximation formulation. We propose a novel online version of the Orthogonal
Matching Pursuit (OMP) algorithm for solving this problem. Experimental results show
that VTruST outperforms the state-of-the-art baselines on social, image, and scientific
datasets. We also show that the data values generated by VTruST can provide effective
data-centric explanations for different trustworthiness metrics.

1 Introduction

Trustworthiness (Kaur et al., 2022; Li et al., 2023a) of predictions made by Machine Learn-
ing models is crucial in many applications. In applications impacting society, e.g. loan
eligibility prediction (Hardt et al., 2016), criminal recidivism risk prediction (Angwin et al.,
2016), etc, fairness in prediction across different marginalized groups is as important as
overall prediction accuracy. Similarly, the robustness of object detection systems for au-
tonomous driving against perturbed input images(Song et al., 2024), or robustness against
label corruption in phase transition prediction of sub-atomic particles (Benato et al., 2022)
are important metrics compared to overall prediction accuracy. Tradeoffs between various
notions of fairness with accuracy, e.g. individual fairness (demographic parity/equalized
odds) (Roh et al., 2020; Romano et al., 2020) or group fairness (Accurate Fairness) (Li
et al., 2023b) are being studied for different models and training mechanisms. Similar
studies have also been reported on inherent tradeoffs between feature robustness in im-
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ages (Tsipras et al., 2019; Hu et al., 2023) with accuracy, and adversarial label robustness
(Pang et al., 2022; Madry et al., 2018). While inherent tradeoffs between the trustworthi-
ness metrics such as accuracy vs fairness or robustness is generally accepted, the nature of
additional bias introduced by algorithms e.g adversarial training (Madry et al., 2018) or
FairBatch (Roh et al., 2020) is not clear. In this paper, we follow a data-centric approach
to designing trustworthy Al techniques.

Data-centric approaches to Al model development (Zha et al., 2023) strive to design
methods for creating high-quality training datasets, that when used with standard SGD-
based training algorithm can lead to models with specific trustworthiness properties. This
eliminates the algorithmic bias introduced by specific algorithms, while limiting the bias
only to the newly created training dataset, which is easier to interpret. While many data
valuation (Koh and Liang, 2017; Park et al., 2023; Ghorbani and Zou, 2019) techniques have
been developed for the selection of high-quality training data subsets, most of them optimize
only one property, e.g. validation set error rate. While well-known metrics for robustness
and fairness exist, their use as a viable and efficient value function remains to be studied. A
key research issue in designing a data-centric approach is the design of an appropriate “value
function” that captures the notion of value of a training datapoint (toward trustworthiness
metrics) while also being efficiently optimizable. Another important research question is:
can the value functions corresponding to various trustworthiness metrics be combined into a
single value function using user-defined weightage? In this paper we address these research
questions, effectively leading to a general data-centric framework to achieve user-controlled
tradeoffs between different trustworthiness metrics.

We propose additive value functions for accuracy, fairness, and robustness, which can
be combined to form composite value functions. The additiveness of the value functions is
a key property that allows us to pose the problem of training data valuation and selection
as an online sparse approximation problem. We propose a novel online orthogonal matching
pursuit (OMP) algorithm that greedily replaces features corresponding to a selected data-
point with those of a new datapoint, if there is a net improvement in the overall value of
the selected set. Unlike the traditional OMP (Cai and Wang, 2011) which makes a pass
through the entire training dataset to select an example, the proposed online OMP makes a
pass through the selected datapoints (a much smaller set) at the time of training update to
optionally replace an existing selected point. Experimental results on various applications
demonstrate that models trained on subsets selected by VTruST can outperform all state-
of-the-art baselines by ~ 10 — 20% and can also provide data-centric explanations behind
its performance.

2 VTruST: Value-driven Trustworthy AI through Selection of Training
Data

We propose a controllable value function-based framework for developing trustworthy mod-
els using a data-centric paradigm. Our system has two components: (1) A general value
function-based framework that allows users to specify a combination of trustworthiness met-
rics (sections 2.1 and 2.2), and (2) a novel online subset selection algorithm for constructing
high-quality training dataset based on the specified value function (section 2.3).



2.1 A Controllable Value Function-based Framework for DCTAI

Let D = {d;li = 1,2,..,N} be the training dataset and D' = {d}|j = 1,2,.., M} be the
validation dataset. Every datapoint d’ € D’ can be used to define the value function
V(6,d") which is used for calculating the value of a model #. Given a run of model training,
we define the incremental value function vf(d;) as the decrease in loss incurred due to an
SGD update (Pruthi et al., 2020) using the datapoint d;: vj(d}) = l(Hz_l,d;) — U6}, d}),
where 9}:*1 and 6 are the model parameters before and after the SGD update involving the

training datapoint d; in the #** epoch. Hence the value of a model 87 can be defined as:
V(d;) = S SN o (d;) Vd' € D'. We overload the notation to define the value function

vector V(D') = 321 SN (D), where vf(D') € RM is the vector of incremental values
over all validation set datapoints.

Our data-centric framework aims to find a subset of training datapoints S € D that
leads to a high-value model #* after training for t-epochs. Let 7 = > 5_; Zfi LVF(D') be
the cumulative value function till the ¢t** epoch. We formulate the training data subset
selection problem as a sparse approximation: g ~ > ; cscp ai[ZZﬂ vF(D")] , where ;
are the weights for the selected training datapoint d;. Next, using a second order Taylor
series expansion of the change in loss function and plugging in the SGD update i — 02'71 =
ntVl(Hf;_l, d;), we obtain the following approximation for each term in the value function
16;, D) —1(0:"1, D) = VIO, d)) TV, D)) + O(||6; — 6:71||3). We truncate the Tay-
lor expansion till the second-order terms to arrive at the following sparse approximation
problem: 4 ~ >, cq; [ZZZI Xﬂ Vt =1,...,T where X¥ = v, )TV D) +
(V0" ,d)TVI(0; ", D"))?
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are the features for the i*" training point calculated in epoch ¢t. We
use ¢ and )?Zt to denote the predictor and predicted variables for valuating training data-
point d; using the entire validation set D’. The main challenge in solving this approximation
problem is that we need to store all the features X f for all training datapoints ¢ over epochs
k=1,...,t, in order to compute Zzzl )?f . This becomes prohibitively expensive. Instead,
we solve the following online sparse approzimation (OSA) problem for each epoch t:

g~y BLXS (1)
(p,9) €St

Here, S; is the set of selected training datapoints after epoch t. Note that the set S;
can contain datapoints indexed by p with features from any of the epochs ¢ = 1,...,t.
We constrain the size of S; to be less than a user-specified parameter w. We describe
an online algorithm for solving the above problem in Section 2.3. Note that the value
function V(D') only needs to be additive over the training datapoints and epochs for the
above formulation to be valid. Hence, this framework applies to a composite value function
V(D') =32, AfV¢(D'), where each value function Vy(.) satisfies the additive property. This
leads us to a general controllable framework for incorporating many trustworthiness value
functions, controlled using the user-specified weights ;.

2.2 Value Functions for Trustworthy Data-centric Al

For the accuracy metric, we use the value function proposed in (Pruthi et al., 2020), which
is defined as the decrease in loss incurred due to an SGD update using the datapoint d;:



vi(d}) = G ds) — I i ;) where 07! and 6} are the model parameters before and after

the SGD update involving the training datapoint d; in the t** epoch. Hence, the accuracy
value function vector in defined as V,(D') = .1 SN ol (D).

Robustness Value Function: Training data augmentation using various perturbations
has been observed to improve robust accuracy (Rebuffi et al., 2021; Addepalli et al., 2022).
We use various perturbations to create the augmented training set D, and validation set
D! from D and D’ respectively. The robustness value function is defined as V(D)) =
Z;‘FZI 2 die{pup,y U i D)) — 10071, D). Since V, is derived from the loss function (that is
additive), it also follows the additive property.

Fairness Value Function: Existing literature in fairness (Roh et al., 2020; Romano et al.,
2020) uses equalized odds (EO) disparity and demographic parity disparity for achieving
fair models. Let z € X be the input domain, {yo,y1} € ) be the true binary labels, and
{20, 21} € Z be the sensitive binary attributes. We define the fairness value function as the
change in EO disparity: V(D) = Y1, > ag,ep €d(8;, D) — ed(9i71, D). Based on (Roh
et al., 2021b), it is defined as the maximum difference in accuracy between the sensitive
groups (z € Z) pre-conditioned on the true label (y € ): ed(0,D’) = max(||l(0,D,, . )—

Yo,20

10, Dy, ) 110, Dy, ) — 1(0,Dy, . )|). Considering we have ed(f,D’) defined for two

validation sets D} and D} and the loss function is inherently additive, ed(6, D})+ed(0, D)) =
ed(6, (D} + D})) also holds true, thus Vy turning out to be additive.

Composite value functions: We can combine the value functions for accuracy (Vo (D')),
robustness (V,(D,,)) and fairness (V¢(D’)) to construct different composite value functions
for observing tradeoffs between different trustworthiness metrics. We use the following com-
binations for our experiments: (a) Accuracy-Fairness : Vo (D) = AVo(D') + (1 = A\)V¢(D') ;
(b) Accuracy-Robustness : Vg, (D', D) = A\Vo(D') + (1 =NV, (D)) ; (c) Robustness-Fairness
: Vg (D, D) = AV (D) + (1 — XN)V¢(D'). The user-defined parameter A is used to control
the tradeoff between the two objectives.

2.3 An online-OMP algorithm for online sparse approximation

Algorithm 1 : VTruST -y
gorithm s Algorithm 2 :DataReplace(¥:,&—1, St—1,

1: Input: = Ft N .
i. w : Total number of datapoints to be selected Btflv Xz) - Replace an existing datapm'nt'
ii. ¥ : Targeted value function IR
iii. )?1 : Features of all training points d; € D 1: ﬁt = gt — 5,571
iv. § : Sﬁst'\()f sel}ected datapoint 1nd1C6§ 2 Tmaz = -00
v. B € RI”!: Weight of selected datapoints 3. (a b) _ ¢
2: Initialize: . ’ - _
S «— ¢ //Indices of selected datapoints 4: T 4— abS(Xfﬁt)
3: for each epoch t € {1,2,...,T} do 5. for each index do
4: for each datapoint d; € D do ’ 13.’ a¢€ St71
5: Input: gy, X! Vi€ {1,2,.,N},[|X}]]2 =1 6:  m +— abs(X}.pt)
6: Process: . P
7 if |S;_1| = w then T '7f 6’1,& <0& (v th
8: Sy + DataReplace(#;, s 1, St—1, fe—1, X)) & hm>m &y 7 (m"+7) > Tmaz then
9: else 9: Tmaz $— T + 7Y
10: St <— St—1 U {i} // Add datapoints till the 10: a,b<—p,q
cardinality of St reaches w 11: dif
11: end if _ B ¢oendl
12: Update 8¢ = argming||gs — Zp‘qest (BZI’Xg)HQ 12: end for
13: Update & = 52, 4es, B XE 13: if (a,b) # ¢ then
14: end for 14: St «— Si—1 \ {a, b} U {t, Z}
16 St ot Final set of selected datapoint indi S, learned 15: end if
: Output:Final set of selected datapoint indices earne
P P N 16: return S

coefficients {ﬂg\p, q € St}




In this section, we describe a novel online-OMP-based algorithm for the online sparse ap-
prozimation problem(OSA) in Algorithm 1. The key difference between OSA and standard

sparse approximation setting is that in OSA, new columns X} are added and the target
value g; is updated at each epoch t. Line 10 in Algorithm 1 adds new datapoints till the
cardinality of Sy reaches w. Once the buffer is saturated, the DataReplace module is invoked
in line 8 to replace an existing selected datapoint with the incoming datapoint. The criteria
for replacement is to select the datapoints in S; that contribute to a bett_e;r approximation
of the current value function ;. Hence a new datapoint with features X! gets selected if
the current approximation error reduces after the replacement. We compute the projection
of the incoming datapoint features, )?f and that of the features of the selected datapoints
)?é’ Vp, q € S; on the existing residual vector g;, measured by 7 and 7’ respectively. We also
denote by v, the contribution of datapoint p,q € S; obtained through 4. The datapoints
with indices (p,q) in S; whose additive impact (7' + ) is smaller than that of incoming
datapoint (i,t), but larger than the current feature for replacement (X?) (line 8), gets sub-
stituted with the incoming point in line 14 of Algorithm 2. In terms of complexity, the
per-epoch time complexity of OMP is O(wM N) and that of VTruST is O(wM (N — w)).
Hyperparameter selection: The proposed framework has two user-controlled hyperpa-
rameters, the tradeoff A and the subset-size w. Since the metrics are not monotone in w,
we perform a grid search with various selection fractions between 10 - 90%. Exploiting the
monotonicity of metrics w.r.t. A, one can fix a threshold on the first metric, say accuracy
in case of V,y and perform a binary search to arrive at an optimal point w.r.t. the second
metric (fairness in V,r), once the threshold w.r.t. the first metric has been satisfied.

3 Experimental Evaluation

In this section, we describe the datasets, models, and evaluation metrics used for the trust-
worthiness metrics - Accuracy, Fairness and Robustness. We analyze the performance of
VIruST (VIruST-F with V,p, VIruST-R with V., VIruST-FR with V;.;) over various
applications. All our experiments have been executed on a single Tesla V100 GPU.

3.1 Error rate, Fairness and Robustness on Social Data

We evaluate the ability of VTruST to achieve a tradeoff between pairs of the three important
social trustworthiness metrics: error rate (ER), fairness and robustness. Our baselines are:
Wholedata standard training (ST), Random, SSFR (Roh et al., 2021a), FairMixup (Mroueh
et al., 2021) and FairDummies (Romano et al., 2020). We report results on three benchmark
datasets: COMPAS (Angwin et al., 2016) , Adult Census (Kohavi et al., 1996) and MEPS-
20 (mep). We use a 2-layer neural network for all the datasets. We report two fairness
metrics: equalised odds (EO) Disparity (Hardt et al., 2016) and demographic parity (DP)
Disparity (Feldman et al., 2015) following (Roh et al., 2021a).

Fairness and Error Rate comparison (VTruST-F) with baselines: We compare
the performance metrics of VIruST-F with the baselines in Table 1. The better the model
is, the lower its ER as well as its fairness measures. We can observe in Table 1 that VTruST-
F with 60% selected subset outperforms all the other methods in terms of fairness measures
by a margin of ~ 0.01 — 0.10, and performs close to Wholedata-ST that yields the lowest



ER. This denotes that it is able to condemn the error-fairness tradeoff emerging out to be
the best performing method. We report these results with standard deviation across 3 runs.

Table 1: Comparison of VTruST-F with baselines over 60% subset for fairness evaluation.

Methods COMPAS AdultCensus MEPS20
EO DP EO DP EO DP
+std Disp Disp +std Disp Disp +std Disp Disp
+std +std +std +std +std +std
‘Wholedata- 0.34 0.31 0.24 0.16 0.19 0.13 0.09 0.09 0.08
ST +0.001 +0.05 +0.03 +0.002 +0.06 +0.06 + 0.001 + 0.007 + 0.0008
Random 0.35 0.20 0.23 0.19 0.16 0.13 0.12 0.06 0.08
+0.002 +0.10 +0.09 40.002 +0.05 +0.05 +0.017 +0.02 +0.005
SSFR 0.35 0.26 0.17 0.21 0.18 0.12 0.14 0.10 0.06
+0.002 +0.03 +0.02 40.001 +0.03 +0.01 +0.003 +0.011 40.005
Fair- 0.35 0.24 0.17 0.16 0.14 0.10 0.12 0.13 0.08
Dummies +0.002 +0.02 +0.01 40.002 +0.01 +0.01 +0.001 +0.005 40.003
Fair- 0.35 0.15 0.13 0.24 0.11 0.1 0.89 0.02 0.05
Mixup +0.03 +0.03 +0.04 +0.04 +0.05 +0.02 +0.02 +0.04 +0.03
VTruST-F 0.34 0.15 0.13 0.18 0.11 0.05 0.09 0.01 0.05
+0.002 +0.01 +0.01 +0.001 +0.03 +0.01 +0.003 +0.001 +0.0008

Tradeoffs between Error rate, Fairness and Robustness (VTrust-F , VIruST-
FR): We observe the tradeoffs between error rate vs fairness (VIruST-F: Figure la) and
fairness vs robustness (VTruST-FR: Figure 1b) through pareto frontal curve by varying A
€ {0,0.1,0.3,0.5,0.7,0.9,1}. The error rate is measured on the clean test sets while robust
error rates are measured on the label flipped test sets. We can observe that Wholedata-
ST has a lower error rate but high disparity and robust error values. The other baselines
continue to have a higher error rate and disparity compared to VTruST. We report the
results on other datasets in the Appendix.

(a) Adult Census - Error Rate vs Fairness (b) Adult Census - Label Robust Error Rate vs Fairness
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Figure 1: Controlling tradeoffs in trustworthiness metrics for social data - Adult Census.
3.2 Accuracy and Robustness on Image and Scientific Datasets

We evaluate VTruST on three image datasets: CIFAR10 (Krizhevsky et al., 2009) , MNIST
(Deng, 2012) and Tinyimagenet (Le and Yang, 2015) using ResNet-18 (He et al., 2016).
For evaluation, we use the standard accuracy (SA) computed on the clean test sets and the
robust accuracy (RA) computed on the corrupted test sets, CIFAR-10-C, Tiny ImageNet-
C (Hendrycks and Dietterich, 2019) and MNIST-C (Mu and Gilmer, 2019). While aug-
mentation leads to robustness (Rebuffi et al., 2021), it also leads to a large dataset with
redundancy. We use VTruST-R to select high-quality subset from augmented data. Empir-
ically we find that creation of augmented data by sampling images based on how difficult
an augmentation is (Sampled Augmentation (SAug)) leads to better performance compared
to uniform selection across augmentations (Uniform Augmentation (UAug)). We describe
SAug (Algorithm 3) and its comparison with UAug in Table 5 in the Appendix. Next, we
define the baselines. (i) Clean-ST: Unaugmented training dataset. (ii) Uniform Augmen-
tation (UAug) (iii) Sampled Augmentation (SAug) (iv) SSR (Roh et al., 2021a): Training
subset using the robustness objective function. (v) AugMaxz (Wang et al., 2021).



Table 2: Comparison of VTruST-R over varying subset sizes for robustness evaluation. The numbers
in brackets indicate the difference with the second best among baselines.

MNIST CIFAR10 TinyImagenet
Methods
#Data | g, RA | #Data [ g, RA | #Data [ g, RA
points points points
Clean-ST 60K 99.35 87.00 50K 95.64 83.95 100K 63.98 23.36
AugMax 240K 97.62 88.79 200K 94.74 86.44 400K 54.82 40.98
After subset selection from SAug
SSR:40% 104K 98.98 94.96 0K 93.3 85.73 120K 32.82 24.42
99.04 | 96.29 88.23 57.3
VTruST- 104K 80K 94.74 120K 39.69
RAA0% (0.06) | (1.33) (1.79) (2.48)
SSR:60% 156K 99.07 96.53 120K 93.77 88.0 180K 41.94 30.07
99.12 | 97.09 94.77 | 89.21 60.88 | 41.50
INATAr @I (0.05) | (0.56) | 120K (0.03) | (1.21) | 80K (6.03) | (0.52)
R:60%
Table 3: Performance comparison on scientific datasets
Metri Spinodal EOSL
etries Whole | Rand | SSFR |IWVTruST [ Random | SSFR |IVTFaST | Whole | Rand | SSFR |IVTFGST
data 40% 40% -R 40% 60% 60% -R 60% data 40% 40% -R 40%
SA 83.08 | 73.05 | 74.84 | 80.33 77.06 78.94 | 81.93 70.01 63.74 | 62.40 | 66.10
RA 76.89 61.11 | 62.32 | 78.36 75.11 75.18 | 80.41 66.72 60.04 | 56.90 | 65.27

Robustness and Accuracy comparison (VTruST-R) with baselines: We compare
VTruST-R with the baselines in Table 2 where it can be seen that model trained on clean
datasets (Clean-ST) performs abysmally in terms of RA, indicating the need of data aug-
mentations. VIruST-R is seen to outperform AugMax in most of the scenarios, thus indi-
cating that data-centric approaches help in creating quality training datasets.

Scientific datasets : We analyzed the performance of VITruST-R on binary class scientific
datasets - Spinodal and EOSL (Benato et al., 2022) that have 29,000 samples with 400
features and 180,000 samples with 576 features respectively. We used the experimental setup
as (Benato et al., 2022) for evaluation. Table 3 shows that VTruST-R (using label flipping
for robustness) performs close to the wholedata in standard accuracy (SA) and better in
terms of robust accuracy (RA). The remaining results can be found in the Appendix.

3.3 Data-centric analysis: Post hoc explanation

In this section, we explore the characteristics of the selected samples to justify their quality.

Explanation for fairness: We use the metric Counterfactual Token Fairness Gap (CF-
Gap)(Garg et al., 2019) for our evaluation. Given a selected instance x, we generate
a counterfactual instance z’/ by altering its sensitive attribute and define CF-Gap(z) as
|| f(zi) — f(x})| where f(z) corresponds to the model confidence on the target label. We
plot the distribution of CF-Gap in Figure 2. It can be observed that VIruST-F acquires
the least value, justifying its retainment of fair subsets leading to fair models. We show
10 anecdotal samples from the Adult Census dataset in Table 4 on the basis of high CF-
Gap and we can observe that SSFR has a large number of redundant samples with similar
attribute values (highlighted) while VTruST-F which anyway has relatively lower CF-gap
contains a diverse set of samples.



Figure 2: Box plot repre- Table 4: Sample instances with High Counterfactual Token

sentation of CF-gap. Fairness Gap
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Explanation for robustness: Delving into the literature (Swayamdipta et al., 2020;
Huang et al., 2018), we pick two measures - uncertainty and distinctiveness. Having a set of
hard-to-learn and distinguishable samples in the subsets makes the model more generalizable
and robust. We quantify uncertainty of an instance z as predictive entropy (—f(x)logf(z))
and distinctiveness as Eccsdist(fv(x), fv(e)) where dist(,) is the euclidean distance and
fu(.) is the feature from the model’s penultimate layer. Based on the data maps in Figure
9 in Appendix, we show anecdotal samples in Figure 3 having High Distinctiveness-High
Uncertainty (HD-HU). The anecdotal samples and the histogram visualization show that
VTruST-R selects diverse samples with difficult augmentations like impulse noise and glass
blur, while similar(mostly white-background) and no-noise or easier augmentation-based
samples like brightness are more observed in SSR samples, thus justifying the robust selec-
tion across augmentations using VTruST-R.

Class - Compass: VTruST-R High Distinctiveness and High Uncertainty

Imiulse dopr Gl By ImiuYSE Noise
7 =

% of augmented images
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Figure 3: Anecdotal samples from VTruST-R & SSR with High Distinctiveness and Uncertainty from
TinyImagenet for class Compass.

4 Discussion and Related works

Existing works on trustworthy Al (Liang et al., 2022) have focussed on designing fair (Zemel
et al., 2013; Romano et al., 2020; Sattigeri et al., 2022; Chuang and Mroueh, 2021) and
robust (Wang et al., 2021; Chen et al., 2022) models. Several works have also been done
to inevstigate the tradeoffs between pairs of trustworthiness metrics - fairness vs accuracy
(Roh et al., 2020); robustness vs accuracy (Pang et al., 2022; Hu et al., 2023) ; fairness
vs robustness (Roh et al., 2021a). The closest approach to our method is that of (Roh
et al., 2021a) which selects fair and robust samples by enforcing a constraint on the number
of selected samples per class. However, none of the above methods have the flexibility
of a user-controllable tradeoff between trustworthiness metrics. Besides, they impose an
additional constraint on the training objective that may lead to a potential bias. Hence,



there arises a need for a paradigm shift from model-centric to data centric approaches that
would look at the input space and sample the quality datapoints with potentially less bias.

The existing works in data-centric AT (DCAI) have explored data valuation approaches
for obtaining quality data. (Swayamdipta et al., 2020; Ethayarajh et al., 2022; Seedat et al.,
2022a,b) work on data quality measures to determine hard and easy samples. The other
category of valuation methods are mostly based on Shapley values (Ghorbani and Zou,
2019; Wang and Jia, 2022), influence functions (Koh and Liang, 2017; Park et al., 2023),
reinforcement learning (Yoon et al., 2020), gradient-based approximations (Yang et al.,
2020; Paul et al., 2021; Killamsetty et al., 2021; Das et al., 2021) and training free scores
(Just et al., 2023; Nohyun et al., 2022; Wu et al., 2022). However, all the methods only
account for accuracy and none of the other trustworthiness metrics. Our proposed method,
VTruST, lies in an intersectional area between trustworthy Al and data valuation. To the
best of our knowledge, ours is one of the first works in DCAI that develops a controllable
framework to provide a tradeoff across different trustworthiness metrics (fairness, robustness
and accuracy) leading to desired subsets in an online training paradigm.



Reproducibility Statement

We run all our experiments on publicly available datasets and thus all our results can
be seamlessly reproduced. The code is available at https://github.com/dmlr-vtrust/
VTruST/. Details on model architectures and datasets are provided in the main paper. The
remaining details for obtaining reproducible results can be found in the Appendix.
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Table 5: Comparison of Uniform Augmentation with Sampled Augmentation.

Motri UAug (260K) | SAug (260K) | UAug (200K) | SAug (200K) | UAug (300K) | SAug (300K)
etrics MNIST MNIST CIFAR10 CIFAR10 Tinylmagenet | TinyImagenet
Standard 99.37 94.9 62.04
Accuracy 99.34 (0.14) 94.84 (0.06) 60.92 (1.12)
Robust 97.31 ) 90.13 X 12.04
Accuracy 9712 (0.19) 89.06 (1.07) 26.87 (15.87)

Appendix A. Appendix
1. Empirical evaluation on Social Data

In this section, we report the empirical results for the fairness value function. We show
the variation in performance measures with varying subset fractions in Figure 4. It can
be clearly observed that VIruST-F outperforms SSFR and that VIruST-F has the lowest
Error Rate (ER) and disparity measures across all the considered fractions. We show the
pareto-frontal curve for both clean and noisy datasets from MEPS20 and COMPAS in
Figure 5 where we can observe that VIruST-F has the lowest disparity for A = 0 and lowest
error rate for A = 1. It lies relatively in the bottom-left region compared to other baselines.

COMPAS Adult Census

=

e

=3
=
S

4 SSFR
0= VTuST-F

=3
)
PN

- SSFR
o= VIUSTF
A

0.25

=
ey
>
S
S

)
N

X

o
o
S
o
=
=
b
=
2

»

I's

o//

20 35 50 60
Fraction of Subset

1=
=
=

e
=3
m

I's

0/0/0/0

20 35 50 60
Fraction of Subset

Error Rate
EO-Disparity
DP-Disparity

S
Error Rate

DP-Disparity
EO-Disparity

v

&
&
S

=
S

i

o
=3
i

=
1=

20 35 50 60

35 50
Fraction of Subset

Fraction of Subset

20 35 50 60 20 60

Fraction of Subset
MEPS-20

35 50
Fraction of Subset

4
20 60

4 SSFR
=0~ VTuST-F

010 0055

0.050:

0.045

Error Rate
EO-Disparity
DP-Disparity

=)
=3
2
=

'

——0
20 35 50 60
Fraction of Subset

0.035

35 50
Fraction of Subset

20 35 50 60 20 60

Fraction of Subset
Figure 4: Varying fraction of subsets: We report the ER and disparities for
different subset sizes selected by the proposed method VTruST-F and SSFR. It
can be observed that the proposed method always stays below the baselines in
terms of error rate and disparity measures.

2. Sampled Augmentation - SAug

Firstly, we look at the performance of the models across different augmentations that
worked as an intuition for the sampling algorithm. Figure 6 depicts the difference in per-
formance across difference augmentations. The cells (i,7) corresponds to performance of
a model trained on augmentation ¢ and tested on augmentation j. The diagonal element
correspond to the self trained augmentation accuracies that turn out to be the best for any
augmentation. Based on the intuition developed from the above heatmap, we present the
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Figure 5: Error Rate-Fairness and Robustness-Fairness tradeoff in clean and
augmented data setup : We show the performance of the methods w.r.t the two
dimensions - Performance and Disparity and can observe that the proposed
method VTruST lies relatively on the bottom left region (low error rate or
robust error rate-low disparity) with disparity being the lowest for A = 0. Higher
weightage to ) leads to a low error rate or robust error rate for the same fraction
and increasing disparity.

Figure 6: Performance of self-trained augmentation models on augmented test sets.
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pseudocode of our sampling augmentation in Algorithm 3. We define Sampling Number
(SN) for augmentation j as a normalized difference between the average RA for aug j (RA;)
and the self-trained accuracy. We execute the algorithm and plot the standard and robust
accuracies across the different rounds in Figure 7. RO corresponds to the round when we
use the model trained on clean/non-augmented data. We can observe in Figure 7 that the
similar pattern is observed across all the datasets where the standard accuracy gets com-
promised marginally with a significant improvement in robust accuracy, thus justifying the
use of augmentations for robustness.
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Algorithm 3 : Sampling augmentations

1: Input: Matpsy4) // Matrix[i,j] = Robust accuracy on test set augmented with corruption j € A using model
m € M trained with data augmented with augmentation ¢ € A. M = |A| + 1 where we also test using model
trained on clean data. ; Iteration: t = 0 ; Clean dataset: D? ;

Mat[j,j]— Zi#i Maotlid)

2: SNt = : M1

J Mat[j,5]

: Normalise SN;Vj € A and sample that fraction of images for the respective augmentations from all classes

uniformly and form Dt+1,

: Train on D*t! and obtain model f.

w

'

5: Compute robust accuracy for each j using trained model f.
6: SNIT! = Matj, j] — RATH!
. t=t+1

+ t—1
X RAT X, RA;

j RA! .
[A] ar <

oo

: Repeat from line 3 till
9: Output: D?
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65
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Figure 7: Mean accuracies across all augmentations over each round. RO repre-
sents the accuracy obtained using model trained on clean data. The subsequent
rounds are using augmented images obtained from our proposed sampling al-
gorithm. The drop in Standard Accuracy is marginal, while the increase in
Robust Accuracy is significant.

3. Empirical evaluation on scientific data

We report the results on EOSL dataset for the 60% subset in Table 6. It can be observed
that VIruST-R performs better than the other baselines.

4. Data centric explanation for Fairness

We report the CF-Gap for the COMPAS dataset in Figure 8 and show that the proposed
algorithm has the lowest values of the measures (the lower, the fairer) compared to all other
baselines.

Table 6: Performance comparison on scientific datasets

Metrics EOSL
Whole | Rand | SSFR | VIruST
data 60% | 60% | -R 60%
SA 70.01 | 64.94 | 64.64 | 68.86
RA 66.72 | 61.55 | 62.43 | 67.67
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Figure 8: Box plot representation of counterfactual token fairness gap on the
selected subsets from VTruST-F and other baselines for COMPAS dataset.

5. Data centric explanation for Robustness
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Figure 9: Data Map for randomly taken 5000 samples from TinyImagenet and CIFAR10 augmented
training dataset

We visualize the datapoints in the two dimensions - Uncertainty and Distinctiveness
(defined in the main paper) in Figure 9 where we choose a random set of 5000 points
from CIFAR and Tinylmagenet datasets, followed by marking them as selected and not
selected by VTruST-R and SSR respectively. We can observe that points with relatively
high uncertainty and high distinctiveness(HD-HU) values mostly belong to the selected set
of VTruST-R, while the unselected points from SSR mostly cover the HD-HU region.

We show anecdotal samples for the class Watertank from Tinylmagenet in Figure 10
and for the classes Car and Truck from CIFAR-10 in Figure 11 having high distinctiveness
and high uncertainty. It can be noted that (a) VTruST-R selects diverse samples while SSR
selects similar (mostly similar background) samples ; (b) VTruST-R mostly selects samples
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from difficult augmentations like Impulse Noise and Glass Blur while SSR selects samples
from unaugmented (No-Noise) or easier augmented samples like Brightness and Contrast.

This justifies the outperforming capability in robustness from VTruST-R in comparison
with SSR.

6.Details on training regime

Experiments using Social Data: For all the datasets, we use a 2-layer neural network
and vary the learning rate on a grid search between 571 to 574,

Experiments using Image Data: For all the datasets, we use ResNet-18 model and a
learning rate of 10~! with momentum of 0.9 and weight decay of 574.

Experiments using Scientific Data: For all the datasets, we use convolutional neural
networks as the experimental setup from (Benato et al., 2022) and vary the learning rate
on a grid search between 1072 to 1074,
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Figure 10: Anecdotal samples from VTruST-R and SSR with High
Distinctiveness-High Uncertainty from TinyImagenet for class Watertank.
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Anecdotal samples from VTruST-R and SSR with High

Distinctiveness-High Uncertainty from CIFARI10 for classes Car and Truck.
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