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Abstract

As Large Language models (LLMs) gain popu-001
larity, the need to understand long texts contin-002
ues to grow. Despite many models now extend-003
ing the context window several times beyond004
the base model, the performance of these mod-005
els in processing long texts varies across dif-006
ferent tasks. Therefore, we propose Attention007
Entropy Sort and Selection (AESS) to address008
the long text problem. Our method achieves009
length generalization of LLM by leveraging010
the large model itself to retrieve the most rele-011
vant information for the task when the context012
window is limited. Moreover, this method is013
task-agnostic, and different tasks only need dif-014
ferent prompts to achieve their retrieval. Re-015
sults from the LongBench benchmark show016
that AESS can improve LLM performance by017
9-10% compared to other retrieval methods.018
Furthermore, our method can also be adapted019
to various models and improve performance.020
Therefore, AESS is a promising solution for021
various applications that require LLMs to han-022
dle tasks with lengthy inputs effectively.023

1 Introduction024

Large Language models (LLMs) (Radford et al.,025

2018; Zhang et al., 2022; Touvron et al., 2023)026

serve as vital components in various natural lan-027

guage processing applications such as dialog inter-028

faces (Taori et al., 2023; Chiang et al., 2023), auto-029

matic translator (Peng et al., 2023b; Lu et al., 2023),030

summarization tools (Goyal and Durrett, 2020),031

and question answering (Kamalloo et al., 2023).032

They primarily perform tasks through prompts,033

where task instructions and data are presented as034

text, and the model generates a text-based response.035

Incorporating extensive input contexts with thou-036

sands of tokens is common when utilizing language037

models for lengthy inputs like chat history, as well038

as for enhancing them with external information039

such as relevant documents from a search engine040

or database query results (Petroni et al., 2020; Ram041
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Figure 1: A case study of AESS on open domain QA
task. We first segment excessively lengthy documents
into multiple shorter contexts, to ensure that the LLM
can accommodate some of them, and generate responses
based on questions and shorter contexts.

et al., 2023; Shi et al., 2023; Mallen et al., 2023; 042

Schick et al., 2023). It’s challenge for LLMs to 043

efficiently and accurately tackle long sequences. 044

LLMs typically use Transformer (Vaswani et al., 045

2017), but they struggle with long sequences due 046

to quadratic attention complexity. LLMs are, there- 047

fore, mostly trained with relatively small context 048

windows (e.g., 4K). Recently, many algorithms 049

have been optimizing this deficiency from a hard- 050

ware or attention perspective (Dao et al., 2022; Poli 051

et al., 2023; Peng et al., 2023a). Meanwhile, some 052

efforts (Li et al., 2023; Zheng et al., 2023) involve 053

obtaining new models by interpolation (Chen et al., 054

2023b) and fine-tuning on long texts based on ex- 055

isting base model (Touvron et al., 2023). However, 056

a recent study (Bai et al., 2023) spanning differ- 057

ent long text tasks reveals that the above-advanced 058

methods only bring partial improvements or even 059

perform worse than the base model. 060

Compared to extending the model’s original win- 061
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dow, accurately extracting the most relevant infor-062

mation for the task within a limited window length063

is also a wise alternative solution. In this work,064

we investigate attention entropy, a theoretical065

metric for measuring the information content of the066

input, and find that 1) task-relevant information has067

lower attention entropy, and 2) their position also068

influences attention entropy. Based on our findings,069

we introduce a plug-and-play training-free method070

Attention Entropy Sort and Selection (AESS). As071

shown in Figure 1, the basic idea is to break down072

the lengthy texts into multiple parallel contexts, and073

select the most relevant part (estimated by attention074

entropy) according to the task query.075

We experiment our simple method upon four076

LLMs (including Llama2, LongChat, ChatGLM2,077

Vicuna) with different context lengths (4k, 16k,078

32k), on widely-used LongBench benchmark (Bai079

et al., 2023). Results show that our AESS could080

achieve significant and consistent improvements081

against other retrieval-based methods, for exam-082

ple, Llama2 with our AESS outperforms the strong083

baseline by an average 9-10% improvement. Fur-084

ther analyses show that our method nicely comple-085

ments methods that extend LLMs’ original context086

windows, to achieve further lengthy long text com-087

prehension. Our main contribution can be summa-088

rized as follows: (1) We delve into the concept of at-089

tention entropy as a theoretical metric for assessing090

the information content within an input. (2)AESS091

is introduced as a plug-and-play method that re-092

quires no training. It operates by breaking down093

lengthy texts into multiple parallel contexts and094

selecting the most relevant portion, determined by095

attention entropy, based on the task query. (3)The096

results indicate that AESS consistently and signif-097

icantly improves performance compared to other098

retrieval-based methods.099

2 Methodology100

2.1 Problem Definition101

We formalize the templates of long context tasks102

as follows: Given the instruction, context, and task-103

specific input tuple (I, C, T ), the model is expected104

to give the output O. For instance, in a QA task,105

the instruction I would ask the model to answer106

the question T according to the context C, which107

refers to the long document. Generally speaking, I ,108

T and O tend to be short, while C could be a long109

sequence of several thousand tokens.110

2.2 Attention Entropy 111

Given a sequence {x1, x2, . . . , xT }, the attention
paid by the last token on a preceding token j is
defined by

aTj =
exp (Q⊺

TKj/
√
d)∑T

i=1 exp(Q
⊺
TKi/

√
d)

Here aTj is the normalized attention distribution 112

(
∑T

j=1 aTj = 1). We define the entropy of atten- 113

tion in every single layer k by the entropy value of 114

the last row in the attention matrix. 115

Entropyk =

T∑
j=1

akTj log a
k
Tj

We designed three sets of experiments following 116

the setup of multi-document question answering 117

in previous work (Liu et al., 2023). The model 118

inputs are (i) a question to answer and (ii) k docu- 119

ments (e.g., passages from Wikipedia), where ex- 120

actly one the documents contains the answer to the 121

question and k − 1 “distractor” documents do not. 122

Performing this task requires the model to access 123

the document that contains the answer within its 124

input context and use it to answer the question: 125

• The first set involves comparing a document 126

with the correct answer to other distracting 127

documents. The template (I, C, T ) remains 128

unchanged except for the context C, which 129

can be a golden document or other distracting 130

documents. We observed that the attention 131

entropy for the golden document is lower than 132

that for distracted documents. 133

• The second set includes combining a golden 134

document and four other distracted documents 135

as context C, positioning the golden docu- 136

ment at the beginning, end, and middle. 137

• In the third set, we chose the context C from 138

the second set where the golden document 139

is placed in the middle of distracting docu- 140

ments as a comparison. We replaced distract- 141

ing documents with ones composed of ran- 142

dom words or repeated instances of ’an’ of 143

the same length to observe changes in atten- 144

tion distribution under different conditions. 145

The detailed setup and the results are shown in 146

Figure 2. We can draw some conclusions: 147
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Figure 2: The details of three sets of attention entropy experiments

Attention entropy increases with document
length According to Figure 2, we observe that
with an increase in the number of documents, at-
tention entropy also increases. By the experiment
results, we could find that the attention distribu-
tion aTj is flattened. When the document’s length
becomes n times longer, we assume the original
distribution aTj is uniformly divided into n parts.
The new distribution a′Tj follows

∑nT
i=1 a

′
Tj =∑nT

i=1
aTj

n = 1, we could calculate the attention
entropy:

−
nT∑
i=1

a′Tj log a
′
Tj − (−

T∑
i=1

aTj log aTj) = logn

In real-world scenarios, as the document becomes148

n times longer, the attention distribution will not149

be evenly spread out but dispersed with an approx-150

imate result. As shown in Figure 2, with a docu-151

ment length five times larger, the attention entropy152

essentially satisfies log n. However, the specific153

situation will vary depending on the content of the154

document.155

Position of relevant information influences at- 156

tention entropy As shown in figure 2, when the 157

golden document’s position changes, we observe 158

that when the golden document is at the very be- 159

ginning or the very end of context C, the atten- 160

tion entropy values are close. However, when the 161

golden document is in the middle of context C, the 162

attention entropy values are higher compared to the 163

first two groups. The golden document contains 164

information most relevant to the task-specific in- 165

put T , which in the case of multi-document QA 166

includes answers to the questions. These results 167

suggest that when relevant information appears in 168

the middle of the context, it’s more challenging for 169

the model to concentrate its attention on the rele- 170

vant information. The model’s attention is more 171

concentrated at both ends. Placing some distract- 172

ing documents that are less relevant to the question, 173

which was demonstrated to have higher attention 174

entropy in the previous set of experiments, could 175

consequently lead to this outcome. 176

LLM could pay attention to relevant informa- 177

tion LLM tends to ignore meaningless text and 178

pay more attention to the relevant information. In 179
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Figure 3: The detailed progress of retrieving the low attention entropy information,

the first set of experiments, when distracting docu-180

ments surround the golden document, the model’s181

attention might be more scattered as distracting182

documents contain semantic information, and the183

model tends to focus on those documents as well.184

In the second set of experiments, where distract-185

ing documents are replaced by random words, the186

model might concentrate more on the golden doc-187

ument, although some of the random words could188

still have semantic relevance. In the third set of189

experiments, where random words are repeated190

’an’, the model places the primary attention on the191

golden document, resulting in lower attention en-192

tropy.193

Attention in different heads have similar en-194

tropies In our experiments, we find that atten-195

tion in different heads has similar entropy while196

we input the same template. However, for different197

layers, we find that the entropy in each layer varies.198

2.3 Methodology199

Implementation Based on the analysis above,200

we propose our method, attention entropy sort201

and selection. This method does not require fine-202

tuning. Our method utilizes the large model itself203

to retrieve the most relevant information fragments204

when the context window is restricted., achieving205

the length generalization of LLM. Moreover, this206

method is task-agnostic, and different tasks only207

need different prompts to achieve their retrieval.208

As shown in Figure 3, we divide the document209

into n segments to create shorter contexts. Each seg-210

ment is then placed into the context of our template211

(I, C, T ) for the calculation of LLM’s attention en- 212

tropy. We sort the attention entropy of the short 213

contexts, and based on the LLM’s context window 214

size, select the ones with the lowest entropy. If the 215

original document has an order, such as in multi- 216

turn dialogues or single documents, we maintain 217

the original order when connecting these contexts. 218

For independent short contexts, we connect them in 219

the order of their entropy, from lowest to highest. 220

As the result mentioned, we use the attention in 221

the first head and calculate the average entropy of 222

all the layers as our final attention entropy. 223

Context Splitting Since AESS uses the entropy 224

of the LLM as a similarity measure between the 225

prompt and context and focuses on some specific 226

contexts, we need to divide the document D into 227

multiple short contexts. The way to divide the 228

document D depends on the task. We divided the 229

document into some short contexts for the long doc- 230

ument QA. For the multi-turn dialogue, we simply 231

adopt a round of users talking, like ’USER:...’ + 232

’ASSISTANT:...’ + ’USER:...’. After utilizing our 233

AESS , we merge the overlapping part for seman- 234

tic coherence. An analysis of the effect of context 235

splitting is shown in the session 5.5. 236

3 Context Retrieval 237

Previous work (Liu et al., 2023) shows that model 238

performance degrades as the contexts grow longer, 239

indicating that models struggle to retrieve and 240

use relevant information from long input contexts. 241

Specifically, the model performs best when rele- 242

vant information appears at the beginning or end of 243
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the input context. Our method, sorting by attention244

entropy, can bring the information that the model245

considers most relevant to the forefront, resulting246

in an accuracy improvement of multi-document247

QA (The setup follows session2.2) ranging from248

9% to 12%.249

AESS enhances accuracy as a good retriever250

The table compares three scenarios with different251

numbers of retrieved documents (10, 20, 30) to252

understand the impact on QA accuracy. The base-253

line accuracy percentages for the Llama method254

are 59.6%, 57%, and 52.7% for 10, 20, and 30255

retrieved documents, respectively. This indicates256

a general decrease in accuracy as the number of257

retrieved documents increases. Our method shows258

improved accuracy over the baseline, with percent-259

ages of 66.8%, 62.2%, and 55.1% for 10, 20, and260

30 retrieved documents. Sorting appears to en-261

hance accuracy, and the trend suggests a relative im-262

provement across the different document retrieval263

amounts. Truncation at half of the sorting context264

shows a slight decrease in accuracy compared to265

the whole context but remains higher than the base-266

line. This indicates that as long as the retrieved267

content is relevant to the question, even a small268

amount of text can answer the question correctly.269

10 20 30
Number of Retrieved Docs

53

56

59

62

65

A
cc

ur
ac

y

Llama+sort
Llama+sort+truncation
Llama

Figure 4: Accuracy for QA experiments with different
methods and varying numbers of retrieved documents.
As the total text length increases, there is a decrease in
the accuracy. Documents sorted using Attention Entropy
can generally improve accuracy in this trend. Even
when truncating the remaining half of the length, the
sorted documents show improvement compared to the
baseline.

Larger scale model could retrieve the relevant 270

information better In this study, the perfor- 271

mance of three different scales of the Llama-2 272

model—7B, 13B, and 70B—was evaluated. As 273

presented in Table 1, the baseline exhibits a clear 274

trend of improved accuracy as the scale increases. 275

This suggests that the model’s ability is positively 276

influenced by the scale of the underlying archi- 277

tecture. Across all scales, our method has a no- 278

table increase in accuracy compared to the baseline, 279

with larger model scales yielding greater improve- 280

ments. Therefore, our method further enhances 281

the model’s ability to extract relevant information 282

across different scales. 283

Accuracy
Model 7B 13B 70B

Llama 57 60.4 67
Llama+sort 62.2 66.6 75.4

+∆ 5.2 6.2 8.4

Table 1: The accuracy of multi-document QA in the
different scales of Llama-2 model. ∆ calculates the
accuracy difference w/wo our method

4 Benchmarks 284

4.1 Setup 285

To evaluate the ability of the model to understand 286

the long context, we still evaluate the benchmark 287

in a zero-shot and the template (I, C, T ) depends 288

on the tasks. For some baseline models, the input 289

length may surpass the maximum context length, 290

we randomly truncate a window of the context 291

length. As to our method, the implementation fol- 292

lows session 2.2 During generation, we use Top-K 293

sampling. 294

4.2 Model 295

5 Results 296

5.1 Benchmark Results 297

We evaluate 4 LLMs which are optimized for 298

chat, including Llama2-7B-chat-4k (Touvron et al., 299

2023), LongChat-v1.5-7B-32k (Li et al., 2023), 300

ChatGLM2-6B-32k (Du et al., 2022; Zeng et al., 301

2023), and Vicuna-v1.5-7B 16k (Zheng et al., 302

2023). ChatGLM2-6B-32k is trained based on 303

ChatGLM2-6B, with a 32k context length during 304

alignment and position interpolation (Chen et al., 305
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Model 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 AVG

Llama2 7.6 15.2 17.2 11.1 16.9 5.3 52.5 4.6 16.3
Llama2+BM25 18.1 19.7 29.8 29.5 22.8 9.0 77.8 29.9 32.1
Llama2+MEMWALKER 22.2 22.5 38.4 28.5 31.4 10.4 78.7 29.0 32.6
Llama2+Ours 21.3 19.8 36.9 33.5 33.0 14.2 80.7 35.6 35.4

Table 2: Results (%) on single-doc QA, multi-doc QA and summarization tasks. ’AVG’ is computed by the
macro-average over major task categories.

2023b). LongChat-v1.5-7B-32k and Vicuna-v1.5-306

7B-16k are fine-tuned from Llama2-7B, with su-307

pervised fine-tuning and linear RoPE scaling.308

5.2 Datasets309

Dataset ID Avg len Metric

Single-Document QA
NarrativeQA 1-1 18,409 F1
Qasper 1-2 3,619 F1
MultiFieldQA-en 1-3 4,559 F1

Multi-Document QA
HotpotQA 2-1 9,151 F1
2WikiMultihopQA 2-2 4,887 F1
MuSiQue 2-3 11,214 F1

Few-shot Learning
TriviaQA 4-1 8,209 F1
SAMSum 4-2 6,258 Rouge-L

Table 3: An overview of the dataset statistics in Long-
Bench. ’Avg len’ (average length) is computed using
the number of words.

We assess the AESS ’s performance on the Long-310

Bench benchmark (Bai et al., 2023), compris-311

ing of 8 English tasks: NarrativeQA (Kočiskỳ312

et al., 2018), Qasper (Dasigi et al., 2021), Mul-313

tiFieldQA, HotpotQA (Yang et al., 2018),2Wiki-314

MultihopQA (Ho et al., 2020),MuSiQue (Trivedi315

et al., 2022),TriviaQA (Joshi et al., 2017), SAM-316

Sum (Gliwa et al., 2019). The details of average317

length and evaluation metric is shown in the table 3318

Table 2 report the performance (%) on datasets319

listed in Table 3. Models benefit from scaled posi-320

tional embedding and continued training on longer321

context, as ChatGLM2-6B-32k obtains relative im-322

provement of 44%. But LongChat-v1.5-7B-32k323

does not exhibit a significant overall improvement324

on these tasks.325

AESS As shown in Table 2, we found that AESS326

provides a tremendous improvement in various327

tasks on LongBench when using Llama2 with a 328

4k context window as the baseline for handling 329

long texts. Compared to other methods without 330

any extra model, our method allows retrieval of the 331

most relevant window based on the question and 332

current output. 333

Other methods To fairly compare our 334

method without extra parameters, we choose 335

BM25 (Robertson and Zaragoza, 2009) and 336

MEMWALKER (Chen et al., 2023a). We find that 337

the MEMWALKER performs well on the single 338

document task due to their ability to summarize the 339

text. Our method may suffer semantic incoherence 340

during the context splitting. When it comes to the 341

multi-document task, our method overperforms 342

with the other methods. 343

5.3 AESS is model-agnostic 344

Table 4 provides a comparative analysis of different 345

models (LongChat, ChatGLM2, Vicuna) in multi- 346

document QA tasks. We can observe that across 347

different models, our method has achieved improve- 348

ments compared to the baseline. The standout per- 349

former in the table is the LongChat, consistently 350

surpassing the baseline. This improvement is evi- 351

dent across all three scenarios, with accuracy rates 352

increasing from 31.5% to 32.5%, 20.6% to 21.3%, 353

and 9.7% to 10.5%. Similarly, the ChatGLM2+Sort 354

variant outperforms the base ChatGLM2 model, 355

showcasing the positive impact of incorporating a 356

sorting strategy. On datasets 2-3, we noticed that 357

the performance of several baseline models was 358

mediocre, but with the inclusion of our method, 359

there were significant improvements. 360

5.4 Passkey Retrieval 361

The passkey retrieval is a task from (Mohtashami 362

and Jaggi, 2023) that measures a model’s ability 363

to retrieve a simple passkey (i.e., a five-digit num- 364

ber) from amongst a large amount of otherwise 365

meaningless text. With our method, both 7b and 366
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Model 2-1 2-2 2-3

LongChat 31.5 20.6 9.7
LongChat+Sort 32.5 21.3 10.5

ChatGLM2 22.4 20.1 6.1
ChatGLM2+Sort 24.6 20.1 8.1

Vicuna 25.3 20.8 9.8
Vicuna+Sort 25.4 21.2 10.1

Table 4: Different models’ result (%) on multi-doc QA.

13b models fine-tuned using YaRN at 64k context367

size achieve the ability to process 128k input texts368

remaining essentially unchanged accuracy. Mean-369

while, we have achieved steady accuracies by in-370

putting documents of length 48k in context win-371

dows of LongLoRA with context window sizes of372

8k, 16k, and 32k respectively. We show detailed373

results in table5.374

Model Context
Window

Passkey
Context

Accuracy

YaRN-7B 64k 64k 96.3%
YaRN-7B+Ours 64k 128k 96.2%

YaRN-13B 64k 64k 97.5%
YaRN-13B+Ours 64k 128k 97.6%

LongLoRA-8k-ft+Ours 8k 48k 98.9%
LongLoRA-16k-ft+Ours 16k 48k 99.1%
LongLoRA-32k-ft+Ours 32k 48k 99.1%

Table 5: Passkey retrieval performance of YaRN and
LongLoRA

5.5 Analysis of Context window375

The provided table presents results for differ-376

ent window sizes in the context of three tasks:377

single-document question answering (QA), multi-378

document QA, and summarization. For a single379

sentence, the values are lower than other wider380

context windows. The result indicates that using381

a single sentence as the window length for trunca-382

tion disrupts semantic coherence, and the model383

struggles to accurately answer questions based on384

incoherence context. For 10 sentences, the results385

with higher percentages across all comparisons sug-386

gest that a context window to cover 20 sentences387

enables our method to achieve local optimality. A388

fixed 200 or 500-token count as context also pro-389

vides good results, although slightly lower than390

the 10-sentence or 20-sentence context respectively.391

This is because truncating text based on the number 392

of tokens may result in incomplete sentences, and 393

connecting them with the subsequent context can 394

alter the intended meaning of the text. 395

Context window 1-1 2-1 3-1

1 sentence 5.3 10.4 60.3

10 sentences 20.6 31.4 77.9
200 tokens 19.3 27.5 74.2

20 sentences 21.1 32.5 80.1
500 tokens 19.8 28.6 74.3

Table 6: Different window size results (%) on the first
dataset of single-doc QA, multi-doc QA, and summa-
rization task.

6 Multi-turn dialogue 396

One of the applications of our method is multi-turn 397

dialogue. During the multi-turn dialogue, the text is 398

longer with the time increase. However, the context 399

window always has a length restriction. We might 400

retrieve the most relevant history chats to respond. 401

6.1 Implementation 402

We form that the dialogue follows ’USER: Q1’, 403

’ASSISTANT: A1’, ’USER: Q2’, . . . . There are 404

many turns t and the whole dialogue history can 405

be considered a long document. For new turn t+ 1 406

generation, We set Qt+1 as the T in the template 407

(I, C, T ) to retrieve, and the context C is the previ- 408

ous t-turn chat history. Like the figure3, we select 409

the most relevant chats by the attention entropy, 410

and the number of chats depends on the context 411

window. 412

6.2 Case study 413

As shown in the figure 5, the user asks the model to 414

generate a passage about the sunset. After several 415

rounds of dialogue, approximately at intervals of 416

4k tokens, the user asks the model to generate a 417

passage about the night. After further conversation, 418

the accumulated text reaches around 8k tokens, 419

exceeding the context windows of Llama-2. If a 420

regular sliding window is used, the passage about 421

the sunset would have been forgotten. We use the 422

user’s current text as a template T to retrieve the 423

previous dialogue history. In this case study, the 424

model’s response can combine information from 425

the two generated passages. 426
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Could write a paragraph about 
sunset?

Turn 1

Here's a paragraph about 
sunsets: … As the day comes to 
an end, the sky transforms into 
a canvas of warm colors, …

Could write a paragraph about 
night?

Turn 5

Here's a paragraph about 
night: …As the sun dips below 
the horizon, the sky transforms 
into a tapestry of stars and 
constellations, guiding us…

Multiple turns…

Could you combine 'paragraph 
about sunset' and 'paragraph 
about night'? 

Turn 15

Here's a combined paragraph 
about sunset and night: … The 
sky transformed into a canvas 
of warm colors during 
sunset, … As night fell, the sky 
transitioned into a tapestry of 
stars and constellations…

Multiple turns…

Figure 5: A case study of multi-round dialogue. AESS could retrieve relevant chats

7 Related Work427

Our study is highly relevant to two types of re-428

searches:429

7.1 Long-context Language Models430

Many popular lines of methods that aim to tackle431

challenges in long text modeling, including the432

high runtime and the catastrophic forgetting phe-433

nomenon. A series of studies focus on Transformer434

variants with modifications like recurrence and435

memory (Dai et al., 2019; Rae et al., 2020; Wu436

et al., 2022; Martins et al., 2022; Bulatov et al.,437

2022; Orvieto et al., 2023; Liang et al., 2023; Zhou438

et al., 2023), factorizing attention into computation-439

ally less intensive approximations (Beltagy et al.,440

2020; Zaheer et al., 2020), or low-rank approxima-441

tions (Wang et al., 2020; Peng et al., 2021). Dao442

et al. (2022) instead provide a faster exact attention443

by reducing CUDA kernel calculations. Separately,444

directly replacing attention with convolution and/or445

linear RNNs, e.g., in RWKV (Peng et al., 2023a),446

S4 (Gu et al., 2022), or Hyena (Poli et al., 2023).447

TRAMS(Yu et al., 2023) and H2O(Zhang et al.,448

2023) are selecting the most important tokens and449

putting them in the contexts. The representation450

during this process may be cracked.451

7.2 Encoder Retrieval 452

Izacard and Grave (2021) propose Fusion-In- 453

Decoder for encoder-decoder fine-tuning. The 454

method was applied to open-domain question an- 455

swering in order to leverage retrieved passages. 456

Specifically, each retrieved supporting passage is 457

encoded by bidirectional encoders. Then the de- 458

coder performs conventional attention over the con- 459

catenation of the representations of passages. Xu 460

et al. (2024) utilize encoder-based retriever to ex- 461

tract the texts. In comparison, we focus on in- 462

context learning with decoder-only models (such 463

as GPT), without fine-tuning the original model 464

parameters. 465

8 Conclusion 466

In this work, we introduced AESS : A simple 467

approach for allowing any off-the-shelf LLM to 468

broaden the scope of text it can access during infer- 469

ence. We showed the effectiveness and universality 470

of our AESS in the single-Doc QA and Multi-Doc 471

QA tasks which potentially enabled LLMs to han- 472

dle long documents and extended conversations 473

without the risk of context truncation. Further anal- 474

yses show that our method can nicely complement 475

the long-context LLMs. 476
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Limitations477

Despite the promising results, the current method478

still has some limitations. In the single-document479

QA task, the semantic incoherence may occur since480

the text splitting.481

Ethics Statement482

We place great importance on ethical considera-483

tions and adhere strictly to the ACL Ethics Policy.484
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