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Abstract
Denoising diffusion probabilistic models
(DDPMs) have shown impressive results on
sequence generation by iteratively corrupting
each example and then learning to map corrupted
versions back to the original. However, previous
work has largely focused on in-place corruption,
adding noise to each pixel or token individually
while keeping their locations the same. In this
work, we consider a broader class of corruption
processes and denoising models over sequence
data that can insert and delete elements, while
still being efficient to train and sample from.
We demonstrate that these models outperform
standard in-place models on an arithmetic
sequence task, and that when trained on the text8
dataset they can be used to fix spelling errors
without any fine-tuning.

1. Introduction
Although autoregressive models are generally considered
state of the art for language modeling, machine translation,
and other sequence-generation tasks (Raffel et al., 2020;
van den Oord et al., 2016), they must process tokens one at a
time, which can make generation slow. As such, significant
research effort has been put into non-autoregressive mod-
els that allow for parallel generation (Wang & Cho, 2019;
Ghazvininejad et al., 2019). Recently, denoising diffusion
probabilistic models (DDPMs) (Sohl-Dickstein et al., 2015)
have shown impressive results in a variety of domains (Chen
et al., 2020; Ho et al., 2020; Hoogeboom et al., 2021; Austin
et al., 2021), in some cases achieving comparable results to
autoregressive models with far fewer steps. In these mod-
els, a forward process iteratively corrupts the data towards
a noise distribution, and a generative model is trained to
learn the reverse denoising process. However, these models
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Figure 1. Generating an arithmetic sequence by denoising with in-
sertion and deletion over ten steps, showing x mod 100 with color
and x mod 10 with text. ‘D’ denotes deletion and ‘I’ insertion
according to the fixed forward process q(xt |xt−1). This sequence
was generated by the learned reverse process pθ(xt−1|xt).

share one limitation: the corruption process always modifies
sequence elements in-place. While convenient, this choice
introduces strong constraints that limit the efficacy of the
generative denoising process. For example, if the model
makes a mistake and places a word or phrase in the wrong
place, it cannot easily compensate.

For sequence-to-sequence tasks, the Levenshtein trans-
former (Gu et al., 2019) and Insertion-Deletion transformer
(Ruis et al., 2020) address this limitation by performing
insertion and deletion operations. However, these models
were not designed as purely generative models, and do not in
general allow estimation of sample log-likelihoods through
both the insertion and deletion phases.

In this work, we integrate insertion and deletion into the
DDPM framework, generalizing multinomial diffusion mod-
els (Hoogeboom et al., 2021) and D3PMs (Austin et al.,
2021). We carefully design a forward noising process that
allows for tractable sampling of corrupted sequences and
computing estimates of the log-likelihood bound. We show
that our models outperform in-place diffusion for model-
ing arithmetic sequences, and that for text they learn error-
correction mechanisms that work on misaligned inputs.

2. Background
Here we describe previous work that is needed to introduce
our method; see Appendix A for additional related work.

2.1. Denoising diffusion probabilistic models

DDPMs are latent variable generative models defined by a
forward Markov process q(xt |xt−1) which gradually adds
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noise, and a learned reverse process pθ(xt−1|xt) that re-
moves noise. The forward process defines a joint distri-
bution q(x0:T ) = q(x0)

∏T
t=1 q(xt |xt−1) where q(x0) is the

data distribution and x1, x2, ..., xT are increasingly noisy la-
tent variables that converge to a known distribution q(xT ).
The reverse process pθ(xt−1|xt) is then trained to match the
forward process posteriors q(xt−1|xt, x0), yielding a gradual
denoising model with a tractable variational bound on the
log-likelihood. To enable efficient training, q is often chosen
such that these posteriors can be computed analytically. For
continuous DDPMs, q(xt−1|xt) is typically a Gaussian. For
discrete DDPMs, Hoogeboom et al. (2021) propose setting
q to a mixture of a uniform distribution and a point mass at
the previous value, and Austin et al. (2021) consider using
a wider class of structured Markov transition matrices. All
recent diffusion models perform corruption in-place: the kth
element of xt is a noisier version of the kth element of xt−1,
with no dependence on other tokens.

2.2. Levenshtein and Insertion-Deletion Transformers

The Levenshtein Transformer (Gu et al., 2019) learns to
insert and delete tokens over a series of generation steps.
In each step, it marks tokens in the current sequence x that
should be deleted, predicts how many tokens should be
inserted at each position, and finally predicts values for the
newly inserted tokens. It is trained to imitate the optimal
sequence of edit actions computed by a dynamic program in
order to recover the dataset example x from a noisy proposal
x′ (generated by corrupting x or sampling from the model).

The Insertion-Deletion Transformer (Ruis et al., 2020) uses
a sequence of insertion steps followed by a single deletion
phase. In each insertion step, it takes a random subsequence
x′ of the original sequence x, and learns to insert at most one
token between each element of x′ according to a random
generation order of x from x′. In the deletion phase, it takes
a (possibly perturbed) proposal from the insertion phase and
learns to delete any token that is not part of x.

Both of these approaches have focused on the sequence-
to-sequence setting, where there are usually only a small
set of possible correct answers. Additionally, neither pro-
vide a tractable estimate of the log-likelihood of dataset
samples under the model; they are instead trained using
hand-designed losses for insertion and deletion phases.

3. Method
Our goal is to design an insertion-deletion-based generative
model within the probabilistic framework of diffusion mod-
els with a tractable bound on the log-likelihood. The main
considerations are (a) how to define the forward corruption
process so that it leads to a reverse process with insertions,
deletions, and replacements, (b) how to parameterize the

reverse process, and (c) how to do both tractably within the
diffusion process framework.

3.1. Forward Process

The forward corruption process specifies how to gradually
convert data x0 into noise xT by repeatedly applying a single-
step forward process q(xt |xt−1). Since the learned reverse
process is trained to undo each of these corruption steps, and
insertion and deletion are inverses, we can obtain a learned
reverse process with deletion, insertion, and replacement
operations by including insertion, deletion, and replacement
operations in the forward process, respectively.

A challenge is that if a single forward step can apply an
arbitrary set of insertions, deletions, and replacements, then
there may be many ways to get xt from xt−1. For example,
xt can be related to xt−1 through the minimum edit between
the two, or by deleting the full xt−1 and then inserting the
full xt. In order to compute q(xt |xt−1), one would need to
sum over all these possibilities. To avoid this, we restrict
the forward process so that there is a single way to get each
xt from each xt−1, by adding two auxiliary symbols into
the vocabulary that explicitly track insertion and deletion
operations: every insertion operation produces the insertion-
marker token INS , and every deletion operation deletes the
deletion-marker token DEL . (We note that, since the reverse
process is reversing the forward corruption process, the
learned model must instead insert DEL and delete INS .) We
propose the following form for q(xt |xt−1):

1. Remove all DEL tokens from xt−1.
2. For each token x in xt−1, sample a new value (possi-

bly DEL ) as x′ ∼ Cat(x′; δT
x Qt), where Qt is a Markov

transition matrix and δx is a one-hot vector for x.
3. Between each pair of tokens in the result, and also

at the start and end of the sequence, sample nnew
i ∼

Geom(1 − αt) and insert that many INS tokens. (We
explain this choice in Section 3.4.)

We allow Qt to include transitions from INS to any other
token, and from any token to DEL , but disallow transitions
to INS or from DEL to ensure they only arise from insertions
and deletions. This ensures unique 1-step alignments.

3.2. Parameterization of the reverse process

As an inductive bias, we prefer reverse processes that pro-
duce xt−1 by modifying xt, instead of predicting it from
scratch. As such, the learned reverse process pθ(xt−1|xt) first
removes all INS tokens from xt, then predicts two things
for each remaining token: the previous value of the token
(which might be INS if the token should be removed), and
the number of DEL tokens that should be inserted before
the token. (Recall that, since this is the reverse process, the
auxiliary tokens have opposite meanings here.) We also take
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x0 a b c d e f

x1 a b INS c d DEL f

x2 a INS DEL h i j f INS

x3 a g h i INS DEL f DEL

x0 a b c d e f

a0→3

x3 a g h i INS DEL f DEL

Figure 2. An example of sequences x0 through x3 produced by a
forward process q(xt |xt−1) (top), along with the corresponding edit
summary a0→3 (bottom) that summarizes how to obtain xt from
x0 without describing the full sample path. Note that multiple
sample paths can correspond to the same edit summary. Our model
pθ predicts the corresponding v or edge in a0→t for each
token in xt (including the previous value v in the first case), and
also predicts the number of edges immediately before each
token in xt (e.g. there is one before ‘f’ and zero before ‘i’).

inspiration from other work on diffusion models (Ho et al.,
2020; Hoogeboom et al., 2021), which find improved per-
formance by guessing x0 and then using knowledge of the
forward process to derive pθ(xt−1|xt), as opposed to specify-
ing pθ(xt−1|xt) directly. Our full parameterization combines
these two ideas: it attempts to infer the edit summary a0→t

that was applied to x0 to produce xt (as shown in Fig. 2),
then uses the known form of q(xt−1|xt, x0, a0→t) to derive
pθ(xt−1|xt). Specifically, we compute

pθ(xt−1|xt) ∝
∑

x̃0 ,̃a0→t̃

pθ
(̃
x0, ã0→t

∣∣∣xt
)
· q

(
xt, xt−1, ã0→t

∣∣∣̃x0
)
, (1)

where tildes denote predictions that are not directly super-
vised, and we intentionally use q

(
xt, xt−1, ã0→t

∣∣∣̃x0
)

in place
of q

(
xt−1

∣∣∣xt, x̃0, ã0→t
)

to prevent the model from predicting
edits ã0→t that have zero probability under q(xt, a0→t |x0).
Intuitively, the model predicts a summary of which edits
likely happened (at an unknown time s ≤ t) to produce
xt, then q determines the details of which specific edits ap-
peared in xt−1. This parameterization requires us to be able
to compute q

(
xt, xt−1, ã0→t

∣∣∣̃x0
)

(discussed in Section 3.4).

3.3. Loss function

We optimize the standard evidence bound on the negative
log-likelihood, which can be expressed as

L = Eq(x0:T )

[
− log pθ(xT )︸         ︷︷         ︸

LT

+

T∑
t=1

− log
pθ(xt−1|xt)
q(xt |xt−1)︸               ︷︷               ︸
Lt−1

]
. (2)

For the Lt−1 terms, we randomly sample t and then compute

Eq(xt ,x0,a0→t)

[
Eq(xt−1 |xt ,x0,a0→t)

[
− log

pθ(xt−1|xt)
q(xt |xt−1)

]]
. (3)

S BS A

Stop inserting
with prob. 1 − αt

Replace y with z
with prob. [Qt]yz
(for y , DEL )

Insert INS
with prob. αt

Delete DEL
if possible

S A S B
Stop inserting

Replace x with y,
or delete x and insert y

Insert any token
with some prob.

Delete any token
with some prob.

S A
BS A

A S B
B

Insert INS

Stop inserting for xt

Insert DEL and delete
it immediately

Insert y, then
replace y with z

Stop inserting for xt−1

Delete any token

Replace x with DEL ,
then delete it

Replace x with y (or delete x and insert y),
then replace y with z

Figure 3. Representation of q(xt |xt−1) (left) and q(xt−1|x0) (right)
as PFSTs, along with their composition q(xt, xt−1|x0) (bottom).
Execution starts at the black dot and continues until reaching
end-of-sequence at the double-outlined state. Some probabilities
omitted for readability; see Fig. 5 (in Appendix B) for details.

It turns out that we can compute this inner expectation in
closed form given (t, x0, xt, a0→t) (see Section 3.4).

For the LT term, we choose q so that q(xT |xT−1) determin-
istically replaces every token with DEL and inserts no new
tokens; this implies xT will always consist of repetitions of
DEL , so we can simply learn a tabular distribution pθ(|xT |)
of final forward process lengths.

3.4. Computational considerations

While a diffusion model could be trained by simply draw-
ing sequences x0, x1, . . . , xT and training the model to undo
each step, these models are usually trained by analytically
computing the Lt−1 terms for individual timesteps t and sam-
ples (x0, xt), by using closed form representations of q(xt |x0)
and q(xt−1|xt, x0) (Ho et al., 2020). Unfortunately, doing
this for a forward process that inserts and deletes tokens is
nontrivial. Over multiple steps, the INS and DEL markers
may be skipped, which means that (as mentioned in Sec-
tion 3.1) there will likely be many possible sets of insertions
and deletions that produce xt from x0, with a corresponding
wide variety of intermediate sequences (x1, x2, . . . , xt−1).

To address this challenge, we introduce two main ideas: (a)
cast the necessary quantities in terms of probabilistic finite-
state transducers (PFSTs), which allow us to marginalize
out details about intermediate sequences that do not matter
for computing the loss, and (b) choose to condition on the
edit summary a0→t in addition to (x0, xt) while analytically
computing the loss term Lt−1 in Eq. (3), which allows us to
efficiently compute those PFST-based quantities.

A PFST is a probabilistic finite state machine that has an
input tape and one or more output tapes. It repeatedly makes
stochastic transitions based on a set of transition probabili-
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0: scnt that seem somewhat useful to bottom they controlled the arrangement of bambelatic the elements of a light full i
1: scnt that se DEL m somewhat usefu DEL to bottom they controlled the arrangement of bambelatic the elements . . .
2: scnt that sem somewhat usefu to bottom INS they controlled the arrangesent of bambelatic the elements of a li . . .
3: scnt that sem somewhat usefu to bottoms INS they controlled the arrangesent of gambelatic the elements of a l . . .
4: scnt that sem somewhat usefu to b DEL ttomsp they controlled the arrangesent of gambelatic the elements o . . .
5: scnt that sem somewhat fsefu to bttkmsp they control DEL ed the arrangesent of gambelatic the elements ojf a li . . .
6: scnt thaq sem somewhat fse u to bttkmsp they DEL controled the arrangesen INS t DEL f gambeaetic the elem . . .
7: scnt thaq INS sem somewhat fse u INS to bttkmsp theycontroled the arrangesentt f gamneaetic the elemnents . . .
· · ·

28: rgny a-s blgjddaz INS DEL jas INS vrrneipnohwxswokachsyrycc INS u DEL k DEL dmzya INS ualphehva INS . . .
29: rgj DEL em DEL d INS hlgjldtz INS njasivrdmgi DEL ut DEL wxswoka h INS spa INS g INS ccy INS r DEL . . .
30: rgjepdvphlg DEL DEL k DEL shjas DEL vrcbliute DEL mb DEL k DEL shqbu INS f INS nwlv INS asx INS avljd . . .
31: udnsrbi- DEL -cv DEL bzx INS e-sqf INS n rxuonfkpiy DEL a DEL eq DEL DEL INS h- DEL aadg-r- DEL kc . . .
32: DEL DEL DEL DEL DEL DEL DEL DEL DEL DEL DEL DEL DEL DEL DEL DEL DEL DEL DEL DEL DEL . . .

p θ
(x

t−
1|

x t
)

Input:
thisn sentsnetne wasstype vssry babdly
Insert/delete outputs:
this sentence tune was type very badly
this sentiment was typed very badly
this sentence the bass style very badly
this sentencence was typed very badly
this sentence one was type very barely
In-place outputs:
thern senticelle wasstype issum babble
there sentinel e was type issey babely
thirn senticette wasstype fasry bandly
thian senteneure was type viery batfly
third sentiments lapstyle essay bolely

Figure 4. Left: generating text with an insertion-deletion denoising model pθ(xt−1|xt) trained on the text8 dataset (generative process flows
upward). Right: Fixing typos using an insert-delete model (and an in-place baseline), showing five random predictions from each model.

NLL (nats) Error rate (%)

In-place ≤ 39.95 ± 0.06 13.12 ± 2.40
0.4 ins/del ≤ 36.35 ± 0.07 5.70 ± 0.37
0.6 ins/del ≤ 35.71 ± 0.04 5.16 ± 0.27
0.8 ins/del ≤ 38.51 ± 0.17 6.48 ± 0.13

Table 1. Results on arithmetic sequences. NLL denotes negative
log-likelihoods, error rate denotes the fraction of the step sizes in
each generated example that are different from the most common
step size. Standard deviation taken over five random seeds.

ties and the current symbol from the input tape. As it makes
transitions, it consumes input tape symbols and writes to its
output tape(s). In our case, we begin by expressing q(xt |xt−1)
as a PFST, which is possible because geometric random vari-
ables can be sampled as a repeated coin flip. This PFST
iteratively consumes the input (xt−1), transitioning between
states and writing to the output (xt). We additionally make
use of an algebra over PFSTs that allows composing PFSTs
and integrating out output tapes. By composing PFSTs for
q(xt |xt−1) and q(xt−1|x0), we obtain a two-output tape PFST
for q(xt, xt−1|x0), with which we can integrate out xt−1 to
obtain q(xt |x0). Fig. 3 shows the high-level structure of each
PFST; full details are in Appendix B.2.

Given a specific edit summary a0→t, we can reconstruct the
state transitions in the PFST for q(xt, xt−1|x0), which allows
us to compute q(xt, xt−1, a0→t |x0) and q(xt−1|xt, x0, a0→t) in
closed form. Details on how to compute the necessary terms
for our loss in Section 3.3 and our model parameterization in
Section 3.2 are given in Appendix B.3 and B.4, respectively.

4. Experiment: Toy sequence datasets
We start by exploring the expressive power of our model
on a toy dataset of arithmetic sequences. We take a 10-
step multinomial diffusion corruption process (Hoogeboom
et al., 2021) and augment it with varying probabilities of
insertion and deletion. As shown in Table 1, moderate in-
sertion/deletion probabilities lead to better log-likelihoods
and to generated sequences with fewer deviations from be-

ing a valid arithmetic sequence. However, if insertions and
deletions are too frequent, the noise overpowers the patterns
in the data, leading to lower accuracy. Figure 1 shows a
sequence generated by the 0.6 insert/delete rate model. See
Appendix C.2 for experiment details.

5. Experiment: Text generation
We also investigate training a 32-step multinomial-diffusion-
based model augmented with insertion and deletion on the
character-level language dataset text8 (Mahoney, 2011).
Although insert/delete models have slightly worse log-
likelihood bounds on this dataset (see Table 2 in App. C),
the samples are still high quality, and the models show quali-
tative differences in the generative process: they can correct
spelling errors, insert spaces between words, and make other
human-like edits. In Fig. 4 we show a generated sentence
from an insert-delete model, and also show that this model
can be used to “spellcheck” a badly-human-written sentence
without being trained on this task by simply treating the sen-
tence as x10 and sampling from pθ(x0|x10). The insert-delete
model generates imperfect but intuitive suggestions whereas
an in-place model generates nonsense due to misalignment
issues. See Appendix C.3 for experiment details.

6. Discussion
In this work we have opened up the class of denoising-based
generative models to more flexible processes that include
insertion and deletion in addition to in-place replacements.
While we have motivated these models from the perspective
of text generation, this class of models could be useful for
several other applications, such as image super-resolution
(by inserting and deleting pixel rows and columns), video
generation (by inserting and deleting frames), and molecular
structure generation (by editing SMILES representations
(Weininger, 1988)). We are also excited about the potential
for incorporating other types of non-in-place edits (such
as duplication or reordering) into corruption processes as a
strategy for improving denoising-based generative models.
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A. Other related work
A few other works have studied diffusion-like generative
models for structured data, including Seff et al. (2019),
which exploits a structured forward process q(xt |xt−1) to
impose constraints on the generated samples, and Chan et al.
(2020), which iteratively refines an output sequence jointly
with its alignment to an input sequence. A number of other
edit-based generative models have been proposed, including
Guu et al. (2018) which edits prototypical examples in a
latent space. In natural language processing, edit-based
models have been proposed for learning to simplify complex
sentences into simple ones (Alva-Manchego et al., 2017;
Dong et al., 2019). In source code applications, it is common
to generate edits for bug-fixing (Yin et al., 2019; Zhao et al.,
2019; Dinella et al., 2020; Yao et al., 2021). There are also
models that use edit distances for purposes of supervision
(either directly or via imitation learning), but still generate
left-to-right (Graves et al., 2006; Bahdanau et al., 2015;
Sabour et al., 2018).

B. Computing probabilities with PFSTs
In this section we describe how to compute the necessary
probabilities for the forward process and learned reverse
process using probabilistic finite state transducers.

B.1. Notation for PFST representations

We will begin by introducing additional notation which will
be useful for representing PFSTs of the multi-step forward
process probabilities q(xt−1|x0) and q(xt, xt−1|x0).

For all of our PFSTs, we associate each transition with a
label “p : x 7→ y”, which indicates that, conditioned on x
being the next symbol on the input tape, with probability p
the PFST consumes x and produces y. We use ε to denote the
empty sequence, and thus p : ε 7→ y denotes a transition that
(with probability p) inserts y without consuming any input.
Similarly p : x 7→ ε denotes consuming x without producing
any output, which corresponds to a deletion. For the product
transducer q(xt, xt−1|x0), we write p : x 7→ y 7→ z to indicate
consuming x from x0, writing y to xt−1, and writing z to xt.

As stated in Section 3.1, each single step of the forward
process is parameterized by a scalar αt and a Markov transi-
tion matrix Qt. To represent the aggregate probabilities over
multiple steps, we introduce three parameters αt, βt, and Qt:

• αt is a vector of insertion probabilities, such that [αt]i

gives the chance of inserting token i when skipping
from time 0 to time t. In particular, [αt]〈INS〉 denotes the
probability of inserting INS , and [αt]〈DEL〉 denotes the
probability of inserting DEL . αt is used to summarize
inserts at some time s ≤ t followed by a chain of
replacements Qs+1, . . . ,Qt. If s < t, we call this a

silent insertion.
• Conversely, βt is a vector of deletion probabilities, such

that [βt]i gives the chance of deleting token i condi-
tional on it appearing in x0. βt is used to summarize a
chain of replacements Q1, . . . ,Qs that produce DEL at
some time s < t. We call this a silent deletion.

• Finally, Qt is a matrix that specifies how tokens will be
replaced over multiple steps, such that [Qt]xy denotes
the probability of consuming x and producing y condi-
tioned on x appearing in x0. Notably, this encompasses
both chains of replacements due to Qt, as well as silent
deletion-insertion pairs, where a token is inserted im-
mediately after a deleted token. (For instance, in Fig. 2,
‘b’ and ‘h’ form a deletion-insertion pair)

Using this, we can fully specify the PFSTs for each process
of interest:

S A S B

1 − α : ε 7→ ε

[Qt]xy : x 7→ y

αt : ε 7→ INS 1 : DEL 7→ ε

S A S B

1 −
∑

y[αt−1]y
: ε 7→ ε

[Qt−1]xy : x 7→ y

[αt−1]y : ε 7→ y [βt−1]x : x 7→ ε

S A
BS A

A S B
B

αt : ε 7→ ε 7→ INS

1 − α
: ε 7→ ε 7→ ε

[αt−1]〈DEL〉 : ε 7→ DEL 7→ ε

[αt−1]y · [Qt]yz
: ε 7→ y 7→ z

1 −
∑

y[αt−1]y
: ε 7→ ε 7→ ε

[βt−1]x : x 7→ ε 7→ ε

[Qt−1]x〈DEL〉

: x 7→ DEL 7→ ε

[Qt−1]xy · [Qt]yz : x 7→ y 7→ z

Figure 5. From top to bottom: q(xt |xt−1), q(xt−1|x0), and
q(xt, xt−1|x0) as probabilistic finite-state transducers.

B.2. Calculating q(xt |x0) from q(xt |xt−1)

As discussed in Section 3.4, we can use the transducer rep-
resentations shown in Fig. 5 to recursively construct prob-
abilities for q(xt |x0) from the individual step distributions
q(xt |xt−1). We proceed inductively by constructing a deter-
ministic q(x0|x0) and then repeatedly computing q(xt |x0)
from q(xt−1|x0) and q(xt |xt−1).

As our base case, observe that q(x0|x0) is the identity trans-
formation, and we can represent it using the following pa-
rameters:

[α0]i = 0, [β0]i = 0,

[Q0]i j = 1 if i = j, 0 otherwise.
(4)
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S A
BS A

A S B
B

αt : ε 7→ INS

1 − α
: ε 7→ ε

[αt−1]〈DEL〉 : ε 7→ ε

αT
t−1Qtδz
: ε 7→ z

1 −
∑

y[αt−1]y
: ε 7→ ε

[βt−1]x : x 7→ ε

[Qt−1]x〈DEL〉
: x 7→ ε

[Qt−1Qt]xz : x 7→ z

Figure 6. Transducer for q(xt |x0) after marginalizing out xt−1 from
q(xt, xt−1|x0) in Fig. 5. Note the presence of matrix-vector products
with αt−1 and Qt−1, instead of explicit indices.

Now suppose we know αt−1, βt−1, and Qt−1 for q(xt−1|x0),
and Qt and αt for q(xt |xt−1), and we wish to compute αt, βt,
and Qt for q(xt |x0). We start by constructing the product
transducer for q(xt, xt−1|x0) by composing the two transduc-
ers for q(xt−1|x0) and q(xt |xt−1), as shown in Fig. 5. Next,
we marginalize out the middle timestep xt−1. This entails
removing the middle step from each transition, and instead
summing over all possible values for that middle token. We
obtain the two-tape transducer shown in Fig. 6.

Next, we eliminate the middle state S A
B, by replacing all

paths that pass through it with new transitions that directly
connect S A

A and S B
B. We note that these paths may enter the

loop S A
B 7→ S A

B arbitrarily many times without producing
any output or consuming any input (this is a silent-insertion-
deletion pair). The total probability of all paths that take
that loop an arbitrary number of times is thus

∞∑
n=0

(
[αt−1]〈DEL〉

)n
=

1
1 − [αt−1]〈DEL〉

. (5)

We obtain the following new transitions. From S A
A to S A

A:

(1 − αt) 1
1−[αt−1]〈DEL〉

αT
t−1Qtδy : ε 7→ y (6)

From S A
A to S B

B:

(1 − αt) 1
1−[αt−1]〈DEL〉

(1 −
∑

y[αt−1]y) : ε 7→ ε (7)

From S B
B to S B

B:

[Qt−1]x〈DEL〉
1

1−[αt−1]〈DEL〉
(1 −

∑
y[αt−1]y : x 7→ ε (8)

From S B
B to S A

A:

[Qt−1]x〈DEL〉
1

1−[αt−1]〈DEL〉
αT

t−1Qtδz : x 7→ z (9)

Equation (9) is particularly notable, as it corresponds to a
silent-deletion-insertion pair, in which q(xt−1|x0) replaces x
with DEL and then inserts some other token (y in Fig. 5, but
marginalized out here), after which q(xt |xt−1) removes DEL

and produces z from y.

Combining these new transitions with the old ones between
S A

A and S B
B gives us the following values for q(xt |x0):

αT
t = αtδ

T
〈INS〉 +

1 − αt

1 − [αt−1]〈DEL〉
αT

t−1Qt, (10)

βt = βt−1 + Qt−1δ〈DEL〉

1 −
∑

y[αt−1]y

1 − [αt−1]〈DEL〉
, (11)

Qt = Qt−1Qt +
Qt−1δ〈DEL〉 α

T
t−1Qt

1 − [αt−1]〈DEL〉
(12)

(Note: Here we assume [Qt]〈DEL〉 i = [Qt]i 〈INS〉 = 0, as Qt
does not allow transitions from DEL or to INS .) Intuitively,
Eq. (10) says that inserts occur either as INS -marked inserts
at time t or (silent) inserts before time t that are then per-
turbed; Eq. (11) says that deletions occur either as silent
deletions before time t or as transitions to DEL at time t
that are then removed without inserting new tokens; and
Eq. (12) says that replacements occur either because a token
was copied/replaced before time t and then copied/replaced
again at t, or because a token x was replaced by DEL at time
t − 1, but a new token y was (silently) inserted at or before
time t − 1, so that at time t the new token y looks like a
replacement for the old token x.

B.3. Closed form of q(xt−1|xt, x0, a0→t)

We can similarly obtain a closed-form representation of
q(xt−1|xt, x0, a0→t) by reasoning backwards about the elimi-
nation steps in the previous section. We start by observing
that the edit summary a0→t tells us the sequence of replace-
ments x 7→ z, insertions ε 7→ z, and deletions x 7→ ε
executed by the transducer while sampling xt from x0.

Suppose we observe a replacement x 7→ z (where perhaps
x = z if it was copied unmodified). This must have been
produced by the Qt edge. From Eq. (12) and Fig. 5 we can
infer the distribution over the intermediate value x 7→ y 7→ z,
if it exists:

p(x 7→ y 7→ z|x 7→ z) =
[Qt−1]xy · [Qt]yz

[Qt]xz

(13)

p
(
x 7→ DEL 7→ ε
ε 7→ y 7→ z

∣∣∣∣∣x 7→ z
)
=

[Qt−1]x〈DEL〉 [αt−1]y [Qt]yz

(1−[αt−1]〈DEL〉)[Qt]xz
(14)

If the event in Eq. (14) occurs, we can also infer that there
was a geometric number nextra

i ∼ Geom(1 − [αt−1]〈DEL〉) of
extra ε 7→ DEL 7→ ε transitions due to the loop in S A

B.

Now suppose we observe an insert ε 7→ z. If z = INS , we
know it was inserted at time t, so it must have been produced
by the ε 7→ ε 7→ INS transition. If z is any other token, it
must have already existed at time t − 1, with

p(ε 7→ y 7→ z|ε 7→ z) =
[αt−1]y · [Qt]yz

[αt−1Qt]z
. (15)
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In this second case we also pass through S A
B and generate

nextra
i ∼ Geom(1 − [αt−1]〈DEL〉) extra ε 7→ DEL 7→ ε transi-

tions.

Next suppose we observe a deletion x 7→ ε (where we know
x , DEL because there are no deletion markers in the data
distribution). In this case we have

p(x 7→ ε 7→ ε|x 7→ ε) =
[βt−1]x

[βt]x

(16)

p(x 7→ DEL 7→ ε|x 7→ ε) =
[Qt−1]x〈DEL〉

1−
∑

y[αt−1]y

1−[αt−1]〈DEL〉

[βt]x

(17)

where, like before, the second case passes through S A
B and

generates nextra
i ∼ Geom(1− [αt−1]〈DEL〉) extra ε 7→ DEL 7→ ε

transitions.

Finally, we note that every time we move from S A
A to S B

B (in
other words, whenever we stop inserting tokens), there is
one more nextra

i ∼ Geom(1−[αt−1]〈DEL〉) set of ε 7→ DEL 7→ ε
transitions.

Using the above analysis allows us to compute
q(xt−1, a0→(t−1)|xt, x0, a0→t), where the extra information
a0→(t−1) specifies the sequence of x 7→ ε 7→ ε, ε 7→ DEL 7→ ε
and x 7→ DEL 7→ ε transitions (which are ambiguous from
a0→t alone). Since we do not particularly care about this
information, we can marginalize it out by noting that the
total number nobs of consecutive DEL tokens observed at a
particular position in xt−1 is the sum of the number of ex-
plicit deletions x 7→ DEL 7→ ε and insertion-deletion pairs
ε 7→ DEL 7→ ε. Given a fixed number of explicit deletions,
the total number of insertion-deletion pairs is a sum of inde-
pendent geometric random variables and thus has a negative
binomial distribution. We can thus:

• compute for each deleted token x in x0 the probability
of an explicit x 7→ DEL 7→ ε transition using Eq. (17)

• compute for each perturbed x 7→ z transition the prob-
ability of an explicit x 7→ DEL 7→ ε transition using
Eq. (14)

• compute the distribution of the total number nexplicit of
x 7→ DEL 7→ ε transitions at this location in xt−1 by
noting that it is a sum of independent Bernoulli r.v.s
(which can be computed either by taking convolutions
of their PMFs, or, if all tokens are deleted with the
same probability, by observing that this is a binomial
distribution)

• use this distribution to compute a mixture of negative
binomial distributions: nobs ∼ nexplicit + NB(nexplicit +

1, 1 − [αt−1]〈DEL〉).

B.4. Combining p̃θ (̃x0, ã0→t |xt) with q

The x0-predicting parameterization of pθ follows the same
general procedure outlined above for inferring xt−1 from

xt, x0 and a0→t. However, we make a few slight modifica-
tions due to the structure of p̃θ.

For each token z in xt, the model predicts a modification
probability p̃θ(x 7→ z) for each token and an insertion prob-
ability p̃θ(ε 7→ z). We use these as weights to scale the
appropriate inference terms in Eqs. (13) to (15).

Additionally, the model predicts a distribution p̃θ(ndel
i ) of

the number x 7→ ε transitions that occurred before each
position i in xt. We use this to infer the number nobs

i of
DEL placeholders that appear at time t − 1 using the same
inference procedure as above, but we now have a mixture
of mixtures of negative binomial distributions because we
may be uncertain about how many insertions there were.
(Usually, we will have nobs

i ≤ ndel
i , since deletions could

have occurred at any time from 0 to t.) When implementing
this parameterization we assume that every token is equally
likely to be deleted at each timestep, so that the model only
has to predict the number of missing tokens from x0; if
this is not the case, it would be possible to predict p̃θ(nobs

i )
directly instead.

We choose to predict deletion-insertion pairs simply as an
insertion preceded by a deletion, instead of reasoning about
it as a replacement; this simplifies our computation by avoid-
ing having to separately reason about Eq. (14).

C. Experimental details
C.1. Model architecture

For all of our experiments, we use a standard decoder-only
transformer following the T5 (Raffel et al., 2020) architec-
ture, with either six or twelve layers depending on the task.
The main modification we make is to introduce two output
heads instead of one. The first output head, like a stan-
dard transformer, predicts a matrix fθ(xt) ∈ RL×K of unnor-
malized log-probabilities (logits), where L is the sequence
length and K is the vocabulary size. We interpret fθ(xt)iv

as the log-probability of the ith token being produced by a
replacement edit v (equivalently v 7→ [xt]i in the PFST
notation) in the edit summary a0→t, and similarly interpret
fθ(xt)i〈INS〉 as the log-probability of the ith token of xt being
an insertion (or ε 7→ [xt]i). We reuse the embeddings for
the input vocabulary as the final output layer for this head.
The secound output head produces a matrix gθ(xt) ∈ RL×L,
for which fθ(xt)in gives the (unnormalized) log-probability
of having n different (or [x0] j 7→ ε) edges immediately
before the ith token of xt.

When running the transformer on an input sequence, we
introduce an extra end-of-sequence token EOS that denotes
the last position in the input. The first output head fθ is
ignored for the EOS token, but we do use the output gθ for
the EOS token to determine the number of edges in the
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Figure 7. Noise schedule for arithmetic sequence task for r = 0.6.
For each number x ∈ {0, . . . , 511}, probability mass shown by the
red line is evenly divided among all of the other 511 dataset tokens
(not including INS or DEL ). Schedules for other values of r are
similar, but with higher or lower values of α and Qx〈DEL〉.

edit summary a0→t that occur at the end of the sequence.

As mentioned in Section 3.3, we additionally store a fixed-
size table pθ(|xT |) ∈ RL, which we fit to the distribution of
observed lengths xT .

C.2. Arithmetic sequences

We construct a dataset of arithmetic sequences by randomly
sampling a step size s between 1 and 10, a direction (increas-
ing or decreasing), a length ` between 32 and 64 (with the
constraint that s(`− 1) < 509), and finally a random starting
position so that all terms in the sequence are between 2
and 511, inclusive. (0 is used to denote padding in the data
loader, and 1 was reserved for preliminary experiments that
required additional reserved tokens, but both are treated as
ordinary tokens by the model.) Along with INS , DEL , and an
end-of-sequence marker EOS, this yields a total augmented
vocabulary of size 515.

We compare four different forward process schedules, each
of which is tuned to add less noise for timesteps closer to 0
and more noise as t approaches 10. We start by choosing an
insert/delete rate r ∈ {0, 0.4, 0.6, 0.8}. Next, for 1 ≤ t ≤ 9,
we calculate a fraction ut = 0.1 t

9 + 0.9
(

t
9

)2
, then choose the

insertion probability αt and matrix Qt for each t so that, cu-
mulatively after step t, approximately ut × r of the elements
of x0 have been deleted, ut × r of the elements of xt come
from insertions (so that the length of the sequence remains
approximately the same), and ut of the remaining elements
from x0 have been replaced by a random integer between
0 and 512. Finally, at step 10 we append a deterministic
step Q10 that replaces every token with DEL , and set α10 = 0.
When r = 0.0, no insertions or deletions occur until the last
step, which is simply used to allow the model to predict the
length of the sequence. We choose [Qt]〈INS〉n =

1
512 for all

0 ≤ n < 512 so that INS is equally likely to transition to any

Bits/char

In place ≤ 1.669
0.4 insert/delete ≤ 1.759
0.6 insert/delete ≤ 1.789
0.8 insert/delete ≤ 1.844

Table 2. Preliminary quantitative results on text8. Shown are the
best results over a hyperparameter sweep of 12 learning rate sched-
ules.

of the 512 numbers in the vocabulary. The full schedule for
r = 0.6 is shown in Fig. 7.

For each insert/delete rate r, we train a six-layer transformer
model over 100,000 minibatches of 512 random examples,
using the Adam optimizer and a learning rate that increases
linearly to 2 × 10−4 over 5000 steps, then stays constant.
We rerun training with five random seeds for each schedule.
Since the loss seemed to stabilize at around 90,000 steps, we
take averages of the validation metrics computed during the
last 10,000 steps of training for each seed, corresponding
to ELBO estimates for 46,080 random dataset examples
and error rate metrics for 2304 samples drawn from the
model. We then report the average and standard deviation
of these per-seed metrics across the five random seeds for
each schedule.

C.3. Text generation on text8

For text8, we construct a dataset of training examples by
taking randomly-selected 118 character chunks of the full
concatenated lower-cased training set. We use a dataset vo-
cabulary of 28 tokens, including each character ‘a’ through
‘z‘, a space, and an extra token ‘-’ that does not appear in the
dataset (again used for preliminary experiments); including
INS , DEL , and EOS gives a vocabulary of size 31. During

training, since we may insert a large number of tokens by
chance, we enforce a maximum length of the intermediates
xt by rejection sampling until we draw a sample shorter than
128 characters (which we correct for when computing the
ELBO during evaluation).

As in the arithmetic sequence dataset, we compare for-
ward process schedules with four insert/delete rates r ∈
{0, 0.4, 0.6, 0.8}, constructed to add less noise near time 0.
In this case, we instead set ut = 0.1 t

31+0.9
(

t
31

)2
and produce

a 32-step corruption process; similarly, when randomizing,
we randomly choose from the 28 tokens in the vocabulary
instead of the 512 numbers.

For each insert/delete rate r, we train a twelve-layer trans-
former model over 1,000,000 minibatches of 512 random
examples, using the Adam optimizer. We perform a sweep
over four learning rates {5×10−5, 1×10−4, 2×10−4, 5×10−4}

and three schedule types: linear increase until 5000 steps
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followed by constant, linear increase until 5000 steps fol-
lowed by reciprocal square root decay, and a cyclical cosine
schedule with period 100,000.

As a preliminary estimate of performance, and because train-
ing seemed to converge before 900,000 steps, we evaluated
over a subset of 40,960 length-118 segments sampled from
the validation set, averaged over the last 100,000 steps of
training. Table 2 shows preliminary bits/char measurements
for the run with the best performance for each value of r.

To produce the typo-repair example on the right side of
Fig. 4, we took the human-written sentence “thisn sentsnetne
wasstype vssry babdly”, intended as a typo-ridden version
of “this sentence was typed very badly”. We then padded
the sentence out with placeholder text (“lorem ipsum dolor
sit amet lorem ipsum dolor sit amet...”) until it had length
119, to be approximately the length of the training examples.
We set this padded sentence as x10, then drew five random
samples for both the 0.6 insert/delete rate model and the 0.0
insert/delete rate model. We trimmed off the placeholder
text (which the model generally left alone) but did not make
any other edits.


