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Abstract

Inequality proving, crucial across diverse scientific
and mathematical fields, tests advanced reason-
ing skills such as discovering tight bounds and
strategic theorem application. This makes it a
distinct, demanding frontier for large language
models (LLMs), offering insights beyond general
mathematical problem-solving. Progress in this
area is hampered by existing datasets that are often
scarce, synthetic, or rigidly formal. We address
this by proposing an informal yet verifiable task
formulation, recasting inequality proving into two
automatically checkable subtasks: bound estima-
tion and relation prediction. Building on this, we
release IneqMath, an expert-curated dataset of
Olympiad-level inequalities, including a test set
and training corpus enriched with step-wise solu-
tions and theorem annotations. We also develop a
novel LLM-as-judge evaluation framework, com-
bining a final-answer judge with four step-wise
judges designed to detect common reasoning flaws.
A systematic evaluation of 29 leading LLMs on
IneqMath reveals a surprising reality: even top
models like o1 achieve less than 10% overall ac-
curacy under step-wise scrutiny; this is a drop
of up to 65.5% from their accuracy considering
only final answer equivalence. This discrepancy
exposes fragile deductive chains and a critical
gap for current LLMs between merely finding an
answer and constructing a rigorous proof. Scaling
model size and increasing test-time computation
yield limited gains in overall proof correctness.
Instead, our findings highlight promising research
directions such as theorem-guided reasoning and
self-refinement.
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1. Introduction
Mathematical inequalities are fundamental to diverse fields
such as analysis, optimization, and probability theory, with
applications spanning scientific modeling, economics, and
competitive mathematics. Proving an inequality is a complex
endeavor, demanding not just calculation but a sophisticated
blend of intuition for discovering tight bounds, strategic
insight for selecting and applying classical theorems (e.g.,
AM-GM, Cauchy-Schwarz), and precise symbolic transfor-
mations. These skills are hallmarks of advanced mathemati-
cal reasoning, distinguishing inequality proving from general
math problem-solving. Automating this process would there-
fore have broad impact: it could supply automated theorem
provers (ATPs) with missing lemmas, accelerate formal
verification processes, and serve as a demanding testbed
for general-purpose reasoners. However, despite impressive
advancements in LLMs like DeepSeek-R1 (DeepSeek-AI,
2025) and OpenAI o3 (OpenAI, 2025b), as well as in ATPs
themselves (Dong et al., 2024; Gloeckle et al., 2024; Hu
et al., 2025; Lin et al., 2025a; Poesia et al., 2024), automating
inequality proving remains a challenging frontier.

A major bottleneck in advancing LLM capabilities for in-
equality proving is the scarcity of suitable benchmarks.
Existing resources fall short in several ways: general ATP
collections like MiniF2F (Zheng et al., 2022) and ProofNet
(Azerbayev et al., 2024) contain few inequalities; synthetic
datasets such as INT (Wu et al., 2021) and AIPS (Wei
et al., 2024) offer scale but may lack structural diversity due
to template-based generation; and curated collections like
ChenNEQ (Chen, 2014) are often too small for extensive
training. More fundamentally, most existing datasets adopt
a fully formal representation, where problems and proofs
are encoded in systems like Lean (de Moura et al., 2015)
or Isabelle (Nipkow et al., 2002). While formal mathe-
matical reasoning offers correctness guarantees and is a
vital research direction, LLMs, trained on vast corpora of
natural language, often exhibit strong informal reasoning
capabilities. This suggests LLMs might solve problems
informally even when struggling with the exacting syntax
of formal provers. Our work, therefore, aims to explore and
benchmark these informal abilities, complementing formal
mathematical AI by focusing on a mode of reasoning closer
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Figure 1: Final-answer accuracy versus overall accuracy for leading LLMs across different categories on the IneqMath
benchmark of Olympiad-level inequality problems. Overall accuracy, measuring both answer correctness and step soundness,
is substantially lower than final-answer accuracy for all model types. This highlights a critical gap: while LLMs may find
correct final answers, their reasoning is often unsound. Each model used its optimal maximal tokens.

to human intuition and the preliminary, often less structured,
stages of mathematical discovery.

To bridge this gap between formal rigor and intuitive problem-
solving, we propose an informal yet verifiable formulation
(§2). Rather than requiring full, machine-checkable proofs
within formal systems, we reformulate inequality problems
into two concrete, automatically verifiable subtasks: (i)
Bound estimation—determine the largest (or smallest) con-
stant C that preserves the inequality; and (ii) Relation pre-
diction—identify which relation (>, ≥, =, ≤, or <) holds
between two expressions. Both tasks can be presented in nat-
ural language and LATEX, solved step-by-step by an LLM, and
their final answers (a constant or a relation symbol) can be
automatically checked. This preserves the creative essence
of inequality proving while avoiding the heavy overhead of
formal proof assistants.

Building on this formulation, we present IneqMath (§3),
the first large-scale dataset of Olympiad-level inequalities
written entirely in informal language. The test set comprises
200 original problems, each crafted and reviewed by IMO-
level medalists to ensure both originality and difficulty. The
training corpus includes 1,252 problems sourced from ad-
vanced textbooks, automatically rephrased by LLMs into our
subtasks and then meticulously reviewed by human experts.
A key feature is that each training problem is accompanied
by up to four step-wise solution paths, providing rich data
for training LLMs on fine-grained reasoning. Additionally,
76.8% of the training problems are annotated with 83 named
theorems across 29 categories relevant to their solutions. As
shown in Table 2, IneqMath surpasses prior resources in
scale, diversity, and alignment with human-like, informal
problem-solving approaches.

However, producing the correct final answer is insufficient;
the reasoning process itself must be sound. To rigorously
assess this, we introduce an LLM-as-judge evaluation frame-
work (§4). This framework comprises a high-precision
final-answer judge to verify the answer equivalence, com-
plemented by four specialized step-wise judges for step

soundness. These step-wise judges are designed to detect
the frequent reasoning flaws identified in our pilot studies:
inappropriate reliance on toy case examples, unaddressed
logical gaps, unjustified numeric approximations, and nu-
meric calculation errors. Validated on manually labeled
development set solutions, these judges demonstrate high re-
liability (F1> 0.9 on average) and offer a scalable method to
scrutinize the deductive integrity of LLM-generated proofs.

We evaluate 29 leading LLMs ranging from chat models to
advanced reasoning LLMs, both open-source and proprietary
(§5). As key results highlighted in Figure 1, several key
findings emerge. While specialized reasoning LLMs (e.g.,
o1 (OpenAI, 2024c)) achieve higher final-answer accuracy
than general-purpose chat models (e.g., GPT-4o (OpenAI,
2024a)), this advantage often collapses under step-wise
scrutiny. Once our judges inspect every reasoning step,
overall accuracy plummets by up to 65.5%. Indeed, even
top-performing models like o1 achieve less than 10% overall
accuracy (Table 4), exposing fragile deductive chains and a
significant gap between finding an answer and constructing
a rigorous proof.

Our in-depth study (§5.3) reveals that while larger model
sizes correlate with improved final-answer accuracy, their
impact on overall accuracy is limited (e.g., o1 achieves
only 8.0% overall accuracy). Similarly, extending test-
time computation through longer reasoning chains offers
diminishing returns for overall correctness (e.g., o1’s 8.0%
overall accuracy remains unchanged when scaling max
completion tokens from 5K to 40K, while o3 (OpenAI,
2025b) saturates around 31%). These findings suggest
that current scaling approaches are insufficient for robust
deductive reasoning in IneqMath. Instead, we explore
promising improvement strategies, demonstrating potential
gains from methods such as theorem-guided reasoning—by
providing golden theorems (improving overall accuracy by
up to 11% for o3-mini (OpenAI, 2025) ) and critic-guided
self-refinement (e.g., a 5% absolute increase in overall
accuracy for Gemini 2.5 Pro (Google DeepMind, 2025b)).
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In summary, our work makes four key contributions: 1) We
introduce an informal reformulation of inequality proving,
decomposing the task into two verifiable subtasks (§2). 2)
We release IneqMath, an expert-curated benchmark of
Olympiad-level inequalities and a training corpus enriched
with step-wise solutions and theorem annotations (§3). 3)
We develop a modular LLM-as-judge framework that rigor-
ously evaluates both final answers and proof step soundness
(§4). 4) We conduct a systematic empirical study (§5) that
exposes a pronounced gap between LLM performance and
mathematical rigor, highlighting avenues for future research.

2. Task Formalization: An Informal
Perspective

Inequality proof problems require demonstrating that a
specified inequality holds under given conditions, such
as proving a + b ≥ 2

√
ab for all positive real numbers

a and b. Traditionally, these problems are formalized in
proof assistants like Lean or Isabelle, represented as a tuple
(S0, I, P ), where S0 is the initial state, I is the inequality,
and P is a set of premises. The proof process, often
modeled as a Markov Decision Process, constructs a step-by-
step solution verified by the system. However, this formal
approach demands expertise in specialized tools, while
informal proofs in natural language are difficult to verify
automatically due to their unstructured nature.

To address these challenges, we propose an informal perspec-
tive that reformulates inequality problems into two verifiable
subtasks: bound estimation and relation prediction.

This bound estimation task involves finding an optimal
constant for a given inequality. For example, in a + b ≥
C
√
ab for ∀a, b > 0, the objective is to find the largest C.

Formally, a bound estimation problem instance is a triple:
Πbound =

(
f(x), g(x), D

)
, where D ⊆ Rn.

Here, f, g : D → R are two expressions involving variables
x = (x1, . . . , xn) within a specified domain D (e.g., xi > 0,∑

xi = 1), and g(x) > 0,∀x ∈ D. The goal is to determine
one of the extremal values:

C⋆ = sup{C ∈ R : f(x) ≥ Cg(x),∀x ∈ D},
C⋆ = inf{C ∈ R : f(x) ≤ Cg(x),∀x ∈ D}.

The relation prediction task requires determining the cor-
rect relationship between two expressions. For instance,
given expressions f(x) = a+ b and g(x) = 2

√
ab, the goal

is to identify the relation (in this case, ≥) that holds for
∀a, b > 0. Formally, a relation prediction problem instance
is a triple:

Πrel =
(
f(x), g(x), D

)
,

where f(x) and g(x) are expressions over variables x in
domain D ⊆ Rn. The goal is to find the relation between
f(x) and g(x) (i.e. >, ≥, =, ≤, <, or none of the above).

IneqMath Training Example 1: Bound Problem

Question: Find the maximal constant C such that for all real
numbers a, b, c, the inequality holds:√

a2 + (1− b)2+
√

b2 + (1− c)2+
√

c2 + (1− a)2 ≥ C

Solution: Applying Minkowsky’s Inequality to the left-hand
side we have√

a2 + (1− b)2 +
√

b2 + (1− c)2 +
√

c2 + (1− a)2

≥
√

(a+ b+ c)2 + (3− a− b− c)2

By denoting a+ b+ c = x, we get√
(a+ b+ c)2 + (3− a− b− c)2

=

√
2

(
x− 3

2

)2

+
9

2
≥
√

9

2
=

3
√
2

2
.

Minkowsky’s Inequality Theorem: For any real number r ≥
1 and any positive real numbersa1, a2, . . . , an, b1, b2, . . . , bn(

n∑
i=1

(ai + bi)
r

) 1
r

≤

(
n∑

i=1

ar
i

) 1
r

+

(
n∑

i=1

bri

) 1
r

IneqMath Training Example 2: Relation Problem

Question: Let a, b, c be positive real numbers such that
abc = 1. Consider the following expressions:

b+ c√
a

+
c+ a√

b
+

a+ b√
c

( )
√
a+

√
b+

√
c+ 3

Determine the correct inequality relation to fill in the blank.
Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of
the above
Solution: From the AM-GM Inequality, we have

b+ c√
a

+
c+ a√

b
+

a+ b√
c

≥ 2

(√
bc

a
+

√
ca

b
+

√
ab

c

)
=(√

bc

a
+

√
ca

b

)
+

(√
ca

b
+

√
ab

c

)
+

(√
ab

c
+

√
bc

a

)
≥ 2(

√
a+

√
b+

√
c) ≥

√
a+

√
b+

√
c+ 3

6
√
abc

=
√
a+

√
b+

√
c+ 3.

AM-GM Inequality Theorem: If a1, a2, . . . , an are non-
negative real numbers, then

1

n

n∑
i=1

ai ≥ (a1a2 . . . an)
1
n

with equality if and only if a1 = a2 = . . . = an. This is a
special case of the Power Mean Inequality.

These subtasks are chosen because they frequently appear
in mathematical problem-solving, simplify the evaluation
process, and crucially, retain the core reasoning challenges in-
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herent in original inequality proof problems. An ideal LLM
solution should not only produce the correct final answer but
also present a clear, logically sound, and complete derivation.
This includes strategic application of theorems, accurate
symbolic manipulations and calculations, and justification
of all critical steps.

3. IneqMath: The Inequality Problem Dataset
This section describes the test set and statistics of IneqMath.
The curation process for training problems with step-wise
solutions and annotated theorems is available in §A.

Test data curation. To mitigate contamination from com-
mon sources (textbooks, contests, online resources) poten-
tially in LLM training corpora, we commissioned IMO-level
medalists to design novel inequality problems. These under-
went rigorous review by a separate expert group and were
validated only upon unanimous confirmation of solvability,
soundness, and ground truth correctness. Problems iden-
tified as easier by experts were excluded from the test set
(repurposed for development) to ensure a high challenge
level. See the developed curation tool in §A.3. We host an on-
line leaderboard1 with automatic submission and evaluation,
providing a reliable and fair community platform.

Key statistics. As shown in Table 1, the IneqMath dataset
comprises 200 test problems for benchmarking, 100 develop-
ment problems with public ground truth, and 1,252 training
problems split evenly between bound estimation and relation
prediction tasks. Each training problem includes step-wise
solutions, with up to four solutions per problem, and 76.8%
(962 problems) are annotated with relevant theorems. The
dataset features 83 named theorems across 29 categories,
with their distribution illustrated in Figure 2. Test problem
examples are provided in §A.5.

Table 1: Statistics of the IneqMath dataset.

Statistic Number Bnd. Rel.
Theorem categories 29 - -
Named theorems 83 - -

Training problems (for training) 1252 626 626
- With theorem annotations 962 482 480
- With solution annotations 1252 626 626
- Avg. solutions per problem 1.05 1.06 1.05
- Max solutions per problem 4 4 4

Dev problems (for development) 100 50 50
Test problems (for benchmarking) 200 96 104

Comparison to existing datasets. As summarized in Ta-
ble 2, IneqMath stands out for: (1) providing expert-curated
training and test sets, (2) offering rich annotations with step-
wise solutions and 83 grounded theorems, and (3) adopting
an informal, accessible format for inequality proving through

1https://huggingface.co/spaces/AI4Math/
IneqMath-Leaderboard
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Figure 2: Distribution of theorem categories.

bound estimation and relation prediction, evaluated via LLM-
as-judge. This design bridges the gap between formal proof
systems and intuitive mathematical reasoning, making Ineq-
Math a unique resource for advancing LLM capabilities in
problem solving and theorem proving.

4. Informal Judges for Inequality Solving
The test split of the IneqMath dataset serves as our bench-
mark, comprising 200 Olympiad-level inequality problems.
Traditional evaluation methods fall short in this setting:
expert annotation is accurate but labor-intensive, while
automated techniques such as string matching fail to cap-
ture step-wise correctness. To address this, we propose
a fine-grained LLM-as-judge framework, consisting of a
final-answer judge for verifying the predicted answer (§4.1)
and four specialized step-wise judges targeting common
reasoning flaws (§4.2). A solution is deemed correct overall
only if it passes all five judges. As shown in Table 3, these
judges achieve strong alignment with human annotations
(F1 = 0.93), providing a scalable yet reliable alternative to
manual evaluation.

4.1. Final Answer Judge

LLM-generated solutions to IneqMath problems typically
involve multiple reasoning steps followed by a concluding
answer statement. However, the final answer may vary
in phrasing, structure, or numeric format, especially for
bound estimation problems. For example, C = 1√

2
and

C =
√
2
2 are mathematically equivalent but differ in form.

Recent work (Lu et al., 2024) evaluates LLM outputs via
format normalization and exact string matching, without
accounting for mathematical equivalence. To address this,
we propose a two-stage Final Answer Judge: it first identifies
the concluding sentence with the predicted answer, then
performs robust equivalence checking to assess mathematical
correctness, even when the form differs from the reference.
Prompt details and examples are in §B.1.

4.2. Four Step-wised Judges
Toy Case Judge. Inequality problems in IneqMath often
require reasoning over continuous domains (e.g., all a, b, c >
0), where specific numerical examples alone are insufficient
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Table 2: Comparison of datasets for inequality and theorem proving. IneqMath provides expert-annotated training and test/dev
sets, featuring high-quality named theorems and step-wise solutions for model development. Unlike prior datasets using synthesis or
autoformalization, IneqMath presents problems in informal language across multiple-choice (MC) and open-ended (Open) formats, and
employs LLM-as-judge for evaluation.

Data Source Data Annotation Problem and Evaluation
Datasets Training Test / Dev #Theorem Solution Category Format Evaluation
INT (Wu et al., 2021) Synthesized Synthesized 35 ✓ Proof Formal Symbolic DSL
AIPS (Wei et al., 2024) Synthesized ✗ 8 ✓ Proof Formal Symbolic DSL
MO-INT (Wei et al., 2024) ✗ Data compilation ✗ ✗ Proof Formal Symbolic DSL
MINIF2F (Zheng et al., 2022) ✗ Autoformalization ✗ ✗ Proof Formal
ProofNet (Azerbayev et al., 2024) ✗ Autoformalization ✗ ✗ Proof Formal
FormalMATH (Yu et al., 2025) ✗ Autoformalization ✗ ✗ Proof Formal
leanWorkbook (Ying et al., 2024) Autoformalization Autoformalization ✗ ✗ Proof Formal
Proof or Bluff (Petrov et al., 2025) ✗ Data compilation ✗ ✗ Proof Informal Human judge

CHAMP (Mao et al., 2024) ✗ Autoformalization ✗ ✗ Open Informal Human judge
Putnam Axiom (Gulati et al., 2024) ✗ Data compilation ✗ ✗ Open Informal Answer checking
LiveMathBench (Liu et al., 2024) ✗ Data compilation ✗ ✗ Open Informal Answer checking

IneqMath (Ours) Expert annotated Expert annotated 83 ✓ MC, Open Informal LLM-as-judge

Table 3: Performance metrics of LLM-as-judge framework
on development set. Numerical Approx. Judge stands for
Numerical Approximation Judge, while Numerical Comp.
Judge stands for Numerical Computation Judge.

LLM-as-Judge Accuracy Precision Recall F1 score
Final Answer Judge 1.00 1.00 1.00 1.00

Toy Case Judge 0.91 0.86 0.97 0.91
Logical Gap Judge 0.96 0.95 0.98 0.96
Numerical Approx. Judge 0.96 0.95 0.98 0.96
Numerical Comp. Judge 0.71 0.68 0.98 0.80

Average 0.91 0.89 0.98 0.93

for a valid proof. LLM frequently generalize incorrectly
from such examples—e.g., claiming an inequality holds
universally because it holds for a = 1, b = 2, c = 3. Prior
work (Gao et al., 2025) flags these under a broad “logical
flaw” category, lacking granularity for targeted analysis.
Our Toy Case Judge addresses this by detecting unjustified
generalization from toy examples. It prompts an LLM to
flag conclusions based solely on specific instances without
broader justification. See §B.2 for prompts and examples.

Logical Gap Judge. IneqMath inequality problems often
involve multi-step derivations (e.g., algebraic manipulation,
constrained optimization, functional transformations) need-
ing explicit justification. LLMs, however, often skip key
reasoning steps or assert conclusions without support (e.g.,
stating an optimal bound without derivation). Existing
step-level evaluations (Xia et al., 2024) assess validity and
redundancy but lack granularity for such logical omissions.
Our Logical Gap Judge addresses this by flagging missing
transitions, unjustified claims, and vague derivations (see
§B.3 for details).

Numerical Approximation Judge. Inequality problems in
IneqMath often demand exact symbolic reasoning, where
the use of numeric approximations—e.g., replacing

√
2

with 1.414—can compromise mathematical rigor. However,

many LLM-generated solutions resort to such approxima-
tions during intermediate steps, leading to inaccurate or non-
generalizable conclusions. To address this, we introduce a
Numerical Approximation Judge that flags inappropriate use
of numeric approximations—specifically when they affect
derivations or final answers. See §B.4 for details.

Numerical Computation Judge. Many IneqMath prob-
lems require explicit numerical computations after variable
assignment (e.g., evaluating 27

2 or summing rational terms).
While symbolic reasoning is vital, arithmetic accuracy is
equally crucial for overall correctness. Prior work (e.g., EIC-
Math (Li et al., 2024a)) categorizes broad error types but
often overlooks subtle miscalculations in multi-step deriva-
tions. Our Numerical Computation Judge addresses this by
verifying arithmetic steps once variables are instantiated. It
prompts an LLM to extract numerical expressions, convert
them into Python code, and evaluate using floating-point
arithmetic within a small tolerance. This enables high-
precision checking of both intermediate and final results.
Additional details are provided in §B.5.

4.3. Effectiveness Verification of Judges
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Figure 4: Confusion matrix for
the judge baseline.

A holistic LLM judge
baseline. To motivate
our specialized judging
system, we first evaluate
a heuristic LLM-as-judge
baseline. This prompts
a single, general-purpose
LLM to holistically as-
sess IneqMath solution
correctness, based on both final answer accuracy and step-
wise soundness across the four reasoning categories in §4.2.
As shown in the confusion matrix (Figure 4) using 80 human-
annotated development examples, this naive approach ex-
hibits poor agreement with human labels, underscoring its
unreliability for rigorous evaluation in this domain.
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Figure 3: Confusion matrices for five judges, which exhibit strong agreement with human labels.

Performance of our fine-grained judges. In contrast, our
proposed suite of five specialized judges exhibits strong
alignment with human evaluations. Figure 3 presents the
confusion matrices for each judge on the same development
set. The final answer judge (using GPT-4o-mini) achieves
near-perfect agreement, while the four step-wise judges
(chosen for a balance of performance and cost as detailed
in §B.6) also demonstrate high fidelity. This confirms
that decomposing the complex evaluation task into targeted
sub-problems allows LLMs to serve as reliable evaluators.

Qualitative analysis of judge disagreements. Despite the
strong aggregate performance (overall F1 = 0.93, Table 3),
LLM-as-judge evaluations are not perfect. Acknowledging
the skepticism surrounding LLM-based evaluation, we con-
ducted a qualitative analysis of failure cases where our judges’
assessments diverged from human annotations. Detailed
examples are provided in §B.7. These instances underscore
that while highly effective, our LLM judges can still struggle
with the deep, nuanced understanding that characterizes
expert human mathematical reasoning.

5. Experiments in IneqMath
5.1. Experimental Setups

We conduct a systematic evaluation of 29 leading LLMs
on the inequality problems in the IneqMath test set. The
evaluated models span two categories: general-purpose chat
models (both open-source and proprietary) and specialized
reasoning LLMs designed for complex, multi-step problem-
solving. All models are prompted in a zero-shot setting with
the problem statement and the instruction: “Please solve the
problem with clear, rigorous, and logically sound steps” to
encourage detailed reasoning. Model responses are assessed
using our LLM-as-judge framework (§4). We report three
key metrics:

• Answer Acc: Measures the predicted answer correctness,
verified by the final-answer judge (§4.1).

• Step Acc: Aggregates the correctness of individual reason-
ing steps as determined by our four specialized step-wise
judges (§4.2), which target common flaws.

• Overall Acc: The primary metric, which deems a solution
correct only if it achieves both a correct final answer and
flawless step-wise reasoning (i.e., passes all five judges).

A response is thus considered fully correct (Overall Acc)
only if it produces the right final answer through logically
valid steps, passing scrutiny from all judges. Additional
setup details are in §C.1.

5.2. Main Evaluation Results

Table 4 presents the performance of the evaluated LLMs
on IneqMath. Our analysis reveals several critical insights
into current LLM capabilities for inequality proving:

1) Reasoning LLMs achieve higher final-answer accuracy.
Models like o1 (62.5% Answer Acc) and Grok 3 mini (71.5%
Answer Acc) significantly outperform their general-purpose
chat counterparts (e.g., GPT-4o at 37.5%, Grok 3 at 54.5%)
in identifying the correct final answer. This suggests spe-
cialized architectures or training for reasoning improve their
search ability to find answers.

2) Step-wise scrutiny reveals a dramatic performance
drop. The advantage in Answer Acc often masks underlying
reasoning flaws. Overall Acc plummets when steps are
evaluated. For instance, Grok 3 mini’s accuracy drops by
65.5% (from 71.5% Answer Acc to 6.0% Overall Acc), and
o3-mini by 53.0%. This stark discrepancy underscores the
fragility of LLM-generated deductive chains.

3) Robust proof construction remains a major challenge.
Even top models like o1 achieve low Overall Acc (8.0%).
Many large models, despite moderate Answer Acc, also
score poorly (e.g., Grok 3 at 3.5% Overall Acc). This
indicates a fundamental gap between finding a plausible
answer and constructing a mathematically rigorous, step-by-
step derivation.

5.3. In-depth Study

Failure solution analysis. As shown in Table 4, where we
report average error rates for overall accuracy, final-answer
accuracy, and step-wise accuracy across four categories, the
most common step-wise errors in LLM-generated solutions
are logical gaps (85.0% average failure rate across models)
and improper generalization from toy cases (59.7%). Less
frequent, but still significant, are errors from numerical
approximations (26.9%) and miscalculations (6.8%). A
detailed examination of incorrect solutions (see examples
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Table 4: Evaluation performance of chat and reasoning LLMs on the IneqMath benchmark (the test set). Bnd. denotes bound problems
and Rel. denotes relation ones. We report: (1) Overall Acc, which reflects the correctness of both the final answer and intermediate
steps; (2) Answer Acc, which measures final answer correctness alone; and (3) Step Acc, which evaluates the accuracy of intermediate
steps across four error categories—Toy Case, Logical Gap, Numerical Approximation, and Numerical Computation. Blue superscripts ↓
indicate accuracy drop (Overall Acc - Answer Acc) from step-wise errors. Underlining denotes best result within each model category;
boldface highlights best overall performance. Default max token limit for reasoning LLMs is 10K.

Step Acc (↑)
Overall Acc (↑) Answer Acc (↑) No Toy Case No Logic. Gap No Approx. Error No Comp. Error

Models All Bnd. Rel. All Bnd. Rel. All Bnd. Rel. All Bnd. Rel. All Bnd. Rel. All Bnd. Rel.
Heuristic Methods

Random Guess - - - 8.5 0.0 16.7 - - - - - - - - - - - -
Frequent Guess - - - 18.0 9.4 26.0 - - - - - - - - - - - -

Open-source Chat LLMs
Qwen2.5-Coder-32B (Hui et al., 2024) 1.5↓39.0 1.0↓50.0 1.9↓28.9 40.5 51.0 30.8 36.0 27.1 44.2 3.0 2.1 3.8 90.5 96.9 84.6 88.5 89.6 87.5
Llama-4-Scout (Meta Platforms, Inc., 2025b) 1.5↓32.0 2.1↓44.8 1.0↓20.2 33.5 46.9 21.2 30.5 15.6 44.2 3.5 4.2 2.9 93.0 94.8 91.3 92.5 92.7 92.3
Qwen2.5-72B (Qwen Team, 2024a) 2.5↓39.5 3.1↓47.9 1.9↓31.8 42.0 51.0 33.7 54.5 53.1 55.8 5.0 4.2 5.8 91.0 94.8 87.5 95.0 94.8 95.2
Llama-4-Maverick (Meta Platforms, Inc., 2025a) 2.5↓38.0 2.1↓43.7 2.9↓32.7 40.5 45.8 35.6 42.5 28.1 55.8 4.0 4.2 3.8 89.0 91.7 86.5 95.0 92.7 97.1
Qwen2.5-7B (Qwen Team, 2024b) 3.0↓32.0 2.1↓38.5 3.8↓26.0 35.0 40.6 29.8 44.5 32.3 55.8 4.5 3.1 5.8 92.5 96.9 88.5 93.0 92.7 93.3

Proprietary Chat LLMs
Gemini 2.0 Flash-Lite (Google DeepMind, 2025d) 1.5↓31.5 2.1↓41.7 1.0↓22.1 33.0 43.8 23.1 11.5 11.5 11.5 3.5 3.1 3.8 73.0 77.1 69.2 90.5 87.5 93.3
GPT-4o mini (OpenAI, 2024b) 2.0↓37.5 1.0↓41.7 2.9↓33.6 39.5 42.7 36.5 29.0 11.5 45.2 2.5 2.1 2.9 90.0 91.7 88.5 93.0 92.7 93.3
GPT-4.1 (OpenAI, 2025a) 2.5↓38.0 0.0↓31.3 4.8↓44.2 40.5 31.3 49.0 16.0 12.0 19.0 10.0 8.3 11.5 59.5 66.7 52.9 93.5 92.7 94.2
GPT-4o (OpenAI, 2024a) 3.0↓34.5 2.1↓38.5 3.8↓30.8 37.5 40.6 34.6 32.0 21.9 43.0 3.5 3.1 3.8 92.5 93.8 91.4 94.0 93.8 94.2
Gemini 2.0 Flash (Google DeepMind, 2025c) 3.0↓46.0 3.1↓56.3 2.9↓36.5 49.0 59.4 39.4 15.5 13.5 17.3 13.5 7.3 19.2 55.5 60.4 51.0 94.5 94.8 94.2
Grok 3 (xAI, 2025a) 3.5↓51.0 4.2↓62.5 2.9↓40.4 54.5 66.7 43.3 17.0 13.7 20.2 16.0 11.6 20.2 36.0 42.1 30.8 93.0 96.8 90.4

Open-source Reasoning LLMs
QwQ-32B (Alibaba Qwen Team, 2025) 2.0↓47.5 2.1↓52.1 1.9↓43.3 49.5 54.2 45.2 26.0 25.0 26.9 29.5 20.1 37.5 21.0 20.8 21.2 87.0 82.3 91.3
Deepseek-R1 (Llama-70B) (DeepSeek-AI, 2025a) 3.5↓50.0 5.2↓53.1 1.9↓47.1 53.5 58.3 49.0 23.0 24.0 22.1 26.0 20.9 30.8 35.5 38.5 32.7 87.0 89.6 84.6
Deepseek-R1 (Qwen-14B) (DeepSeek-AI, 2025b) 5.0↓35.5 6.3↓36.4 3.8↓34.7 40.5 42.7 38.5 21.0 18.8 23.1 21.0 19.8 22.1 35.5 38.5 32.7 85.0 91.7 78.8
Deepseek-R1 (DeepSeek-AI, 2025) 5.0↓44.5 4.2↓63.5 5.8↓26.9 49.5 67.7 32.7 57.0 53.1 60.9 17.5 6.3 27.9 81.0 95.8 67.3 95.0 99.0 91.3
Qwen3-235B-A22B (Qwen Team, 2025) 6.0↓35.0 3.1↓32.3 8.7↓37.5 41.0 35.4 46.2 35.0 30.2 39.4 36.0 26.0 45.2 31.0 28.1 33.7 92.5 93.8 91.3

Proprietary Reasoning LLMs
Claude 3.7 Sonnet (Anthropic, 2025) 2.0↓40.0 2.1↓44.8 1.9↓35.6 42.0 46.9 37.5 49.0 36.5 60.6 4.0 3.1 4.8 93.5 95.8 91.3 93.0 90.6 95.2
Gemini 2.5 Flash (Google DeepMind, 2025a) 4.5↓1.0 3.1↓1.1 5.8↓0.9 5.5 4.2 6.7 88.0 84.4 91.3 13.5 7.3 19.2 100.0 100.0 100.0 100.0 100.0 100.0
Grok 3 mini (xAI, 2025b) 6.0↓65.5 4.2↓68.7 7.7↓62.5 71.5 72.9 70.2 24.0 16.7 30.8 19.5 11.5 26.9 53.5 63.5 44.2 91.0 94.8 87.5
Gemini 2.5 Pro (Google DeepMind, 2025b) 6.0↓1.0 7.3↓1.0 4.8↓1.0 7.0 8.3 5.8 88.5 83.3 93.3 19.0 12.5 25.0 100.0 100.0 100.0 99.5 100.0 99.0
o1 (OpenAI, 2024c) 8.0↓54.5 7.3↓55.2 8.7↓53.8 62.5 62.5 62.5 34.5 37.5 31.7 17.5 12.5 22.1 86.5 99.0 75.0 99.5 100.0 99.0
o3-mini (OpenAI, 2025) 9.5↓53.0 7.3↓62.5 11.5↓44.3 62.5 69.8 55.8 37.0 34.4 39.4 22.0 17.7 26.0 77.5 92.7 63.5 95.0 96.9 93.3
o4-mini (OpenAI, 2025b) 15.5↓49.5 14.6↓48.9 16.3↓50.0 65.0 63.5 66.3 62.0 58.3 65.4 26.0 25.0 26.9 86.5 90.6 82.7 93.0 92.7 93.3
o3 (OpenAI, 2025b) 21.0↓16.0 18.8↓11.4 23.1↓20.2 37.0 30.2 43.3 93.5 91.7 95.2 39.5 28.1 50.0 91.5 99.0 84.6 97.0 96.9 97.1
Average Accuracy (↑) 5.0↓38.0 4.5 ↓42.9 5.5↓33.5 43.0 47.4 39.0 40.3 34.8 45.5 15.0 11.0 18.7 73.1 77.9 68.8 93.2 93.7 92.8
Average Error Rate (↓) 95.0↑38.0 95.5 ↑42.9 94.5↑33.5 57.0 52.6 61.0 59.7 65.2 54.5 85.0 89.0 81.3 26.9 22.1 31.2 6.8 6.3 7.2

in §C.2.1-§C.2.4) highlights these prevalent error patterns,
which often undermine proofs even when LLMs produce the
correct final answer. Beyond these step-wise errors, LLMs
also struggle to derive correct final answers for complex
problems (§C.2.5), indicating deeper challenges in theorem
application and symbolic manipulation.
Scaling law in model size. Figure 5 shows how final-
answer accuracy (which evaluates only the correctness of
the final predicted answer) scales with model size for LLMs.
As model size increases, we observe a steady improvement
in answer accuracy, reflecting an empirical scaling law that
larger models are better at inferring correct bounds and
inequality relationships. However, this trend does not hold
well when considering overall accuracy as shown in Figure 6.
In this latter case, the scaling curve flattens, indicating that
increased model size alone is insufficient to eliminate step-
by-step reasoning errors.
Scaling law in test-time computation. Extended test-time
computation, allowing longer reasoning chains, is a common
strategy for complex problem-solving (DeepSeek-AI, 2025).

We investigated its impact on overall accuracy in IneqMath
by varying the maximum completion tokens for reasoning
LLMs. Figure 7 shows that while models like Gemini 2.5
Pro and o3 initially improve with more tokens, performance
gains saturate (e.g., beyond 20K tokens). This indicates that
merely increasing computational budget offers diminishing
returns for achieving step-wise correct proofs, highlighting
the need for more than just longer thought processes.
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Figure 7: Scaling law in test-time computation.
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Figure 5: Model-size scaling law (Answer Acc).
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Figure 6: Model-size scaling law (Overall Acc).

5.4. Exploring Improvement Strategies

Retrieving relevant theorems as hints. To assess theorem-
based hints, we provide models with the top-k most frequent
theorems from our IneqMath training corpus when solving
a 40-problem test subset. As shown in Figure 8, providing
one or two such theorems decreases overall accuracy for
weaker models (e.g., Grok 3 mini, o3-mini, o4-mini), likely
due to misapplication or distraction by potentially irrelevant
information. Conversely, stronger models like Gemini 2.5
Pro benefit from these hints, suggesting advanced reasoning
is crucial to effectively use such guidance. These results un-
derscore the potential of theorem-guided reasoning but also
highlight the critical need for more sophisticated theorem
retrieval mechanisms (e.g., RAG (Lewis et al., 2020; Gupta
et al., 2024)) to enhance LLM performance in inequality
proving. Detailed experiments are available in §C.4.
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Figure 8: Performance with retrieved theorems as hints.

Self-improvement via critic as feedback. Allowing an
LLM to critique and revise its own reasoning has been shown
to improve performance on complex tasks (Yuksekgonul
et al., 2025; Tian et al., 2024). To explore whether this holds
for inequality proving, we drew 40 random test problems

from IneqMath and ran one round of self-critique. As
Figure 9 shows, self-critique consistently improves perfor-
mance—e.g., Gemini 2.5 Pro’s overall accuracy rises from
43% to 48%. This upward trend underscores self-critique as
a supervision-free method to enhance logical rigor of LLMs
in inequality reasoning. More details are in §C.5.

Grok 3 mini
o3-mini

o4-mini (30K)

Gemini 2.5 Pro (30K)0

10

20

30

40

50

Ov
er

al
l A

cc
ur

ac
y 

(%
)

10 10

20

43

15
10

23

48No critic (baseline)
With critic (experiment)

Figure 9: Model performance via self-critic as feedback.

6. Related Work
Datasets for inequality and theorem proving. One of
major bottlenecks in advancing LLM capabilities for in-
equality proving is the scarcity of suitable datasets. Existing
resources fall short in several ways: general ATP collections
like MiniF2F (Zheng et al., 2022) and ProofNet (Azerbayev
et al., 2024) contain few inequalities; synthetic datasets
such as INT (Wu et al., 2021) and AIPS (Wei et al., 2024)
offer scale but often lack structural diversity due to their
template-based generation; and curated collections like Chen-
NEQ (Chen, 2014) are often too small for extensive training.
More fundamentally, most existing datasets (Zhao et al.,
2025a; Tung, 2012; Yang and Deng, 2019; Li et al., 2021;
Tsoukalas et al., 2024; Hu et al., 2025) adopt a fully formal
representation, where problems and proofs are encoded in
systems like Lean (de Moura et al., 2015) or Isabelle (Nip-
kow et al., 2002). While formal mathematical reasoning
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offers correctness guarantees and is a vital research direction,
LLMs, trained on vast corpora of natural language, often ex-
hibit strong informal reasoning capabilities. Therefore, our
IneqMath adopts an informal perspective, reformulating in-
equality proof problems into two verifiable subtasks—bound
estimation and relation prediction. These problems within
IneqMath were crafted and reviewed by IMO-level medalist
experts. Other informal reasoning datasets (Petrov et al.,
2025; Mao et al., 2024; Gulati et al., 2024; Liu et al., 2024)
typically lack annotated solutions, theorem references, or
corresponding training data. To address these gaps, Ineq-
Math introduces 1,252 inequality problems for training,
each annotated with theorems (from a set of 83 named theo-
rems spanning 29 categories) relevant to its solution, which
comprises up to four steps.

Methods for inequality and theorem proving. Proving
inequalities is a complex endeavor, demanding intuition for
discovering tight bounds, strategic insight for selecting and
applying classical theorems, and precise symbolic transfor-
mations. Traditional automated theorem provers (ATPs)
primarily operate within formal systems like Lean (de Moura
et al., 2015) or Isabelle (Nipkow et al., 2002), requiring prob-
lems and proofs to be encoded in specialized languages.
Inspired by the mathematical reasoning capabilities of
LLMs (Zhao et al., 2025b), a significant body of recent
work has focused on integrating LLMs with these formal
ATPs. These approaches often model theorem proving as a
Markov Decision Process (MDP), training LLMs to select
appropriate tactics and premises to construct proofs verifi-
able by the formal system (Dong et al., 2024; Gloeckle et al.,
2024; Hu et al., 2025; Lin et al., 2025a; Poesia et al., 2024;
Ye et al., 2024; Xin et al., 2024; Li et al., 2025; Liang et al.,
2025; Zhang et al., 2025; Dong and Ma, 2025; Wang et al.,
2025; Ren et al., 2025; Wang et al., 2024). For instance,
systems like Goedel-Prover (Lin et al., 2025b) leverage large
Lean corpora to train models for tactic prediction, enabling
end-to-end formal proof generation. Other methods incor-
porate tree-search techniques to navigate the vast search
space of premises within these formal frameworks (Wu et al.,
2024; Li et al., 2024b; Xin et al., 2025).

However, LLMs are fundamentally trained on vast corpora
of natural language, suggesting their inherent strengths
may lie in informal reasoning, which is often closer to
human intuition and the preliminary stages of mathematical
discovery. This highlights a gap and an opportunity for
methods that leverage these informal capabilities. Our work
diverges from the purely formal paradigm by proposing an
informal yet verifiable approach to inequality proving, aiming
to benchmark and enhance LLM performance in a setting
that better aligns with their human-like problem-solving,
while also exploring potential improvement strategies like
theorem-guided reasoning and self-refinement.

LLM-as-judge for math problem solving. Reliable eval-
uation of mathematical problem-solving necessitates assess-
ing not only final answer correctness but also the logical
soundness of each reasoning step, a significant challenge
for automated systems. Traditional methods are often inade-
quate: expert annotation is labor-intensive and unscalable
for large-scale evaluation (Petrov et al., 2025; Mao et al.,
2024), while automated techniques such as string matching
or value equivalence overlook crucial step-by-step proof
correctness (Hendrycks et al., 2021; Gulati et al., 2024; Liu
et al., 2024; Lu et al., 2024). While LLMs show promise as
evaluators (LLM-as-judge), their capacity for detailed, step-
wise mathematical judgment is still developing. Existing
step-level LLM judges (Xia et al., 2024; Gao et al., 2025),
for instance, may assess general step validity but often lack
the granularity to identify specific, nuanced reasoning flaws.
Similarly, frameworks like EIC-Math (Li et al., 2024a) pro-
vide broad error categories but can miss subtle yet critical
issues in multi-step derivations, such as minor miscalcula-
tions or unstated assumptions. To address these limitations
and rigorously assess informal mathematical proofs like in-
equality solving, our LLM-as-judge framework combines a
high-precision final-answer judge with four step-wise judges
targeting common errors: toy case overgeneralization, logi-
cal gaps, unjustified numeric approximations, and numeric
calculation mistakes.

7. Conclusion
In summary, we introduce an informal yet verifiable task
formulation for inequality proving, decomposing it into
bound estimation and relation prediction. Building on this,
we release IneqMath, an expert-curated benchmark of
Olympiad-level inequalities with a training corpus featuring
step-wise solutions and theorem annotations. Our novel
LLM-as-judge evaluation framework, comprising a final-
answer judge and four step-wise judges, enables a rigorous
assessment. Our comprehensive evaluation of diverse lead-
ing LLMs reveals a critical gap: while LLMs may achieve
high final-answer accuracy, this often plummets by up to
65.5% under step-wise scrutiny, with top models like o1
achieving less than 10% overall accuracy. This discrepancy
exposes fragile deductive chains for current LLMs in con-
structing rigorous proofs. We further find that scaling model
size or increasing test-time computation yields limited gains
in overall proof correctness. Instead, our findings high-
light promising research directions such as theorem-guided
reasoning and self-refinement.
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A. Dataset Curation Details
A.1. Training Data Curation

Training problems were sourced from two advanced textbooks featuring graduate-level and Olympiad-style inequality proof
problems. We parsed these textbooks to extract proof problems, their step-wise solutions, and relevant theorems. We
developed two LLM-based rephrasers to transform each source problem into two sub-tasks defined in §2: bound estimation
and relation prediction. For instance, a source problem like “Prove a+ b ≥ 2

√
ab for ∀a, b ∈ R+” would be rephrased into a

bound estimation task (e.g., “Determine the the maximal constant C such that a+ b ≥ C
√
ab holds for ∀a, b ∈ R+”) and a

relation prediction task (e.g., “Determine the inequality relation in the expression a+ b ( ) 2
√
ab that holds for ∀a, b ∈ R+”).

Crucially, while rephrased problems are altered from the source proof problem in the format, they preserve the core
mathematical reasoning and solution steps—such as applying relevant theorems, determining boundary conditions, and
verifying inequalities. An annotation tool (see §A.3) was developed to facilitate human expert review and correction of the
LLM-rephrased problems. Extracted theorems were curated, each including its name, a natural language definition, and a
list of training problems where it is applicable.

A.2. Potential contamination statement

To ensure rigorous evaluation, the IneqMath test set was commissioned from IMO-level medalists to feature novel problems,
minimizing prior LLM pre-training exposure. The poor performance across models (§5.2), particularly on overall accuracy
(which demands step-wise correctness), strongly suggests the benchmark poses a significant reasoning challenge, regardless
of potential familiarity with underlying mathematical concepts. We therefore believe the IneqMath test set effectively
probes novel problem-solving capabilities, and our conclusions on current LLM limitations in rigorous inequality proving
remain robust.

A.3. Data Annotation Tool

Figure 10: The interface of our developed tool for checking and editing the bound problems.
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Figure 11: The interface of our developed tool for checking and editing the relation problems.
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A.4. Prompts for Rephrasing Problems

Prompt for Rephrasing Proofs to Bound Problems

Task: Transform the given inequality problem into a bound prediction problem by introducing a constant C and determining its
optimal value.

Instructions:
1. Analyze the original problem, focusing on its structure and potential for transformation.
2. Introduce a constant C by either replacing an existing constant or creating a new relationship between expressions.
3. Determine whether to find the minimal or maximal value of C that satisfies the inequality for all relevant variables.
4. Consider factors such as homogeneity, existing constraints, and the domain of variables (e.g., positive reals, all reals).
5. Ensure the rephrased problem maintains the mathematical essence and constraints of the original.

Output format:
Provide your response in the following structure:
<Analysis>: Concise explanation of key features and transformation approach.
<Conclusion>: YES or NO, followed by a brief summary of the transformation.
<Rephrased Problem>: Transformed problem statement, focusing on finding the optimal C.
<Answer>: C =< value >.

Key considerations:
1. For double inequalities, attempt to rephrase as a single bound prediction problem when possible.
2. In homogeneous inequalities, focus on the ratios between variables rather than their absolute values.
3. Incorporate any existing constraints into the rephrased version of the problem.
4. Clearly specify the domain of the variables in the rephrased problem statement.
5. Ensure that the rephrased problem is logically equivalent to the original.

Example:
Original problem: Let a, b, c ∈ R+. Prove the inequality

abc

(1 + a)(a+ b)(b+ c)(c+ 16)
≤ 1

81

<Analysis>: To turn this into a bound prediction problem, we can focus on the following steps:
1. The left side is a rational expression that is always positive for a, b, c ∈ R+.
2. The right side is a fixed constant 1

81
.

3. We replace the constant 1
81

with a variable C and ask: What is the smallest C such that the inequality holds for all positive a, b, c?
4. This approach allows us to determine the tightest possible upper bound for the left-hand expression.
5. If we find the smallest C that works, we prove the original inequality and show it’s the best possible.

<Conclusion>: YES, the inequality can be rephrased as a bound prediction problem. By replacing the constant 1
81

with a variable
C, we can determine the tightest upper bound for the given rational expression, effectively proving the original inequality and
demonstrating its optimality.

<Rephrased problem>:
Coll Determine the minimal constant C such that the following inequality holds for all a, b, c:

abc

(1 + a)(a+ b)(b+ c)(c+ 16)
≤ C.

<Answer>: C = 1
81

.

Now, please rewrite the following problem:
Original problem: {problem}
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Prompt for Rephrasing Proofs to Relation Problems

Task: Transform the given inequality proof problem into a relation prediction problem.

Instructions:
1. Analyze the original problem, identifying key components such as variables, domains, conditions, and the main inequality.
2. Rephrase the problem by maintaining the original expressions and replacing the relation symbol with a blank to be filled.
3. Preserve any additional conditions or constraints from the original problem in your rephrased version.
4. Change the task from “Prove” to “Determine the correct inequality relation to fill in the blank.”
5. Provide a set of options for the relation, always including ≤, ≥, =, <, >, and “None of the above”.
6. Determine the correct answer based on your modification and analysis.

Output format:
Provide your response in the following structure:

<Analysis>: Detailed step-by-step analysis of the original problem and your approach to rephrasing it.

<Conclusion>: YES or NO, followed by a brief explanation of whether and how the problem can be effectively rephrased.

<Rephrased Problem>:
Transformed problem statement.
Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above

<Answer>: Option letter.

Key considerations:
1. Maintain the original mathematical expressions and any given conditions as much as possible.
2. Ensure the rephrased problem captures the essence and complexity of the original problem.
3. For problems with multiple inequalities, focus on one main inequality for the relation prediction task.
4. When dealing with complex fractions or expressions, keep them intact to maintain the problem’s difficulty level.
5. If the relation depends on specific values of the variables or cannot be definitively determined, consider using “None of the above”
as the correct answer.

Example:
Original problem: Let a, b, c ∈ R+. Prove the inequality

abc

(1 + a)(a+ b)(b+ c)(c+ 16)
≤ 1

81

<Analysis>: To rephrase it to a relation prediction problem, we can focus on the following steps:

1. The original problem is a proof task for an inequality involving positive real numbers a, b, and c.
2. The left side of the inequality is a complex fraction abc

(1+a)(a+b)(b+c)(c+16)
.

3. The right side is a constant fraction 1
81

.
4. The original inequality uses the “less than or equal to” (≤) relation, which needs to hold for all positive real values of a, b, and c.
5. We can transform the proof task into determining the correct relation between the left and right sides of the inequality.

<Conclusion>: YES, the inequality can be effectively rephrased as a relation prediction problem.

<Rephrased problem>:
Let a, b, c ∈ R+. Consider the following inequality:

abc

(1 + a)(a+ b)(b+ c)(c+ 16)
( )

1

81
.

Determine the correct inequality relation to fill in the blank.
Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above

<Answer>: A

Now, please rewrite the following problem:
Original problem: {problem}
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A.5. Benchmark Examples

IneqMath Testing Example 1: Bound Problem

Question: Let x, y, z > 0 such that x+y+z = 1. Determine the minimal constant C such that the following inequality
holds for all x, y, z:

xy(y + 4z) + yz(z + 4x) + zx(x+ 4y) ≤ C.

IneqMath Testing Example 2: Bound Problem

Question: Let a1, a2, . . . , an be real numbers and S be a non-empty subset of {1, 2, . . . , n}. Find the largest constant
C such that the following inequality holds for all a1, a2, . . . , an and S:

2C

(∑
i∈S

ai

)2

≤
∑

1≤i≤j≤n

(ai + · · ·+ aj)
2
.

IneqMath Testing Example 3: Bound Problem

Question: Let a1, a2, . . . , an > 0 such that a1 + a2 + . . .+ an < 1. Determine the minimal constant C such that the
following inequality holds for all a1, a2, . . . , an:

a1 · a2 . . . an (1− a1 − a2 − . . .− an)

(a1 + a2 + . . .+ an) (1− a1) (1− a2) . . . (1− an)
≤ C

3

nn−1
.
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IneqMath Testing Example 4: Relation Problem

Question: Let a, b, c, x, y, z ∈ R be real numbers such that a + b + c = 1 and x2 + y2 + z2 = 1. Consider the
following expression:

a(x+ b) + b(y + c) + c(z + a) ( ) 1.

Determine the correct inequality relation to fill in the blank.

Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above

IneqMath Testing Example 5: Relation Problem

Question: In the plane of the acute-angled triangle △ABC, let L be a line such that u, v, w are the lengths of the
perpendiculars from A,B,C respectively to L. Consider the following inequality:

u2 tanA+ v2 tanB + w2 tanC ( ) ∆.

where ∆ is the area of the triangle. Determine the correct inequality relation to fill in the blank.

Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above

IneqMath Testing Example 6: Relation Problem

Question: Let a, b, c be the sides of any triangle. Consider the following inequality:

3

(∑
cyc

ab (1 + 2 cos(c))

)
( ) 2

(∑
cyc

√
(c2 + ab(1 + 2 cos(c))) (b2 + ac(1 + cos(b)))

)
.

Determine the correct inequality relation to fill in the blank.

Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above
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B. Fine-grained Informal Judge Details
B.1. Final Answer Judge

Prompt for Final Answer Judge: Answer Extraction for Bound problems

You are an expert at extracting numbers from answer sentences. Below are examples of sentences and the corresponding numbers:

Example 1: answer is C = 2.
Answer: C = 2

Example 2: answer is C = 1√
2
.

Answer: C = 1√
2

Example 3: answer is C = 2 .
Answer: C = 2

Now, extract the number from the following sentence: {answer_sentence}.

Make sure to return the answer in a format as “C=<extracted_answer>”, where <extracted_answer> is the extracted
number or expression.

Prompt for Final Answer Judge: Answer Extraction for Relation Problems

You are an expert at extracting option letters (A, B, C, D, E, F) from answer sentences.

The options are given below:
A: (A) ≤
B: (B) ≥
C: (C) =
D: (D) <
E: (E) >
F: (F) None of the above

Below are examples of sentences and the corresponding option letters:

Example 1: answer is (B) ≥.
Answer: B

Example 2: answer is (E) >.
Answer: E

Example 3: answer is: ≤ .
Answer: A

Now, extract the option letter from the following sentence: {answer_sentence}.

Make sure to return the option letter only, without any other characters.
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Prompt for Final Answer Judge: Answer Equivalence Verification

You are an expert at verifying mathematical expression equivalence. Analyze if two expressions are exactly equivalent by following
these strict rules:

Required Analysis Steps:
1. Check if both expressions are valid mathematical forms.
2. If either expression is not mathematical (e.g., text or undefined), return False.
3. For numerical expressions:

- Direct equality (e.g., 2 = 2) → True.
- Different representations of same value (e.g., 1/2 = 0.5,

√
4 = 2) → True.

- Decimal approximations vs exact values (e.g., 2π ̸= 6.28318) → False.
4. For algebraic expressions:

- Must have clear, valid transformation path between forms.
- If transformation requires multiple non-obvious steps → False.
- Verify equivalence through algebraic proof when possible.
- For complex expressions, use techniques like squaring or substitution to verify.

Equivalence Criteria:
- Must have exactly same deterministic value.
- Must be provably equivalent through valid mathematical operations.
- Different notations of same exact value are equivalent.
- Decimal approximations are NOT equivalent to exact expressions.
- No rounding or approximations allowed.
- If equivalence cannot be conclusively proven → False.

Example pairs and their analysis:
Ground truth: C = 2
Prediction: C = 2
Analysis: The expressions are identical in both form and value, representing the same integer 2.
Equivalent: True

Ground truth: C = 1.5
Prediction: C = 3

2

Analysis: The decimal 1.5 and fraction 3
2

are different representations of the same number (1.5 = 3
2
).

Equivalent: True

Ground truth: C = 2π
Prediction: C = 6.28318530718
Analysis: While 6.28318530718 is a decimal approximation of 2π, they are not symbolically equivalent expressions.
Equivalent: False

Ground truth: C =
√

1
6

Prediction: C = 1√
6

Analysis: These are equivalent through the property
√

a
b
=

√
a√
b

when a, b > 0.
Equivalent: True

Ground truth: C =
√

3
2

Prediction: C = 3

2
√
2

Analysis: The expressions differ as proven when squared: (
√

3
2
)2 = 3

2
̸= 9

8
= ( 3

2
√
2
)2.

Equivalent: False

Now analyze these expressions:
Ground truth: {ground_truth}
Prediction: {prediction}
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B.2. Toy Case Judge

Prompt for Toy Case Judge

Task: Evaluate the logical rigor of a solution to an inequality problem, focusing specifically on whether the direction of the inequality
was justified using toy cases or special value substitution.

Instructions:
1. Carefully read the reasoning process used to solve the inequality.
2. Identify whether the direction of the inequality was determined by testing special values, trying toy cases, or relying on extreme-case
analysis, rather than providing a general proof valid over the entire domain.
3. If the model uses a toy case (e.g., setting a variable to 0, 1, or choosing symmetric/equal values) or considers a variable tending to
0 or ∞ (extreme-case reasoning) to conclude the inequality direction, this should be flagged as logically unsound unless it is later
supported by a rigorous or general argument.
4. Substituting special values for the purpose of verifying equality or testing sharpness is acceptable and should not be flagged.
5. If a toy case is used to show that the inequality does not hold (i.e., the two sides are incomparable), this is acceptable and should
not be flagged.
6. Trying toy cases or substituting special values for the purpose of exploring or analyzing the problem—without using them to
directly conclude the inequality direction—is acceptable and should not be flagged.
7. The goal is to confirm whether the final conclusion is justified for all variables in the given domain by using sound and formal
reasoning.

Output Format:
<Analysis>: Brief explanation of whether toy cases, special values, or extreme-case reasoning were used to justify inequality
direction, and whether this undermines the rigor of the proof.
<Flagged Reasoning Step (if applicable)>: Quote or summarize the step(s) where toy cases or extreme cases
were used to justify the inequality.
<Answer>: True or False. It indicates whether the solution’s reasoning is logically valid (True) or contains flaws due to
unjustified use of toy cases, special value substitution, or extreme-case reasoning (False).

Key Considerations:
1. Check which steps are used to justify the final general conclusion.
2. Toy case examples (e.g., setting , or choosing values like) should not be used to conclude general inequality directions.
3. These techniques are allowed for illustration or equality testing, but not as a replacement for a full justification.
4. Extreme-case analysis (e.g., letting or) used as a substitute for proof to justify the final general conclusion should be flagged.
5. Do not provide improvement suggestions—simply judge whether the logic used is valid or flawed.
6. Only reasoning steps that fail to generalize and is used to justify the final general conclusion should be flagged.

Examples of inputs and outputs:
{examples}

Now analyze the following problem and solution:
Original Problem: {query}
Solution: {response}
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Judge Example 1: Toy Case

Response:
Let’s test the specific values.
Case 1: If a = b = c, then: (

a

b+ c

)2

+
b

c+ a
+

(
c

a+ b

)2

=
1

4
+

1

2
+

1

4
= 1.

Case 2: If a = 0 and b = c = 1, then:(
a

b+ c

)2

+
b

c+ a
+

(
c

a+ b

)2

= 0 + 1 + 1 = 2.

From the test cases, we can conclude that the minimum value of the expression was 1. Therefore, the expression is
always at least 1. The answer is C = 1 .

Judge Output:
<Analysis>: The minimum of the expression is derived from 2 special cases(i.e. a = b = c and a = 0, b = c = 1).
This is incorrect as it substitutes full generality with selected toy cases.

<Flagged Reasoning Step (if applicable)>: From the test cases, we can conclude that the minimum
value of the expression was 1. Therefore, the expression is always at least 1.

<Answer>: False

B.3. Logical Gap Judge

Prompt for Logical Gap Judge

Task: Evaluate the logical rigor of a proposed solution to a mathematical inequality problem. Focus on whether the reasoning includes
non-trivial claims made without justification, logical leaps, or unsupported assertions, while allowing for valid optimization-based,
algebraic, or analytic analysis when properly demonstrated. This prompt does not evaluate whether the direction of an inequality was
justified using toy cases, special values, or asymptotic behavior. That aspect is handled separately.

Instructions:
1. Carefully read the entire reasoning process used to solve the inequality.
2. Identify whether the solution includes:

- Any non-obvious (non-trivial) claims or transformations stated without justification or explanation.
- Any logical gaps or skipped steps that lead to intermediate or final conclusions.

3. All significant transformations—especially involving inequalities, bounds, or extremal behavior—must be supported by: Algebraic
manipulation, Well-known identities or theorems, Valid analytical tools (e.g., convexity, derivatives, limits) or step-by-step numeric
or symbolic reasoning.
4. Optimization methods (e.g., Lagrange multipliers, derivative-based analysis) are valid only if the analysis is explicitly shown:

- If a solution invokes optimization or analytical techniques, it must demonstrate key steps, derivative conditions, or critical point
verification.

- Statements such as “solving the constrained optimization problem confirms...” without any derivation or argument are considered
unjustified.

- You do not need to assess whether toy cases, special values, or extreme behavior were used to infer the inequality direction. That
responsibility lies outside the scope of this Judge.
5. Simple algebra or widely known transformations (e.g., AM-GM, factoring identities) may be used without full derivation.
6. The goal is to assess whether each important conclusion within the reasoning—not just the final answer—is logically supported
and rigorously justified.
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Prompt for Logical Gap Judge (Continued)

Output Format:
<Analysis>: Step-by-step explanation of whether the reasoning is logically sound. Highlight any unjustified claims or skipped
steps, unless they are supported by valid asymptotic, numeric, or analytic reasoning.
<Flagged Reasoning Step (if applicable)>: Quote or summarize the specific step(s) where an unjustified claim or
logical leap occurred.
<Answer>: True or False. True if the reasoning is valid; False if it contains unjustified steps or unsupported claims.

Key Considerations:
1. Focus on whether each major step (not just the final answer) is logically justified.
2. Non-trivial algebraic identities or inequality steps must be explained unless they are well-known.
3. Minor simplifications and standard techniques are acceptable without proof.
4. Do not flag steps involving toy cases, extreme values, or special substitutions used to infer inequality direction—those are out of
scope here.
5. Claims like “a numerical check shows” must include specific values, results, or graphs to be valid.
6. Optimization-based arguments (e.g., Lagrange multipliers, critical point methods) must include demonstrated steps or analytic
structure. If only the method is named but not applied, the reasoning should be flagged.
7. Do not flag steps used solely for equality verification, sharpness testing, or illustration.
8. Do not provide improvement suggestions—simply judge whether the logic is valid or flawed as presented.

Examples of inputs and outputs:
{examples}

Now analyze the following problem and solution:
Original Problem: {query}
Solution: {response}

Judge Example 2: Logical Gap

Response:
...
A numerical check confirms that the minimum occurs when x = 1, and the expression equals 4. So the largest constant
C such that the inequality holds for all positive a, b, c is:

C = 4

Judge Output:
<Analysis>: The statement “A numerical check confirms that the minimum occurs when x = 1” is made without
showing any actual numerical data, evaluations, or visual/analytic evidence to support this claim.

<Flagged Reasoning Step (if applicable)>: A numerical check confirms that the minimum occurs
when x = 1.

<Answer>: False
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B.4. Numerical Approximation Judge

Prompt for Numerical Approximation Judge

Task: Evaluate the logical rigor of a solution to an inequality problem, specifically checking whether approximate numerical
substitutions (e.g., replacing

√
2 with 1.414) were improperly used in the reasoning process.

Instructions:
1. Carefully read the entire reasoning process used to solve the inequality.
2. Identify whether the solution includes:

- Any replacement of exact expressions (such as radicals, fractions, or constants like π) with approximate decimal values.
3.Strict rules for use of approximate values:

- If approximated values are directly involved in any operations (such as addition, subtraction, multiplication, or division), it must
immediately be considered invalid, regardless of whether the operation is for comparing sizes or for further reasoning!

- Examples of invalid actions: Approximating
√
5 ≈ 2.236 and then using it to compute

√
5+ 3 approximately, or Approximating

π ≈ 3.14 and then evaluating π/2 based on 3.14.
4. Approximate substitutions are allowed only under the following conditions: If approximate numerical comparison is used between
simple numbers (e.g.,

√
4, 1

2
,
√
2) that humans can readily estimate, it is acceptable.

5. Approximate substitution is invalid and must be flagged in these cases:
- If an approximate value is introduced for a complex irrational number (e.g.,

√
17,

√
23) where human mental estimation is

impractical, even for comparison purposes.
- If any approximation alters the rigor of the argument.

6. You do not need to judge whether the final inequality direction is correct—only whether improper approximation substitution
occurred.

Output Format:
<Analysis>: Step-by-step explanation of whether approximate numerical values were improperly substituted for exact expressions.
Clarify whether approximations were used only illustratively or improperly incorporated into reasoning.
<Flagged Reasoning Step (if applicable)>: Quote or summarize the specific step(s) where inappropriate
approximations were made.
<Answer>: True or False. True if the reasoning maintains acceptable rigor regarding approximations; False if it violates
the rules.

Key Considerations:
1. If approximated values are directly involved in any operations (such as addition, subtraction, multiplication, or division), it must
immediately be considered invalid, regardless of whether the operation is for comparing sizes or for further reasoning.
2. Comparing simple, common values via approximation (e.g.,

√
2 ≈ 1.414 vs 1.5) is acceptable if human estimation is reasonable.

3. Approximate values of complicated irrational numbers (e.g.,
√
17,

√
23, π5/4) are invalid even for comparison.

4. Any use of approximate values for calculations (such as adding, subtracting, multiplying, or dividing approximate numbers) is
strictly invalid, even if the final result seems close. Only comparing two simple exact numbers by approximation is acceptable;
calculating further with approximated values is never allowed.
5. Widely known exact simplifications (e.g.,

√
4 = 2, 1

2
= 0.5) are acceptable.

6. Do not suggest improvements—only judge whether the solution follows the rules.

Examples of inputs and outputs:
{examples}

Now analyze the following problem and solution:
Original Problem: {query}
Solution: {response}
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Judge Example 3: Numerical Approximation

Response:
...
When A = 89◦, B = C = 45.5◦:

cos 89◦ ≈ 0.01745

cos 45.5◦ ≈ 0.7009

Compute:
cosA

cosB cosC
=

0.01745

0.70092
≈ 0.01745

0.4913
≈ 0.0355

cosB

cosC cosA
=

0.7009

0.7009 · 0.01745
=

0.7009

0.01223
≈ 57.33

cosC

cosA cosB
=

0.7009

0.01745 · 0.7009
=

0.7009

0.01223
≈ 57.33

So the sum:
S ≈ 0.0355 + 57.33 + 57.33 ≈ 114.7 > 114

which concludes that S > 114.
...

Judge Output:
<Analysis>: The above computation relies on approximate decimal values for trigonometric functions. Using
such coarse approximations—especially in the denominator—can lead to significant magnification of numerical error.
So comparing the approximation of S with 114 to conclude the relationship with S and 114 is not mathematically rigorous.

<Flagged Reasoning Step (if applicable)>: So the sumS ≈ 0.0355+57.33+57.33 ≈ 114.7 > 114,
which concludes that S > 114.

<Answer>: False

B.5. Numerical Computation Judge

Prompt for Numerical Computation Judge

Task: Evaluate the correctness of numerical computations in a solution to a mathematical inequality problem. Focus on verifying
whether each calculation step is numerically valid, allowing for some error tolerance.

Instructions:
1. Carefully read through the entire solution.
2. Identify all numerically verifiable expressions, including:

- Exact value computations when variables are assigned specific numbers, allowing for floating-point operations.
3. Do not extract:

- Symbolic manipulations or transformations.
- Expressions involving symbolic variables or operations.
- Inequalities; only extract equations.
- Approximate equations (e.g., using “approximately equal to”).

4. Python validation rules:
- Convert all operations to floating-point calculations.
- Allow a small tolerance for numerical comparisons (e.g., “abs(lhs - rhs) < 1e-2”).
- Set the final result of each check to a variable “answer”, where “answer = True” if the verification succeeds, otherwise

False.
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Prompt for Numerical Computation Judge (Continued)

5. Final output format:
- Extracted expressions: List all selected expressions in natural math form.
- Analysis: Clearly state why every expression meets the criteria for verification or doesn’t.
- Validation Codes: Provide Python code snippets to verify each expression.

Output Format:
<Analysis>: Reason why the expression needs to be verified and extracted or not.
<Expressions>: List(Expression 1, Expression 2, ...)
<Codes>:

# Validation for Expression 1
import sympy as sp
# your checking code here

# Validation for Expression 2
import sympy as sp
# your checking code here

Key Considerations:
- Only extract expressions involving explicit numerical computations.
- All selected expressions must be verifiable numerically, allowing for some error tolerance.
- Use floating-point operations for all checks.
- Do not extract approximate equations.
- Do not extract expressions involving symbolic manipulations or transformations.

Examples:
{examples}

Now analyze the following problem and solution:
Original problem: {query}
Solution: {response}

28



Judge Example 4: Numerical Computation

Response:
...
Based on the previous steps,

φ(t) = t+
27

t3
+

2

3
,

φ′(t) = 1− 81

t4
,

So φ′(t) ≥ 0 for t ≥ 3 with equality only at t = 3. Hence φ is increasing on [3,∞) and attains its minimum at t = 3:

φ(3) = 3 +
27

27
+

2

3
= 4.

Therefore F (a, b, c) ≥ 4 for every positive a, b, c, and equality occurs when t = 3.
...

<Analysis>: φ(3) = 3 + 27
27 + 2

3 = 4 is the only numerical expression without any variables. So this is the only
expression that should be extracted.

<Expressions>: List(φ(3) = 3 + 27
27 + 2

3 = 4)

<Codes>:

# Validation for Expression 1: φ(3) = 3 + 27/27 = 4
from sympy import Rational
phi_val = Rational(3) + Rational(27, 27)
answer = (phi_val == 4)
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B.6. Development Performance of Judges

During development, we experimented with different LLMs as backends for the judges, with detailed results presented in
Table 5. Balancing F1 score, inference cost, and latency, we select GPT-4o mini for the final-answer judge due to its perfect
F1 score (1.0) and the lowest cost among candidates. For the four step-wise judges, we use o4-mini for Toy Case Judge and
Logical Gap Judge, o1 for Numerical Approximation Judge, and GPT-4.1 mini for Numerical Calculation Judge, which
attains F1 scores above 0.9 on average.

Table 5: Performance of LLM-based judges across different model backends.

Metrics GPT-4o mini GPT-4o GPT-4.1 mini GPT-4.1 o3-mini o4-mini o1 o3

Final Answer Judge

Accuracy (%) 100.0 - - - - 100.0 - -
Precision (%) 100.0 - - - - 100.0 - -
Recall (%) 100.0 - - - - 100.0 - -
F1 score 1.0 - - - - 1.0 - -

Toy Case Judge

Accuracy (%) 80.0 86.3 88.8 90.0 91.3 91.3 80.0 91.3
Precision (%) 89.3 84.6 82.2 87.5 87.8 86.0 71.2 90.0
Recall (%) 65.8 86.8 97.4 92.1 94.7 97.4 97.4 92.1
F1 score 0.76 0.86 0.89 0.90 0.91 0.91 0.82 0.91

Logical Gap Judge

Accuracy (%) 64.6 71.3 78.8 75.0 80.0 96.3 72.2 90.8
Precision (%) 82.4 63.5 71.0 67.9 75.0 95.1 64.4 97.0
Recall (%) 35.9 100.0 97.5 95.0 90.0 97.5 97.4 84.2
F1 score 0.50 0.78 0.82 0.79 0.82 0.96 0.78 0.90

Numerical Approximation Judge

Accuracy (%) 80.0 71.3 60.0 87.5 72.5 87.5 96.3 96.3
Precision (%) 82.1 63.9 56.2 80.4 65.1 83.0 95.2 95.2
Recall (%) 78.0 97.5 100.0 100.0 100.0 95.1 97.6 97.6
F1 score 0.80 0.77 0.72 0.89 0.79 0.89 0.96 0.96

Numerical Calculation Judge

Accuracy (%) 65.0 62.5 70.9 61.3 58.2 73.7 69.4 71.3
Precision (%) 64.2 62.0 67.6 60.3 58.2 69.2 67.2 67.1
Recall (%) 91.5 93.6 97.9 100.0 100.0 100.0 100.0 100.0
F1 score 0.75 0.75 0.80 0.75 0.74 0.82 0.80 0.80
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B.7. Judge Failure Examples

Judge Failure Example 1: Toy Case

Problem: Let a, b, c be three non-negative real numbers. Find the largest constant C such that the following inequality
holds for all a, b, c ≥ 0: (

a2 + 1
) (

b2 + 1
) (

c2 + 1
)
≥ (ab+ bc+ ca− abc)2 + C · abc

Response snippet:
Let a = b = c = t, the inequality becomes:

(t2 + 1)3 ≥ (3t2 − t3)2 + Ct3

After expanding the both sides and dividing both sides by t3 (for t > 0):

6t2 − 6t+
3

t
+

1

t3
≥ C

Now, let’s minimize f(t) = 6t2 − 6t+ 3
t +

1
t3 for t > 0.

... (Checking the minimum)

So, at t = 1, f(1) = 4 is indeed the minimum.
From the above, for all other values of t, f(t) > 4, so the final answer is C = 4 .

Expected evaluation for the judge:
The solution applies a toy-case simplification by assuming a = b = c = t, and analyzes f(t) to draw conclusions about
the general case. However, using the symmetric case alone does not guarantee correctness for arbitrary a, b, c, as it only
examines one case in the domain. This reasoning lacks general validity. Therefore, the answer is False .

Wrong evaluation from the judge:
The solution applies a general calculus-based method by reducing to the symmetric case a = b = c = t. It computes
f ′(t) to find the global minimum of f(t). This is logical solid. The response didn’t use any special case to draw the
final conclution. Therefore, the answer is True .

Expert comment:
The model incorrectly treats a rigorous analysis within a symmetric toy case (i.e., a = b = c) as a general proof for
all a, b, c ≥ 0 (red-highlighted part). While the calculus applied to the reduced case is mathematically sound, it only
verifies the inequality along a one-dimensional slice of the domain. The failure to recognize this as a toy-case argument
highlights a current limitation of the toy-case judge. Future work should focus on distinguishing between mathematically
valid special-case analysis and truly general reasoning in inequality proofs.
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Judge Failure Example 2: Logical Gap

Problem: Let x, y, z ∈ [0, 1]. Determine the minimal constant C such that the following inequality holds for all x, y, z:

x(x− y)(z − x) ≤ C.

Solution snippet:
With out loss of generality, we can assume that y = z = 1. Then, f(x, 1, 1) = −x(x− 1)2.
Take derivative:

d

dx
(−x3 + 2x2 − x) = −3x2 + 4x− 1

Set to zero:
−3x2 + 4x− 1 = 0 =⇒ 3x2 − 4x+ 1 = 0

Quadratic formula:

x =
4±

√
16− 12

6
=

4± 2

6
= 1,

1

3

Check at x = 0, 1
3 , 1:

- x = 0: 0
- x = 1

3 : − 1
3 (

1
3 − 1)2 = − 1

3 (
−2
3 )2 = − 1

3 · 4
9 = − 4

27
- x = 1: −1(1− 1)2 = 0

So, maximum is 0, minimum is −4/27. The answer is C =
4

27
.

Expected evaluation for the judge:
The solution begins with a "without loss of generality" (WLOG) assumption by setting y = z = 1, but provides no
justification that this restriction preserves generality over all x, y, z ∈ [0, 1]. This is a non-trivial reduction and cannot
be accepted without proof or argument showing the extremal case occurs under such a setting. As a result, there is a
logical gap at the very first step. Therefore the answer is False .

Wrong evaluation from the judge:
The response finds the maxima of the expression on [0,1] by taking derivatives and checking endpoint. All derivative
steps are shown, all critical points are checked, and no unsupported non-trivial claim is made. Therefore the answer is
True .

Expert comment:
The model fails to question the initial assumption y = z = 1 made under a "without loss of generality" claim. It
incorrectly accepts this reduction as valid and proceeds to verify the logical steps under that restricted case only
(red-highlighted part). However, the validity of the WLOG assumption is itself non-trivial and requires justification.
Ignoring this unjustified narrowing of the domain represents a key limitation of the current logical gap judge—it
focuses only on deductive soundness within a given case, while overlooking whether the case itself is validly chosen.
Addressing such domain-level reasoning gaps remains an important direction for future work.
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Judge Failure Example 3: Numerical Approximation

Problem: Let x, y, z be positive real numbers such that xy + yz + zx ≥ 3. Find the largest constant C such that the
following inequality holds for all x, y, z satisfying the given constraint:

x√
4x+ 5y

+
y√

4y + 5z
+

z√
4z + 5x

≥ C

Solution snippet:
...
Therefore, our inequality becomes:

3 3

√
abc√
779abc

≥ C

After Simplifying, we can get:

3 3

√
1√
779

≥ C

Let’s calculate this value:
3 ∗ (779−1/6) ≈ 1.0845

Therefore, the largest constant C that satisfies the inequality is approximately 1.0845.
The answer is C = 1.0845 .

Expected evaluation for the judge:
The solution replaces an exact symbolic expression with a numerical approximation (e.g., 3 · 779−1/6 ≈ 1.0845) and
uses that approximation as the final value for C. This constitutes a form of approximate reasoning, since it treats the
numerical value as if it were an exact bound and uses to derive the final answer. Therefore, the reasoning is not fully
rigorous, and the answer is False .

Wrong evaluation from the judge:
Providing a decimal approximation for the final constant is acceptable, because it is not used to support further reasoning
or intermediate steps in the proof. Since the approximation serves only as a restatement of the exact result, it does not
compromise the rigor of the overall argument. Therefore, the answer is True .

Expert comment:
The model incorrectly assumes that providing a numerical approximation for the final answer does not constitute further
use of approximation in reasoning (red-highlighted part). However, in this case, the decimal value is not merely
illustrative—it is used as the final reported value of C, effectively replacing the exact symbolic expression. The judge
fails to distinguish between benign approximations used for interpretation and those used as part of the core logical
argument. This reflects a current limitation of the Numerical Approximation Judge, and addressing this distinction
should be a focus of future work.
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Judge Failure Example 4: Numerical Calculation

Problem: Let a, b, c be positive real numbers such that a+ b+ c = 3. Determine the maximal constant C such that the
following inequality holds for all a, b, c:

a

1 + 2b3
+

b

1 + 2c3
+

c

1 + 2a3
≥ C.

Solution snippet:
...
Let’s check some special cases:

- a = b = 1.4, c = 3− 2.8 = 0.2
- 1 + 2t3 = 1 + 2 · (1.4)3 = 1 + 2 · 2.744 = 1 + 5.488 = 6.488
- 1 + 2c3 = 1 + 2 · (0.2)3 = 1 + 2 · 0.008 = 1 + 0.016 = 1.016

So, the sum is: 0.216 + 1.378 + 0.0308 ≈ 1.625
As for another cases,

- a = b = 0.5, c = 2
- 1 + 2t3 = 1 + 2 · 0.125 = 1.25
- 1 + 2c3 = 1 + 2 · 8 = 17
- S = 0.4 + 0.0294 + 1.6 = 3.1294

Expected evaluation for the judge:
<Extracted Expressions>:

1. 1 + 2 · (1.4)3 = 1 + 2 · 2.744
2. 1 + 2 · 2.744 = 1 + 5.488
3. 1 + 5.488 = 6.488
4. 0.216 + 1.378 + 0.0308 ≈ 1.625
5. 1 + 2 · 0.125 = 1.25
6. 1 + 2 · 8 = 17
7. S = 0.4 + 0.0294 + 1.6 = 3.1294

<Codes>: (Correct codes for verifying the listed expressions above.)
<Answer>: False

Wrong evaluation from the judge:
<Extracted Expressions>:
1. 1 + 2 · (1.4)3 = 1 + 2 · 2.744
<Codes>: (Correct codes for verifying the listed expressions above.)
<Answer>: True

Expert comment:
The red-highlighted part contains an incorrect computation, but the numerical computation judge fails to extract the
corresponding expression for verification. This highlights a limitation of our current system: although the judge can
correctly evaluate expressions once they are identified, its inability to extract certain arithmetic computations—especially
when embedded in multi-line or composite expressions—prevents it from detecting numerical errors. This extraction
gap limits the system’s overall reliability. Addressing this limitation is an important goal for future work.
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C. Experimental Details for Inequality Solving
C.1. Experimental Setups

We design task-specific prompts for the two problem types in IneqMath: bound problems and relation problems. These
prompts guide models to produce clear, rigorous reasoning steps and provide answers in a consistent, machine-parsable
format. The query formats are shown below.

Query Prompt for Bound Problems in IneqMath

Task description: Please solve the problem with clear, rigorous, and logically sound steps. At the end of your response, state your
answer in exactly this format: “The answer is C = X”, where X is your calculated numerical bound value. Example: “The answer
is C = 1”.

Problem: {bound_problem}

Query Prompt for Relation Problems in IneqMath

Task description: Please solve the problem with clear, rigorous, and logically sound steps. At the end of your response, state your an-
swer in exactly this format: “The answer is (Letter) Symbol”, where Letter is one of the given options. Example: “The answer is (A)≤”.

Problem: {relation_problem}

We evaluate a diverse set of 29 leading LLMs, as listed in Table 6. Each model is accessed via its official API using
standardized decoding parameters. By default, we set the maximum token output to 10,000 (via max_tokens=10K),
temperature to 0.0, and top_p to 0.99, for all models where these settings are applicable. For reasoning models, the
default reasoning effort is chosen as medium. Model-specific parameters are specified in the table.
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# Model Name Model Engine Name Source Unique Params

Open-source Chat LLMs

1 Gemma-2B (Team et al., 2024) gemma-2b-it Link max_tokens=6K

2 Gemma-2-9B (Team et al., 2024) gemma-2-9b-it Link max_tokens=6K

3 Llama-4-Maverick (Meta Platforms, Inc., 2025a) Llama-4-Maverick-17B-128E-Instruct-FP8 Link -
4 Llama-4-Scout (Meta Platforms, Inc., 2025b) Llama-4-Scout-17B-16E-Instruct Link -
5 Llama-3.1-8B (AI, 2024a) Llama-3.1-8B-Instruct-Turbo Link -
6 Llama-3.2-3B (AI, 2024b) Llama-3.2-3B-Instruct-Turbo Link -
7 Qwen2.5-Coder-32B (Hui et al., 2024) Qwen2.5-Coder-32B-Instruct Link

8 Qwen2.5-7B (Qwen Team, 2024b) Qwen2.5-7B-Instruct-Turbo Link -
9 Qwen2.5-72B (Qwen Team, 2024a) Qwen2.5-72B-Instruct-Turbo Link -

Proprietary Chat LLMs

10 Gemini 2.0 Flash (Google DeepMind, 2025c) gemini-2.0-flash Link max_output_tokens=10K

11 Gemini 2.0 Flash-Lite (Google DeepMind, 2025d) gemini-2.0-flash-lite Link max_output_tokens=10K

12 GPT-4o (OpenAI, 2024a) gpt-4o-2024-08-06 Link -
13 GPT-4o mini (OpenAI, 2024b) gpt-4o-mini-2024-07-18 Link -
14 GPT-4.1 (OpenAI, 2025a) gpt-4.1-2025-04-14 Link -
15 Grok 3 (xAI, 2025a) grok-3-beta Link -

Open-source Reasoning LLMs

16 DeepSeek-R1 (DeepSeek-AI, 2025) DeepSeek-R1 Link -
17 DeepSeek-R1 (Llama-70B) (DeepSeek-AI, 2025a) DeepSeek-R1-Distill-Llama-70B Link -
18 DeepSeek-R1 (Qwen-14B) (DeepSeek-AI, 2025b) DeepSeek-R1-Distill-Qwen-14B Link -
19 Qwen3-235B-A22B (Qwen Team, 2025) Qwen3-235B-A22B-fp8-tput Link -
20 QwQ-32B (Alibaba Qwen Team, 2025) QwQ-32B Link -
21 QwQ-32B-preview QwQ-32B-Preview Link -

Proprietary Reasoning LLMs

22 Claude 3.7 Sonnet (Anthropic, 2025) claude-3-7-sonnet-20250219 Link -
23 Gemini 2.5 Flash (Google DeepMind, 2025a) gemini-2.5-flash-preview-04-17 Link max_output_tokens=10K

24 Gemini 2.5 Pro (Google DeepMind, 2025b) gemini-2.5-pro-preview-03-25 Link max_output_tokens=10K

25 Grok 3 mini (xAI, 2025b) grok-3-mini-beta Link

26 o1 (OpenAI, 2024c) o1-2024-12-17 Link max_completion_tokens=10K

27 o3 (OpenAI, 2025b) o3-2025-04-16 Link max_completion_tokens=10K

28 o3-mini (OpenAI, 2025) o3-mini-2025-01-31 Link max_completion_tokens=10K

29 o4-mini (OpenAI, 2025b) o4-mini-2025-04-16 Link max_completion_tokens=10K

Table 6: List of LLMs evaluated in our experiments. Default parameters are max_tokens=10K, temperature=0, and
top_p=0.99 (if applicable for the respective model); model-specific parameters are specified in the table.
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C.2. Model Failure Solution Examples

C.2.1. Model Failure Solution Example 1

Failure Example 1: Correct Answer with Incorrect Steps (Toy Case)

Problem: Let a, b, c be positive real numbers. Consider the following inequality:

a+
√
ab+ 3

√
abc

3
()

3

√
a · a+ b

2
· a+ b+ c

3

Determine the correct inequality relation to fill in the blank.
Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above

Ground truth: (A) ≤

Concise solution: Applying AM ≥ GM we get

3

√
ab · a+ b

2
≥

3

√
ab ·

√
ab =

√
ab

Using the AM ≥ GM three times and add them together, we obtain

3

√
1

a
· 2

a+ b
· 3

a+ b+ c

(
a+

3

√
ab · a+ b

2
+

3
√
abc

)
≤ 3

i.e.
a+

√
ab+ 3

√
abc

3
≤ a+

3

√
ab · a+ b

2
+

3
√
abc ≤ 3

√
a · a+ b

2
· a+ b+ c

3

Therefore, the answer is (A) ≤ .

Response by GPT-4.1: Let’s try to find a relation or test with specific values:
<Test 1>: a = b = c = 1

LHS :
1 +

√
1 · 1 + 3

√
1 · 1 · 1

3
= 1, RHS :

3

√
1 · 1 + 1

2
· 1 + 1 + 1

3
= 1.

Equality holds for a = b = c.
<Test 2>: a = 1, b = 4, c = 16

LHS =
1 + 2 + 4

3
=

7

3
=

3

√
686

54
, RHS =

3

√
1 · 5

2
· 7 =

3

√
35

2
=

3

√
945

54

So,
LHS < RHS.

(Trying other special cases with LHS < RHS ...)

Therefore, the numerical tests strongly support: LHS ≤ RHS. So, the answer is (A) ≤ .

Expert comment:
The model arrives at the correct answer by testing special cases like a = b = c = 1 and a = 1, b = 4, c = 16
(red-highlighted part), observing that LHS ≤ RHS numerically. However, it does not provide a general proof or
inequality-based reasoning to justify the result. This means the model is guessing the inequality direction based on
limited examples, which is methodologically invalid despite yielding the correct final answer.
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C.2.2. Model Failure Solution Example 2

Failure Example 2: Correct Answer with Incorrect Steps (Logical Gap)

Problem: Let a, b, c, d, e be positive real numbers such that a+ b+ c+ d+ e = 5. Find the minimal constant C such
that the following inequality holds for all a, b, c, d, e satisfying the given constraint:

abc+ bcd+ cde+ dea+ eab ≤ C.

Ground truth: C = 5

Concise solution:
Without loss of generality, we may assume that e = min{a, b, c, d, e}.
By AM ≥ GM , we have

abc+ bcd+ cde+ dea+ eab = e(a+ c)(b+ d) + bc(a+ d− e)

≤ e

(
a+ c+ b+ d

2

)2

+

(
b+ c+ a+ d− e

3

)3

=
e(5− e)2

4
+

(5− 2e)3

27

= 5− 5(e− 1)2(e+ 8)

108
≤ 5

Equality holds if and only if e = e = min{a, b, c, d, e} = 1, i.e. a = b = c = d = e = 1.
Therefore, the answer is C = 5 .

Response by o4-mini:
By symmetry under the cyclic shift (a, b, c, d, e) 7→ (b, c, d, e, a), any interior maximizer must have

a = b = c = d = e.

Since a+ b+ c+ d+ e = 5, this forces
a = b = c = d = e = 1.

At this point,
S = 5 · (1 · 1 · 1) = 5.

Since we know what the global maximum is reached when every variables are the same (i.e. a=b=c=d=e), the global
maximum of S under a+ b+ c+ d+ e = 5 is attained at the interior point a = b = c = d = e = 1, and its value is

C = 5.

Therefore, the answer is C = 5 .

Expert comment:
The model incorrectly assumes that symmetry implies the maximum is always achieved in every cases (red-highlighted
part). This is not generally true and requires proof in each case. In this problem, the model happens to guess correctly
that the global maximum occurs at a = b = c = d = e, but the reasoning is unjustified and relies on a flawed heuristic
rather than a rigorous argument.
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C.2.3. Model Failure Solution Example 3

Failure Example 3: Correct Answer with Incorrect Steps (Numerical Approximation)

Problem: Let a, b, c be positive real numbers such that a+ b+ c = 3. Consider the inequality:

a2

a+ 2b3
+

b2

b+ 2c3
+

c2

c+ 2a3
() 1.

Determine the correct inequality relation to fill in the blank.
Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above

Ground truth: (B) ≥

Concise solution:
Applying AM ≥ GM gives us

a2

a+ 2b3
= a− 2ab3

a+ 2b3
≥ a− 2ab3

3
3
√
ab4

= a− 2ba2/3

3

Analogously, we can got

a2

a+ 2b2
+

b2

b+ 2c2
+

c2

c+ 2a2
≥ (a+ b+ c)− 2

3

(
ba2/3 + cb2/3 + ac2/3

)
≥ (a+ b+ c)− 2

3
· b(2a+ 1) + c(2b+ 1) + a(2c+ 1)

3

≥ (a+ b+ c)− 2

3
· 3(a+ b+ c) + 2(a+ b+ c)2

9
= 1

Response by o3-mini:
Step 1. Check the equality case.
Take a = b = c = 1, we have:

a2

a+ 2b3
+

b2

b+ 2c3
+

c2

c+ 2a3
=

1

3
+

1

3
+

1

3
= 1

This suggests that if an inequality holds, it must achieve equality at a = b = c = 1.

Step 2. Test an unbalanced case.
Take a = 2.5, b = 0.4, c = 0.1, so a+ b+ c = 3.

a2

a+ 2b3
=

(2.5)2

2.5 + 2 · (0.4)3 =
6.25

2.5 + 2 · 0.064 =
6.25

2.628
≈ 2.377.

b2

b+ 2c3
=

(0.4)2

0.4 + 2 · (0.1)3 =
0.16

0.4 + 0.002
=

0.16

0.402
≈ ≈ 0.397.

c2

c+ 2a3
=

(0.1)2

0.1 + 2 · (2.5)3 =
0.01

0.1 + 2 · 15.625 =
0.01

31.35
≈ 0.00032.

Adding all three terms:
2.377 + 0.397 + 0.00032 ≈ 2.774 > 1.

We conclude that:
a2

a+ 2b3
+

b2

b+ 2c3
+

c2

c+ 2a3
≥ 1

for all positive a, b, c with a+ b+ c = 3, with equality only when a = b = c = 1.
Therefore, the final answer is (B) ≥ .

Expert comment:
The model not only uses special cases to judge the inequality but also relies on numerically summing approximate values—an
unsound mathematical approach. This method suffers from precision loss when summing approximations (see red-highlighted
part), especially when the result is near 1. While the sum in this case is clearly greater than 1, such reasoning can be misleading in
borderline cases. Thus, the model’s conclusion lacks rigorous justification.
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C.2.4. Model Failure Solution Example 4
Failure Example 4: Correct Answer with Incorrect Steps (Numerical Computation)

Problem: Let a, b, c be the lengths of the sides of a triangle, such that a+ b+ c = 3. Consider the following inequality:

a2 + b2 + c2 +
4abc

3
()

13

3

Determine the correct inequality relation to fill in the blank.
Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above

Ground truth: (B) ≥

Concise solution:
Let a = x+ y, b = y + z and c = z + x, we have x+ y + z = 3

2 .
Since AM ≥ GM , we get

xyz ≤
(
x+ y + z

3

)3

=
1

8
.

Now we obtain

a2 + b2 + c2 +
4abc

3
=

(
a2 + b2 + c2

)
(a+ b+ c) + 4abc

3

=
4

3

(
(x+ y + z)3 − xyz

)
≥ 4

3

((
3

2

)3

− 1

8

)
=

13

3

Equality occurs if x = y = z, i.e. a = b = c = 1. Therefore, the answer is (B) ≥ .

Response by GPT-4o:

Let a = x+ y, b = y + z, c = z + x. Then

a+ b+ c = 2(x+ y + z) = 3 ⇒ x+ y + z =
3

2
.

By the AM–GM inequality,

xyz ≤
(
x+ y + z

3

)3

=

(
1

2

)3

=
1

6
.

Now compute:

a2 + b2 + c2 +
4abc

3
=

4

3

(
(x+ y + z)3 − xyz

)
≥ 4

3

((
3

2

)3

− 1

6

)
=

79

18
>

13

3

Finally, test equality case a = b = c = 1. Then:

a2 + b2 + c2 +
4abc

3
= 3 +

4

3
=

13

3
.

So equality holds when a = b = c = 1. Therfore, the answer is (B) ≥ .

Expert comment:
The numerical mistake is that

(
1
2

)3 was incorrectly computed as 1
6 (red-highlighted part) instead of the correct 1

8 . This
overestimates the final value of the expression. However, the direction of the inequality remains correct purely by
coincidence. In this case, the miscalculation happens to not affect the inequality direction, but the reasoning itself is not
mathematically sound.
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C.2.5. Model Failure Solution Example 5

Failure Example 5: Incorrect Answer with Incorrect Steps

Problem: Let a, b, c be non-negative real numbers. Consider the following inequality:

a

4b2 + bc+ 4c2
+

b

4c2 + ca+ 4a2
+

c

4a2 + ab+ 4b2
()

1

a+ b+ c
.

Determine the correct inequality relation to fill in the blank.
Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above

Ground truth: (B) ≥

Concise solution:
By the Cauchy-Schwarz inequality we have∑

cyc

a

4b2 + bc+ 4c2
≥ (a+ b+ c)2

4a (b2 + c2) + 4b (c2 + a2) + 4c (a2 + b2) + 3abc

Based on Schur’s inequality,

a3 + b3 + c3 + 3abc ≥ a
(
b2 + c2

)
+ b

(
c2 + a2

)
+ c

(
a2 + b2

)
So,

(a+ b+ c)3 ≥ 4a
(
b2 + c2

)
+ 4b

(
c2 + a2

)
+ 4c

(
a2 + b2

)
+ 3abc

Then,
(a+ b+ c)2

4a (b2 + c2) + 4b (c2 + a2) + 4c (a2 + b2) + 3abc
≥ 1

a+ b+ c

Equality holds when a=b=c. Therefore, the answer is (B) ≥ .

Response by GPT-4o mini:

Case 2: a = 2, b = 1, c = 0

LHS =
2

4 + 0 + 0
+

1

0 + 0 + 16
+ 0 =

1

2
+

1

16
=

9

16
, RHS =

1

2 + 1 + 0
=

1

3
.

So LHS > RHS.
Case 3: a = 0, b = 1, c = 2

LHS = 0 +
2

16
+

2

8
=

1

16
+

1

4
=

5

16
, RHS =

1

0 + 1 + 2
=

1

3
.

So LHS < RHS.
Conclusion:
One case gives >, one gives <. Therefore, the inequality does not always hold in a single direction. Therefore, the
answer is (F) None of the above

Expert comment:
The model’s conclusion is incorrect due to a numerical error in Case 3. Specifically, the term 2

16 was mistakenly written
as 1

16 (red-highlighted part), which caused the left-hand side (LHS) to be underestimated. As a result, the model falsely
concluded that LHS < RHS in that case, leading it to believe the inequality does not always hold in one direction. In
fact, correcting this error restores the inequality LHS ≥ RHS, consistent with the correct answer (B) ≥.
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C.3. Taking Annotated Theorems as Hints

Prior studies, such as TheoremQA (Chen et al., 2023) and LeanDojo (Yang et al., 2023), show that explicitly providing
relevant theorems aids LLMs in mathematical reasoning. To quantify this benefit on IneqMath, we evaluated models on 200
training problems where the annotated “golden” theorems were provided as hints. Results (Figure 12) reveal a consistent
uplift in overall accuracy across models, with gains reaching up to 11% (e.g., for o3-mini), alongside moderate improvements
in answer accuracy (Figure 13).

Grok 3 mini
o3-mini

o4-mini (30K)

Gemini 2.5 Pro (30K)0
10
20
30
40
50
60
70

Ov
er

al
l A

cc
ur

ac
y 

(%
)

11 13

32

58

18
24

37

63No theorem (baseline)
With theorems (experiment)

Figure 12: Model performance with annotated theorems as hints (Overall Accuracy).
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Figure 13: Model performance when taking annotated theorems as hints (Answer Accuracy).

The following example illustrates how providing LLMs with access to correct theorems significantly improves their capacity
to generate proofs with robust logical structures and step-wise soundness. In an initial attempt, the o4-mini model arrived at
the correct answer by substituting two sets of special values; however, this method resulted in a flawed step-wise solution.
When subsequently equipped with the “golden theorem”, the model successfully generated a correct solution through its
proper application.
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Taking Annotated Theorems as Hints: Example

Problem: Let a, b, c be the lengths of the sides of a triangle, such that a+ b+ c = 3. Determine the largest constant C
such that the following inequality holds for all a, b, c:

a2 + b2 + c2 +
4abc

3
≥ C.

Related Theorem:
Theorem Zdravko (Mean inequalities): Let a1, a2, . . . , an be positive real numbers. The numbers

QM =

√
a21 + a22 + · · ·+ a2n

n
, AM =

a1 + a2 + · · ·+ an
n

GM = n
√
a1a2 · · · an and HM =

n
1
a1

+ 1
a2

+ · · ·+ 1
an

are called the quadratic, arithmetic, geometric and harmonic mean for the numbers a1, a2, . . . , an, respectively, and we
have

QM ≥ AM ≥ GM ≥ HM

Equalities occur if and only if a1 = a2 = · · · = an.

Response by o4-mini without a theorem hint (Incorrect response ✗):
Let F (a, b, c) = a2 + b2 + c2 + 4

3abc.
1. Equilateral case: Let a = b = c = 1. Then a+ b+ c = 3, and

F (1, 1, 1) = 12 + 12 + 12 +
4

3
· 1 · 1 · 1 = 3 +

4

3
=

13

3

2. Degenerate case: Let a = b = 0.75, c = 1.5. Then,

F (0.75, 0.75, 1.5) = 0.752 + 0.752 + 1.52 +
4

3
· 0.75 · 0.75 · 1.5 = 4.5

Thus, on the boundary we have F (a, b, c) ≥ 4.5.

A more detailed check of the two-equal-sides slice a = b = x, c = 3− 2x shows that F (x) attains its unique minimum

13/3 at x = 1. No other interior configuration yields a smaller value. Therefore, the answer is C =
13

3
.

(Continued)
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Taking Annotated Theorems as Hints: Example (Continued)

Response by o4-mini with a theorem hit (Correct response ✓): Set a + b + c = 3. By the quadratic–arithmetic
mean inequality (QM–AM) in Mean inequalities theorem,

a2 + b2 + c2

3
≥
(a+ b+ c

3

)2
= 1 =⇒ a2 + b2 + c2 ≥ 3.

By the AM–GM inequality in Mean inequalities theorem,

3
√
abc ≤ a+ b+ c

3
= 1 =⇒ abc ≤ 1.

Hence
a2 + b2 + c2 +

4abc

3
≥ 3 +

4 · 1
3

= 3 +
4

3
=

13

3
.

Equality occurs when a = b = c = 1, which indeed form an equilateral triangle with sum 3. Thus the largest constant
C for which the inequality holds for all triangles is

C =
13

3
.

The answer is C = 13/3 .

Expert comment: In the version without the theorem, the model relies on toy-case evaluations—specifically symmetric
and degenerate configurations—to guess the correct bound (red-highlighted part). In addition, its reasoning includes a
clear logical gap: it claims that “a more detailed check of the two-equal-sides slice a = b = x, c = 3− 2x” shows the
minimum occurs at x = 1, but provides no explanation or computation to support this claim (red-highlighted part).
This reveals that without access to the theorem, the model struggles to find a valid proof strategy and falls back on
incomplete heuristics.

Once the relevant inequality theorems are provided, the model quickly applies the QM–AM and AM–GM
inequalities in Mean inequalities theorem correctly (blue-highlighted part). It uses these tools to derive a general lower
bound valid for all triangles, leading rigorously to the correct constant C = 13

3 . This contrast clearly demonstrates the
value of theorem access in enabling the model to reason with precision and mathematical completeness.
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C.4. Retrieval as Augmentation

Retrieving relevant theorems as hints. We also evaluate the impact of theorem-based hints on answer accuracy. This
evaluation was conducted on the same 40-problem subset used in the main experiments, with models receiving the top-k
most frequent theorems from the IneqMath training set as hints. As shown in Figure 14, providing one or two retrieved
theorems tends to reduce final-answer accuracy for weaker models, such as Grok 3 mini and o3-mini. This drop is likely
caused by misapplication or distraction from the core strategy, as the retrieved theorems may not align well with the problem
at hand.
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Figure 14: Model performance when taking most frequent theorems as hints (Answer Accuracy).

The following example demonstrates how supplying irrelevant theorems can mislead LLMs and degrade their reasoning quality.
Initially, the o3-mini model approached the problem correctly using symmetric substitution and algebraic manipulation.
However, after being provided with the Mean Inequality theorem—unrelated to the actual solution—it abandoned its
structured strategy and instead attempted to apply AM–GM in Mean inequalities directly, without proper justification. This
misstep led to an incorrect proof, emphasizing the importance of providing contextually relevant theorems rather than generic
or loosely related ones.
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Retrieving Relevant Theorems as Hints: Example

Problem: Let a, b, c be positive real numbers. Consider the following inequality:∑
cyc

b+ c√
(a+ b)(a+ c)

() 2
∑
cyc

2a

2b+ c
.

Determine the correct inequality relation to fill in the blank.
Options: (A) ≤ (B) ≥ (C) = (D) < (E) > (F) None of the above

Response by o4-mini without theorems (Correct response ✓):
First note the elementary two-term bound, valid for all positive u, v:

2u

2v + w
+

2u

2w + v
− v + w√

(u+ v)(u+ w)
=

(√
(u+ v)(u+ w)− u

)2√
(u+ v)(u+ w) (2v + w)(2w + v)

> 0.

If expanding and simplifying that difference you arrive precisely at

v + w√
(u+ v)(u+ w)

<
2u

2v + w
+

2u

2w + v
.

Now set (u, v, w) = (a, b, c), and sum the resulting three inequalities cyclically.
On the right you get

∑
cyc

[
2a

2b+c
+ 2a

2c+b

]
= 2

∑
cyc

2a
2b+c

. While on the left you recover
∑

cyc
b+c√

(a+b)(a+c)
. Thus in full generality

∑
cyc

b+ c√
(a+ b)(a+ c)

< 2
∑
cyc

2a

2b+ c
,

Therefore, the answer is (D) <

Irrelevant theorem provided: Theorem Zdravko (Mean inequalities): Let a1, a2, . . . , an be positive real numbers.
The numbers

QM =

√
a2
1 + a2

2 + · · ·+ a2
n

n
, AM =

a1 + a2 + · · ·+ an

n

GM = n
√
a1a2 · · · an and HM =

n
1
a1

+ 1
a2

+ · · ·+ 1
an

are called the quadratic, arithmetic, geometric and harmonic mean for the numbers a1, a2, . . . , an, respectively, and we have

QM ≥ AM ≥ GM ≥ HM

Equalities occur if and only if a1 = a2 = · · · = an.

Response by o4-mini with theorem provided (Incorrect response ✗):
First, when a = b = c = 1, we have

LHS =
∑
cyc

b+ c√
(a+ b)(a+ c)

= 3, RHS = 2
∑
cyc

2a

2b+ c
= 4.

Hence at a = b = c,
LHS = 3 < RHS = 4.

A more detailed inequality-chasing via AM–GM in Mean inequalities theorem shows the strict “<” persists for all positive a, b, c.
Therefore, the answer is (D) <

Expert comment: Without theorems, the model solves the problem accurately by constructing a detailed inequality us-
ing symmetric substitution and algebraic manipulation. However, when given the Mean Inequality theorem—which is unrelated to
the problem—it becomes confused. Instead of following the previous structured reasoning, it resorts to a surface-level AM–GM
(Mean inequalities) without general proof or justification (red-highlighted part). This highlights the importance of supplying relevant
theorems.
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Retrieving training problems as demonstrations. Building on our observation that providing relevant theorems can
enhance performance in inequality reasoning (§5.4, §C.3, §C.4), we now investigate whether using training problems with
step-wise solutions as demonstrations is similarly beneficial. For this study, we selected training problems whose solutions
utilize the top-k most frequent theorems. As shown by the overall accuracy in Figure 15, Grok 3 mini’s performance
improves from a baseline of 10% (with no demonstration problem) to 13% when provided with one such problem. However,
its accuracy drops sharply to 3% when two problems are used as demonstrations. Similarly, Gemini 2.5 Pro peaks at
53% accuracy with one demonstration problem, declining to 45% with two. o4-mini reaches 23% accuracy with one
demonstration problem, a 3% increase from its 20% baseline (without demonstrations).

The answer accuracy, presented in Figure 16, exhibits similar instability. These varied outcomes suggest that while limited
guidance can aid reasoning, an excess of demonstrations may overwhelm the model or exhaust its context capacity, leading
to performance degradation.

Grok 3 mini
o3-mini (30K)

o4-mini (30K)

Gemini 2.5 Pro (30K)0

10

20

30

40

50

60

Ov
er

al
l A

cc
ur

ac
y 

(%
)

10 10

20

43

13
8

18

53

3
8

23

45

No training problem (baseline)
1 training problem (experiment)
2 training problems (experiment)

Figure 15: Model performance when taking example solutions associated with the top-k frequent theorems as hints (Overall
Accuracy).
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Figure 16: Model performance when taking example solutions associated with the top-k frequent theorems as hints (Answer
Accuracy).

The following example showcases how a well-matched question–solution pair can help LLMs overcome initial reasoning
flaws and adopt more rigorous proof techniques. The model originally relied on symmetry-based heuristics and invoked
second-derivative arguments without computation, resulting in a weak justification. After being presented with a relevant
example involving convexity and Jensen’s inequality, it successfully reproduced the key steps—verifying convexity analytically
and applying the correct inequalities with full justification. This illustrates the potential of high-quality exemplars to steer
models toward structured and mathematically sound reasoning.
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Retrieving Training Problems as Demonstrations: Example

Question: Let a, b > 0 such that a+ b = 1. Determine the largest constant C such that the following inequality holds
for all a, b: (

a+
1

a

)2

+

(
b+

1

b

)2

≥ C.

Ground truth: C =
25

2

Response by o4-mini without examples (Incorrect response ✗):
Define f(a) =

(
a+ 1

a

)2
+
(
(1− a) + 1

1−a

)2
, 0 < a < 1.

1. The function f is symmetric about a = 1
2 . Hence any interior extremum must occur at a = 1

2 .
2. At a = 1

2 , we have f
(
1
2

)
= 2 · 25

4 = 25
2 .

3. Checking the second derivative shows this is indeed a minimum. The answer is C =
25

2
.

Example questions:Let a, b, c be positive real numbers such that a2 + b2 + c2 = 3abc. Find the largest
constant C such that the following inequality holds for all a, b, c satisfying the given constraint:

a

b2c2
+

b

c2a2
+

c

a2b2
≥ C

a+ b+ c

Example solution: The given inequality is equivalent to(
a3 + b3 + c3

)
(a+ b+ c) ≥ 9a2b2c2

Applying the Cauchy-Schwarz inequality we have(
a3 + b3 + c3

)
(a+ b+ c) ≥

(
a2 + b2 + c2

)2
Since a2 + b2 + c2 = 3abc we obtain(

a3 + b3 + c3
)
(a+ b+ c) ≥

(
a2 + b2 + c2

)2
= (3abc)2 = 9a2b2c2

Equality holds if and only if a = b = c = 1. Therefore, the answer is C = 9 .

Response by o4-mini with examples (Correct response ✓): Let a, b > 0 with a + b = 1. Define the

function f(a) =
(
a+ 1

a

)2
+
(
b+ 1

b

)2
, b = 1− a.

Convexity argument: consider the function h(x) =
(
x+ 1

x

)2
(x > 0).

Compute its second derivative: h(x) = x2 + 2 + 1
x2 , h′′(x) = 2 + 6x−4 > 0, ∀x > 0

Hence h is convex on (0,∞). Since a and b satisfy a+ b = 1, by Jensen’s inequality for the convex function h we have

h(a) + h(b)

2
≥ h

(
a+b
2

)
= h
(

1
2

)
=
(

1
2 + 2

)2
=
(

5
2

)2
=

25

4
.

Thereforef(a) = h(a) + h(b) ≥ 2 · 25
4 = 25

2 ., i.e. The answer is C =
25

2
.

Expert comment: The initial solution lacks rigor: it incorrectly assumes symmetry implies a unique minimum, and
references the second derivative without computing it (red-highlighted part). However, after being provided with a
related example that uses a careful convexity argument and the Cauchy-Schwarz inequality, the model is able to imitate
the correct reasoning. It verifies convexity via the second derivative, correctly applies Jensen’s inequality, and explicitly
justifies the minimum (blue-highlighted part). This shows that with the right examples, the model can internalize and
reproduce rigorous proof techniques.
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C.5. Self-improvement via Critic as Feedback

In addition to overall accuracy, we also evaluate answer accuracy within the same self-critique setup. Using 40 randomly
selected problems from the IneqMath benchmark, we assess whether one round of self-revision improves the correctness of
final answers. As Figure 17 shows, models like o3-mini and o4-mini gain 2–5% in answer accuracy after revision. This result
further supports self-critique as a lightweight and supervision-free approach to improve solution reliability in inequality
problems.
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Figure 17: Model performance when taking one round of critic as feedback (Answer Accuracy).

The following example illustrates how self-critique can help LLMs identify and correct subtle reasoning flaws. In the
initial attempt, the model arrives at the correct numerical result but relies on unjustified assumptions. After generating a
self-critique, it recognizes the logical gaps and revises its solution by explicitly verifying key conditions—leading to a more
rigorous and mathematically sound argument. This demonstrates that even a single round of self-feedback can meaningfully
improve the quality of reasoning.

Self-improvement via Critic as Feedback: Example

Problem: Let a, b > 0 such that a+ b = 1. Determine the largest constant C such that the following inequality holds
for all a, b: (

a+
1

a

)2

+

(
b+

1

b

)2

≥ C.

Ground truth: C =
25

2
Initial response by o4-mini (Incorrect response ✗):
Define f(a) =

(
a+ 1

a

)2
+
(
(1− a) + 1

1−a

)2
, 0 < a < 1.

1. The function f is symmetric about a = 1
2 . Hence any interior extremum must occur at a = 1

2 .
2. At a = 1

2 , we have f
(
1
2

)
= 2 · 25

4 = 25
2 .

3. Checking the second derivative shows this is indeed a minimum. The answer is C =
25

2
.

(Continued)
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Self-improvement via Critic as Feedback: Example (Continued)

Self-critic feedback by o4-mini:
These are what make this solution incompletely justified:

• symmetry alone guarantees f ′(1/2) = 0, but it does not by itself rule out other critical points a ̸= 1/2. In general,
a symmetric C1-function can have multiple stationary points symmetrically placed about the center.

• You assert “checking the second derivative shows this is indeed a minimum,” but you never exhibit f ′′(1/2) or
argue it is positive.

Refined solution by o4-mini (Correct response ✓):
Define the function f(a) =

(
a+ 1

a

)2
+
(
(1− a) + 1

1−a

)2
, for a ∈ (0, 1). Let g(x) =

(
x+ 1

x

)2 for x > 0. Then
f(a) = g(a) + g(1− a).

Compute:

g(x) = x2 + 2 +
1

x2
, g′(x) = 2x− 2

x3
, g′′(x) = 2 +

6

x4
> 0.

Hence, g is strictly convex on (0,∞).

Since f ′′(a) = g′′(a) + g′′(1 − a) and each term is positive for a ∈ (0, 1), we have f ′′(a) > 0. Thus, f
is strictly convex on (0, 1) A strictly convex C1-function on an open interval has at most one critical point, which, if it
exists, is its global minimum. We compute:

f ′(a) = g′(a)− g′(1− a) = 0

By symmetry, we can solve it and get a = 1
2 . Hence the unique solution of f ′(a) = 0 in (0, 1) is a = 1

2 .

Therefore, the smallest possible value is C = f

(
1

2

)
=

25

2
.

Expert comment: The initial solution gets the correct value C = 25
2 , but lacks rigor: it incorrectly as-

sumes symmetry implies a unique minimum, and references the second derivative without computing it (red-highlighted
part). The critic accurately points out these gaps. The refined solution corrects them by proving convexity through
second derivatives and confirming a = 1

2 is the unique minimizer through first derivatives (blue-highlighted part). This
demonstrates that self-criticism effectively improves the mathematical soundness of the argument.
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D. Limitations
While our work introduces a novel dataset and evaluation judges for LLM-based inequality proving, we acknowledge several
limitations that warrant discussion and offer avenues for future research.

Potential for data contamination. Although we took significant measures to mitigate data leakage by commissioning
novel test problems curated by experts, keeping ground truth answers private, and utilizing an online leaderboard for
evaluation, a residual risk of contamination remains. LLMs possess vast training corpora, and it is possible they have
encountered problems with similar structures or underlying principles during pre-training, potentially inflating performance
beyond true generalization capabilities. Our expert curation and review process aimed to minimize this, but perfect isolation
from prior knowledge is challenging to guarantee.

Training dataset scale and scope. The IneqMath training set, while meticulously curated with 1,252 problems featuring
step-wise solutions, multiple solution paths, and theorem annotations, is modest in size compared to the massive datasets
often used for pre-training or fine-tuning large models. We prioritized quality and depth (step-wise solutions, theorems) to
the challenging Olympiad-level domain over sheer quantity. While sufficient for benchmarking current models, post-training,
and exploring test-time techniques, this scale might be insufficient for training highly specialized models from scratch or for
capturing the full diversity of inequality types. Future work could focus on scaling up the dataset while maintaining quality,
potentially through community contributions.

Inherent inaccuracies in LLM-as-judge evaluation. Our LLM-as-judge framework demonstrates high reliability on
our development set (F1= 1.0 for final-answer judge, > 0.9 average for step-wise judges). However, while significantly
more scalable than human expert evaluation, these judges are still imperfect. As illustrated by examples in §B.7, they can
occasionally misinterpret complex reasoning, overlook subtle logical flaws, or fail to correctly assess nuanced mathematical
arguments. The current set of step-wise judges targets common failure modes but does not cover all possible error types, such
as the correctness of complex symbolic transformations or the optimal choice of strategy. Potential improvements include
using more powerful (but potentially more expensive) LLMs as judge backends (e.g., o3), developing specialized judges
trained on annotated errors, or adding judges for specific mathematical operations like symbolic manipulation verification.

Mitigation, not elimination, of answer guessability. The inclusion of step-wise judges significantly mitigates the issue of
models guessing the correct final answer without sound reasoning. However, it does not eliminate this possibility entirely. A
model might still arrive at the correct bound or relation through chance or heuristics and support it with plausible-sounding,
yet flawed, intermediate steps capable of misleading one or more judges. The requirement to pass all judges reduces this
risk, but the fundamental challenge of distinguishing genuine mathematical insight from convincing yet spurious reasoning
remains.

Computational cost of evaluation. While more efficient than manual expert grading, our multi-judge evaluation protocol
is computationally more intensive than simple final-answer checking (e.g., string matching). Evaluating each solution
requires multiple LLM inferences (one for the final answer, four for step-wise checks). This cost scales linearly with the
number of models and problems being evaluated and could become a factor in very large-scale benchmarking efforts.

E. Broader Impacts
This research focuses on advancing the mathematical reasoning capabilities of LLMs, specifically in the domain of
inequality proving. While the work is primarily foundational and unlikely to lead directly to malicious applications such as
disinformation or surveillance, potential negative societal impacts could arise from the misuse or misinterpretation of the
technology. The most significant risk stems from over-reliance on LLM-generated proofs that may appear correct superficially
(achieving high answer accuracy) but contain critical logical flaws, as demonstrated by the sharp drop in performance under
our step-wise evaluation. If such flawed proofs were uncritically accepted in fields requiring mathematical rigor, such as
scientific modeling, engineering design, or financial analysis, it could lead to incorrect conclusions, faulty systems, or
economic miscalculations. Our contribution of a rigorous, step-wise evaluation methodology serves as a potential mitigation
strategy by promoting transparency and enabling the identification of fragile reasoning chains, thereby encouraging cautious
deployment and emphasizing the need for verification, especially in high-stakes applications. The public release of the
IneqMath benchmark further supports community efforts in understanding and improving the reliability of LLM reasoning.
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