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ABSTRACT

In this paper, we argue that mutual distillation between reinforcement learning
policies serves as an implicit regularization, preventing them from overfitting to
irrelevant features. We highlight two separate contributions: (i) Theoretically,
for the first time, we provide an end-to-end theoretical proof that enhancing the
policy robustness to irrelevant features leads to improved generalization perfor-
mance. (ii) Empirically, we demonstrate that mutual distillation between policies
contributes to such robustness, enabling the spontaneous emergence of invariant
representations over pixel inputs. Ultimately, we do not claim to achieve state-of-
the-art performance but rather focus on uncovering the underlying principles of
generalization and deepening our understanding of its mechanisms. Our website:
https://dml-rl.github.io/.

1 INTRODUCTION

Humans exhibit a remarkable ability to learn robustly and generalize across diverse environments.
Once a skill is acquired, it often transfers seamlessly to new contexts that share the same underlying
semantics, even when their visual appearance differs substantially. For example, consider a person
who becomes proficient at a video game, even if the background graphics or character textures
are altered, the player retains their ability to perform well, effortlessly adapting to the new setting.
This suggests that human learning is not overly dependent on low-level visual details, but rather
grounded in abstract representations that capture the essential structure of a task. Neuroscientific
studies support this view, linking abstract reasoning to the human prefrontal cortex (Bengtsson et al.,
2009; Dumontheil, 2014), and highlighting the role of inhibitory neurons in enhancing cognitive
processing efficiency (Pi et al., 2013).

In stark contrast, visual reinforcement learning (VRL) agents often struggle with generalization.
While they can be trained to solve complex tasks in specific environments, even minor changes,
such as shifts in color schemes or background textures, can significantly degrade their performance.
This sensitivity indicates that VRL agents tend to overfit to superficial visual features, failing to
capture the underlying structure of the task (Cobbe et al., 2019; 2020). These limitations give rise to
a fundamental question:

What hinders reinforcement learning agents from generalizing like humans? How can we enable
them to learn robust representations that drive human-like generalization behavior?

The core reason behind the limited generalization ability of VRL agents lies in their reliance on
convolutional neural networks (CNN5s) as visual encoders. While CNNs are the de facto choice for
processing high-dimensional visual inputs, they are notoriously sensitive to even small perturbations
(Goodfellow et al., 2014). This brittleness significantly hampers the robustness of learned policies
and limits their ability to generalize. To address this issue, one common strategy is to apply data
augmentation (Shorten & Khoshgoftaar, 2019), which improves robustness by diversifying the
training distribution and reducing dataset-induced biases. Alternatively, invariant representation
learning has emerged as a principled approach to tackle generalization problem from a feature-
learning perspective. It aims to extract representations that remain stable under a wide range of input
transformations, thereby promoting robustness and transferability (Nguyen et al., 2021).

While data augmentation is an effective bias mitigation technique, its reliance on task-specific strate-
gies that are manually crafted by human experts, poses a challenge for designing task-independent
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solutions. In contrast, our method enables agents to generalize without any handcrafted augmen-
tations or external priors, relying purely on training experience. Invariant representation learning
is a promising approach to enhance model’s cross-domain generalization. However, it relies on
transformation correspondences, which are fundamentally inaccessible in the generalization scenarios
of reinforcement learning due to the dynamic nature of environments. In addition, the invariant repre-
sentation framework inherently separates the encoder from the model, unnecessarily complicating
the theoretical analysis. Instead, our framework is theoretically and empirically end-to-end.

In this paper, we first propose a novel theoretical framework to analyze the generalization problem
in reinforcement learning and show that the policy robustness to irrelevant features enhances its
generalization performance. Building upon this principled insight, we then provide empirical evidence
that deep mutual learning (DML) (Zhang et al., 2018b) can implicitly prevent online RL policies
from overfitting to such irrelevant features, leading to a stable learning process and significant
generalization improvements.

In summary, the main contributions of this paper are as follows:

* We theoretically prove that improving the policy robustness to irrelevant features enhances
its generalization performance. To the best of our knowledge, we are the first to provide a
rigorous proof of this intuition.

* We propose a hypothesis that deep mutual learning (DML) enhances the generalization
performance of the policy by implicitly regularizing irrelevant features. We also provide
intuitive insights to support this hypothesis.

 Strong empirical results support our theory and hypothesis, showing that DML technique
leads to consistent improvements in generalization performance.

2 RELATED WORK

The generalization of deep reinforcement learning has been widely studied, and previous work has
pointed out the overfitting problem in deep reinforcement learning (Rajeswaran et al., 2017; Zhang
et al., 2018a; Justesen et al., 2018; Packer et al., 2018; Song et al., 2019; Cobbe et al., 2019; Grigsby
& Qi, 2020; Cobbe et al., 2020; Yuan et al., 2023; Suau et al., 2023; Kirk et al., 2023). A natural
approach to avoid the overfitting problem is to apply regularization techniques originally developed
for supervised learning such as dropout (Srivastava et al., 2014; Farebrother et al., 2018; Igl et al.,
2019), data augmentation (Laskin et al., 2020; Yarats et al., 2021; Zhang & Guo, 2021; Raileanu
etal., 2021; Ma et al., 2022), domain randomization (Tobin et al., 2017; Yue et al., 2019; Slaoui et al.,
2019; Lee et al., 2019; Mehta et al., 2020). On the other hand, in order to improve sample efficiency,
previous studies encouraged the policy network and value network to share parameters (Schulman
et al., 2017; Huang et al., 2022). However, recent works have explored the idea of decoupling the
two and proposed additional distillation strategies (Cobbe et al., 2021; Raileanu & Fergus, 2021;
Moon et al., 2022). In particular, Raileanu & Fergus (2021) demonstrated that more information is
needed to accurately estimate the value function, which can lead to overfitting. Moreover, exploration
has also been shown to be an effective technique for improving policy generalization (Jiang et al.,
2023; Weltevrede et al., 2024), as the exploration phase effectively alters the initial state distribution
and allows the policy to access more diverse trajectories (Weltevrede et al., 2024). In addition, prior
works also adopt kernel complexity (Yeh et al., 2023) or causal learning perspectives (Kallus & Zhou,
2020; Suau et al., 2023) as measures of representation capacity.

Representation learning is another tool for improving generalization. Prior work has either leveraged
bisimulation metrics to capture invariances by comparing states in terms of their reward and transition
distributions (Zhang et al., 2020), or adopted self-supervised objectives that align trajectories based on
behavioral similarity (Mazoure et al., 2021), which enable the encoder to learn visually robust features
without relying on explicit reward signals. However, these methods introduce an additional encoder
pretraining stage that is separate from the reinforcement learning process, potentially hindering
sample efficiency and leading to suboptimal downstream representations, which can further limit
end-to-end adaptability. Moreover, modern policy gradient algorithms such as TRPO (Schulman et al.,
2015), PPO (Schulman et al., 2017), and SPO (Xie et al., 2025) typically formulate an end-to-end
policy m, this further motivates us to develop a framework that is both theoretically and empirically
end-to-end, while allowing easy integration into the reinforcement learning pipeline.
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Knowledge distillation is a learning paradigm that aims to align the student network with the teacher
network to achieve knowledge transfer. A commonly used practice is to distill the knowledge learned
by a large model into a smaller model to reduce inference costs after deployment (Xu et al., 2024). On
the other hand, distillation technique can also be used to distill a model with privileged information
into a model with access to only partial information to improve its generalization ability. However,
research has shown that knowledge distillation can also be applied to multiple student networks
during training to encourage them to learn from each other, called deep mutual learning (DML)
(Zhang et al., 2018b). Lai et al. (2020) then propose dual policy distillation, a student-student mutual
distillation framework that can improve performance without requiring a pre-trained teacher. Building
upon this observation, Zhao & Hospedales (2021) further demonstrate that DML can improve the
generalization performance of reinforcement learning agents, yet no in-depth analysis of why this
happens. In addition, recent studies suggest that aligning the student networks at the output layer
may be suboptimal, and recommend alignment at the logits layer instead (Deckers et al., 2024;
Vandersmissen et al.). Furthermore, Weltevrede et al. (2025) show that distilling multiple RL policies
into an ensemble on diverse training states can significantly improve zero-shot generalization, yet
their settings are limited to environments with rotational symmetry. We extend mutual distillation as
a form of regularization and propose a more general end-to-end generalization theory.

3 PRELIMINARIES

In this section, we introduce reinforcement learning under the generalization setting in Section 3.1,
as well as the DML technique in Section

3.1 MARKOV DECISION PROCESS AND GENERALIZATION

Markov decision process (MDP) is a mathematical framework for sequential decision-making, which
is defined by a tuple M = (S, A,r, P, p,v), where S and A represent the state space and action
space, r : S X A+ R is the reward function, P : S x A x S — [0, 1] is the dynamics, p : S +— [0, 1]
is the initial state distribution, and y € (0, 1) is the discount factor.

Define a policy 1 : S x A +— [0, 1], the action-value function and value function are defined as

o0
Z VkT(StJrk, attk)
k=0

Q" (st,ar) =E, » VH(8t) = Eayp()s) (@ (st,at)] - (H

Given Q" and V*, the advantage function can be expressed as A*(s¢, at) = Q" (st, ar) — VFH(s¢).

In our generalization setting, we introduce a rendering function (Smallwood & Sondik, 1973)
f: 8= Of C O to obfuscate the agent’s actual observations, which is a bijection' from S to Oy.
We now define the MDP induced by the underlying MDP M and the rendering function f, denote it
as My = (Oy, A, 75, Pr, ps,v), where Oy represents the observation space, 77 : Oy x A+ Ris
the reward function, Py : Oy x A x Oy + [0, 1] is the dynamics, and p; : Oy + [0, 1] is the initial
observation distribution. We present the following assumptions:

Assumption 3.1. Assume that f can be sampled from a distribution p : F + [0, 1], where f € F,

which means that | #p(f)df = 1is naturally satisfied.

Assumption 3.2. Given any f € F, o)), 0! 0! 411 € Oy and a; € A, assume that (ol ar) =
r(£71(0]),ar), Py(ofislof yar) = P(f 7 (of )17 (0], ae), pr(0h) = p(f 7 (0)).

Explanation. Assumption states that all My share a common underlying MDP M, in which
the agent’s observations are perturbed by different rendering functions while all other components
remain unchanged, much like different painters depicting the same scene in their own styles.

Next, consider an agent interacting with M ¢ following the policy 7 : O x A — [0, 1] to obtain a
trajectory

TF = (Oé,ao,r(’;,O{,al,r{,...,og,at,r{,...), 2)

'We define Oy := {f(s)|s € S}, which means for any s1 # s2, we have f(s1) # f(s2).
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where og ~pr(s), ap ~ 7(-lof), rf = rf(o{,at) and 0{+1 ~ Pf('|0{7 a), we simplify the notation

to 7y ~ m. During training, the agent is only allowed to access a subset of all MDPs, which is
{M f |f € Firain C F}, and then tests its generalization performance across all MDPs. Thus, denote
Dtrain ¢ Ftrain — [0, 1] as the distribution over Fiain, the agent’s training performance 7(m) and
generalization performance ((7) can be expressed as

() = Efropprain()orpor [Zwtrf(o{,at)] , C(m) =Efp()rpmm lz ,ytrf(oiv,at)‘| )
t=0 t=0

The goal of the agent is to learn a policy 7 that maximizes the generalization performance (7).

3.2 DEEP MUTUAL LEARNING

Deep mutual learning (DML) (Zhang et al., 2018b) is a mutual distillation technique in supervised
learning. Unlike the traditional teacher-student distillation strategy, DML aligns the probability
distributions of multiple student networks by minimizing the KL divergence loss during training,
allowing them to learn from each other. Specifically,

Lpwmr, = Lst, + aLlky, 4

where Lg1, and Lk1, represent the supervised learning loss and the KL divergence loss, respectively,
« is the weight. Using DML, the student cohort effectively pools their collective estimate of the next
most likely classes. Finding out and matching the other most likely classes for each training instance
according to their peers increases each student’s posterior entropy, which helps them converge to a
more robust representation, leading to better generalization.

4 THEORETICAL RESULTS

In this section, we present the main results of this paper, demonstrating that enhancing the agent’s
robustness to irrelevant features will improve its generalization performance.

A key issue is that we do not exactly know the probability distribution py;ai,. Note that Fipain iS
a subset of F, we naturally assume that the probability distribution pi,,in can be derived from the
normalized probability distribution p.

Assumption 4.1. For any f € F, assume that

s f) = LIV E Furain) -y o PUN LU E o),

where Z = f Fons p(f)df and 1 — Z is the normalization term, Feya) = F — Firain, L(+) denotes
the indicator function.

®)

An interesting fact is that, for a specific policy m, if we only consider its interaction with M, we
can establish a bijection between this policy and a certain underlying policy that directly interacts
with M. We now denote it as ¢ (+|s¢) = m(:| f(s¢)). By further defining the normalized discounted
visitation distribution d*(s) = (1 — ) >_,2, 7'P(s; = s|p), we can use this underlying policy iy
to replace the training and generalization performance of the policy 7. Specifically, we have the
following connection:

Lemma 4.2. For any given policy T, define its underlying policy as jis(-|s) = w(:|f(s¢)), then

1 1
nm)=—— E [r(s,0)], ((m)=7— E [r(s,a)]. (©)
1- Y f"’ptrain(') 1- Y pr()
s~df () s~df ()
arpig(:|s) g )
Proof. See Appendix F.1. O

We can thus analyze the generalization problem using the underlying policy jyr. Then, we define
L, (7)=n(r)+ waj»Np“m(_),swduf(_),awﬁf(“s) [A#7 (s, a)| as the first-order approximation of n
(Schulman et al., 2015), we can derive the following lower bounds:
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Theorem 4.3 (Training performance lower bound). Given any two policies, ™ and T, the following
bound holds:

~ ~ 2’}/6 rain ~
n(E) 2 La(®) - G s _twg ok Drv(glus)s) @)
~Ptrain(*
srd1 ()

where €ain = MaX e F,, .., {Max, |anﬂf(‘|s) [A#1 (s, a)]|}-

Proof. See Appendix F.3. O

Theorem 4.4 (Generalization performance lower bound). Given any two policies, © and T, the
following bound holds:

2Tmax(1 - Z) 2’)/6train ~
- - E  [Dov(isles)ls]]
1—1 (L =) foperain() T

sevdS ()

 20evai(l - 2)

¢(7) = Lx(7)

N 26train(1 - Z)

E  [Drv(iglles)sl] E  [Drv(ifllus)lsll,

L=y frepuain() L= fepevar()
s~d"f () s~d"f ()

3
where Tmax = MaXsq |7(S,a)], Otrain = MaXjpcr,.., {Mmax, A" (s,a)|}, and devar =
maX fe 7, {Maxsq [4" (s, a)|}.

Proof. See Appendix I.2. O
Explanation. Building upon Theorems and 4.4, we observe that, in contrast to the lower bound

on training performance, the lower bound on generalization performance incorporates three additional
terms, scaled by the common coefficient (1 — Z). This implies that increasing Z contributes to
improved generalization performance, with the special case of Z = 1 resulting in alignment between
generalization and training performance. Notably, this theoretical insight was also validated in Figure
2 of Cobbe et al. (2020).

However, once the training level is fixed (i.e., Fiain), Z is a constant, improving generalization
performance requires constraining the following three terms:

E  [Dev(pglep)lsll, B [Dev(aglep)lsll, B [Dev(agllpr)lsll )

f~DPtrain (- J ~Peval (" ~Ptrain

s~d™f () s~d™f (-) sevd”f (+)

denote it as D1 denote it as Do denote it as D ¢rain

During the training process, we can only empirically bound ®¢,,;n. Next, we establish the upper
bounds of ® and ®,. Specifically, we propose the following theorem:

Theorem 4.5. Given any two policies, ™ and T, the following bound holds:

270—eva1
I—v

270train

D) < <1+ )@ D, < (1+ E  [Drv(fla)ll,  Q0)

frpevar (-
srvdf ()

denote it as D eyal

max

where Oirain = maXfe 7y, {DTV (sl f)[s]} and oevar = maxrer, . { DV (g llig)ls]}
D (fisllpg)1s] is defined as maxs Dy (furl|p)[s)

Proof. See Appendix F.4. O

The only problem now is finding the relationship between ®eya and Dy,,i,. To achieve this, we
would like to first introduce the following definition, which represents the policy robustness to
irrelevant features.
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Training data for policy A

Training data for policy B

Figure 1: This is a toy environment where the gray agent’s goal is to pick up coins.

Definition 4.6 (R-robust). We say that the policy 7 is R-robust if it satisfies

sup  Drv(pjllpg)ls] =R. (11)
seS,f,feF

Explanation. This definition demonstrates how the policy 7 is influenced by two different rendering
functions, f and f, for any given underlying state s. If R = 0, it indicates that Drv (1 f||1e5)[s] = 0,
which means that the policy is no longer affected by any irrelevant features.

Our intention in this definition is not to derive the tightest possible bound but rather to demonstrate
how policy robustness to irrelevant features can contribute to improved generalization. Subsequently,
leveraging Definition 4.6, we establish an upper bound for Dya;.
Theorem 4.7. Given any two policies, T and m, assume that 7 is Rx-robust, and 7 is R .-robust,
then the following bound holds:

2 rain
Devat < <1 + Z“) R + R + Dirain- (12)
-
Proof. See Appendix F.5. O
Altogether, by combining Theorems 4.4, 4.5, and 4.7, we can derive the following corollary:
Corollary 4.8. Given any two policies, T and T, the following bound holds:
C(ﬁ_) Z L7'r (7}) - Ctrainthrain - OﬂRﬂ' - Cerﬁ' - 07 (13)
where
26 rain 1-Z2 2vo rain 2(Seva» 1-Z7 2 Oeva, 2ve rain
Ctrain: : ( ><1+ Bl >+ 1( )(1+ i 1)+ s PR
1—v 1—v 1—v 1—x (1=7)
2(Seva 1-Z7 2 eva, 2 rain
C?T:I()<1_|_’y01><1_|_/w't>7 (14)
1—v 1—v 1—v
2éseva 1 - Z 2 eva 2 max 1 - Z
c%l()<1+701>, o= 2rmax(1=2)
1—v 1—v I—v

Explanation. This represents our central theoretical result, demonstrating that enhancing general-
ization performance requires not only minimizing ®y,,i, during training but also improving policy
robustness to irrelevant features, specifically by reducing R . and R ;. Furthermore, we emphasize
that these results rely solely on the mild Assumptions 3.1, 3.2, and 4.1. Consequently, this constitutes
a novel contribution that is broadly applicable to a wide range of algorithms.
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Figure 2: (Left) Independently trained reinforcement learning policies may overfit to irrelevant
features. (Right) Through mutual distillation via DML, two policies regularize each other to converge
toward a more robust hypothesis space, ultimately improving generalization performance.

S5 DISTILLATION AS REGULARIZATION

Despite the theoretical advancements, in typical generalization settings, both the underlying MDP
and the rendering function remain unknown. Next, we begin by introducing a minimal toy example
in Section 5.1, which we then provide an in-depth analyze in Section 5.2 to motivate our hypothesis.

5.1 Toy EXAMPLE

Let’s consider a simple environment where the agent attempts to pick up coins to earn rewards (see
Figure 1). The agent’s observations are the current pixels. It is clear that the agent’s true objective is
to pick up the coins, and the background color is a spurious feature. However, upon observing the
training data for policy A, we can see that in the red background, the coins are always on the right
side of the agent, while in the cyan background, the coins are always on the left side. As a result,
when training policy A using reinforcement learning algorithms, it is likely to exhibit overfitting
behavior, such as moving to the right in a red background and to the left in a cyan background.

However, the overfitting of policy A to the background color will fail in the training data of policy
B, because in policy B’s training data, regardless of whether the background color is red or cyan,
the coin can appear either on the left or right side of the agent. Therefore, through DML, policy A
is regularized by the behavior of policy B, effectively preventing policy A from overfitting to the
background color. In other words, any irrelevant features learned by policy A could lead to suboptimal
performance of policy B, and vice versa. Thus, we hypothesize that this process will force both
policies to learn the true underlying semantics, ultimately improving generalization performance.

5.2 HYPOTHESIS

Motivated by Section 5.1, DML can be viewed as a form of implicit regularization against irrelevant
features, as demonstrated in Figure 2, which illustrates two randomly initialized policies independently
trained using reinforcement learning algorithms. In this case, since the training samples only include
a portion of all possible MDPs, the policies are likely to overfit to irrelevant features and fail to
converge to a robust hypothesis space.

Applying DML to the training process of both policies facilitates mutual learning, which can mitigate
overfitting to irrelevant features. Due to the randomness of parameter initialization and the interaction
process, they generate different training samples, DML encourages both policies to make consistent
decisions based on the same observations. As discussed in Section 5.1, any irrelevant features learned
by policy A are likely to degrade the performance of policy B, and vice versa. As training progresses,
DML will drive both policies to learn more meaningful and useful representations, gradually reducing
the divergence between them. Ideally, we hypothesize that both policies will capture the essential
aspects of high-dimensional observations as time grows.
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6 EXPERIMENTS

This section presents our main empirical results. Section 6.1 introduces the implementation details,
Section 6.2 validates the effectiveness of DML technique for improving generalization performance,
Section 6.3 verifies our central hypothesis, and Section confirms our theoretical results.

6.1 IMPLEMENTATION DETAILS

We use Procgen (Cobbe et al., 2019; 2020) as the experimental benchmark for testing generalization
performance. Procgen is a suite of 16 procedurally generated game-like environments designed to
benchmark both sample efficiency and generalization in reinforcement learning, and it has been
widely used to test the generalization performance of various reinforcement learning algorithms
(Wang et al., 2020; Raileanu & Fergus, 2021; Raileanu et al., 2021; Lyle et al., 2022; Rahman & Xue,
2023; Jesson & Jiang, 2024).

We employ the Proximal Policy Optimization (PPO) (Schulman et al., 2017; Cobbe et al., 2020) as
our baseline. Specifically, given a parameterized policy 7y (6 represents the parameters), the objective
of gy is to maximize

J(0) = E {min {rt(G) . A(ot,at),clip (re(0),1 —e,14¢) - A(ot,at)} } , (15)

(ot ,llt)Nﬂ'eold

where A is the advantage estimate, and 7 (6) = 7g(a¢|o;) /g, (as|o;) is the probability ratio, where
mp,,, and my denote the old and current policies, respectively.

We randomly initialize two agents to interact with the environment and collect data separately. Similar
to the DML loss (4) used in supervised learning, we also introduce an additional KL divergence loss
term, which leads to

Lpwmr, = Lrr, + aLkr, (16)

where Lgy, is the reinforcement learning loss and Lk, is the KL divergence loss, « is the weight.
And then we optimize the total loss of both agents, which is the average of their DML losses, as
shown in Algorithm |, which we name Mutual Distillation Policy Optimization (MDPO).

Algorithm 1 Mutual Distillation Policy Optimization (MDPO)

1: Initialize: Two agents 71, w2, PPO algorithm .4, KL divergence weight o
2: while training do
3: fori=1,2do

Collect training data: D; ~ m;

Compute RL loss: E%i — A(D;)

Compute KL loss: /3%34 + Dk (m3—q||mi)

Compute DML loss: Eg?\m — L8+ (},CE\,"L
end for
Compute total loss: £ < % (ESK/IL + E](3212/IL
10:  Optimize £ using gradient descent algorithm
11: end while

A A

°

Ultimately, we do not claim to achieve state-of-the-art (SOTA) performance, but rather provide
empirical evidence for the non-trivial insight that DML serves as an implicit regularization against
irrelevant features, leading to consistent improvements in generalization performance. We also
acknowledge the methodological similarities with prior work such as Zhao & Hospedales (2021);
despite that, we introduce representation convergence (Section 5.2), a novel insight with further
supported by strong theoretical analysis (Section 4), constituting our additional contributions.

6.2 EMPIRICAL RESULTS

We compare the generalization performance of our MDPO against the PPO baseline on the Procgen
benchmark, under the hard-level settings (Cobbe et al., 2020), the results are illustrated in Figure 3. It
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Figure 3: Generalization performance from 500 levels in Procgen benchmark with different methods.
The mean and standard deviation are shown across 5 random seeds.
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Figure 4: To test the robustness of the trained policy, we obfuscate the agent’s observations using
convolutional layers randomly initialized with a standard Gaussian distribution.

can be observed that DML technique indeed leads to consistent improvements in generalization per-
formance across all environments. Notably, for the bigfish, dodgeball, and fruitbot environments, we
have observed significant improvements. Moreover, the full experimental results for all environments,
including training and generalization performance, are provided in Appendix E.

A natural concern arises: how can we determine whether DML improves generalization performance
by enhancing the policy robustness against irrelevant features, or simply due to the additional infor-
mation sharing between these two agents during training (each agent receives additional information
than it would from training alone)? To answer this question, we conducted robustness testing in
Section 6.3 and added an ablation study in Section 6.4 to support our theory and hypothesis.

6.3 ROBUSTNESS TESTING

We design a novel approach to test policy robustness
against irrelevant features. For a given frame, we gen-
erate adversarial samples using random CNNSs initialized
with a standard Gaussian distribution, as shown in Figure
4. Notably, the feature extraction of MDPO encoder is
highly stable and focused (red points), whereas the features
extracted by the original PPO encoder are significantly dis-
persed (blue points).

Moreover, we design a practical measure of R-robustness
defined in Definition 4.6. Specifically, for each environ-
ment, we run the trained policy (PPO and MDPO) in
the environment for 100 steps and obtain observations

Algo\Env | caveflyer chaser climber fruitbot
PPO 1.0000 1.0000 1.0000 1.0000
MDPO 0.9877 0.9982 0.8344 0.6973
Algo\Env ‘ heist Jjumper leaper plunder
PPO 0.9683 0.9699 1.0000 1.0000
MDPO 0.9142 0.9313 0.9423 0.9431

Table 1: A simple practical measure of
‘R-robustness defined in Definition 4.6.
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Figure 5: Generalization performance of
, compared to original PPO and MDPO (for training results, see Figure 8).

01,02, ...,0100- Then, for each o; we use 100 random CNNs to simulate rendering function samples
f11)7 fgz), ey f1(6)() and compute the TV divergence of the policy between the adversarial samples

and the original observations, i.e., DTV(W9(0|01-)H7r9(~|f](i)(oi))), where 4,7 = 1,2,...,100. We
then take the maximum of these values as a simple practical measure of R-robustness:

R := max Dav (mo(-lo3) [mo (1" (01))), a7)

the results are shown in Table |. We can see that MDPO achieves a significantly lower R than PPO,
showing that DML effectively improves the policy robustness to irrelevant features, which serves as
further strong evidence for our hypothesis.

6.4 ABLATION STUDY

We design additional ablation experiments.

SpeClﬁCﬁHy, we double the mOdel s1ze, Algo\Env ‘ bigfish chaser dodgeball fruitbot

batch size, and total number of interactions
for the PPO baseli h i Fi PPO (PPO encoder) 0.19F014 9571028 5 7)F034 () 39H046
or the aseline, as shown 1n rigure PPO (MDPO encoder) 22.67£6:40 6221136 4.70£191 1122216

. It can be seen that PPO baseline still

fails to match the performance of MDPO, Typle 2: Generalization performance of PPO linear
demonstrating that naively scaling up the  hrobe on top of the frozen encoders.
PPO baseline does not lead to stable im-

. . . ain MDPO\Env | bigfish chaser dodgeball fruitbot
provements in generalization performance.
0 (baseline) 026023 gopE046 o 50E081 39902
Furthermore, we retrain a PPO linear probe 01 O87EIT 43sTIR 1104 007
: 1 16.11-7°7 5.66- " 13.23*7 11.287
on top of the frozen encoders of the trained 10 760E365  a35ElA8 o k24l g o427

PPO and MDPO policies, training for only
1M steps (2% of the original training steps),
the final generalization performance dur-
ing the last 10% steps is shown in Table

. It can be seen that the PPO linear probe
trained on the MDPO encoder achieves significantly better generalization performance, indicating
that DML helps the policy learn better (more robust) representations. Moreover, we add a sensitivity
analysis of the KL divergence weight «, and the results are presented in Table

Table 3: Generalization performance of MDPO under
different KL divergence weights.

7 CONCLUSION

In this paper, we provide a novel theoretical framework to explain the generalization problem in
deep reinforcement learning. We further hypothesize that DML, as a form of implicit regularization,
effectively prevents the policy from overfitting to irrelevant features. Strong empirical results support
our central theory and hypothesis, demonstrating that our approach can improve the generalization
performance of reinforcement learning systems by enhancing robustness against irrelevant features.
Our work provides valuable insights and elegant solutions into the development of more adaptable
and robust policies capable of generalizing across diverse environments.
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A LLM USAGE

In this work, large language models (LLMs) were used to assist in refining and polishing the writing.

B LIMITATIONS

While our method demonstrates that mutual distillation improves robustness and generalization, it
inevitably introduces additional computational costs. Specifically, MDPO requires twice the number
of trainable parameters and roughly twice the environment interaction steps compared to a single-
policy baseline. Consequently, the method may be less practical in settings with limited computational
resources or when sample efficiency is critical. Addressing these efficiency concerns, such as via
parameter sharing or selective distillation, is an interesting direction for future work.

C HYPERPARAMETERS

Table 4 shows the detailed hyperparameter settings in our code, with the main hyperparameters
consistent with the hard-level settings in Cobbe et al. (2020), except that we train for SOM steps instead
of 200M. We train the policy on the initial 500 levels and then test its generalization performance
across the full distribution of levels.

Table 4: Detailed hyperparameters in Procgen.

Hyperparameter\Algorithm \ PPO (Schulman et al., 2017) MDPO (ours)

Number of workers 64 64
Horizon 256 256
Learning rate 0.0005 0.0005
Learning rate decay No No
Optimizer Adam Adam
Total interaction steps 50M 50M
Update epochs 3 3
Mini-batches 8 8
Batch size 16384 16384
Mini-batch size 2048 2048
Discount factor 0.999 0.999
GAE parameter A 0.95 0.95
Value loss coefficient ¢q 0.5 0.5
Entropy loss coefficient ca 0.01 0.01
Clipping parameter € 0.2 0.2
KL divergence weight o - 1.0
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D THE REPRESENTATION CONVERGENCE PHENOMENON

To further demonstrate that mutual distillation indeed promotes representation convergence, we
conducted the following experiment: we compared the Centered Kernel Alignment (CKA) of two
agents in MDPO on the same batch of adversarial examples at different training stages, under different
KL divergence weight «, the results are shown in the Table 5 below:

Table 5: CKA of two MDPO policies under different o.

Algo\Training stage \ 0% 25% 50% 75% 100%

MDPO (o« = 1.0) 0.649 0769 0.797 0.850  0.867
MDPO (v = 0.0) 0.649  0.185  0.131 0.146  0.004

It is evident that after mutual distillation (o« = 1.0), the two agents learned more robust representations,
as their representations of the same batch of adversarial examples became increasingly similar. In
contrast, when the distillation weight o = 0.0, their representations diverge over time. We further
evaluated the cosine similarity of the representations of adversarial examples encoded by PPO and
MDPO across four environments, as shown in the Table

Table 6: Cosine similarity of the representations.

Algo\Env \ coinrun  dodgeball  fruitbot  starpilot
PPO encoder 0.301 -0.006 0.180 0.027
MDPO encoder 0.781 0.585 0.547 0.718

We can see that MDPO achieves significantly higher cosine similarity for the adversarial samples,
showing that MDPO has learned more robust representations with respect to irrelevant features.
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E MORE RESULTS
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Figure 6: Generalization performance of PPO and MDPO from 500 levels in each environment.
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E.2 MORE ABLATION RESULTS

Here, we additionally present the training curves from the Ablation Study (Section 6.4), as shown in
Figure
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Figure 8: Training performance of
, compared to original PPO and MDPO.

Interestingly, although the nearly matches MDPO in training performance during
the final stage of training in the fruitbot environment, there remains a substantial gap in their
generalization performance (as shown in Figure 5). This provides further strong evidence that DML
effectively enhances the policy robustness to irrelevant features, as MDPO achieves significantly
better generalization performance despite comparable training performance.
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E.3 ADDITIONAL VISUALIZATIONS

We also generate adversarial samples by adjusting the brightness, contrast, saturation, and hue of the
images, and test the robustness of the PPO encoder and our MDPO encoder, as shown in Figure 9.
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Figure 9: The robustness of PPO and MDPO to brightness, contrast, saturation, and hue.

We can see that the MDPO policy has also learned robustness representations to these irrelevant
factors, while the PPO policy remains sensitive to them. Additionally, we present adversarial samples
generated by random CNNs, as shown in Figure 10, as well as those generated by randomly adjusting
brightness, contrast, saturation, and hue, as can be seen from Figure | 1.

Figure 11: Adversarial samples generated by different brightness, contrast, saturation, and hue.
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F PROOFS

Let’s start with some useful lemmas.
Lemma F.1 (Performance difference). Let pif(-|s;) = w(-|f(se)) and fif(-|sy) = 7(-|f(se)),
define training and generalization performance as

1 1

nm=—— E [r(sa)], ¢((m)=—= E [r(s,a)]. (18)
1= fopuain() L= fp()
s~d"f (+) s~d"f (+)
arvpg(-|s) arvpg(:]s)

Then the differences in training and generalization performance can be expressed as

. 1 - 1
77(7T> _77(71—) =1 _ E [AMf (87 a)] ’ C(ﬂ-) - C(ﬂ-) =7 = E [Aﬂf (87 a)] . (19)
L= fopurain() I—=7 f~p()
s~d"f () s~d"f (+)
arcfis(|s) Do (el
Proof. This result can be directly derived from Kakade & Langford (2002). O
Lemma F.2. The divergence between two normalized discounted visitation distribution, AP —
d*||1, is bounded by an average divergence of i1 and ji:
AP — gty < 0 % — = 277 D i 20
| 1< E [la—plh]= E [Drv(ilp)s]], (20)
L= snar() L= snan()

where Do (ful|p)[s] = 5 3 ,c4 lii(als) — p(als)| represents the Total Variation (TV) distance.

Proof. See Achiam et al. (2017). L]

Lemma F.3. Given any state s € S, any two policies i and p, the average advantage,
Ea~j(-|s) [A*(s,a)], is bounded by

[Bavicio) [4(5,)]| < 2Dy (lln)[s] - max | 4%(5, )] @

Proof. Note that

an,u(~|s) [Au(s»a)} :anu('\s) [Q”(s,a) - VM(S)]
:]Earvp(-\s) [Q#(& a)] - V#(S) (22)
=VH#(s) = V*(s)
207
thus,
EaNﬁ('\s) [AM(Sa a)” - |]EaNﬁ('\s) [AH(Sv CL)] - IE:awu(~|s) [A”(S, a)”
< lla—ul, - 14" (5,0l 3)
= 2Dy (il p)[s] - max [A¥(s, a)] .
This is a widely used trick (Schulman et al., 2015; Zhuang et al., 2023; Gan et al., 2024). O

In addition, using the above lemmas, the following corollary can be obtained, which will be repeatedly
used in our proof.

Corollary F.4. Given any two policies, [i and p, the following bound holds:

2ey

E [A%(s,a)l— E [A*(s,a)]| < E [Drv(allp)ls]], (24)
s~df (") s~dH () 1- Y s~d-(-)
arvii(-]s) arvi(:|s)
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where € = max [Eqz(.|s) [A*(s, a)]|-
Proof. We rewrite the expectation as

E [A"(s,a))— E [A¥(s,a)]| =
s’ () sevdh ()
ar~ii(-]s) arvji(-]s)

s () Lanp(-ls) s (1)

(25)
where the expectation Eqj(.|s) [A*(s, a)] is a function of s, then

E { B )} { B [A"(s,a,)]}’ <li—al | B 44

s~di () La~p(- s~dﬂ arvii(-]s) a~ii(-]s)
(26)

Next, according to Lemma .2, we have
_ - 2ey -

d* — . AF(s,a = (|d* —d"||, e < —— D s 27
H ||1 aN}ZE("S)[ ( ) )] . H ||1 = 1—’}’5~g§t(-)[ TV(MHH’)[ ]]a (27)
concluding the proof. O

F.1 PROOF OF LEMMA

Lemma 4.2. For any given policy , define its underlying policy as iy (-|s¢) = (| f(s¢)), then

1 1
77(7T) = E [T(S7 a)] ) C(W) =3 = E [T(S, a)] . (28)
I =7 frpuain() =7 f~p()
srvd () srodf ()
arpg(-|s) arvpg(cls)

Proof. According to the definition of training and generalization performance in (3), we have

N(T) = Efperain (-)rs o lz Vtrf(o{,at)] s C(T) = Efp()rpm [Z vtrf(o{,at)] - (29
t=0 t=0
To prove Lemma 4.2, we only need to show that for any given f € F, the following equation holds:
1
T T ~T ) . 30
) "
arpp(-]s)

According to the definition of the normalized discounted visitation distribution d"(s) = (1 —
Y) DoV P(s: = s|u), we have

1 1
— B [rsa)=—— 7' B(s: = sluy) 3 nslals) - (s, )
1_'Vs~d“f(~)[ | 1—7565 Z ' f; !
arvpg(-|s) (31)
—ZZPSt—SIMf > uglals) -y'r(s, a)
t=0 se€S acA
Next, according to Assumption , we have
1
T E ZZPSt—Slw > uglals)-y'r(s, a)
-7 SNdlf() t=0 s€S acA
arvpg(:|s)
= ZZP F()lug) Y wlalf(s)) -~'rs(f(s),a)
t=0 seS acA (32)
FOZer L0l S S Blof = of ) Y- wlalo!) 450! )
t=0 of €Oy acA
o0
= ETfNTF [Z ’ytrf(ogcvat)‘| )
t=0
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concluding the proof. O

F.2 PROOF OF THEOREM

Theorem 4.4. Given any two policies, 7 and 7, the following bound holds:

2Tmax(1 - Z) 27€train ~
- - E  [Drv(@slley)ls]]
1—v (L =9)? frprain() e
smd S (1)

25train(1 — Z) ~ 25eval(1 - Z) ~
—————— E  [Dovigllup)lsll —-—————= E  [Dov(iyllus)sl]-
L= fropuan() T L=y frpevar()) T
s~d™f () s~d™f ()

() = L« (7)

(33)

Proof. Let’s start with the first-order approximation of the training performance (Schulman et al.,
2015), denote it as

1
T =9 fopiram ()
s~d7 ()
ancfis(-|s)

Lx(%) = n(m) + (A" (s, a)].- (34)

Then, we are trying to bound the difference between ((7) and L, (7), according to Lemma F. I, that
is,

¢(7) = L ()|
1
=|¢(m) = n(m) + —— [AM7(s,a)]l = —— E  [A"(s,a)]
=7 f~p() L =7 fopuain()
s~vdF () s~d"f (-)
ariif(-|s) arfif(|s)
1
= E [r(s,a)) = E  [r(s,a))+ E [AM(s,a)) = E  [A"(s,a)]
L= s~p() Frperain() Fp() Frperain(’)
sevd™ S (-) sevd?f (o) s~d™f (- sevd S (-)
arpig(+|s) arpig(-|s) ariis(|s) arfif(-|s)
1
<— E [r(s,a)) = E  [r(s,a)]|+| E [A(s,a)]— E [A"(s,a)]
1 - ’y pr() prtrain(') f"’?() f"’ptrain(')
sevd™S (o) sevd S (+) smvd™f () srvd"S ()
arpig(+|s) arpg(-|s) arfig(-]s) a~fis(:|s)

35)

We can bound these two terms separately.  Simplifying the notation, denote ¢(f) =
Esd®f (-),a~u; (|s) [7(8,@)], we can thus rewrite the first term as

E [sal- E [Fsal=| & gf- E [ﬁﬁﬂ, 36)
f~p(+) fr~DPirain (+) f~p() f~Dtrain(+)
a~dS () smd 7 ()
arps (1) arns (1)

then

WH-  E [ﬂﬂﬂyépuygUMf

£ Mmdﬂ'ﬂﬂW+ 37
pr() f"’ptrain(')

Flrain
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Next, according to Assumption

p(f)

Lo aas= [ sty atnat]| = | [0 -atnar- [ 2D apar
F Firain F Ftrain
[ wneatnar= [P gars [ an)-atnag
Firain Firain F —Ftrain
Z —1
=] Fgewanars [ w-o)
(38)
where Z = f]_.trmp(f)df < 1, thus,
Z-1
. 7p(f) o+ [ -g(f)df‘
£)d d
|, S e+ |f nn-snar )
1-Z
< !/M df\ TARCRC|
Meanwhile,
9Ol =| E  [r(sa)l|=]D_(1=7)D 'Plsi = slup) > uslals) - r(s,a
s~vd"S () SES t=0 acA
arpig(-]s)
DY S Bse = sliig) 3 wsals) A (s 4O
t=0 s€S acA
- ’7) Z ’Ytrmax = Tmax;
t=0
where r,,x = max; o |7(s, a)|, then we can bound the first term as
g ol B el <[ anar|+ | [ atn-aas
fNP() prtrain(') Firain F—Fira
s~d"f () s~d"f (+)
arvpig(-|s) arvpy(-ls)
—Zz
<[ snlaniars [ w0 el
Firain F —Ftrain
(1 = Z)rmax
< [ s [ pas
:“_Z% Z 4 e (1= Z) = 2rmax(1 — Z).

(41)

23



Under review as a conference paper at ICLR 2026

Now we are trying to bound the second term, which can be expressed as

E [AlLf (57 a’)] - E [Allf <87 a)]
fN?(') f~Pirain(-)
s~d"f (+) s~dhr (+)
arvjig(-|s) arvjig(-|s)
=| E [A(s,a)l— E [A(s,a)l+ E [A"(s,a))l— E [A"(s,a)]
f~p(-) f~Ptrain(*) f~Prain(*) f~prain(*)
srvd"f () s~d"f (-) s~d"f (-) sd"f (1)
arvfif(:|s) arfig(-|s) arfif(]s) ar~viiy(-]s)
<| E [A(s,0)]- E [AM(s,0)]|+| E [A%(s,a)]- E [A"(s,a)]|.
f"“?() prt{ain(') prt{ain(‘) prtrain(‘)
s~df () s~d"f () srdlf () s~d"s ()
arfif(:|s) arfif(|s) arfif(|s) ar~viip(-]s)
denote as P denote as &
(42)
Using Corollary F.4, ¥ can be bounded by
U= E E [AM(s,a)] = E  [A"(s,a)]
froptrain () | s~d®7 (1) s~d"f (+)
ariif(-|s) arfif(:|s)
< = E [A(sa]- E [4%(s,a)] @
frperain (1) | | s~d™f (1) s~d”f (1)
ar~fig(-]s) arfig(-|s)
< B 42 5 DGyl
< v (figlles)s]] ¢
fr~Ptrain(+) 11—« s~dtf () T
where € = maxg |Eqj;(.|s) [A*/ (5, a)]|, denote €irain = maxye7,,,;, {€}, e obtain
2'7€train ~
¥ < E  [Drv(fgllps)s]] - (44)
L= foperain() e
s~d"f (+)
Next, with a little abuse of notation g( f), denote
g(f)= E [A"(s,a)] 45)
s~d"f (-)
arfif(|s)
we can rewrite P as
o= E [9(N— E [9(N] (46)
fp() f~Ptrain(-)
then, similar to (37), (38), (39) and (41),
1-7
e [ lelars [ s lehlar, @7
]'_train \Ff]:train
According to Lemma F.3, we can bound g( f), which can be expressed as
g(f)= E [A"(s,a)l= E { E [A"(s, a)]} ’ 0

s~d"f (1) sevds () | a~viy(ls)

arjiy(s)
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thus,
NG, B [Asallp < B {2D1vGiglug)ls) - max |42 (s, a)l} .
s~d?s (1) | |a~iis(Cls) sd™f () @
(49)
Denote § = max; 4 | A7 (s, a)|, then we have
l9(H)] <26 Ef( : [Drv (gl ap)ls]] (50)
s~d"f (-
which means that
1-Z
o<t [ lear s [ p)- el
Ftrain F—Fhrain

25train(1 - Z) B
==z /f - B Deviisllsdf

e [ w0 B DnGiglun) s af

s~d™f ()

=20 prain(1 — Z pf) Drv(ji d
=26t rain( ) 7 E [ TV(Nf”:“f)[*ﬂ] f

Firain Swduf(')

p(f .
sa-2) [ P e Daleolslias
F—Ftrain — s~d"f ()

=20train(1 — 2) E [DTV(ﬁf”/‘f)[sH + 20eval(1 — 2) E [DTV(ﬁf”/‘f)[sH )

f’\‘ptr_ain(') f’\‘pe_val(')

s~d™f (-) s~d"f ()

(51)
where ¢rain = max ez, {Mmax, o |[A" (s,a)|} and deval = maxser,,,, {max, o |[A*f (s, a)|}.
Finally, combining (35), (41), (42), (44), and (51), we have
2rmax(1 = Z)  29€train

() = La(7)] < E  [Dov(isllpg)ls]]

-y (1 =72 fopirain()
s T (1)
2§train(l - Z) ~ 256\,&1(1 — Z) _
+—————=  E  [Drv(islpp)sll+ ————= E  [Drv(irllps)lsl],
1—~ Fprrain(*) JI L= frepevar(") I

s~dff () s~d™f (+)
(52)
thus, the generalization performance lower bound is
2Tmax(l - Z) 2’Yetra»in ~
- - E  [Drv(iglles)sl]
l1—v (1 =7)? fopirain () T
sd"f (2
B 20eval (1 — Z)

C(7) = Lx(7)

_ 26train(1 - Z)

E  [Drv(igllps)ls]] E  [Drv(igllps)ls]]

L= fropuan() L=y frpevar ()
s~d"f (1) s~dPf ()
(53)
concluding the proof. O
F.3 PROOF OF THEOREM
Theorem 4.3. Given any two policies, 7 and 7, the following bound holds:
~ - 276train ~
(@) 2 La(7) = =——=5 E  [Drv(glley)ls]]- (54)
(1 - 7)2 prtrain(') f f

s~d"f ()
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Proof. Since

1 L4
(@) —Le(@)|=+——=| E [A(s,q))— E [AY(s,0)]|=——=
L= | frperain () f~pgﬁafi?<)-> L=
snd?f () sd”S (- 55
ariif(-|s) ar~fif(-ls) (55)
2’7€train ~
<Sa7——z. B [Drv(agle)ls]]
(1 - 7)2 f~Perain(+) d d
smd?F ()
thus,
~ ~ 27€train -
N(T) 2 La(7) — ———5  E  [Drv(iglus)sll, (56)
(]‘ - IY)Q f~Ptrain(+) 4 d

srd S ()

concluding the proof.

F.4 PROOF OF THEOREM

Theorem 4.5. Given any two policies, 7 and w, the following bound holds:

2 Otrain 2 Oeva ~
015 (14 2% ) 0, 2 (14 2%220) & Drvliglenlll. 67
1 - Il = Y prev?l(')
s~d"f (-

denote it as ® eyal

where Otrain = MaXfeFpu {DTV (Agll1g)[s]} and oeval = maxrer, . {Dy* (s llg)ls])
Dipy(fig ||y ) [s] represents maxs Dy (fug || s )[s]-

Proof. According to Lemma .2, we have
D1 = Derain| = | E  [Dov(agllep)lsll = B [Dov(igles)ls]]
Jr~Perain (- f~ptrain(+)
s~d”f (4) s~d"f (+)

fropirain (1) s~d™f (-) s~d”7 (+)

=| E { E  [Drv(agllpslsl = E _[DTv(ﬂflluf)[SH}’

< E E  [Drv(gllep)ls]) = E - [Dov(fgliu)lsl]
f~ptmm(-){ s~d™f () T s~d"f () TR (58)
< JE Al = d Dy Gl el

27y ~ i
< & 12 & Duylaglalsl - max Doyl
prtrain(') =7 s~ ) °

d"f (-
Q'Yo'train ~ 2’YUtrain
< — E DT\/(/}, pe)lsll = ———— - Dtrain,
- thm(i)[ tllug)lsll = == S P
s~d"S (+)
as a result,
2 rain
331 S (1 + Bk ) CDtraiIr (59)
L=~
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Similarly, using Lemma F.2 again, we have

02 = Devatl =| B ADrvislug)lsll = E - CADrv(isles)ls]
~Peval (* ~Poval (*
sdf (-) srvd"f ()

=| E { E  [Drv(fllps)ls]] — dH:;f(.)[DTV(ﬂfHMf)[SHH

fropeval(+) | s~d®7 (-) s
} (60)

SMIGEW(‘){ E  [Dov(pgllpp)lsl - E )[DTv(/lflluf)[S]]
2y - -
< E { E [DTv(uflluf)[S]]~m3xDTv(uf||Mf)[8]}

s~dPf () s~dlf (-

< E ){Hdﬁf—d”fH1~IIDTv(ﬁflluf)[S]lloo}

T frpevar(-

T frpevar() | LY smats ()
290 eval . 290eval
<—— E [Drv(agllp)lsl] = * Deval,
11— f~peval<-)[ Sliepls]] L—y 7%
s~d"S (+)
as a result,
290ey
D, < (1 + 2% al) Deval, (61)
1—nv
concluding the proof. O

F.5 PROOF OF THEOREM

Theorem 4.7. Given any two policies, ™ and 7, assume that 7 is Rz-robust, and 7 is R -robust,
then the following bound holds:

2 rain
;Deval S (1 + ’YOE ) Rﬂ' + Rfr + 9train- (62)
Proof. Let’s first rewrite Doy, as
Do = E [Drviiglug)ls]]- (63)
f’\‘peval(')
swdﬂf(-)

For another f € Fiyain, by repeatedly using the triangle inequality of the TV distance, we have

Do = E [Drv(iglugpls)]
frpevar (+)
s~d T (1)

< E Dot + Drviasdunls] + Drvuslg) ]
~Peval
s~d"F ()
= B [Dov(igllanll + E - DevGisle)lsl+ . E - [Drviuglep)ls]
preval(') f’\‘peval(') preval(')
s~d"F (1) s~d"F (1) s~d"F ()
(64)

taking the expectation of both sides of the inequality with respect to f ~ Pirain(-), We obtain

Powl < E DG+ E DvGdle)ll B [Devielipls]

f""ptrain(') f-ptrairl . ~Ptrain (" f-ptrai11
f"’pevel(‘) f"’l)evgl(‘) prev§l(‘)
s~d"7 (1) s~d"F (-) s~d"F (1)

(65)
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Since Dy, is independent of f, it becomes a constant after taking the expectation, which is

Seas  E (DGt E DGl B [DrvGuleg)l]

frPirain (- ‘~Prain () ‘~Prain (-
f~peval(+) f~peval(+) f~peval (+)
s~d" 7 () s~d"7 (1) s~d"7 (1)
(66)
Note that 7 is R z-robust, and 7 is R ,-robust, we can thus bound the first term:
E [DvGiglianll| = E |3 d"i(s) Davigliig)ls
f:"ptrain(' f:"ptrain(') sES
preval(') preval(') -
s~d"7 ()
< E > d*i(s) Ri| =Rz E > dti(s)| = Ra.
f~perain(+) scs f~perain(*) ses
f’\‘peval(') - preval(‘)
(67)
Similarly, we can bound the third term:
E [Pl = E |3 (s) Drvluglug)ls
Jr~ptrain (- f~Perain(+) scs
fr~peval(+) frpevar(+)
s~d"7 (1)

T fePirain () s f~Dtrain(
= LseS - seES
fr~pevar(+) frpevar(

< E 1D d() ~Rw] =R« E [Z d“f(s)] =Ry
)

(63)
Next, we are trying to bound the second term, which is similar to D¢yain. Note that Dypaiy, 1S
independent of f, we can thus rewrite it as

Otrain = E  [Dov(irllug)lsll= E  [Drv(igle)ls]] (69)
J ~Ptrain (" JF~Dtrain(*
SNd“f(.) preval(')
s~d"f ()
then
E  [Drv(islps)lsl] — Dirain
J~ptrain (-
prevél(')
s~d"7 (1)
=| E  [Drv(igllug)lsll— E  [Drv(igllus)ls]]
Jr~ptrain (- fr~Prrain(-
frpevar(+) frpevar (+)
s~d"7 () s~d"7 ()
[ penld [ DS B Drvlglu)l - B (Drv(slanls) pafds
Frrain Feval s~d" T (1) s~d"f (1)

IN

/me ptrain(f)/}_

eval

Peval (f) {

} dfdyf.
(70)

E  [Drv(iglms)lsl] - il [Drv (i llpas) ]

smed"F ()

Note that,

< "7 = d* |y - [ Doy (sl g [s]l o -

(71)

E [Drv(iglluplsll = E  [Drv(igllus)ls]]
smd"F () s~vd"f (+)
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According to Lemma F.2,

. 27y
dhi— e, < [D : } 72
[ <775 B [Prvteslenl 72)
7 i1s R r-robust, so,
a7 =@l < 2= B [Drvlglen)sl] = 725 S () Devingllu)ls] < TR
1= snd?s () ! = f 1-
(73)
As a result,
s E  [Drv(fgllps)lsl] — Dirain
~Ptrain
prevdl()
s~d"7 ()
<[ vl [ penP S| B Devlslnnls] - B (Drvslug)ls)] { dfaf
Firain Feval s~d"7 (1) s~d" s (1)

<[ ) [ et { R e DGl o

rain eval

[ o) { 2R s Declglenls [ pen(Piafas
Flrain v Feval

[ o) { 2R i D iglng) 5 4 = 2R [ 1) max D g [l

1=y
(74)
We previously defined o,ain = maxyez,,,,, {maxs Drv (fs||r)[s]}, so that
N 2y .
E  [Drv(isllpg)lsl] — Dirain| <T——Ra Ptrain(f) - max Doy (gl pyp)[s]df
Fpirain(*) 1=~ Forain s
f~Pevar ()
s~d"F (1)
290 train 20 train
> B RTI’ / ptrain(f)df = o RTH
1—=v Fucain 1=v
(75)
thus, the second term is bounded by
~ 2 g rain
B IDriglag)ls)]) £ S R Duvain (76)
~Ptrain "
Frpeval (1)
s~d"7 (1)
Finally, combining (67), (68) and (76), we have
2 rain
Deva < (1 + 2% )R + R + Disain, (77)
-
concluding the proof. O
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