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Abstract

Recent approaches introduce chain-of-thought (CoT) reasoning to mitigate the challenges,
such as hallucination and reasoning deficit in multimodal large language models (MLLMs)
and enhance performance. However, existing CoT-based methods often rely on exten-
sive data annotation and training. To overcome these limitations, we propose a training-
free framework for autonomous and reliable reasoning (TFAR), which only uses common
lightweight vision tools to improve the reasoning ability of MLLMs. TFAR enables an
MLLM to autonomously and accurately identify relevant regions of interest (RoIs) and sup-
port CoT reasoning, without requiring additional training or annotations, and with low
computational overhead during inference. However, the use of external tools will introduce
noise and uncertainty. To mitigate the uncertainty introduced by external tools and select
the optimal pathway, we propose a conformal prediction-based uncertainty quantification
method that calibrates the outputs from external tools and dynamically selects the most
appropriate tool based on the MLLM’s output uncertainty. Experiments across five datasets
demonstrate that TFAR improves performance over the base MLLM by an average of 4.6%,
in some cases even outperforming fine-tuned baselines, while maintaining low inference cost.
These results offer new insights into training-free CoT guidance for MLLMs and underscore
the value of reliable visual tools.

1 Introduction

To address common challenges in multimodal large language models (MLLMs)—such as hallucination Wu
et al. (2025) and reasoning deficit Zhang et al. (2023)—recent studies have introduced chain-of-thought
(CoT) reasoning to improve performance on tasks like visual question answering (VQA) Shao et al. (2024);
Xu et al. (2024); Zhi et al. (2025b). A central component of CoT in MLLMs is guiding the model from coarse-
to-fine-grained visual understanding, gradually focusing attention on the most relevant image regions. This
process reflects how humans typically interpret images: starting with a broad overview and then zooming
in on specific details Shao et al. (2024). For instance, Shao et al. (2024) creates a dataset with bounding
boxes highlighting question-relevant regions and designs a two-stage VQA pipeline. An MLLM fine-tuned
on this data first identifies key regions, then generates answers by integrating both local and global cues,
as illustrated in Fig. 1(a). Similarly, Xu et al. (2024) introduced the LLava-O1-100K dataset, framing
VQA at multiple granularities and employing stage-wise beam search. While these models show improved
reasoning, they rely heavily on manual annotations and additional training costs that scale with model size
and complexity.

Taking Shao et al. (2024) as an example, a natural question arises: is it necessary to fine-tune an MLLM to
teach it to select regions of interest (RoIs), as shown in Fig. 1(a) Could we instead prompt an off-the-shelf
MLLM to select RoIs on its own, then combine these with the original image, and perform CoT reasoning
without further training? To test this idea, we apply this naive two-round inference method using the setup
from Shao et al. (2024), without any additional tuning. As shown in Table 8, this approach fails to improve
and often degrades overall accuracy. By analyzing the failure cases, we identify two key reasons: (1) Poor
localization: the MLLM lacks a sense of scale, often misjudging image size, misplacing bounding boxes, or
including irrelevant background; (2) Lack of instruction following: since the model is not trained to interpret
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Figure 1: Comparison of training-based and our training-free methods for navigating CoT reasoning. (a)
Training-based method Shao et al. (2024): The MLLM is explicitly trained to identify key regions for CoT
reasoning. A common approach involves constructing a dataset in which each image is annotated with
regions relevant to the associated question, typically using bounding boxes. During training, the model
learns to locate these regions, which are then extracted and used alongside the original image to support
final-stage reasoning. While this strategy can enhance the reasoning performance of MLLMs, it requires
extensive manual annotation and incurs significant training costs. (b) Our training-free method: Instead
of training the MLLM to learn RoI selection, we only leverage lightweight vision tools to provide essential
visual information (e.g., object names and bounding boxes). The MLLM then autonomously selects RoIs
by reasoning over object size, position, and semantic relationships. These regions are combined with the
original image to support final-stage CoT reasoning, without the need for manual annotations or fine-tuning.

prompts that request RoI selection, it tends to ignore such instructions and produces unreliable results, even
format errors often occur. False RoIs arising from these factors can mislead the model’s reasoning, ultimately
resulting in incorrect answers. We show the representative failure examples in Fig. 6.

To address these limitations, we propose a training-free approach. We find that using only common
lightweight vision tools (i.e., object detectors and segmenters) to provide essential visual information (i.e.,
the object name with bbox or boundary) can enable the MLLM to autonomously and accurately select RoIs
by considering object size, position, and semantic relationships. In addition, with this information, MLLM
only needs to select the object ID instead of generating a bounding box or boundary, thus avoiding problems
such as format errors caused by inadequate instruction tuning. The selected regions are then combined
with the full image to facilitate the final CoT reasoning by following the two-round reasoning in Shao et al.
(2024). Our approach promotes both deep visual understanding and precise RoI selection, without requiring
any manual annotations or model retraining. A comparison with training-based methods is shown in Fig. 1.

However, using external tools introduces a new challenge: uncertainty and noise. Additionally, when multiple
vision tools are available, it becomes unclear which one to trust. To address these issues, we incorporate
uncertainty quantification (UQ) to evaluate both external tools and the MLLM itself, improving the reliability
of the overall framework through uncertainty calibration or comparison. For example, Fig. 2 shows a case
where an object detector misleads the MLLM and our proposed method based on UQ.

We integrate all the proposed methods into a framework named TFAR—Training-Free Framework for Au-
tonomous Reliable Reasoning—as illustrated in Fig. 3. We follow Shao et al. (2024) to use a two-stage
process. The first stage of TFAR uses fine-grained visual information from external models, calibrated using
a specially designed conformal prediction (CP)-based method Vovk et al. (2005) for computational efficiency,
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Figure 2: An example illustrating how unreliable visual tools can mislead MLLM reasoning. US refers to
the uncertainty score. (a) Zero-shot VQA by the MLLM: The MLLM alone fails to answer correctly in
zero-shot mode due to limited visual recognition capabilities. (b) MLLM with an unreliable object detector:
Incorporating external visual information with noise can lead the MLLM to incorrect conclusions. (c) Our
proposed method based on UQ: We calibrate the outputs of external vision tools to provide reliable visual
cues and estimate the uncertainty of the MLLM’s responses to identify the most reliable tool, which leads
to the correct answer.

to guide RoI selection. The MLLM uses this information, together with the query and image, to select rel-
evant regions autonomously. In the second stage, the MLLM performs CoT reasoning based on both the
original image and selected RoIs. To assess the reliability of this stage, we estimate uncertainty using a
prediction set size-based method that considers the number of plausible tokens in top-p sampling Holtzman
et al. (2020). This uncertainty is further used to select the most reliable vision tool for a given reasoning
task. Our contributions are summarized as follows:

• We identify and address two key limitations in existing CoT-based multimodal reasoning
pipelines—the need for extensive annotations and model retraining—by introducing a training-free
reasoning framework. In this framework, using only common lightweight visual tools to provide ba-
sic information about the image enables MLLM to autonomously and accurately select RoIs, which
facilitates the final CoT reasoning.

• We introduce a conformal prediction-inspired calibration strategy to quantify uncertainty from both
external tools and MLLM outputs, ensuring that the two stages of MLLM inference are reliable.
The strengths of the two UQ methods over existing UQ methods, such as confidence scores and
entropy, are validated in our empirical study.

• We evaluate TFAR on five datasets, demonstrating that the performance of MLLM is significantly
improved with an average improvement of 4.6%, which is on par with some methods that require
additional training and annotations, while maintaining affordable computational cost. These findings
highlight the effectiveness of our proposed reasoning framework and the importance of incorporating
visual tools reliably.

We review related work in Sec.2 and describe the proposed TFAR framework in Sec.3. Sec.4 presents the
experimental settings and results, and we conclude our work in Sec.5.
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Figure 3: Overview of the proposed TFAR framework. When answering this example directly, MLLM will
give the wrong answer: ’The beer is on the ground.’. Instead, this figure illustrates how TFAR generates the
correct answer through a two-stage process. Stage 1: TFAR invokes external tools to obtain fine-grained
information and applies CP-based calibration to their outputs to improve quality. This calibration mitigates
issues such as the segmentation tool misclassifying many pixels as background and the object detection tool
missing small objects. Based on the calibrated results, the MLLM autonomously selects RoIs through a
reasoning process. Stage 2: The selected RoIs are extracted and combined with the original image as the
MLLM input to perform the final CoT reasoning. The best answer is chosen from all pathways using our
uncertainty estimation based on the prediction set size. TFAR does not require additional annotation or
model training. By relying solely on common, lightweight vision tools to provide essential image information,
the framework enables the MLLM to autonomously and accurately select RoIs while maintaining efficient
inference. Uncertainty quantification at both stages further ensures the reliability and robustness of the
entire reasoning process.

2 Related work

Vision language models Vision language models integrate textual and visual representations to enable
complex reasoning tasks and has always been the focus of much attention in the multimodal field Zhang
et al. (2024); Zhi et al. (2024; 2025a). Early approaches primarily focused on joint embedding strategies
and attention mechanisms, where images and text are projected into a shared feature space for downstream
tasks such as visual question answering, image captioning, and cross-modal retrieval Lu et al. (2019); Kim
et al. (2021). With the advent of LLM Achiam et al. (2023); Touvron et al. (2023), researchers have explored
ways to merge massive textual encoders/decoders with robust vision encoders, aiming to leverage LLMs’
powerful linguistic reasoning while preserving rich visual features. One line of work investigates contrastive
pre-training strategies, popularized by CLIP Radford et al. (2021). Another family of methods explores
fusion architectures—such as Flamingo Alayrac et al. (2022) and BLIP-2 Li et al. (2023)—where vision
encoders are tightly coupled to transformer-based language models to achieve few-shot or even zero-shot
performance on tasks ranging from image captioning to visual grounding. More recent efforts push the
boundaries by aligning large language models with visual embeddings, named MLLM, such as LLaVA Liu
et al. (2024b), Qwen-VLBai et al. (2023) and InternVL Chen et al. (2024). In our work, we mainly focus on
incorporating training-free methods to improve MLLM reasoning in the VQA task.

Chain-of-thought in visual reasoning. The success of CoT in LLM is because it significantly improves the
model’s reasoning ability. With CoT, instead of answering questions directly, LLM simulates the reasoning
of human beings and explicitly performs step-by-step reasoning to improve the performance in complex
reasoning tasks Wei et al. (2022); Zhang et al. (2022). Many works have begun to try to apply CoT in
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MLLM to enhance visual reasoning capabilities. Z. Z et al. Zhang et al. (2023) propose a multimodal-
CoT that incorporates language and vision modalities into a two-stage framework that separates rationale
generation and answer inference. In this way, answer inference can leverage better generated rationales that
are based on multimodal information. In Shao et al. (2024), the authors create a dataset with bounding
boxes for question-relevant regions in the image and design a two-stage VQA pipeline. An MLLM fine-tuned
on this dataset automatically locates regions of interest and provides accurate answers by performing CoT
with the help of global and local image details. Similarly, Xu et al. (2024) introduces the LLavA-O1-100K
dataset, which frames VQA at four levels of granularity and applies stage-level beam search. The resulting
LLavA-O1 model displays strong reasoning capabilities. In addition, reinforcement learning is also used to
guide the model to adaptively focus on key image areas, thereby achieving efficient multimodal reasoning
Zhang et al. (2025); Fan et al. (2025). However, these methods rely on extensive manual annotations and
additional training, which pose practical challenges as MLLMs grow larger. In our approach, we show that
only involving lightweight vision tools can enable the MLLM to autonomously and accurately select key
regions, which facilitate the construction of the CoT. This removes the need for manual annotations and
extra training.

Uncertainty Quantification in MLLM The quantification of uncertainty in LLMs has gained significant
attention as a critical component for improving reliability and trustworthiness in AI systems Xiong et al.
(2023); Ye et al. (2025); Lin et al. (2023a). Some recent work has begun to extend it to MLLM. V. K. et
al. Kostumov et al. (2024) employ conformal prediction to quantify the uncertainty of 20+ MLLMs and
conclude that models with the highest accuracy may also have the highest uncertainty. However, they only
focus on the multiple-choice VQA task. To solve the hallucination of MLLM under rare images, Y. F. et al.
Fang et al. (2024) propose to use uncertainty-guided token dropout to mitigate errors arising from visual
token misinterpretation. Unlike in Groot & Valdenegro-Toro (2024), the verbalized uncertainty of MLLM is
estimated via prompting and net calibration error is calculated to measure the direction of miscalibration.
Z. K. et al. Khan & Fu (2024) propose using the principle of neighborhood consistency to identify unreliable
responses from an MLLM in QA tasks. Most of these approaches aim at black-box MLLM and do not
consider uncertainty in using the external tools. In contrast, our TFAR framework estimates the uncertainty
of both external tools and the MLLM’s outputs, leading to more trustworthy results.

3 Method

In this section, we present the proposed methodology in two main sections: the proposed TFAR framework
and the uncertainty quantification approach for it.

3.1 The proposed TFAR framework

We find that by referencing the basic information from external vision tools, MLLM can autonomously and
accurately select RoIs without an additional learning process. These regions, combined with the original
image, are subsequently fed into the MLLM. The MLLM then performs the final CoT reasoning, progressing
from a coarse interpretation to fine-grained details, to generate the final answer. To ensure the reliability
of both the vision models and the MLLM output, we utilize UQ for calibrating the tools and for selecting
the final answer from multiple pathways. The overall framework is depicted in Fig. 3. For example, given
an image I0 and a question Q0, the TFAR framework generates the final answer A∗ by following four main
steps:

• Tool call and calibration. We call external tools to provide basic information of I0, i.e., the object
name and bbox/boundary from the segmentation tool fseg and object detection tool fdet by following
popular agent-based methods Zhou et al. (2024); Wang et al. (2024). Note that in principle, TFAR
can use any number of tools; here we use two tools as examples and show the results of more tools
in the ablation study. To ensure the reliability of these tools, we design the calibration algorithms
CPseg and CPdet based on conformal prediction. Thus, we get the calibrated output of tools by
Rseg = CPseg(fseg(I0)) and Rdet = CPdet(fdet(I0)). Note that Rseg and Rdet are in text format and
objects are described using boundary point coordinates and bounding box, respectively.
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• Reasoning: RoI selection. Instead of selecting the key area manually Shao et al. (2024), We leave
it to the MLLM fMLLM itself to choose the area that may help to answer the question based on the
tool output Rseg and Rdet by using the prompt promptroi: ’We input an image into {segmentation
tool/object detection tool}. The return value is { Rseg/Rdet}. Now, given the question Q0, please
analyze the results step by step. Consider the semantic, location and size relationships between all
objects and how they relate to the question. Please finally provide me with a list containing only the
**id** of the objects that could help answer the question.’. In this process, MLLM reasons to fully
explore the fine-grained information provided by tools and give the interested object id in the answer
Oseg = fMLLM (Rseg, Q0, promptroi) and Odet = fMLLM (Rdet, Q0, promptroi). Thanks to the basic
information in Rseg/Rdet, the MLLM only needs to select the object ID instead of generating a
bounding box or boundary. This simplifies the task and helps avoid issues such as format errors
that often arise from insufficient instruction tuning.

• RoI extraction. Based on the object of interest obtained in the previous step, we extract the cor-
responding region from the original image by Iroi

seg = Eseg(I0, Oseg) and Iroi
det = Edet(I0, Odet), where

Eseg refers to the area extraction by pixel for segmentation result and Edet is the area extraction by
bounding box for detection result.

• Reasoning: Final answer generation. We follow Shao et al. (2024) to input the original image
with the key area and guide the MLLM to perform CoT reasoning from coarse-grained to fine-grained
by using the prompt promptanswer: ’Given the original image and the highlighted area, please think
step by step to answer the question {Q0}. Please view the original image first, then focus on the
highlighted area and please retrieve more information from the original image if needed.’. So far
we get the final answer for both pathways by Aseg = fMLLM (I0, Q0, Iroi

seg, promptanswer) and Adet

= fMLLM (I0, Q0, Iroi
det , promptanswer). In the end, we choose the more trustworthy answer as the

final answer A∗ = mink US(Ak), US is the proposed uncertainty score based on the quasi-conformal
prediction that will be introduced in the next section.

Through the previous steps, TFAR provides a more trustworthy answer. We introduce the uncertainty-guided
approach for TFAR in the next section.

3.2 Uncertainty quantification approach for TFAR

External tools can introduce uncertainty, which is a major challenge for TFAR. To extract trustworthy
information from these tools and to select the most reliable pathway, we perform uncertainty quantification
on both the tool return values and the MLLM outputs, using CP. CP is a distribution-free uncertainty
quantification framework that provides statistically valid prediction sets with guaranteed coverage probability
Vovk et al. (2005). We describe our uncertainty quantification methods for external tools and the MLLM
outputs, respectively.

3.2.1 Calibration of visual models by conformal prediction

Given a pre-trained model, inductive CP constructs prediction sets that contain the true label with probabil-
ity at least 1− α. In classification terms, one chooses a nonconformity score s(·) to measure how “unusual”
each predicted label is (relative to the ground truth), then estimates a threshold q̂α from a held-out calibration
set. Formally, if {(Xi, Yi)}n

i=1 is a calibration set of size n, CP produces sets

C(Xtest) =
{

ŷ | s(Xtest, ŷ) ≤ q̂α

}
(1)

s.t. P
(
Ytest ∈ C(Xtest)

)
≥ 1− α, (2)

where q̂α is the (1− α)-quantile of all calibration scores {s(Xi, Yi)}n
i=1 and is calculated by

q̂α = Quantile
({

s(Xi, Yi)
}n

i=1
∪ {+∞},

⌈(n + 1) (1 − α)⌉
n

)
. (3)

The extra {+∞} and the ceiling term ⌈(n+1)(1−α)⌉/n ensure finite-sample coverage guarantees Angelopou-
los & Bates (2021). For a classification model whose output is a probability vector over classes, a common
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choice of nonconformity score is
s(Xi, Yi) = 1 − p

(
Yi | Xi

)
, (4)

i.e., “one minus the predicted probability assigned to the true class.” Below, we show how CP can be
specialized to (a) a segmentation model (pixel-wise) and (b) an object-detection model (bounding-box-wise).

Calibration of a segmentation tool Segmentation models can be viewed as a grid of pixel-level classifiers,
each outputting a probability distribution over K classes at every pixel location. A frequent practical issue
is that many pixels belonging to foreground objects get labeled as background (class 0), causing under-
segmentation Xie et al. (2021). We calibrate the result using a pixel-wise CP approach that allows the
re-labeling of certain background pixels. We define the following notions,

• X be the space of images of dimension H ×W ;

• Y = {0, 1, . . . , K} be the set of semantic labels (including background = 0);

• {(Xi, Yi)}n
i=1 be the calibration set, where Yi(u, v) ∈ Y is the ground truth at pixel (u, v);

• N = n×H ×W be the total number of pixels in the calibration set.

A segmentation model provides a probability vector pi,u,v ∈ [0, 1]K+1 over classes at each pixel (u, v) in
image Xi. We define the pixel-wise nonconformity score:

s(i, u, v) = 1 − p Yi(u,v)(i, u, v), (5)

i.e., one minus the predicted probability that (u, v) is its true class. Thus we can collect all nonconformity
scores from the calibration set:

S = { s(i, u, v)
∣∣∣ i = 1, . . . , n; u = 1, . . . , H; v = 1, . . . , W }. (6)

Its (1− α)-quantile q̂α (with finite-sample correction) is

q̂α = Quantile
(

S ∪ {+∞},
⌈(N + 1)(1 − α)⌉

N

)
. (7)

For a test image Xtest, at each pixel (u, v) we define the conformal prediction set

C(u, v) =
{

k ∈ Y | 1− p k(u, v) ≤ q̂α

}
. (8)

Thus C(u, v) is all classes whose pixel-wise nonconformity scores are no larger than q̂α. We map C(u, v) to a
single calibrated label ŷcal(u, v) via:

ŷcal(u, v) =



arg max
j∈C(u,v)

pj(u, v), if C(u, v) ̸= ∅,

and 0 /∈ C(u, v),
arg max

j∈C(u,v)\{0}
pj(u, v), if C(u, v) ̸= ∅,

and 0 ∈ C(u, v),
0, if C(u, v) = ∅,

(9)

If 0 (background) appears in C(u, v), the pixel can be re-labeled to a foreground class within that set,
mitigating over-conservative segmentation.

Calibration of an object detection tool We apply bounding-box-wise conformal prediction Andéol et al.
(2023) to calibrate object detections. This addresses extreme cases where tiny objects may require expanding
the predicted box to guarantee covering the true object with high probability. We define the following notions:
let

• X be the image space;

• Y = {bk}K
k=1 be the set of K ground-truth bounding boxes in an image, where each box is given by

bk = (xk
min, yk

min, xk
max, yk

max);
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• {(Xi, {bk
i })}n

i=1 be the calibration set, with {bk
i } the ground-truth boxes of image Xi.

A trained detector produces a set of predicted boxes {b̂j
i = (x̂j

min, ŷj
min, x̂j

max, ŷj
max)} for image Xi. We match

predicted boxes to ground-truth boxes via an IoU threshold τ . Let Mi be the set of matched pairs (b̂j
i , bk

i )
with IoU(b̂j

i , bk
i ) ≥ τ . For each matched pair, define the additive nonconformity score:

sk
j =

(
x̂j

min − xk
min, ŷj

min − yk
min,

xk
max − x̂j

max, yk
max − ŷj

max
)
,

(10)

which measures the coordinate-wise prediction errors. The full set of nonconformity scores is collected across
all matched pairs:

S =
n⋃

i=1

⋃
(b̂j

i
,bk

i
)∈Mi

{
sk

j [1], sk
j [2], sk

j [3], sk
j [4]
}

, (11)

where sk
j [m] is the mth coordinate error. To ensure coverage on all four coordinates, we apply a Bonferroni

correction, splitting risk α into α/4 for each coordinate. Let Sm be the mth-coordinate errors across all
matched pairs from all calibration images. Then for each m ∈ {1, 2, 3, 4},

q̂α,m = Quantile
(

Sm ∪ {+∞},
⌈(|Sm| + 1) (1 − α/4)⌉

|Sm|

)
. (12)

On a test image Xtest, we conformalize each predicted box b̂j by expanding it to

C(b̂j) =
[
x̂j

min − q̂α,1, ŷj
min − q̂α,2,

x̂j
max + q̂α,3, ŷj

max + q̂α,4

]
.

(13)

This guarantees that if b̂j is matched to a true box bk, then bk remains inside C(b̂j) with probability at least
1− α.

3.2.2 Uncertainty estimation for MLLM output based on prediction set

By using the TFAR framework, answers Aseg and Adet are generated through two pathways. We propose
an uncertainty quantification method based on a prediction set in the top-p sampling, corresponding to
conformal prediction with a fixed non-conformity score threshold. Thus, we call it a quasi-conformal pre-
diction UQ for convenience, but note that the top-p sampling does not generate a prediction set with any
coverage guarantee. This method measures the number of candidate tokens required to "cover" a predefined
probability mass p at each generation step in top-p sampling. For an output sequence A = {w1, w2, . . . , wT },
where wi denotes the ith token, we compute the uncertainty score in two steps:

• Token probability sorting. For each token wi, let Pi =
[
p

(1)
i , p

(2)
i , . . . , p

(V )
i

]
represent its probability

distribution over the vocabulary, sorted in descending order
(

p
(1)
i ≥ p

(2)
i ≥ · · · ≥ p

(V )
i

)
.

• Cumulative thresholding. We compute the minimal number of tokens ki needed to exceed a threshold
p ∈ (0, 1]:

ki = min

{
k

∣∣∣∣∣
k∑

j=1

p
(j)
i ≥ p

}
. (14)

Here, ki reflects the breadth of plausible alternatives for wi. A large ki indicates high uncertainty,
while a small one implies confidence (few tokens dominate the probability mass).

• Sequence-level aggregation. The final uncertainty score (US) for A is achieved by calculating the
mean ki across all tokens:

US(A) = 1
T

T∑
i=1

ki. (15)
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By applying the proposed quasi-conformal prediction-based uncertainty estimation, we get the uncertainty
score of two pathways US(Aseg) and US(Adet). The answer with a smaller uncertainty score will be consid-
ered as more trustworthy and thus output by the TFAR as the final answer A∗ = mink US(Ak)

4 Experiment

Table 1: Comparison with baselines on all datasets.
Method VQA2 VizWiz GQA Flickr30K MMBench Average

LLaVA-1.5-13B 80.0 53.6 63.3 62.3 67.7 65.4
LLaVA-ov-7B (base model) 79.0 53.6 64.8 61.1 72.3 66.2
SPHINX-13B 78.1 52.5 62.6 60.7 66.9 64.2
vicuna-7B-VisCoT 77.4 54.8 61.6 67.1 67.3 65.6
TFAR (ours) 82.5 60.1 67.3 67.2 77.1 70.8
LLaVA-ov-7B-VisCoT (upper bound) 83.3 57.2 69.6 69.9 76.6 71.3

We first describe the experimental settings, then the results of our method and the baselines across five
multimodal reasoning datasets, demonstrating the effectiveness of our approach.

4.1 Experimental setting

Baselines. We select the following strong baseline for comparison.

• Base model: LLaVA-OneVision-Qwen2-7b (LLaVa-OV) Li et al. (2024). We selected this base model
to build the TFAR pipeline due to its excellent performance and support for multiple image inputs,
which is essential for our implementation. We refer to this baseline as LLaVA-ov-7B.

• LLaVA-1.5-13B Liu et al. (2024a). LLaVA-1.5-13B is a popular baseline for VQA tasks with an
increased parameter count.

• Visual CoT (VisCoT) Shao et al. (2024). VisCoT is a state-of-the-art (SOTA) approach that fine-
tunes an MLLM on a manually curated dataset, enabling it to automatically identify key areas in
an image and facilitate CoT reasoning. We fine-tune the LLaVa-OV model on the VisCoT dataset
following the procedure in Shao et al. (2024) and denote the resulting model as LLaVA-ov-7B-
VisCoT. Additionally, we also compare our method with the vicuna-7B-VisCoT model released in
Shao et al. (2024).

• SPHINX Lin et al. (2023b). SPHINX enhances the MLLM’s ability to identify regions of interest
and guide CoT reasoning by incorporating multiple visual encoders during training. The base model
used in SPHINX is Llama2-13B.

Datasets. We select a diverse set of VQA datasets to comprehensively evaluate our proposed method:

• VQA2 Goyal et al. (2017): a large-scale benchmark for open-ended VQA tasks, featuring 107,391
question-answer pairs in the test set that cover diverse topics, including object recognition, counting,
and commonsense reasoning.

• VizWiz Gurari et al. (2018): a real-world dataset collected from blind or low-vision users, capturing
everyday scenarios. The open-ended questions frequently involve tasks such as text recognition,
object identification, and scene understanding, with 8,000 question-answer pairs in the test split.

• Flickr30K Plummer et al. (2015): supports VQA with open-ended question-answer pairs that em-
phasize fine-grained object attributes, actions, and contextual scene understanding. The test set
comprises 1,546 question-answer pairs.
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Table 2: Ablation of UQ approach in TFAR.
Method VQA2 VizWiz GQA Flickr30K MMBench Average

base model 79.0 53.6 64.8 61.1 72.3 66.2
TFAR-seg-base 80.3 56.2 65.2 62.3 74.0 67.6
TFAR-det-base 80.7 57.3 65.9 63.4 74.7 68.4
TFAR-seg-CP 82.0 59.0 66.6 66.1 75.5 69.8
TFAR-det-CP 81.7 58.6 66.2 65.2 75.8 69.5
TFAR (ours) 82.5 60.1 67.3 67.2 77.1 70.8

• GQA Hudson & Manning (2019): provides 12,578 open-ended questions in the test set, with a focus
on the relationships among objects, attributes, and spatial arrangements.

• MMBench Liu et al. (2024c): includes 1,784 questions in the test set that span classification, cap-
tioning, and VQA tasks. It features both multiple-choice and open-ended questions across diverse
visual scenarios.

Metric. All dataset evaluation scripts use accuracy as a metric, more details are given in the Appendix B.

Tool selection. We choose popular lightweight tools: SEEM Zou et al. (2023) for segmentation and Yolov11
Jocher & Qiu (2024) for object detection. We also try other tools in the ablation study.

TFAR setting We set α = 0.1 for both CPseg and CPdet, following prior work Kumar et al. (2023); van der
Laan & Alaa (2025) and show more results in the Appendix C under different values of α. Empirically,
we set the parameter p to 0.9 for the prediction set-based uncertainty estimation and show more results in
the Appendix C under different values of p. To compute the nonconformity scores for both tools, we use
the COCO-2017 validation dataset Lin et al. (2014), which contains 5,000 images with annotations for both
segmentation and object detection. We also try different calibration datasets in the ablation study. The
time consumption for calculating the nonconformity score on the calibration set is 35 minutes and 8 minutes
for the segmentation and object detection tools, respectively. For each test image, the average time taken
for calibration is about 34ms and 0.2ms, respectively. The hardware and software platforms involved in the
experiment are given in the Appendix B.

4.2 Main result

We present the experimental results of our proposed TFAR method alongside baselines on all datasets in
Table 1. As shown in the table, TFAR substantially improves the base model’s performance by 3.5%,
6.5%, 2.5%, 6.1%, and 4.8% across the five datasets, demonstrating its effectiveness. Notably, VizWiz
exhibits the largest performance gain, likely because this dataset contains many blurred images, where
TFAR’s tool calibration plays a particularly important role. Furthermore, TFAR outperforms all competing
methods except for the upper bound, including some methods with more parameters (e.g., LLaVA-1.5-
13B and SPHINX-13B). Remarkably, TFAR even surpasses the upper bound on VizWiz and MMBench,
underlining the significance of reliable tool return values.

We show some representative examples in Fig. 4 to qualitatively analyze TFAR. Due to the limited space,
We omit the interaction with MLLM in the figure and highlight the RoIs selection and UQ process. In
Q1, the MLLM provides an incorrect answer due to interference from the cup pattern. The segmentation
tool—especially after correction—accurately separates the cat from the cup, which helps the MLLM reach
the correct answer with high confidence. Although the detection tool correctly identifies both the cup and
the cat, its bounding box is too broad, failing to eliminate the interfering information. In Q2, the MLLM is
confused by the image and produces an incorrect answer. In this case, both the segmentation and detection
tools identify the dog; however, the segmentation tool also captures the person and refines the output
through the calibration, which helps to better distinguish between the human and the dog and allows the
MLLM to generate a more reliable answer. In Q3, MLLM fails to capture the bottle on the grass and gives an
incomplete answer. The segmentation model and the detection model also face the same challenge. However,
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Stage1 Stage2

Q2: What color 
shoe does the dog 
wear?

GT: The dog does 
not wear shoes.
MLLM: Brown.

A*: The dog 
does not 
wear shoes. 
(US = 2.3)

A: The dog 
wear the 
white shoes. 
(US = 2.9)

Q1: What is the 
color of the cat’s 
nose?

GT: unanswerable.
MLLM:  Pink.

A*: un-
answerable. 
(US = 2.3)

A: Yellow. 
(US = 3.1)

A: The man
could be hit
by a ball and
knock over a
bottle. (US =
2.5)

A*:The man
could be hit
by a ball
and hit a
bottle.
(US = 2.2)

Q3: What are the 
possible hazards in 
the picture?

GT: A man can get hit 
by a ball and hit a bottle.
MLLM: A man can 
get hit by a ball.

Figure 4: Visualization of some results. GT refers to the ground truth of the answer. Due to the limited
space, We do not show interaction with MLLM, focusing on the RoIs selection and UQ process in Stage 1
and Stage 2. Refer to Fig. 3 for more details of the framework.

CP-based calibration enables the segmentation model to re-segment the bottle from the background, and
the detection model successfully identifies this object. Consequently, MLLM focuses on the ball, the person,
and the bottle, which leads to the correct answer. More visualizations are shown in the Appendix C.

4.3 Ablation study

We perform comprehensive ablation experiments to validate the effectiveness of the proposed approach.

Inference efficiency One potential concern with TFAR is inference efficiency, as it involves external tool
calls and uncertainty calibration. To assess this, we compare the average inference time of TFAR with that of
the best-performing baseline, LLaVA-ov-7B-VisCoT, on the VQA2 and VizWiz datasets. All evaluations are
conducted with a batch size of 1, and the average inference times across all samples are reported in Table 3.
As shown in the table, TFAR’s inference time is 12.6% and 12.4% slower than the baseline on VQA2 and
VizWiz, respectively. This performance overhead remains within an acceptable range, especially considering
that LLaVA-ov-7B-VisCoT requires approximately 20 hours of fine-tuning with 438k question-answer pairs,
which is computationally expensive and resource-intensive. The modest overhead in TFAR is largely due
to the use of lightweight visual tools, which operate at millisecond-level latency. Moreover, the conformal
prediction-based calibration step introduces negligible additional cost, as the inconsistency scores used for
calibration are precomputed.
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Table 3: Comparison of inference time consumption between TFAR with the LLaVA-ov-7B-VisCoT.
Method VQA2 VizWiz

TFAR 2.42s 2.63s
LLaVA-ov-7B-VisCoT 2.15s 2.34s

Table 4: Ablation of UQ approach in TFAR.
Method VQA2 VizWiz GQA Flickr30K MMBench Average

base model 79.0 53.6 64.8 61.1 72.3 66.2
TFAR-VOC 81.6 58.9 66.4 65.7 75.8 69.7
TFAR (ours) 82.5 60.1 67.3 67.2 77.1 70.8

Different calibration dataset Another important consideration is the impact of the calibration dataset
distribution on overall performance. To investigate this, we evaluate TFAR using an alternative calibration
set: the PASCAL VOC 2012 validation dataset Everingham et al., which contains 1449 images with both
segmentation and detection annotations. We denote this variant as TFAR-VOC and compare its performance
against the base model and the original TFAR (calibrated with the COCO 2017 validation set), as shown in
Table 4. Our results show that TFAR-VOC exhibits a slight performance drop compared to TFAR, with an
average decrease of 1.1%. Nonetheless, it still outperforms the base model by a substantial margin of 3.5%.
We attribute this performance gap to the smaller number of samples and more limited category diversity in
the PASCAL VOC dataset compared to COCO 2017. Based on these observations, we recommend using
the COCO 2017 validation dataset for calibration to achieve the best overall performance.

Different base models We evaluate the effectiveness of TFAR when integrated with various base models,
including both open-source and commercial MLLMs. The open-source models include mPLUG-Owl2 (7B)
Ye et al. (2024), and Qwen-VL (7B) Bai et al. (2023). The commercial models include GPT-4o Wang et al.
(2024) and Gemini 2.5 Flash Team et al. (2024). All of them support multi-image inputs. When combined
with the TFAR framework, these are referred to as mPLUG-Owl2-TFAR, Qwen-VL-TFAR, GPT-4o-TFAR,
and Gemini 2.5-TFAR, respectively. As shown in Table 5, TFAR consistently improves the performance of all
base models across five datasets, with average gains of 5.2%, 6.8%, 2.0%, and 1.3% for mPLUG-Owl2, Qwen-
VL, GPT-4o, and Gemini 2.5, respectively. These results demonstrate the generalizability of the proposed
framework. Notably, the performance gains are more pronounced in open-source models. We attribute the
smaller improvements observed in commercial models to their extensive pretraining on tasks such as object
detection and segmentation, which equips them with strong visual understanding capabilities, sometimes
surpassing those of dedicated vision models. Nevertheless, the significant performance boost observed in
smaller open-source models underscores TFAR’s practicality and potential in a wide range of application
scenarios.

Ablation of UQ approach in TFAR We first compare the pipeline without using uncertainty to guide
TFAR by disabling the calibration in Stage 1 and the uncertainty score calculation in Stage 2. This yields two
pathways: TFAR-seg-base (segmentation tool) and TFAR-det-base (object detection tool). Next, we enable
tool calibration in Stage 1 on top of TFAR-seg-base and TFAR-det-base to explore the benefit of the method,
resulting in TFAR-seg-CP and TFAR-det-CP. The performances of these approaches are shown in Table 2.
By comparing TFAR-seg-CP, TFAR-det-CP, and TFAR, it shows that using quasi-conformal prediction for
answer selection improves the performance of a single pathway, and TFAR outperforms any single-pathway
method on all datasets. Compared to the strongest single pathway, TFAR achieves an average improvement
of about 1% on five datasets. This suggests that different samples require different vision models and that
the uncertainty in the MLLM output can serve as a reliable metric for choosing the more appropriate tool.

We show the reliability diagram of TFAR-seg-CP, TFAR-det-CP, and TFAR on the GQA dataset in Fig. 5
to compare the reliability of the answer. A unique scores of 0 and 1 is calculated for each answer in the
GQA dataset. We normalize the uncertainty scores of all answers before subtracting them from one to
obtain the confidence score. It shows that the expected calibration error (ECE) Guo et al. (2017) is reduced
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Table 5: Comparison of different base models in TFAR.
Method VQA2 VizWiz GQA Flickr30K MMBench Average

mPLUG-Owl2 78.3 49.8 56.1 58.5 64.5 61.4
mPLUG-Owl2-TFAR 80.3 56.9 62.6 63.8 69.4 66.6
Qwen-VL 79.5 42.6 59.3 56.0 60.6 59.6
Qwen-VL-TFAR 81.9 54.8 65.7 63.2 66.2 66.4
GPT-4o 89.1 72.2 83.3 79.4 83.4 81.5
GPT-4o-TFAR 89.8 76.7 85.1 80.5 85.4 83.5
Gemini 2.5 91.4 75.3 86.2 84.1 86.9 84.8
Gemini 2.5-TFAR 91.9 78.8 86.9 85.3 87.7 86.1

(a) TFAR-seg-CP (b) TFAR-det-CP (c) TFAR

Figure 5: Reliability diagram of TFAR-seg-CP, TFAR-det-CP and TFAR on GQA dataset.

in TFAR, indicating the effectiveness of the proposed UQ for MLLM. Further comparison of TFAR-seg-
base and TFAR-det-base with TFAR-seg-CP and TFAR-det-CP shows that CP-based tool calibration yields
an improvement of 2.2% and 1.1% for two pathways, respectively. We attribute the higher performance
of TFAR-seg-CP to its pixel-level ROI extraction, which excludes more irrelevant regions than box-level
extraction and thus reduces the likelihood of introducing noise.

Different UQ approaches in TFAR We compare different UQ approaches. For the external tools, we
compare CP with a heuristic method. In the segmentation result, the confidence score for each object is
obtained by averaging the softmax probabilities of all pixels belonging to it. In the detection model, it uses
the confidence score returned by the model. We refer to these two pathways as TFAR-seg-CS and TFAR-det-
CS, respectively, and the overall approach as TFAR-CS. To incorporate the confidence score, we include it
in the tool’s return value (e.g., ’{"id": xx, "name": ’xx’, "confidence score": xx, "boundary": xx, ...... }’) and
add the text to promptroi: ’xxx, Consider the semantic, location, size and confidence relationships between
all objects and how they relate to the question. xxx’. For MLLM’s output, we compare with uncertainty
estimated by entropy:

USentropy(A) = 1
T

T∑
i=1

(
−

V∑
j=1

p
(j)
i log p

(j)
i

)
. (16)

We denote this approach as TFAR-US_entropy, where the tool calibration still uses CP. Table 6 presents
the results. From Table 6 we see that heuristic-based uncertainty estimation for the tools underperforms the
CP-based approach in TFAR, with drops of 1.6% for the segmentation pathway and 0.8% for the detection
pathway. This effect is more pronounced in segmentation, likely because the heuristic struggles to handle
overly conservative segmentation predictions. We also observe that using entropy for the MLLM output
boosts performance by 0.4% compared to the strongest single pathway, but it still trails the quasi-conformal
prediction approach by 0.6%. We attribute it to UQ by top-p coverage focusing on major contributors to
the probability mass and aligns more closely with practical uncertainty perceptions, whereas entropy factors
in the entire long-tail distribution and can artificially inflate perceived uncertainty in some cases.
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Table 6: Comprison of different UQ approaches.
Method VQA2 VizWiz GQA Flickr30K MMBench Average

TFAR-seg-CP 82.0 59.0 66.6 66.1 75.5 69.8
TFAR-det-CP 81.7 58.6 66.2 65.2 75.8 69.5
TFAR-seg-CS 80.9 57.1 65.8 63.0 74.3 68.2
TFAR-det-CS 81.0 57.6 66.4 63.4 75.0 68.7
TFAR-CS 81.9 58.3 67.2 64.0 76.0 69.5
TFAR-US_entropy 82.0 59.4 66.9 66.5 76.3 70.2
TFAR 82.5 60.1 67.3 67.2 77.1 70.8

Table 7: Performance of TFAR+ with 4 tools
Method VQA2 VizWiz GQA Flickr30K MMBench Average

TFAR-seg-CP 82.0 59.0 66.6 66.1 75.5 69.8
TFAR-det-CP 81.7 58.6 66.2 65.2 75.8 69.5
TFAR-seg2-CP 81.5 58.6 66.0 65.7 75.0 69.4
TFAR-det2-CP 81.9 59.1 66.5 65.6 76.7 70.0
TFAR 82.5 60.1 67.3 67.2 77.1 70.8
TFAR+ 83.2 60.4 67.6 67.8 77.4 71.3

More tools in TFAR In principle, TFAR can be extended to include an arbitrary number of external
tools. To explore the impact of incorporating additional tools, we integrate Mask2Former Cheng et al.
(2022) as a second segmentation model (denoted as TFAR-seg2) and InternImage Wang et al. (2023) as a
second detection model (TFAR-det2). The extended version of the framework is referred to as TFAR+.
Experimental results are presented in Table 7. We observe that both TFAR-seg2-CP and TFAR-det2-CP
perform comparably to their original counterparts. TFAR+ yields a modest performance improvement of
0.5%. This result suggests that the MLLM can already identify accurate regions of interest using the essential
visual information provided by the initial two tools, without requiring additional computational overhead.
These findings highlight that TFAR achieves strong performance with a minimal toolset, reinforcing its
efficiency and scalability for practical deployment. Therefore, considering the trade-off between performance
and efficiency, we recommend using the original TFAR configuration with two tools.

5 Conclusion

In this work, we introduced TFAR, a training-free framework for autonomous and reliable reasoning in the
visual question answering (VQA) task. Specifically, we demonstrate that using only common, lightweight
vision tools to extract essential image information enables multimodal large language models (MLLMs) to
autonomously and accurately select regions of interest (RoIs), thereby facilitating effective chain-of-thought
(CoT) reasoning. This approach eliminates the need for manual annotation and model fine-tuning. To
enhance the reliability of the framework, we incorporate uncertainty quantification (UQ) based on conformal
prediction (CP) at both stages of the reasoning process. The CP-based UQ not only improves the robustness
of external visual tool outputs but also guides the selection of the most credible reasoning pathway. Extensive
experiments on five diverse datasets—VQA2, VizWiz, Flickr30K, GQA, and MMBench—demonstrate that
TFAR consistently improves performance over the base MLLM, with an average gain of 4.6%. In some cases,
TFAR even outperforms methods that require additional training. Ablation studies on inference efficiency
show that TFAR achieves this performance improvement with only a 12.5% increase in inference time over
the best training-based baseline, offering a favorable trade-off that avoids the need for dozens of hours of
model training and data annotation. Additional ablations confirm the effectiveness of our CP-based UQ
strategy, which outperforms conventional heuristic-based approaches. In future work, we plan to extend
TFAR to support additional modalities and tasks beyond VQA.
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Appendix

A Method

We summarize the proposed TFAR framework in Algorithm 1.

Algorithm 1 The Proposed TFAR Framework
Input: Image I0, Question Q0, external tools fseg, fdet, pre-trained MLLM fMLLM, CP-based calibration
methods (CPseg, CPdet), the method for UQ of MLLM output US, pixel-based image extraction Eseg and
bounding box-based image extraction Edet.

Stage 1: Tool Call and Calibration
1: Call segmentation tool: Rseg ← CPseg(fseg(I0))
2: Call detection tool: Rdet ← CPdet(fdet(I0))
3: Select RoI via MLLM-CoT:

Oseg ← fMLLM (Rseg, Q0, promptroi),
Odet ← fMLLM (Rdet, Q0, promptroi)

4: Extract RoI images:
Iroi

seg = Eseg(I0, Oseg), Iroi
det = Edet(I0, Odet)

Stage 2: Final Answer Generation and Selection
5: Perform final reasoning with CoT:

Aseg ← fMLLM (I0, Q0, Iroi
seg, promptanswer), Adet ← fMLLM (I0, Q0, Iroi

det , promptanswer)

6: Compute uncertainty scores:

USseg = US(Aseg), USdet = US(Adet)

7: Choose the final answer with minimal uncertainty:

A∗ = arg min
Ak∈{Aseg,Adet}

US(Ak)

8: return Final Answer: A∗

B Experimental Settings

Metric calculation method All datasets involved in the paper use accuracy as an evaluation metric and
calculate it as follows:

• VQA2. Each question in VQA2 is associated with 10 human-provided answers. For a predicted
answer, the score is defined as: score = min(1, (number of matching human answers) / 3), which
means if at least 3 annotators agree with the predicted answer, it receives full credit (a score of 1);
fewer matches yield partial credit. The overall accuracy is the average of these per-question scores
across the dataset.

• VizWiz. Similar to VQA2, VizWiz collects multiple answers per question (typically reflecting the
diversity in responses from blind users). It uses essentially the same formula as VQA2—comparing
the predicted answer against the set of human responses using the min(1, count/3) rule. The per-
question scores are averaged to produce the final accuracy score.

• GQA. For each question, the answer is deemed correct if it exactly matches the ground truth provided
by the dataset. The primary measure is the percentage of questions answered correctly (i.e., the
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number of correct answers divided by the total number of questions). Beyond simple accuracy, GQA
papers also explore secondary metrics (such as consistency, validity, and reasoning subtasks), but
the headline metric remains overall accuracy.

• Flickr30K. The evaluation of answers in Flickr30K follows Shao et al. (2024). Reference answers are
provided, and predicted answers are evaluated against these references using a GPT-based scoring
method. The final performance metric is computed by averaging the scores across all samples.

• MMbench. MMBench is designed to evaluate multimodal models over a range of tasks. For each
question or task, answers are scored on a scale (often normalized between 0 and 1 or 0 and 100)
based on criteria like correctness, completeness, and relevance. The scoring can be performed using
human evaluations, automated assessments (e.g., leveraging language models as evaluators), or a
combination of both. Each answer receives a score reflecting how well it meets the task requirements.
These per-task (or per-question) scores are then averaged to yield a composite performance metric
that summarizes the model’s overall capability across the diverse tasks included in MMBench.

Experimental platform All the experiments run on NVIDIA L40 GPU with CUDA 12.1.

C More experimental results

Directly let MLLM select RoI and reason with the original image We explore not training the
MLLM but letting it directly select the region of interest and then perform VQA by following the two-round
reasoning framework of VisCoTShao et al. (2024). In reasoning round 1, we use the prompt (abbreviation)
’Please think step by step and give the bbox of the area in this picture that may help answer the question,
and answer in the format of [xmin, ymin, xmax, ymax]. If there are multiple regions, please provide multiple
bboxes.’. In reasoning round 2, we extract the area according to the bbox in the previous answer and combine
it with the original image for final answer generation by using the prompt ’Given the original image and the
highlighted area, please think step by step to answer the question. Please view the original image first, then
focus on the highlighted area, and please retrieve more information from the original image if needed’. We
use LLaVA-OneVision-Qwen2-7b as the base model (because the model can handle multiple image inputs).
The method of fine-tuning using the VisCoT dataset to facilitate localization of RoIs is called LLaVA-ov-
7B-VisCoT. We name our approach as LLaVA-ov-7B-VisCoT-naive. We test all methods on the VQA2 and
Flickr30K datasets, using accuracy as the metric. The results are shown in Table 8. As Table 8 shows,
the results not only fail to improve but often degrade overall accuracy. By analyzing the failure cases, we
summarize two reasons: (1) Poor localisation. The MLLM has no sense of absolute scale. It often guesses the
image size incorrectly, draws bounding boxes that miss the target, or includes too much background. (2) No
instruction tuning for “find the key region.” Because the model was never trained on prompts that emphasise
region selection, it treats the request as a side note and delivers unreliable RoIs, and even format errors
often occur. False RoIs arising from these factors can mislead the model’s reasoning, ultimately resulting in
incorrect answers. We show the representative failure examples in Fig. 6.

Table 8: Comparison with baselines on all datasets.
Method VQA2 Flickr30K

LLaVA-ov-7B (base model) 79.0 61.1
LLaVA-ov-7B-VisCoT-naive 78.4 59.2
LLaVA-ov-7B-VisCoT 83.3 69.9

Visualization of more results We show more representative examples in Fig.7. In Q1, the MLLM fails
to distinguish between the bowling ball and the person’s head, leading to an incorrect answer. Initially, the
segmentation tool identifies only a portion of the person’s region. However, after applying CP, it successfully
segments both the bowling ball’s and the head’s regions. This improvement enables the model to capture
the head’s details and mitigate the bowling ball’s interference, ultimately guiding the MLLM to the correct
answer, whereas the detection model is unable to resolve the issue. In Q2, note the airplane toy includes
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(1) Poor localization (2) Lack of instruction

Q: What is the dog doing ?

MLLM Reasoning for RoI selection

The interested area is 
[27, 27, 161, 100] 

Q: What is the dog doing ?

MLLM

The interested area is 
[27, 27, 27, 27, 27…… 

Unable to 
parse

Figure 6: Failure cases of prompting MLLMs directly for RoI selection. (1) Poor localization. The MLLM
lacks an understanding of absolute scale. It often misjudges the image size, resulting in bounding boxes that
either miss the target or include excessive background. (2) Lack of instruction tuning for region selection.
Since the model was not trained with prompts focused on identifying key regions, it tends to treat such
instructions as secondary. This leads to unreliable region proposals and frequent format errors.

a small captain toy on its front—a detail that the MLLM initially missed. Although neither the
segmentation nor the detection model recognized this feature at first, the calibrated detection tool eventually
identified an object in that place, thereby preventing the model from focusing on the little girl, which assists
the MLLM in arriving at the correct answer. In Q3, the MLLM failed to distinguish between the human and
the dog, resulting in an incorrect answer. The segmentation tool only segments the dog while a large area of
the image is labeled as background. In contrast, the detection tool identifies both the human and the dog,
though its detection frame lacked precision. After CP calibration, the detection tool’s output changed little,
but the segmentation model’s calibrated results successfully separated the human and the dog, enabling the
MLLM to reach the correct answer with high confidence. In addition, combining Fig. 4 and Fig. 7, we
observe that the segmentation model performs better with overlapping targets, whereas the bounding boxes
provided by the detection model struggle to accurately separate these targets.

Different α and p in TFAR framework We evaluate the effects of parameters α and p in the TFAR
framework by conducting experiments with varying settings. Specifically, we examine α values at 0.05, 0.1,
0.15, and 0.2, and p values at 0.8, 0.85, 0.9, and 0.95. The performance results are summarized in Table 9 and
Table 10. From Table 9, we observe that extreme values of α negatively impact the performance. Specifically,
very small α values impose stringent error-rate constraints, resulting in wider, overly conservative prediction
intervals that lack granularity and informativeness. Conversely, large α values permit higher error rates,
yielding narrower, more precise intervals but significantly increasing the likelihood that the true value falls
outside the interval. Table 10 indicates that TFAR performance remains relatively stable when p is set to
0.95. However, reducing p to 0.85 or 0.8 leads to noticeable performance degradation. This decline likely
occurs because a lower threshold prematurely discards predictions with closely matched probabilities, thereby
truncating the probability distribution and misrepresenting the actual uncertainty. Based on our analysis,
we recommend selecting α = 0.1 and p = 0.9 for optimal performance of TFAR.
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Stage1 Stage2

Q1: What color is a 
man's hair?

GT: Black.
MLLM: Blue.

Q3: What is in the 
image?

A*: Black. 
(US = 2.5)

A: Blue.
(US = 2.9)

A*: A dog 
and a 
person. 
(US = 2.8)

A: A dog 
and a 
person. 
(US = 3.7)

GT: A dog and a 
person.
MLLM: A dog.

GT: Yellow.
MLLM: White.

Q2: What color is 
the hand of the 
captain of the toy 
plane?

A: Yellow.
(US = 1.3)

A: White.
(US = 1.9)

Figure 7: Visualization of more results.
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Table 9: The performance of TFAR with different α.
α VQA2 VizWiz GQA Flickr30K MMBench Average
0.05 82.1 59.5 67.0 66.6 77.0 70.4
0.1 (used in paper) 82.5 60.1 67.3 67.2 77.1 70.8
0.15 82.3 59.8 66.8 66.9 76.5 70.5
0.2 82.0 59.2 66.6 66.5 76.2 70.1

Table 10: The performance of TFAR with different p.
p VQA2 VizWiz GQA Flickr30K MMBench Average
0.8 81.8 59.0 66.5 65.9 76.2 69.9
0.85 82.0 59.3 66.8 66.6 76.7 70.3
0.9 (used in paper) 82.5 60.1 67.3 67.2 77.1 70.8
0.95 82.5 59.8 67.0 67.0 77.0 70.7
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