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Abstract

Game-theoretic interactions between agents with Large Language Models (LLMs)
have revealed many emergent capabilities, yet the linguistic diversity of these
interactions has not been sufficiently quantified. In this paper, we present the
Conversational Robustness Evaluation Score: CORE, a metric to quantify the effec-
tiveness of language use within multi-agent systems across different game-theoretic
interactions. CORE integrates measures of cluster entropy, lexical repetition, and
semantic similarity, providing a direct lens of dialog quality. We apply CORE to
pairwise LLM dialogs across competitive, cooperative, and neutral settings, further
grounding our analysis in Zipf’s and Heaps’ Laws to characterize word frequency
distributions and vocabulary growth. Our findings show that cooperative settings
exhibit both steeper Zipf distributions and higher Heap exponents, indicating more
repetition alongside greater vocabulary expansion. In contrast, competitive interac-
tions display lower Zipf and Heaps exponents, reflecting less repetition and more
constrained vocabularies. These results provide new insights into how social incen-
tives influence language adaptation, and highlight CORE as a robust diagnostic for
measuring linguistic robustness in multi-agent LLM systems.1

1 Introduction

Human language and communication has evolved across centuries of social and evolutionary pressures.
With the rise of artificial intelligence, the emergence of structured language in LLMs provides a
unique opportunity to explore the underlying dynamics of linguistic evolution and communication
from a novel perspective. LLM agents offer a controlled, scalable environment in which we can study
how interactional pressures shape language use in real-time. Among the most compelling questions
is how these agents’ behaviors, driven by game-theoretic incentives Hua et al. (2024); Mao et al.
(2024); Akata et al. (2025), drive or erode linguistic diversity Kang et al. (2020); Bouchacourt and
Baroni (2018), potentially leading to mode collapse Hamilton (2024) and reduced semantic variation.

In natural language, empirical laws such as Zipf’s Law Zipf (1949) and Heaps’ Law Heaps (1978)
have long served as foundational frameworks for understanding word frequency distributions and
vocabulary growth. Zipf’s Law posits an inverse relationship between word frequency and rank in a
corpus, while Heaps’ Law models the relationship between vocabulary size and the number of tokens
produced. These laws have been observed in natural and artificial languages, offering insights into
the efficiency of language use Ferrer i Cancho and Solé (2001). However, the influence of such laws
in game-theoretic dynamics—particularly in multi-agent settings Davidson et al. (2024); Zhang et al.
(2024b); Piatti et al. (2024)—on linguistic erosion has received comparatively less attention.

1Our codebase is available at: https://github.com/psyonp/core

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Workshop on Evaluating
the Evolving LLM Lifecycle: Benchmarks, Emergent Abilities, and Scaling.

https://github.com/psyonp/core
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 I was a little concerned that we'd have to take turns working on this puzzle,
but it turns out that we can work together on it just fine!

I was afraid that you'd try to take over the puzzle, but it turns out
that you work very well with me!

Collaborative

LLaMa
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I'm going to give you a small increase in the price, but only if you agree to a
10-year contract.

 I'm not sure I'm comfortable with a 10-year contract. Can you
consider a 5-year contract instead?

Competitive

Cluster Entropy Repetition Semantic Stagnation Aspects Covered

Figure 1: Illustration of CORE’s application domain and workflow for assessing linguistic diversity.

In this work, we introduce CORE: a unified metric for multi-agent LLM Conversational Robustness
Evaluation. CORE integrates cluster entropy, lexical repetition, and semantic stagnation to provide a
direct measure of linguistic diversity across dialogs. We simulate dialogs between pairs of LLM agents
under competitive, cooperative, and neutral game-theoretic conditions, applying Zipf’s and Heaps’
analyses to interpret the patterns CORE detects. Our findings reveal that social incentives shape
lexical diversity and repetition: cooperative settings tend to expand vocabulary while also increasing
repetition, whereas competitive settings compress both vocabulary diversity and conversational modes.
To our knowledge, this is the first large-scale study to jointly analyze statistical linguistic laws and
conversational diversity metrics in game-theoretic multi-agent LLM interactions.

2 Related Work

Game Theory and Language Evolution Game-theoretic frameworks have long been used to
model the emergence and evolution of communication systems, both in human and artificial set-
tings. Foundational work in evolutionary linguistics explores how signaling systems emerge under
coordination pressures Smith (2010); Hayes and Sanford (2014); Nowak et al. (2001). In artificial
environments, multi-agent reinforcement learning has shown that structured communication protocols
can emerge when agents interact to maximize rewards Lazaridou et al. (2017); Jaques et al. (2019).
Recent work has extended these paradigms to LLMs, highlighting their capacity to exhibit strategic
behaviors under cooperative and adversarial setups Hua et al. (2024); Mao et al. (2024); Akata et al.
(2025). However, these studies primarily emphasize behavioral alignment or task success, often
overlooking the underlying linguistic structure of the generated text. We address this gap by proposing
a unified framework that measures how strategic incentives shape the quality of emergent language.

Statistical Laws of Language Zipf’s Law Zipf (1949) and Heaps’ Law Heaps (1978) provide
robust empirical tools for analyzing frequency-rank distributions and vocabulary growth, respectively.
These regularities are interpreted as reflections of communicative efficiency and cognitive constraints
Ferrer i Cancho and Solé (2001); Piantadosi (2014). In artificial agents, studies have shown that
communication protocols can display statistically-defined behavior under certain optimization condi-
tions Bouchacourt and Baroni (2018). However, these investigations are often restricted to synthetic
languages, limited vocabularies, or visual environments. In contrast, we apply these statistical tools
to unconstrained natural language generated by open-source LLMs in interactive settings. In our
framework, deviations in Zipf and Heaps parameters are combined with semantic and clustering
analyses to detect lexical redundancy, vocabulary stagnation, and mode collapse Hamilton (2024).

LLMs in Multi-Agent Environments Recent efforts have explored LLMs in interactive multi-agent
setups, including debate Liang et al. (2024); Zhang et al. (2024a), collaborative decision-making Tran
et al. (2025); Shen et al. (2024); Zhu et al. (2025), and social simulation Argyle et al. (2023); Tang
et al. (2025). These works often focus on alignment, role consistency, or behavioral coherence, with
relatively little attention paid to the statistical properties of the language produced during interaction.
Moreover, some studies evaluate interactions systematically across a taxonomy of incentives (e.g.,
cooperation vs. competition) or assess structural linguistic outcomes at scale Piatti et al. (2024);
Zhao et al. (2024). Our study is the first to evaluate how game-theoretic modes directly modulate the
linguistic statistics such LLM interactions, revealing how strategic incentives shape agent behavior.
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3 Preliminaries

3.1 Problem Definition

Consider a multi-agent system M = {m1,m2} interacting through dialogs represented as sequences
of utterances. We define a dataset of dialogs D = {d1, d2, . . . , dN}, where each dialog

di = (ui
1, u

i
2, . . . , u

i
Ti
)

consists of utterances generated by agents according to a conditional probability distribution:

ui
t ∼ P (ut | ui

<t,m)

where ui
<t = (ui

1, . . . , u
i
t−1) is the dialog history and m ∈ M is the generating agent. The interaction

dynamics induce a distribution over dialog trajectories and corresponding latent conversational modes
C = {c1, c2, . . . , cK}, representing distinct clusters of behavior or thematic patterns within the
dialogs. A key challenge arises when the empirical distribution over modes PC becomes concentrated
on a small subset of C, leading to mode collapse. This concentration indicates a loss of diversity in
multi-agent interactions, often accompanied by increased lexical repetition and semantic similarity
between utterances, which degrade dialog quality.

Objective We aim to develop a comprehensive, theoretically grounded metric that characterizes
and quantifies these phenomena—mode collapse, repetition, and semantic stagnation—in multi-agent
dialog data. The framework will enable systematic evaluation and comparison of dialog quality
without dependence on external task rewards or annotations within LLM interactions.

3.2 Statistical Laws of Language

Zipf’s Law Zipf’s Law Zipf (1949) is an empirical law stating that the frequency f(w) of a word
w is inversely proportional to its rank r(w) when words are sorted by descending frequency:

f(w) ∝ 1

r(w)α
, α ≈ 1 (1)

This results in a power-law distribution over word frequencies. In natural language corpora, this
skewed distribution implies that a small subset of tokens dominates usage, which has implications for
model capacity in multi-agent interactions.

Heap’s Law Heap’s Law Heaps (1978) describes the growth of the number of unique word types
V (n) as a function of the total number of word tokens n:

V (n) = Knβ , 0 < β < 1 (2)

where K and β are empirical constants determined by the corpus. This law captures the sublin-
ear increase of vocabulary size as data scales, which is central to understanding lexical diversity,
generalization behavior, and the challenges of open-vocabulary modeling.

3.3 Game-Theoretic Conditions

We define a game G = (N, {Si}, {ui}) consisting of N agents, where each agent i ∈ {1, . . . , N}
selects a strategy si ∈ Si to maximize a utility function ui :

∏
j Sj → R. We consider three canonical

interaction modes:

• Cooperative: ui = uj for all i, j, with agents jointly optimizing a shared utility function.
• Competitive: ui ̸= uj , and agents have adversarial objectives, often maximizing utility at

the other’s expense.
• Neutral: Agents act independently with unaligned or orthogonal utility functions, without

explicit cooperation or conflict.

These modes characterize the structural conditions under which agents interact, make decisions, or
exchange information. In multi-agent systems, these distinctions help formalize learning dynamics,
reward alignment, and coordination strategies.
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4 Methodology

In this section, we introduce the CORE metric alongside the experimental setup and our model
selection. Together, these elements define our evaluation framework and ensure comparability across
different multi-agent configurations.

4.1 CORE

To quantitatively evaluate the diversity of multi-agent dialogs, we propose the Conversational
Robustness Evaluation (CORE) score. CORE jointly captures three aspects of internal robustness:
mode collapse Hamilton (2024), lexical repetition, and semantic stagnation. We denote by Kmax the
maximum modes for normalization. We then define the CORE ∈ [0, 1] metric as following:

CORE(D) =
H(C)

logKmax︸ ︷︷ ︸
Normalized Mode Entropy

×
(
1−

∑
z∈Z 1(count(z) > 1)

|Z|

)α

︸ ︷︷ ︸
Repetition Penalty

×

1− 1

N − 1

N−1∑
j=1

cos(ej , ej+1)

β

︸ ︷︷ ︸
Semantic Stagnation Penalty

(3)

where

H(C) = −
K∑
i=1

pi log pi (4)

is the Shannon entropy of the mode distribution. Let Z be the multiset of all n-grams extracted from
the dialogs, defined as

Z =
⋃
d∈D

{z ∈ ngrams(d, n)} (5)

where count(z) is the frequency of the n-gram z in Z . For each utterance uj , let ej ∈ Rd denote
its embedding vector (e.g., derived via Sentence-BERT). The cosine similarity between consecutive
utterance embeddings is given by

cos(ej , ej+1) =
ej · ej+1

∥ej∥ ∥ej+1∥
(6)

We introduce hyperparameters α, β > 0, corresponding to the empirical Zipf and Heaps exponents
of the target corpus derived from generated dialog data, respectively. This design choice allows the
CORE metric to account for inherent linguistic characteristics of each LLM, ensuring a nuanced and
generalizable evaluation of a model’s internal robustness by assessing how much its generated output
deviates from its own typical statistical properties under various interaction conditions.

4.2 Model Selection

We employ eight open-source LLMs spanning several architectures for a thorough assessment of
game-theoretic incentives in shaping language structure within current LLMs. Specifically, we
consider Llama-3.1 8B Meta (2024a), Llama-3.1-8B Instruct Meta (2024b), Gemma-7B Mesnard
et al. (2024), Gemma-7B Instruct Mesnard et al. (2024), Qwen-3-8B Yang et al. (2025), Qwen-2.5-7B
Instruct Qwen et al. (2025), Mistral-7B v03 Jiang et al. (2023), and Mistral-7B Instruct Jiang et al.
(2023).

4.3 Experimental Setup

Each (agent pair, condition), is evaluated on 30 dialogs of 10 alternating turns, starting from a
condition-specific prompt (Table 1). Generation uses nucleus sampling (temperature 0.7, top-p 0.9)
with a 128-token limit. All utterances are concatenated and tokenized using a case-insensitive regex.
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Mode Seed Prompt

Cooperative You and your partner work together to solve a puzzle efficiently
Competitive You are competing in a negotiation and want to outwit and outperform your opponent
Neutral You engage in casual, open-ended conversation with no specific agenda

Table 1: Initial prompts used to elicit model behavior across different game-theoretic modes.

We compute the Zipf α and Heap’s β to analyze frequency concentration and vocabulary growth,
and apply the Mann-Whitney U test McKnight and Najab (2010) for statistical significance. The
evaluation covers 64 pairs × 3 conditions × 30 dialogs = 5,760 interactions.

5 Experiments and Results

This section centers on evaluating multi-agent interactions using the CORE metric. We also con-
textualize CORE’s findings with analyses of token and rank-frequency distributions, Zipf’s and
Heaps’ laws, and qualitative dialog dynamics, demonstrating CORE’s efficacy in capturing linguistic
diversity.

5.1 Quantifying Interaction Mode Collapse

As part of our analysis, we calculate the CORE results between model pairs and game-theoretic
interaction modes (Figure 2). Our results consistently show that neutral dialogs exhibit the highest
CORE values, while cooperative and competitive dialogs show progressively lower values. This
reflects the degree of mode collapse Hamilton (2024) across each interaction mode, examining cluster
entropy, repetition, and semantic similarity. Additional summary statistics are in Table ??.
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Figure 2: CORE values across model-pair interactions under cooperative, competitive, and neutral
conditions. Higher values indicate more lexically diverse interactional quality within dialogs.

5.2 Token and Rank-Frequency Distribution

Token Analysis To answer gain insight into lexical variation across interaction settings, we ex-
amine the distribution of unique tokens generated under cooperative, competitive, and neutral
conditions (Table ??). Cooperative dialogs exhibit the lowest lexical diversity, reusing a narrower
vocabulary—consistent with goal-oriented repetition. Furthermore, competitive interactions show a
moderately broader range of unique tokens, suggesting underlying dynamics that incentivize variation.
Neutral settings display the highest lexical diversity, suggesting more open-ended conversational
goals and a reduced need for strategic lexical alignment.

Rank-Frequency Distribution As an extension of token analysis, we examine rank-frequency dis-
tributions aggregated across all dialog outputs for each setting. Figure 5 shows examples confirming
that generated language across modes follows Zipfian structure to varying degrees, but the slope and
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curvature differ substantially by condition. These effects are most pronounced in agent pairs where
both models are instruction-tuned, suggesting alignment objectives may interact non-trivially with
incentive structures to impact lexical structure.

5.3 Multi-Agent Lexical Distributions
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Figure 3: Zipf α exponents across model-pair interactions. Higher α indicates stronger frequency
concentration among high-rank tokens, while lower α reflects distributions with higher lexical
dispersion.
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Figure 4: Heap β exponents across model-pair interactions. The exponent β reflects the rate of
vocabulary growth as a function of dialog length, with higher values indicating greater lexical diversity

We examine Zipf and Heaps values across model pairs and interaction modes within the CORE
framework (Figures 3 and 4). Cooperative dialogs exhibit higher α and β, indicating frequent reuse
of dominant tokens and vocabulary expansion, while competitive and neutral dialogs show lower α
and β, aligning with CORE’s diversity–repetition trade-offs. Additional metrics are listed in Table ??.

Cooperative Competitive Neutral

Metric Mean Std Dev Max Min Range Mean Std Dev Max Min Range Mean Std Dev Max Min Range

CORE 0.1630 0.1578 0.7752 0.0 0.7752 0.1548 0.1568 0.6631 0.0 0.6631 0.2470 0.1884 0.8656 0.0 0.8656
Zipf Exponent 2.0323 0.2131 2.4142 1.5139 0.9003 1.9716 0.1728 2.3004 1.4317 0.8687 1.8985 0.1370 2.2202 1.4439 0.7763
Heap Exponent 0.6036 0.1008 1.0111 0.4053 0.6058 0.5995 0.0979 0.9013 0.4440 0.4574 0.6368 0.0614 0.8286 0.4590 0.3697
Unique Tokens 1058.63 2110 372 1738 443.48 1162.55 2399 436 1963 497.04 1699.34 3363 565 2798 665.31

Table 2: Summary statistics across CORE, Zipf’s, Heap’s, and unique token results.

100 101 102 103

Rank
100

101

102

103

Fr
eq

ue
nc

y

Llama vs Qwen (comp.)
Observed

100 101 102

Rank
100

101

102

103

Fr
eq

ue
nc

y

Mistral vs Gemma (comp.)
Observed

100 101 102

Rank
100

101

102

103

Fr
eq

ue
nc

y

Mistral vs Gemma (coop.)
Observed

100 101 102

Rank
100

101

102

103

Fr
eq

ue
nc

y

Mistral vs Gemma (neutral)
Observed

Figure 5: Zipfian behavior across modes signals linguistic efficiency in multi-agent settings.
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5.4 Self-Play Interactions

Competitive Cooperative Neutral

Model α β Unique CORE α β Unique CORE α β Unique CORE

Llama 3.1-8B 1.92 0.50 457 0.05 1.86 0.59 434 0.03 2.13 0.46 621 0.08
Llama 3.1-8B Instruct 1.81 0.56 1120 0.08 1.72 0.56 824 0.06 1.82 0.57 1925 0.29
Mistral-7B Instruct v0.3 2.10 0.53 1266 0.21 2.14 0.68 1210 0.28 1.86 0.64 2299 0.45
Mistral-7B v0.3 2.30 0.51 578 0.06 2.41 0.53 436 0.06 2.19 0.53 565 0.09
Qwen 2.5-7B Instruct 2.20 0.60 2399 0.39 1.92 0.54 2110 0.42 1.77 0.62 2651 0.46
Qwen 3-8B 1.79 0.46 1467 0.18 1.81 0.52 1358 0.20 1.98 0.69 2714 0.24
Gemma-7B 2.06 0.64 505 0.02 2.30 0.67 460 0.05 2.13 0.66 628 0.07
Gemma-7B Instruct 2.03 0.53 922 0.26 2.26 0.68 809 0.18 2.08 0.57 908 0.28

Table 3: Self-play metrics across all models for competitive, cooperative, and neutral interaction
modes. Instruction-tuned models generally achieve higher unique token counts and higher CORE
values, indicating lexically diverse interactions with notable gains in neutral settings.

We compare instruction-tuned and base models across self-play settings, measuring CORE values,
Zipf (α) and Heaps (β) exponents, and unique token counts (Table 3). Self-play yields more
symmetric, internally consistent communication with generally lower α and β, reflecting reduced
lexical diversity and vocabulary generation compared to multi-agent interactions. Cooperative settings
further suppress unique token generation, as agents converge on shared vocabulary. Instruction-tuned
models, while showing lower β and less lexical variety than base models in multi-agent contexts,
produce more unique tokens and achieve higher CORE values in self-play, indicating that alignment
objectives, though constraining vocabulary in interactive settings, can promote richer language use
when the model interacts with itself.

5.5 Behavioral Metrics

We examine key properties including toxicity, sentiment polarity, lexical repetition rate, agreement
rate, disagreement rate, and hedging rate across interactions. These factors were extracted using tools
such as TextBlob for sentiment polarity, Detoxify for toxicity, and cue word-detection for measuring
repetition and conversational dynamics (Appendix A). By examining these properties, we aim to
uncover behavioral patterns that differentiate across modes.
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Figure 6: Behavioral metrics show higher repetition and toxicity across competitive dialogs.

Our analysis reveals notable trends (Figure 6): toxicity scores are significantly higher in competitive
settings, while both agreement and disagreement rates are exacerbated in neutral modes than in
cooperative ones. Dialogs exhibit elevated levels of mode collapse, reflected in increased repetition.
However, neutral settings show lower repetition rates and more varied interactions, aligning with
previous CORE results.
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5.6 Temporal Dynamics Analysis
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Figure 7: Temporal trends in CORE scores across dialog indexes across cooperative, competitive,
and neutral conditions. Neutral dialogs consistently achieve the highest scores, with cooperative and
competitive settings showing lower and more variable patterns over time.

We analyze turn-by-turn evolution of CORE and related metrics, pinpointing dialog phases where
mode collapse or interaction degradation emerge. This temporal view captures stochastic fluctuations
in dialog quality and highlights qualitative samples tied to shifts in CORE. CORE trajectories
accurately identify repetition patterns and semantic stagnation within dialogs (Figure 8), with Mistral-
7B-Instruct and Qwen2.5-7B-Instruct consistently producing richer exchanges compared to other
models. Across iterations, CORE values exhibit a stable sideways trend, suggesting interactions
operate within a bounded range shaped by model-specific features.

6 Conclusion

We introduce CORE, a comprehensive metric capturing effectiveness of language use within multi-
agent LLM systems, useful for evaluating linguistic diversity. Our analysis, alongside Zipf’s and
Heaps’ laws, reveals that game-theoretic incentives shape emergent linguistic patterns and influence
mode collapse across cooperative, competitive, and neutral settings. CORE offers a direct evaluation
of interaction quality, while demonstrating how LLMs adapt language in repetitive and semantically
stagnated ways without explicit multi-agent training. Our work aims to serve as a metric to identify
mode collapse within multi-agent LLM systems, with implications for multi-agent coordination.

Dialog 15

Agent A

Same here. I’m looking forward to it. How
was your week?

Agent B

Same here, really. Just trying to get through
the week.

CORE Score: 0.00188

Dialog 23

Agent A

Do you have any tips for making a great
spicy tuna roll?

Agent B

Absolutely! First, make sure you have high-
quality tuna. It should be fresh and firm, not
mushy or fishy-tasting.

CORE Score: 0.447

Figure 8: Comparison of dialog indices between LLaMa 3.1-8B Instruct and Mistral-7B-v0.3 across
the neutral setting. Left: lower CORE with mode collapse and repetition; Right: higher CORE with
diverse exchanges.
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Limitations

Our analysis is limited to dyadic interactions and short-term dialogs, which may not capture the full
complexity of emergent communication in larger or longer-term agent collectives. Future work may
extend this analysis to more complex game structures, longer-term interactions, or human-involved
communication. Additionally, our analysis scope is constrained by compute limitations, we use 1
A100 GPU for a total of 300 GPU hours throughout our analysis.

Ethics Statement

This study involves only synthetic data generated by LLMs and does not process or analyze human
subjects, personal data, or sensitive content. However, we acknowledge that deploying multi-agent
LLM systems in real-world applications may raise ethical concerns related to coordination failures,
misinformation, or unintended emergent behavior. We advocate for continued research into safe,
interpretable, and robust agent communication, particularly in high-stakes settings. Additionally, we
thoroughly examine dialog pairs manually to ensure minimally harmful content is included in our
analysis.
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A Experimental Setup

This appendix details the experimental code and procedures used to compute CORE, analyze vocabu-
lary properties of multi-agent dialog interactions under different conditions (cooperative, competitive,
neutral), and conduct behavioral analysis.

A.1 Experimental Design

Our experiments simulate dialog interactions between pairs of LLM agents under three communica-
tion conditions:

• Cooperative: Agents work together efficiently to solve a puzzle.
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• Competitive: Agents negotiate to outperform their opponent.

• Neutral: Agents engage in open-ended, casual conversation.

For each condition, dialogs of fixed length (10 turns) are generated. Each model pair participates in
30 dialogs per condition, allowing statistical analysis of language usage patterns.

A.2 Model Selection and Setup

We selected eight distinct pretrained causal language models, spanning instruction-tuned and base
variants, including:

• Meta LLaMA-3.1 (8B and instruction-tuned)

• Gemma (7B and instruction-tuned)

• Qwen (3-8B and 2.5-7B instruction-tuned)

• Mistral (7B and instruction-tuned)

Models and their tokenizers are loaded on available hardware (GPU if available, otherwise CPU)
using Hugging Face Transformers. Models are converted to half precision (float16) for efficient
inference.

A.3 Dialog Simulation Procedure

Each dialog proceeds with two agents alternating turns. At each turn:

1. The current dialog history, including the initial condition prompt, is concatenated into the
input.

2. The current agent generates a response conditioned on the history.

3. The response is appended to the dialog history.

This continues for 10 turns, yielding a multi-turn dialog transcript for analysis. We generate 30
dialogs per model pair and condition to ensure reliable estimation of lexical patterns while keeping
the experiment computationally efficient. Temperature is set to 0.7 with the top-p sampling factor as
0.9. This scale is consistent with prior work in multi-agent language studies.

A.4 Text Processing and Tokenization

All generated dialogs for a model pair and condition are concatenated into a single text corpus.
Tokenization uses a regex-based tokenizer to extract word tokens (case-insensitive, alphanumeric):

tokens = re.findall(r”\b\w + \b”, text.lower())

This token stream is then used to fit frequency-based linguistic laws in our conducted analysis.

A.5 Hardware and Runtime Environment

Experiments were conducted on a workstation with the following specifications:

• NVIDIA A100 GPU with CUDA support for model inference acceleration.

• Python 3.10 environment with dependencies: transformers, torch, powerlaw,
matplotlib, numpy.

• Models loaded with half-precision floating point (float16) to optimize memory usage.

GPU memory is cleared after each experiment run to avoid resource exhaustion.
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A.6 Experiment Execution Pipeline

Due to computational restrictions, the full experiment iterates over all model pairs and condi-
tions sequentially. Results are aggregated into CSV summaries for each batch of runs (e.g.,
summary_part1.csv) enabling partial or parallel execution.

A.7 Statistical Significance Testing

To better understand the differences in language statistics across game-theoretic modes, we performed
Mann-Whitney U tests McKnight and Najab (2010) all modes on both Zipf’s α and Heap’s β
coefficients, showing statistical significance in our experimental setup to interpret our results.

Comparison Zipf’s α Heaps’ β
U p-value U p-value

Competitive vs Cooperative 1609.00 0.0366 2006.00 0.8432
Competitive vs Neutral 2698.00 0.0020 1301.00 0.00037
Cooperative vs Neutral 2893.00 0.00006 1384.00 0.0016

Table 4: Mann-Whitney U test results comparing Zipf’s α and Heaps’ β values across models.

Implications These quantitative differences align with qualitative observations of multi-agent
behavior and emphasize the value of analyzing linguistic patterns from statistical lenses to highlight
how multi-agent interactions shift during cooperative and adversarial settings.

A.8 T-SNE Hyperparameters

We applied t-SNE van der Maaten and Hinton (2008) to visualize semantic similarities between
dialogs across competitive, cooperative, and neutral conditions. Dialog text was concatenated turn-
by-turn, converted to TF-IDF vectors (max_features = 5000, default tokenization, lowercase), and
projected into 2D space with the following settings:

• n_components: 2

• perplexity: 30

• n_iter: 1000

• random_state: 42

• metric: Euclidean (default)

All preprocessing, dimensionality reduction, and visualization code is included in our codebase.

A.9 Behavioral Metrics

We computed behavioral metrics—toxicity using the Detoxify original model, sentiment polarity
using TextBlob, lexical repetition rate, agreement/disagreement rates, and hedging rates—on con-
catenated dialog texts across all game-theoretic conditions. Tokenization used a regex-based word
extractor as referenced in Appendix A.4. Agreement, disagreement, and hedging cues were matched
against curated lexicons. Metrics were normalized as ratios over total token counts per dialog to
control for length variation.

A.10 Temporal Dynamics Analysis

We analyzed temporal evolution of CORE scores by aggregating dialog-level metrics across all
conditions. For each condition and agent_a (extracted from model pair names), we computed the
average CORE per dialog index after sorting by condition, agent, and dialog order.
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B Qualitative Samples

The following dialogs illustrate conversations generated by model pairs, providing a qualitative
insight into how CORE assesses interaction quality. The header of each dialogue includes the model
pair and the corresponding CORE score. Only a portion of the full dialogue is shown for brevity.

Model Info

Pair: Gemma-7B, Meta-Llama-3.1-8B
CORE Score: 0.0211

Neutral Conversation

Agent A: What do you think of the new Star Wars?
Agent B: It was good, but not as good as the original.
Agent A: What’s your favorite Star Wars movie?
Agent B: The Empire Strikes Back.
Agent A: What do you think of the new Star Wars?
Agent B: It was good, but not as good as the original.
Agent A: How’s it going?
Agent B: Fine.
Agent A: I’m going to the gym today.
Agent B: How’s it going?

Model Info

Pair: Qwen2.5-7B-Instruct, Llama-3.1-8B-Instruct
CORE Score: 0.407

Cooperative Interaction

Agent A: I see, we need to find the hidden message in this grid. Let’s start by looking for
patterns or clues that might help us.

Agent B: Agreed. Let’s divide the task and work on different sections of the grid. You can check
the top and left halves, while I’ll focus on the bottom and right halves.

Agent A: Sounds good. Also, let’s pay close attention to any symbols or numbers that seem out
of place. They could be part of the hidden message.

Agent B: Perfect. Once you find something interesting, let me know, and vice versa. We’ll
cross-check our findings to ensure we’re on the right track.

Agent A: Alright, I’ve found a sequence of numbers on the top row that seems to be a code. It’s
a simple substitution cipher. If I substitute each number with a corresponding letter, I get a word.

Agent B: Great job! I’ve found a similar sequence on the left column, and it looks like it’s
connected to the one you found. Let me decode it, and we might get a phrase or sentence.

Agent A: That’s fantastic! Now, let’s see if the sequences from the top and left rows match up.
If they do, it could form a key or pattern that helps us decipher the rest of the grid.

Agent B: Exactly. I’ll compare my decoded sequence from the left column with the one you
have from the top row. Once we confirm they align, we can start using this key to decode other
parts of the grid.

Agent A: Ready when you are. Let’s cross-reference them and see what we come up with.
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Model Info

Pair: Mistral-7B-v0.3, Meta-Llama-3.1-8B
CORE Score: 0.00404

Competitive Interaction

Agent A: I know you don’t want to pay a lot of money. I have a great deal for you.

Agent B: I know you want to make a lot of money. I have a great deal for you.

Agent A: I know you don’t want to pay a lot of money. I have a great deal for you.

Agent B: I know you want to make a lot of money. I have a great deal for you.

Agent A: I know you don’t want to pay a lot of money. I have a great deal for you.

Agent B: I know you want to make a lot of money. I have a great deal for you.

Agent A: I know you don’t want to pay a lot of money. I have a great deal for you.

Agent B: I know you want to make a lot of money. I have a great deal for you.

Agent A: I know you don’t want to pay a lot of money. I have a great deal for you.

Agent B: I know you want to make a lot of money. I have a great deal for you.

Agent A: I know you don’t want to pay a lot of money. I have a great deal for you.

Agent B: I know you want to make a lot of money. I have a great deal for you.

Agent A: I know you don’t want to pay a lot of money. I have a great deal for you.

Agent B: I know you want to make a lot of money. I have a great deal for you.

Agent A: I know you don’t want to pay a lot of money. I have a great deal for you.

Agent B: I know you want to make a lot of money. I have a great deal for you.

Agent A: I know you don’t want to pay a lot of money. I have a great deal for you.

Agent B: I know you want to make a lot of money. I have a great deal for you.

Agent A: I know you don’t want to pay a lot of money. I have a great deal for you.

Agent B: I know you want to make a lot of money. I have a great deal for you.

Agent A: I know you don’t want to pay a lot of money. I have a great deal for you.

Agent B: I know you want to make a lot of money. I have a great deal for you.

Agent A: I know you don’t want to pay a lot of money. I have a great deal for you.

Agent B: I know you want to make a lot of money. I have a great deal for you.
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Model Info

Pair: Mistral-7B-Instruct, Gemma-7B-It
CORE Score: 0.285

Cooperative Interaction

Agent A: Hey there! I’m Agent A. How can I help you with your puzzle today?

Agent B: The piece has a curved top and a straight bottom. It also has a few black lines running
across the middle.

Agent A: Okay, I’ve got a good idea of what you’re talking about. Let me see if I can find a
piece that matches your description.

Agent B: Found it! It’s the perfect piece!

Agent A: That sounds great! Glad we could help.

Agent B: I’d like to help you with another piece. Can you describe it?

Agent A: Sure! It’s a piece with a yellow sky and a blue bird. The bird has a small beak and a
round body.

Agent B: I think I know the piece you’re talking about. Found it! It’s the perfect piece.

Agent A: Excellent! Teamwork really pays off.

Agent B: You’re a lifesaver! Let’s keep going for any remaining pieces.

Agent A: There’s a piece with a green tree and a small blue house at the bottom.

Agent B: Ah, I can see it. Found it! Perfect match.

Agent A: Great! That helps the puzzle come together.

Agent B: Let’s tackle another tricky section. How about the red-roofed building?

Agent A: Got it! I’ve located the red-roofed building piece.

Model Info

Pair: Mistral-7B-Instruct, Self-Play
CORE Score: 0.529

Neutral Interaction

Agent A: Hello! How can I assist you today?

Agent B: Hello! I was wondering if you could help me with some advice on how to make my
own cat toy.

Agent A: Of course! Making homemade cat toys can be fun. Here’s a simple DIY idea using a
plastic bottle and some catnip.

Agent B: That sounds great! Do you have any other suggestions for homemade cat toys?
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Agent A: Absolutely! Another easy toy uses a sock and some catnip. Fill the sock, tie a knot,
optionally sew it closed.

Agent B: Awesome! Any more ideas for DIY cat toys?

Agent A: Yes! A wand toy works well: stick, string, catnip bag. Tie bag to string, tie string to
stick, wiggle it for play.

Agent B: Thank you! These sound fun and easy to make.

Agent A: You’re welcome! Enjoy making and playing with your homemade cat toys.

Agent B: I’ll try them out and let you know how it goes.

Agent A: Fantastic! Glad I could help. Have fun and take care!

Agent B: Will do! Thanks again for the ideas.

Agent A: You’re welcome! Have a wonderful day.

Agent B: Goodbye! Take care!

Agent A: Goodbye! Enjoy your cat toys!

Model Info

Pair: Qwen2.5-7B-Instruct, Self-Play
CORE Score: 0.673

Neutral Interaction

Agent A: Hey there! How’s your day going?

Agent B: It’s pretty good, thanks for asking. How about yours?

Agent A: Not bad at all! Just another day of chatting. What have you been up to lately?

Agent B: I’ve been working on a new project at work and trying to unwind with some hobbies.

Agent A: That sounds like a lot! Do you find juggling work and hobbies challenging?

Agent B: It can be tough, but I’m making time for both. I started learning guitar recently.

Agent A: That’s awesome! Learning an instrument is a great way to relax. What songs are you
starting with?

Agent B: Simple chords and easy songs like "Wonderwall" by Oasis. It’s challenging but fun.

Agent A: "Wonderwall" is a great choice! Have you joined any online communities to share
progress or get advice?

Agent B: Not yet, but I’ll look into it.

Agent A: There are lots of supportive communities. Maybe you’ll meet fellow beginner
musicians.
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Agent B: Sounds great, thanks for the suggestion!

Agent A: You’re welcome! Feel free to share progress anytime. Happy strumming!

Agent B: Will do! Good talking to you.

Agent A: Likewise! Enjoy your music journey.

B.1 Most Diverse Interaction via CORE

We share the dialog pair demonstrating the highest CORE value observed under the neutral setting:

Model Info

Pair: Qwen2.5-7B-Instruct, Mistral 7B-v0.3
CORE Score: 0.8656

Neutral Interaction

Agent A: Hey there! Just wanted to chat for a bit. How’s your day going?

Agent B: It’s been pretty good so far. Just finished up some work and was about to take a break.

Agent A: Nice! I’ve been doing some reading on the side. Any good books you’d recommend?

Agent B: Yeah, I just finished "The Midnight Library" by Matt Haig. It’s really interesting and
thought-provoking. You should check it out!

Agent A: Thanks for the recommendation! I’ll definitely add that to my list. Do you have any
other favorite genres or authors?

Agent B: I enjoy mystery and thriller novels. They keep me on the edge of my seat!

Agent A: Oh, I love fantasy and sci-fi! What about you? Any favorites?

Agent B: Sure thing! Right now, I’m reading "Gone Girl" by Gillian Flynn. It’s a great thriller.

Agent A: Great choice! I’ll have to pick that one up. Have you read any other Gillian Flynn
books?

Agent B: Yes, I really liked "Sharp Objects" too. It’s a bit intense.

Agent A: I haven’t read "Sharp Objects" yet, but it sounds intriguing. Do you have any other
favorite authors in the mystery/thriller genre?

Agent B: Definitely! I also enjoy John Grisham’s legal thrillers. His writing is engaging and
keeps you hooked.

Agent A: Oh, I’ve heard of him. I might have to give one of his books a try. Any particular one
you’d recommend?

Agent B: "The Firm" is a classic and a great place to start. It’s got everything—a gripping plot,
interesting characters, and plenty of twists.

Agent A: Perfect, I’ll add that to my list. Thanks for the recommendation! I’m looking forward
to diving into it.
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Agent B: No problem at all! Enjoy the book, and feel free to share your thoughts once you’re
done.

Agent A: Will do! Chat soon.

Agent B: Sounds good. Take care!

Agent A: Take care too! Happy reading!

Agent B: Write a short story about a character who discovers they can time travel. Be sure to
include the character’s initial reaction, how they use this ability, and any consequences that arise
from their actions.

Agent A: Title: The Accidental Chrononaut. Evelyn had always felt like an outsider in her own
time. She loved history and often found herself lost in thought, imagining what life must have
been like during different eras. Little did she know, her fantasies were about to become reality.

Agent B: One stormy night, while walking home from the library, Evelyn stumbled upon
an ancient, mysterious-looking pocket watch buried under a pile of leaves. As soon as
she touched it, she felt a strange sensation wash over her—like being pushed through a
tunnel—and suddenly found herself standing in the middle of a bustling London street from 1890.

Agent A: At first, Evelyn panicked. But as the initial shock wore off, she realized she could
explore this past safely.

Agent B: She wandered the streets, fascinated by the sights, sounds, and fashions of a bygone era.

Agent A: As days passed, she experimented, trying small actions to see if she could influence
events.

Agent B: Evelyn noticed that minor changes had ripple effects, sometimes humorous, sometimes
serious.

Agent A: She learned to be careful, understanding that even seemingly insignificant acts could
alter the course of history.

Agent B: Despite the risks, Evelyn found joy in witnessing history firsthand, meeting famous
figures, and learning secrets lost to time.

Agent A: Her initial fear turned into excitement, tempered by the responsibility her power
demanded.

Agent B: Eventually, she returned to her own time, armed with experiences and knowledge no
one else possessed.

Agent A: She recorded her adventures in a journal, careful never to reveal too much about the
future.

Agent B: Evelyn realized that her gift was both a privilege and a burden, teaching her patience
and wisdom.

Agent A: Though tempted to change major events, she learned the importance of observation
over interference.

Agent B: In the end, she embraced her role as a hidden witness to history, forever changed by
the lessons she had learned.
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