
Pincer Movements are Always Better Than Same-Direction Search

Roee M. Francos1 and Alfred M. Bruckstein1

Abstract—Given a planar circular region, containing an un-
known number of smart mobile evaders, our aim is to detect
all of them, or at least to confine them by sweeping the region’s
boundary, using a team of sweeping agents. We assume all
sweepers are identical and have line sensors of equal length.
By deriving conditions on the speed of the sweepers and their
paths, sweepers can ensure the successful completion of the
confinement task implying that evaders with a known limit on
their speed cannot escape the initial domain. The critical speed is
the minimal speed ensuring sweepers confine all evaders to their
original domain. If sweepers move at higher speeds, they can
succeed in the complete detection task as well. The prevailing
idea in multi-agent based search protocols is to distribute
sweepers equally across the domain of interest in order to
divide the search effort among cooperating sweepers and thereby
obtain better performance as the number of sweepers increases.
Previous works suggested confinement and complete detection
search protocols for groups of agents based on distributing
searchers uniformly around the region and having them move in
the same (clockwise or counterclockwise) direction. Recent work
suggested pincer strategies for the same purpose. However, no
sufficient quantitative comparison was done to prove pincer-
based strategies are always better in terms of performance
metrics such as minimal sweeper speed for confinement, and
time of complete detection, for both of which a lower value
is better. In this paper we provide a complete analysis of this
problem yielding exact results proving pincer-based strategies
are always better in all aspects when an even number of sweepers
are working together. We do this for the case of sweepers having
linear detectors, but we believe similar results can be obtained
in general, for any number of sweepers, more general sensor
geometries and different environments.

I. INTRODUCTION

The goal of this research is to analytically prove that pincer-
based guaranteed search strategies outperform their same-
direction counterparts. Employing pincer movement strategies
implies that sweepers move out in opposite directions along
the boundary of the evader region to detect evaders while
performing same-direction protocols implies that sweepers
are deployed at equally spaced intervals along the boundary
and all sweep in the same-direction. Each developed strategy
provides a “must-win” search protocol in which a team of n
identical sweepers ensures the detection of all smart evaders
that are initially in a circular region of radius R0.

The evaders are smart mobile agents capable of detecting
and responding to the motions of searchers by performing
evasive maneuvers, to avoid detection. Evaders attempt to
escape the searching team and move out of the initial region,
at a maximal speed of VT . The evader region is defined as
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the region where potential evaders may be currently located.
All sweepers move at a speed Vs > VT and detect evaders
with linear sensors of length 2r. Every evader that intersects
a sweeper’s field of view is immediately detected.

There can be any number of evaders inside the region, and
this number as well as the evaders’ locations is unknown to
the sweepers. Every ”must-win” strategy requires a minimal
speed that depends on the trajectory of the sweepers. Different
strategies are evaluated by using two metrics, total search time
until all evaders are detected and a minimal critical speed
required for a successful search.

To facilitate the comparison between pincer-based and
same-direction protocols, we develop two types of cooper-
ative same-direction search protocols circular and spiral. We
compare the two types of pincer-movement search processes,
circular and spiral, developed in [1] with their same-direction
counterparts, for any even number of sweeping agents.

We prove pincer-based strategies provide superior results in
all scenarios and that the spiral pincer sweep process allows
detection of all evaders while sweeping at nearly theoretically
optimal speeds. We present a quantitative and experimental
comparison between the total search time of same-direction
and pincer-movement search strategies for the case of even
numbers of searchers showing that pincer-based strategies
provide superior results in all considered scenarios.

A. Overview of Related Research

Literature on detection of smart opponents is classified
into guaranteed detection strategies and probabilistic detection
methods. Probabilistic approaches aim to develop algorithms
that maximize the probability to detect a set of targets being
searched and are often referred to as pursuit-evasion games, in
which the pursuers’ goal is to detect and catch the evaders and
the evaders goal is to avoid being detected and caught by the
pursuing team. There are many variants for pursuit-evasion
games that may range from a single pursuer-evader setting to
combinations of single and multiple pursuers-evaders settings.

Search for static agents requires to fully scan an area
containing the agents, however a more critical question is
how to efficiently search for smart dynamic agents. Planning
against smart opponents is a long standing question that
has been investigated for centuries, with the most notable
execution of a pincer-movement maneuver carried out by the
forces of Hannibal at the battle of Cannae. In modern times,
search missions are typically considered to be carried out
by flying entities such as manned planes, UAVs or drones,
with first works considered by Koopman, see [2]. Patrolling
a corridor by utilizing a multi-agent search team aimed at
ensuring the detection of smart agents was also investigated
in [3] with provably optimal protocols provided in [4].
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In [5], the problem of optimally building a barrier around
an advancing fire in order to confine its spread is considered.
The objective is to find the minimal barrier construction speed
allowing containment of the fire and assessing the optimality
of the solution.

A non-escape search protocol aimed at guaranteeing de-
tection of evaders that are initially inside a convex region
of the plane from which they can escape is investigated
in [6]. The idea is to use a collaborative protocol between
members of the search team that move with an inwards spiral
pattern in a leader-follower formation. In [7], McGee et al.
also investigate a search problem for smart targets under
different assumptions and applied search patterns consisting
of spiral and linear sections. In [8], searching for smart
evaders using concentric arc trajectories is considered with a
goal of detecting submarines in a channel or in a half plane. In
these cited works, the searchers’ sensors detect targets within
a disk shaped area around the searcher’s location.

In [9], implicit cooperation between pairs of defenders
moving in pincer-movements is used to detect intruders prior
to their entry to the guarded region. In [10], related “reach-
avoid games” problems are explored. In [11], pursuit–evasion
problems involving multiple pursuers and multiple evaders are
studied. Pursuers and evaders are all assumed to be identical,
and pursuers follow either a constant bearing or a pure pursuit
strategy. Recent surveys on pursuit evasion problems are [12]–
[14].

In [15], the confinement and cleaning tasks for a line forma-
tion of agents or alternatively for a single agent with a linear
sensor are analyzed. In [1], teams of agents perform pincer
sweep search strategies with linear sensors. The comparison in
this article stemmed from reviews of [1] that sought rigorous
proofs that pincer strategies are always better than same-
direction sweeps. The same-direction protocols developed in
this work are different than those performed in [1], result in
better performance, and therefore offer a more precise and
proven comparison.

B. Contributions

In this paper, we provide several theoretical and experimen-
tal contributions to multi-agent search and coordinated motion
planning literature by proving that in contrast to the prevalent
concept of deploying searching agents equally around a
domain of interest, a different distribution of the searchers
improves the performance of the search protocols. To facilitate
this proof and quantify that pincer-based search protocols are
always better than same-direction protocols, we propose two
types of same-direction search protocols that are extension to
prevailing search techniques for guaranteeing detection of all
smart evaders. The smart agents are initially inside a given
circular region from which they try to escape the team of
searching agents. A detailed theoretical analysis of trajecto-
ries, critical speeds and search times for same-direction sweep
protocols performed by a team of n cooperative agents are
developed in order to quantitatively compare these methods
to the state-of-the-art pincer-based protocols developed in
[1], and to the theoretical lower bound. The purpose for

developing the same-direction protocols is therefore only
to prove and emphasize the benefits of using pincer-based
search strategies compared to same-direction protocols, and to
analytically quantify, using teams of sweepers with exactly the
same capabilities the improvement in the considered search
metrics.

• We propose two types of same-direction sweep proto-
cols:

– Same-direction circular sweep pincer sweep strategy
– Same-direction spiral sweep pincer sweep strategy

• We prove that for both same-direction sweep protocol
types, the corresponding pincer-based protocols yield a
lower critical speed.

• We show that circular and spiral pincer-based sweep
protocols always result in shorter sweep times compared
to their same-direction counterparts.

• Results show that for an increasing number of sweepers,
circular pincer-based protocols require a smaller critical
speed even when compared to spiral same-direction
protocols that can only be implemented with sweepers
that have more advanced capabilities.

• The theoretical analysis is complemented by simulation
experiments in MATLAB and NetLogo [16] that verify
the theoretical results and illustrates them graphically
in the figures embedded throughout the text and in the
attached video.

• We discuss considerations for deployment of multi-
robot searching teams for guaranteed evader detection
in practical robotic applications.

II. SAME-DIRECTION VERSUS PINCER-BASED SWEEPS

The complete search time until all evaders are detected
depends on the search protocol performed by the team of
sweepers. Two types of search patterns are investigated,
circular and spiral. The desired outcome is that after each
sweep around the region, the radius of the circle bounding
the evader region is reduced by a strictly positive value. This
guarantees complete detection of all evaders, by decreasing in
finite time the potential area where evaders may be located to
zero. At the start of the circular search protocol only half the
footprint of the sweepers’ sensors is inside the evader region,
i.e. a footprint of length r, while the other half is outside the
region with the intention of detecting evaders that attempt to
escape outside of the region. At the start of the spiral search
protocol the entire length of the sweepers’ sensors is inside
the evader region, i.e. a footprint of length 2r.

In [15], it is proven that a smart evader may escape from
point P = (0, R0) (shown in Fig. 1 (a)), when basing a single
sweeper’s speed only on a single traversal around the evader
region. Hence, the sweeper’s critical speed must increase to
cope with such a potential adversarial escape plan. Point P
is considered as the ”most dangerous point”, meaning that
evaders located there, have the maximum time to spread
during sweeper movement. Hence, if evaders spreading from
this point are detected, evaders attempting to escape from all
other points will also be detected. If we choose to distribute
a multi-agent search team equally along the boundary of
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the initial evader region, we would have the same problem
of possible escape from the points adjacent to the starting
locations of every sweeper.

In [1], an alternative method for multi-agent search strate-
gies in which pairs of sweepers move out in opposite direc-
tions along the boundary of the evader region and sweep in
pincer-movements instead of deploying sweepers at equally
spaced intervals along the boundary and requiring them to
move in the same-direction, is proposed. The search protocol
can be employed by a search team with any even number
of sweepers. At the start of each sweep, sweepers are po-
sitioned in pairs back-to-back. In each pair, one sweeper
moves counter-clockwise while the other moves clockwise.
Every time sweepers meet, implying their sensors are back-
to-back again, they exchange their movements directions. The
search region is partitioned into a number of non-overlapping
sections depending on the number of sweepers in the search
team, such that every sweeper sweeps a particular angular
sector of the region.

Sweeping with pincer-based search protocols removes the
need to sweep additional areas to detect evaders from these
additional ”most dangerous points” since in pincer-based
protocols the ”most dangerous points” are now located at the
tips of their sensors closest to the evader region’s center.

The search can be either 2 dimensional where sweepers
travel on a plane or 3 dimensional implying that sweepers
are drone-like agents that fly over the evader region. In
case the search is planar, exchanging of movement directions
occurs after the completion of each sweep when a sweeper
“bumps” into a sweeper that scans the adjacent section. If the
search is 3 dimensional, sweepers fly at different altitudes
above the evader region, and every time a sweeper is directly
above another, they exchange the angular section they sweep
between them, and continue the search. The analysis of 2 and
3 dimensional search protocols is similar.

Fig. 1. Initial placement of 2 agents employing same-direction sweep
protocols (a) - same-direction circular sweep. (b) - same-direction spiral
sweep. The sweepers sensors are shown in green. ϕ is the angle between the
tip of a sweeper’s sensor and the normal of the evader region and depends
on the ratio between the sweeper and evader speeds.

III. DEPLOYMENT OF MULTI-ROBOT SEARCHING TEAMS
FOR GUARANTEED EVADER DETECTION IN PRACTICAL

ROBOTIC APPLICATIONS

A vast breadth of real-world problems that are currently
solved by human-controlled machines are expected to be
replaced by partially autonomously operated robots in the
nearby future. Search and rescue missions, airborne and

underwater surveillance applications, various monitoring tasks
for security applications, wildlife tracking, fire control as well
as inspection tasks in hazardous zones can all benefit from the
theoretical and experimental results developed in this work.

In many of the mentioned applications, planning for the
worst-case scenario can guarantee solving the task for all
other scenarios as well. The performed analysis in this work
is mathematically sound and guarantees that in a continuous
domain all smart evaders are detected. It further develops
analytical formulae for the time at which all evaders are
detected, the minimal speed that guarantees detection of all
smart evaders and compares the obtained results to state-
of-the-art methods investigating guaranteed detection without
full state information, often the case in real-world settings.

The searching agents considered in this work do not assume
knowledge of the number of evaders present in the region,
their locations, or their escape plan and despite that they are
able to detect all of them. This significantly differs from many
previous works that assume such knowledge. Therefore, this
work is of prime theoretical and practical importance as is in
many pursuit-evasion games the searching team does not have
complete information about the evaders it needs to detect, as
is often assumed by many papers. Results are insensitive to
locations of evaders or their numbers.

Since multi-agent pursuit-evasion search protocols mainly
utilize multi-agent UAVs, sweepers fly over the environment
containing the evaders, therefore investigating issues such as
obstacles is not the main focus of the work, because the
sweeping team flies over them. Obstacles limit the movements
and locations of ground-moving evaders, and therefore their
presence assists the searching team to detect them since it
limits the escape options of evaders, and thus does not impact
our “worst-case” analysis.

Search protocols can use a vast suite of onboard sensors
to detect evaders, depending on the domain of application.
Potential choices vary from visual sensors such as cameras
which have both a high resolution and are lightweight. There-
fore, detecting evaders with cameras requires a smaller battery
in order to accomplish the desired task compared to other
sensing modalities such as radars that increase the weight of
the payload and hence limit the duration of the search mission
due to increased energy consumption. Actual detection of
evaders can utilize a vast number of computer-vision detection
algorithms such as [17], [18].

An issue in implementing the mentioned protocols in real-
world settings is the ability to coordinate the movements of
the sweeping pairs comprising the team. This manifests in
the sweepers’ ability to maintain their speed throughout the
sweep process and advance together toward the center of the
evader region while reducing it. It is possible to account
for coordination imperfections by indirect communication
between searching pairs, through the means of sensing and
observing the location of a sweeper’s partner and advancing
together when the partner robot reaches the desired location,
or through direct wireless communication between the robots.

The discussed comparison between protocols can be ap-
plied in other convex environments as well, by using slight
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modifications to the explored sweeping strategies.

IV. SAME-DIRECTION CIRCULAR SWEEP

A. Circular Sweep Time Calculation

Previously in [15], the tightest lower bound for a searcher’s
speed is found by constructing a function of 2 variables
f(t, Vs), by demanding that the furthest possible spread of the
evader region is cleaned by the furthest tip of the sweeper’s
line sensor. A lesser requirement is to demand that by the
time the most problematic point in the evader region, point
P , spreads to a possible circle of radius of r around point
P , the sweeping swarm completes in addition to a sweep of
2π
n around the evader region an additional angular traversal

that is proportional to traversing an arc of length r. This
means that the agent travels an angle of 2π

n + β0 where
β0 is marked in Fig. 2(a). This assumption results in a
simplified expression for the critical speed that bounds the
previously found critical speed of [15] from above for all
choices of geometric parameters. Denote the time it takes

Fig. 2. Geometric representation required for critical speed calculation. Red
areas indicate locations where potential evaders may be located. Orange
circles denote spread of potential evaders around the most problematic points
P1 and P2 during a traversal of 2π + β0 around the evader region. (a) -
Same-direction circular sweep. (b) - Same-direction spiral sweep.

the most problematic points to spread a distance of r as
Te. These points are adjacent to the starting locations of the
sweepers, and 2 such points P1 and P2, exist in case the
search is performed with 2 sweepers, as shown in Figure
2. We have that Te = r

VT
. We can see from Figure 2. that

sinβ0 = r
R0

, therefore β0 = arcsin r
R0

. The time it takes
the sweeper to travel an angle of 2π

n + β0 is therefore given

by Ts =

(
2π
n +arcsin

(
r

R0

))
R0

Vs
. To guarantee no escape, we

demand that Ts ≤ Te. Therefore, rearranging terms in the
previous equation and plugging Te instead of Ts yields,

Vc ≥

(
2π
n + arcsin

(
r
R0

))
R0VT

r
(1)

The lower bound on a sweeper’s speed ensuring confinement
is obtained when (1) is satisfied with equality. To enable the
construction of analytical results for the sweep times of the
evader region, in future derivations we use the first order
Taylor approximation for the arcsine function in (1). Such an
approximation is valid since in all practical scenarios the ratio

between r
R0

is sufficiently small. Applying this approximation
to (1) allows to define Vccirc , the chosen critical speed,

Vccirc =
2πR0VT

rn
+ VT (2)

For the sweeper team to advance inward toward the center
of the evader region, it must travel in a speed greater than
the critical speed. Denote by ∆V > 0 the increment in the
sweeping agents’ speed that is above the critical speed. Each
agent’s speed Vs is therefore given by the sum of the critical
speed and ∆V , namely Vs = Vccirc +∆V . The total sweep
times required for the sweeper team to reduce the evader
region to a region bounded by a circle with a radius smaller
or equal to r is given by the sum of the circular motions and
inward advancements that are performed after the completion
of each circular sweep. Denote the number of sweeps required
by the sweeper team to complete this motion by Nn, where n
indicates that the number of sweeps depends on the number
of sweepers performing the search. The time it takes the
sweepers to perform the circular sweeps is given by,

Tcircular = −R0(Vs+VT )
VsVT

+ r(Vs−VT )(n(Vs+VT )+2πVTNn)
2πVT

2Vs
+(

1 + 2πVT

n(Vs+VT )

)Nn

(Vs + VT )
(

2πR0VT−rn(Vs−VT )
2πVT

2Vs

)
+ 2πr

nVs

(3)
The time required to perform the inward advancement is,

Tin = R0

Vs
+

(
1 + 2πVT

Vs+VT

)N−1 (
2πR0VT−r(Vs−VT )

Vs(Vs+VT )

)
(4)

Full analytical development is provided in Appendix A of
[19].

B. Same-direction Circular Sweep End-game

In order to entirely clean the evader region the sweepers
need to change the scanning method when the evader region
is bounded by a circle of radius r. This is due to the fact that
a smart evader that is very close to the center of the evader
region can travel at a very high angular velocity compared to
the angular velocity of the pursuing agents. This constraint is
described by the following two equations, ωs =

Vs

r , ωT = VT

ε .
The first describes the searcher’s angular velocity and the
second the evader’s angular velocity. Since ε can be arbitrarily
small the evader can move just behind a sweeper’s sensor and
never be detected. Thus a slight modification to the sweep
process needs to be applied in order to clean the entire evader
region with the sweeper team that employs a circular scan.

After completing sweep number Nn − 1 the sweepers
move toward the center of the evader region until the tip
of the sweepers’ sensors closest to the center of the evader
region are placed at the center of the evader region. Following
this motion the sweepers perform a circular sweep of radius
r around the center of the evader region. Following the
motion, the sweeper team travels to the right until cleaning the
wavefront propagating from the right portion of the remaining
evader region and then travels to the left until cleaning the
remaining evader region. The time required to complete this
motion is denoted by Tlinear, and assumes that during the
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linear movement the margin between the tip of the sensor in
each direction to the evader region boundaries satisfies,

2r −Rlast

VT
> Tlinear (5)

A depiction of the scenario at the beginning of the end-game
is presented in Fig. 3. Theorem 1 states the conditions for
this demand to hold.

Fig. 3. Depiction of the end-game steps for the same-direction circular
sweep performed by 2 sweepers. The sweepers sensors’ are shown in green
and red areas indicate locations where potential evaders may still be located.
(a) - Evader region status and sweepers’ locations prior to the last inward
advancement. (b) - Evader region status and sweepers’ locations prior to the
linear sweep.

Theorem 1. When defining α = R0

r , if ∆V satisfies that,

∆V ≥ −4πVTα+ πVT + VT

√
π2 + 8πn

2n
(6)

then the evader region will be completely cleaned by n
sweepers that employ the linear scan after Nn+1 iterations.

Therefore, the total scan time until a complete cleaning
of the evader region is given by Ttotal = Tcircular + Tin +
Tlinear. For the one dimensional scan to be valid and ensure a
non escape search and complete cleaning of the evader region
(5) must be satisfied. This demand implies that for a given α,
the designer of the sweep process can infer which ∆V needs
to be chosen in order to satisfy (6) and thus completely clean
the evader region using the final linear sweeping motion. For
a complete derivation see section III(B) of [19].

Theorem 2. For a valid circular search process the total
search time until a complete cleaning of the evader region is
given by, T = Tcircular + Tin + Tlinear, or as,

T = −R0

VT
+ r(Vs−VT )(n(Vs+VT )+2πVTNn)

2πVT
2Vs

+(
1 + 2πVT

n(Vs+VT )

)Nn−1 (
2πR0VT−rn(Vs−VT )

Vs

)(
1

n(Vs+VT ) +
Vs

2πVT
2 + 1

2πVT
+ 1

nVT

)
+ 2πr

nVs

+ 6πrVTVs−2πrVT
2

nVs(Vs−VT )2

(7)

The total search times until complete cleaning of the evader
region are shown in Fig. 5.

V. SAME-DIRECTION SPIRAL SWEEP

Since our aim is to provide a sweep protocol that improves
the same-direction circular sweep protocol, we desire that
sweepers move in a more efficient trajectory to detect evaders

during the search protocol. Hence, we require that throughout
the motion of the sweepers, their sensors’ footprint maximally
intersects the evader region. This is achieved by using a spiral
scan, in which the sweepers’ sensors track the expanding
evader region’s wavefront, while trying to keep its shape
nearly circular. An illustration of the initial placement of 2
sweepers that employ the same-direction spiral sweep process
is presented in Fig. 1(b). The sweepers start with a sensor
length of 2r inside the evader region. If the sweeper agents’
speed is above the scenario’s critical speed, the sweepers
reduce the evader region’s area after completing a traversal
around the region. Each sweeper starts its spiral sweep with
its sensor’s tip that is furthest from the center of the evader
region, in a position that is tangent to the boundary of the
evader region. To preserve their sensors in an orientation that
is tangent to the evader region, the sweepers move at angle
ϕ to the normal of the evader region. ϕ is calculated from
sinϕ = VT

Vs
This method of traveling at angle ϕ preserves the

evader region’s circular shape.
Contrary to the pincer-based strategy where each sweeper

travels only an angle of 2π
n at each sweep iteration, in same-

direction sweeps, each sweeper travels a larger angle than 2π
n

at each iteration around the evader region in order to detect
all escaping smart evaders. The additional angle, denoted by
β, needs to be traversed in order to detect all evaders that
may have spread from the ”most dangerous points” at the
beginning of each sweep. Such points are adjacent to the
starting locations of every sweeper. The angle β depends on
the radius of the circle that bounds the evader region. After a
sweeper traverses the additional angle β, the evader region’s
boundary is due to spread from points that resided at the lower
tips of the sensors. When the tips of the sensors leave these
points, evaders may spread from them in all directions at a
speed of VT . The time it takes a sweeper to travel an angle
of 2π

n + β0, where β0 is shown in Fig. 2(b) is given by,

t 2π
n +β0

=

(R0 − r)

e
( 2π

n
+β0)VT√

Vs2−VT
2 − 1


VT

(8)

The subscript 0 in β0 denotes the sweep cycle number,
indicating that the value of β changes as the sweep process
progresses. After a sweeper completes a traversal of 2π

n + β0

around the evader region it moves towards the center of the
evader region. During this motion its lower tip points to the
center of the region. β0 is given by,

sinβ0 =
VT t 2π

n +β0

R0 − 2r
(9)

After a sweeper traverses 2π
n + β0 around the evader region

the evader region’s boundary is due to evaders that originated
from the next ”most dangerous points”. The critical speed that
satisfies the confinement task is computed numerically using
the Newton method. When the sweepers travel towards the
center of the evader region after completing a spiral sweep
they have to meet the evader wavefront travelling outwards
the region with a speed of VT at the previous radius R0.
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Therefore, the expansion of the evader region after the first
sweep at time t 2π

n +β0
, has to satisfy that,

VT t 2π
n +β0

≤ 2rVs

Vs + VT
(10)

The critical speed is obtained when we have equality in (10).
In order to calculate β0 that is obtained when the sweepers
move at the critical speed, the expression of VT t 2π

n +β0
in (10)

is substituted with its equivalent expression in (9). Hence,

β0 = arcsin

(
2rVs

(Vs + VT ) (R0 − 2r)

)
(11)

Substituting the expression for t 2π
n +β0

, yields

(R0 − r)

e
( 2π

n
+β0)VT√

Vs2−VT
2 − 1

 =
2rVs

Vs + VT
(12)

In order to solve for Vs we write (12) as,

F (Vs) =
2rVs

Vs + VT
− (R0 − r)

e
( 2π

n
+β0)VT√

Vs2−VT
2 − 1

 (13)

From (13) we find Vs using the Newton iterative root finding
method whose equation is given by,

Vsn+1 = Vsn − F (Vsn)
∂F (Vsn )
∂Vsn

(14)

We choose as our initial estimate the lower bound on the
sweeper speed (following a proof that derives a lower bound
for a sweeper’s critical speed in [1]) given by Vs0 = πR0VT

nr =
VLB . By using the described iterative convergence, we obtain
a solution for Vs, which is the same-direction spiral sweep’s
critical speed. Denote this speed as Vcspiralsame

. The solution
converges to a result only slightly larger than the lower bound
on the sweeper speed, VLB .

Denote by ∆V > 0 the addition to the sweeper’s speed
above the critical speed. The speed is therefore given by, Vs =
Vcspiralsame

+∆V . If a sweeper moves with a speed greater
than the critical speed, after each spiral sweep it can advance
inwards towards the center of the evader region and sweep
around an evader region that is bounded by a circle with a
smaller radius. The total search time until the evader region
is bounded by a circle with a radius that is less than or equal
to 2r is given by the sum of the total spiral sweep times and
the times of the inward advances. Namely,

T = Tin + Tspiral (15)

After each iteration, the sweepers move inwards towards the
center of the evader region and the radius of the circle that
bounds the region decreases. Consequently, the angle βi after
which the sweepers move inwards changes as well. Therefore,
after each sweep βi is calculated with respect to the new
radius of the circle that bounds the evader region,

βi = arcsin

(
2rVs

(Vs + VT ) (Ri − 2r)

)
(16)

The time it takes to complete a spiral sweep of 2π
n +βi around

a region bounded by a circle of radius Ri is given by,

Tspirali =

(Ri − r)

e
( 2π

n
+βi)VT√

Vs2−VT
2 − 1


VT

(17)

Denote the distance an agent can advance towards the center
of the evader region by δi(∆V ). In the term δi(∆V ), ∆V
denotes the increase in the agent speed relative to the critical
speed, and i denotes the number of sweep iterations the
sweepers perform around the evader region, where i starts
from sweep number 0. This results in a new evader region
bounded by a circle with a radius of Ri+1 = Ri − δi(∆V ).
We have that,

δi(∆V ) = 2r − VTTspirali , 0 ≤ δi(∆V ) ≤ 2r (18)

As a function of the iteration number, the distance a sweeper
can advance inwards after completing an iteration is given by,

δi(∆V ) = 2r − (Ri − r)

e
( 2π

n
+βi)VT√

Vs2−VT
2 − 1

 (19)

After sweepers complete a sweep, they move inward toward
the region’s center with the inner tips of their sensors pointing
toward the center of the evader region with a speed of Vs, until
they reach the position where they start their next sweep at the
moment they meet the evader region’s expanding wavefront.

During inwards advancements no cleaning is performed,
while the evader region continues to spread. The time it takes
a sweeper to move inwards until its entire sensor is over
the evader region depends on the relative speed between the
sweeper’s inwards entry speed and the evader region outwards
expansion speed. As the sweepers progress toward the center
of the evader region, the evader region continuous to expand.

Therefore, sweepers can only advance by a smaller distance
than δi(∆V ), denoted by δieff

(∆V ), which depends on the
ratio between the speed in which the sweeper progresses
towards the center of the region and the sum of velocities
of sweeper and evader region spread. δieff

(∆V ) is the actual
distance the sweeper moves at each iteration in order to meet
the wavefront of the evader region when its entire sensor
overlaps the evader region. Therefore, the distance sweepers
can advance inwards after completing an iteration is given by,

δieff
(∆V ) = δi(∆V )

(
Vs

Vs + VT

)
(20)

The evader region is therefore bounded by a circle of radius,

Ri+1 = Ri − δi(∆V )

(
Vs

Vs + VT

)
(21)

In the accompanying video, the inwards motion is not ob-
served, however the equations that govern the motion of the
sweepers and evaders in simulation consider the time required
for sweepers to advance inwards and dictate the new radius
of the evader region after the sweep. This process continues
until the evader region is bounded by a circle with a radius
that is smaller than 2r. We denote this radius as RN . Once
the evader region is contained inside a circular domain with
a radius of 2r < Ri < 4r, βi is,
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βi = arcsin

(
(Ri − 2r)Vs

(Vs + VT ) (Ri − 2r)

)
(22)

The inwards advancement time depends on the iteration
number. It is denoted by Tini

and its expression is given by

Tini
=

δieff
(∆V )

Vs
=

2r − (Ri − r)

e
( 2π

n
+βi)VT√

Vs2−VT
2 − 1


Vs + VT

(23)
During the inward advancements only the tip of the sensor,

that has zero width, is inserted into the evader region. There-
fore, no evaders are detected until the sweeper completes
its inward advance and starts sweeping again. This search
methodology continues until the evader region is bounded by
a circle with a radius that is less than or equal to 2r.

To entirely clean the evader region, the sweepers need
to change the scanning method when the evader region is
bounded by a circle of radius 2r, due to the same considera-
tion that are described in the end-game of the same-direction
circular sweep process. A detailed analysis of the end-game
is provided in section IV of [19]. Hence, the total scan time
until a complete cleaning of the evader region is given by,

Ttotal = Tspiral + Tin + Tend (24)

VI. COMPARATIVE ANALYSIS OF PINCER MOVEMENT
SEARCH STRATEGIES AND SAME-DIRECTION SWEEPS

The purpose of this section is to compare between the
obtained results for the circular and spiral same-direction
sweep processes developed in the previous sections and the
pincer sweep processes developed in [1]. In all forthcoming
figures the number of sweepers is even, and ranges from 2 to
20 agents, that employ the spiral and circular pincer sweep
processes and the same-direction sweep protocols. The chosen
values of the parameters are r = 10, VT = 1 and R0 = 100.
The top plot of Fig. 4 presents the comparison between critical
speeds required to perform each sweep protocol. The bottom
plot of Fig. 4 presents the ratio between the critical speeds
of each protocol and the lower bound, VLB .

The resulting conclusion is that critical speeds of sweepers
implementing same-direction circular or same-direction spiral
protocols is higher than the minimal critical speed of their
pincer sweep counterparts. Requiring a higher critical speed
implies that there are entire regions of operation where an
evader region with a given radius could be cleaned by a
sweeper team that performs the same-direction spiral sweep
process but cannot be cleaned by a sweeper team that per-
forms the same-direction circular sweep process. This also
implies that sweeping teams performing pincer movement
search strategies can successfully sweep larger regions than
their same-direction sweeps counterparts.

Furthermore, results show that as the number of sweepers
increases, circular pincer-based protocols require a smaller
critical speed even when compared to spiral same-direction
protocols. This result indicates that although implementing
pincer-based circular protocols requires sweepers with more

basic capabilities compared to spiral protocols, the coopera-
tion between the sweepers considerably improves the overall
performance of the sweeper team.

Hence, since pincer sweep processes require a smaller
critical speed compared to same-direction sweep processes,
in order to make a fair comparison, all sweepers in the team
move at speeds above the critical speed of 2 sweepers that
perform the corresponding same-direction sweep. The critical
speed of 2 sweepers that perform the same-direction circular
sweep is the highest amongst the compared search protocols.

The right plot of Fig. 5 shows the complete search times of
teams performing circular pincer sweeps. The left plot of Fig.
5 shows the complete search times of teams performing the
circular same-direction protocol. In both figures the sweepers
move at the same speeds above the same-direction circular
critical speed of 2 sweepers, since this speed is greater
than the critical speed of search processes performed with
more sweepers. We see that for all choices of speeds above
the same-direction circular critical speed of 2 sweepers, the
complete search times of teams performing same-direction
circular sweeps are longer compared to teams performing
their circular pincer sweep counterparts. Hence, from these
results we conclude that performing circular pincer sweeps is
always better than performing same-direction circular sweeps.

The right plot of Fig. 6 shows the complete search times of
teams performing spiral pincer sweeps. The left plot of Fig.
6 shows the complete search times of teams performing the
spiral same-direction protocol. In both figures sweepers move
at equal speeds above the same-direction spiral critical speed
of 2 sweepers, since this speed is greater than the critical
speed of protocols performed with more sweepers.

We see that for all choices of speeds above the same-
direction spiral critical speed of 2 sweepers, the complete
search times of teams performing same-direction spiral pro-
tocols are longer compared to teams performing their spiral
pincer sweep counterparts. This result is expected since as the
number of sweepers increases, the gain in utilizing the cooper-
ation between sweeping pairs in pincer-based sweep processes
decreases the sweeping time more significantly compared
to sweepers that perform the same-direction spiral sweeps.
This occurs since same-direction sweepers must sweep larger
angular sections at each iteration to ensure no evader escapes,
while in pincer-based spiral search strategies, sweeping these
additional sections is unnecessary due to the complementary
trajectories of the sweepers. Hence, from these results we
conclude that performing spiral pincer sweeps is always better
than performing same-direction sweeps.

VII. CONCLUSIONS

This work compares same-direction and pincer-movement
sweep protocols demonstrating and proving the superiority
of the latter. We perform a quantitative comparison between
pincer-based and same-direction sweep protocols for any
number of even sweepers where the sensing capabilities and
speeds of the sweeping teams are equivalent. We prove that
critical speeds for pincer based search methods are lower than
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Fig. 4. Critical speeds as a function of sweepers’ numbers.
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Fig. 5. The left plot shows sweep times of teams performing circular same-
direction sweeps. The right plot shows complete search times of teams
performing circular pincer sweeps. In both plots the sweepers’ speeds are
above the same-direction circular critical speed of 2 sweepers.
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Fig. 6. The left plot presents sweep times of teams performing spiral same-
direction protocols. The right plot shows the complete search times of teams
performing spiral pincer sweep protocols. In both plots the sweepers’ speeds
are above the spiral same-direction critical speed of 2 sweepers.

their same-direction counterparts and therefore allow to sweep
successfully larger regions.

Afterwards, we provide a quantitative comparison between
the different search methods in terms of completion times
of the sweep processes and show that circular pincer-based
approaches are always better than their same-direction coun-

terparts. Furthermore, we show that pincer-based spiral sweep
search times are shorter for all choices of search parameters
compared to their same-direction counterparts, as well.

Hence, for all search parameters and protocols choices,
pincer-based protocols are best. Thus, the goal to prove and
quantify that pincer-based strategies outperform by a large
margin the most prevalent strategies for multi-agent search
against adversarial opponents is achieved. We therefore hope,
that following the proofs provided in this paper, the multi-
agent research community will leverage the usage of pincer-
movement based strategies in other important applications and
topics of interest.
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