
Phone-ing it in: Towards Flexible, Multi-Modal Language Model Training
using Phonetic Representations of Data

Anonymous ACL submission

Abstract
Multi-modal techniques offer significant un-001
tapped potential to unlock improved NLP tech-002
nology for local languages. However, many003
advances in language model pre-training are004
focused on text, a fact that only increases sys-005
tematic inequalities in the performance of NLP006
tasks across the world’s languages. In this work,007
we propose a multi-modal approach to train lan-008
guage models using whatever text and/or audio009
data might be available in a language. Initial010
experiments using Swahili and Kinyarwanda011
data suggest the viability of the approach for012
downstream Named Entity Recognition (NER)013
tasks, with models pre-trained on phone data014
showing an improvement of up to 6% F1-score015
above models that are trained from scratch.1016

1 Introduction017

Pre-trained language models are increasingly ap-018

plied in ways that are agnostic to targeted down-019

stream tasks (Brown et al., 2020). This usage has020

lead to a proliferation of large language models021

trained on enormous amounts of data. For exam-022

ple, the recent Megatron-Turing NLG 530B model023

was trained on the Pile, which includes 800GB+ of024

text (Gao et al., 2021), and other large language025

models utilize large portions of the 200TB+ com-026

mon crawl data.2 These large data sets include im-027

pressive amounts of text, but all languages are not028

represented equally (or at all) in that text. The re-029

ality is that only a negligable fraction of the 7000+030

currently spoken languages (Eberhard et al., 2021)031

have sufficient text corpora to train state-of-the-032

art language models. This data scarcity results in033

systematic inequalities in the performance of NLP034

tasks across the world’s languages (Blasi et al.,035

2021).036

Local language communities that are working to037

develop and preserve their languages are producing038

1Preprocessing and training code will be released after
publication.

2https://commoncrawl.org/

diverse sets of data beyond pure text. The Bloom 039

software project,3 for example, is being used by 040

local language communities to create and translate 041

"shell" or "template" books into many languages 042

(426 languages at the time this paper is being writ- 043

ten). However, Bloom allows users to do more 044

than just translate text. Users are also recording 045

audio tracks and sign language videos, which has 046

resulted in 1600+ oral translations. Other examples 047

showing the multi-modal nature of data in local lan- 048

guages include: (i) the creation of ChoCo: a mul- 049

timodal corpus of the Choctaw language (Brixey 050

and Artstein, 2021); (ii) SIL International’s 15+ 051

year effort to document endangered Austronesian 052

languages via text, audio, and video (Quakenbush, 053

2007); (iii) the grassroots Masakhane effort cat- 054

alyzing the creation and use of diverse sets of 055

African language data (∀ et al., 2020); and (iv) work 056

with the Me’phaa language of western Mexico that 057

is producing digital recordings (video and audio) 058

along with vocabulary, grammar and texts (Marlett 059

and Weathers, 2018). These diverse data sources 060

are effectively unusable by traditional text-based 061

NLP techniques. In the light of data scarcity on 062

these languages, they offer significant untapped po- 063

tential to unlock improved NLP technology, if text 064

data can be leveraged along with audio, image and 065

video data. Furthermore, flexible multi-modal tech- 066

nology such as this will make it easier to include 067

diverse people and communities such as those de- 068

scribed above within the NLP technology develop- 069

ment process - audio-based technology reducing 070

the need for literacy, for example. 071

In this paper, we propose a multi-modal ap- 072

proach to train both language models and mod- 073

els for downstream NLP tasks using whatever text 074

and/or audio data might be available in a language 075

(or even in a related language). Our method uti- 076

lizes recent advances in phone recognition and 077

text/grapheme-to-phone transliteration to convert 078

3https://bloomlibrary.org/
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input audio and text into a common phonetic rep-079

resentation (the IPA phone inventory). We then080

pre-train character-based language models in this081

phone-space. Finally, we fine-tune models for082

downstream tasks by mapping text-based training083

data into the phonetic representation. Thus, in ad-084

dition to flexibility in pre-training, our method pro-085

vides a way to reuse labeled text data for common086

NLP tasks, like Named Entity Recognition or Sen-087

timent Analysis, in the context of audio inputs.088

We demonstrate our phonetic approach by train-089

ing Named Entity Recognition (NER) models for090

Swahili [swh]4 using various combinations of091

Swahili text data, Swahili audio data, Kinyarwanda092

[kin] text data, and Kinyarwanda audio data. These093

two languages both originate from from the same094

language family, Bantu, and are spoken by millions095

of people in Eastern Africa, but are both considered096

low-resource languages. Kinyarwanda in particu-097

lar, though spoken by nearly 10 million people,098

has very little text data available in that language,099

with fewer than 3,000 articles on the Kinyarwanda-100

language Wikipedia, and Swahili comparatively101

ahead but still poorly resourced at approximately102

68,000 articles, far less than many European lan-103

guages.5 On the other hand, Kinyarwanda is104

uniquely placed as a language to leverage speech-105

based technologies, due to well-organized efforts6106

to collect voice data for that language. It is in fact107

one of the largest subsets available on the Com-108

mon Voice Dataset (Ardila et al., 2019), with 1,183109

hours of voice clips collected and validated. Choos-110

ing these two languages allowed us to test the use111

of the technique on legitimately low-resourced lan-112

guages that could benefit from improved NLP tech-113

nology, and which as part of the same family of114

languages might be similar enough in vocabulary,115

grammar, sound systems and so on, to benefit from116

cross-lingual training.117

We find that simple NER models, which just118

look for the presence or absence of entities, can119

be trained on small amounts of data (around 2000120

samples) in the phonetic representation. Models121

trained for complicated NER tasks in the phonetic122

representation, which look for entities and their123

locations within a sequence, are improved (by up124

to 6+% in F1 score) through pre-training a phonetic125

4Language codes formatted according to ISO 639-3 stan-
dard: https://iso639-3.sil.org/

5https://meta.wikimedia.org/wiki/List_of_Wikipedias
6https://foundation.mozilla.org/en/blog/how-rwanda-

making-voice-tech-more-open/

language model using a combination of text and 126

audio data. We see this improvement when fine- 127

tuning either a Swahili or Kinyarwanda language 128

model for downstream Swahili tasks, which implies 129

that one could make use of text and audio data in 130

related languages to boost phonetic language model 131

performance. The utility of the method in data 132

scarce scenarios and importance of pre-training 133

depends on the complexity of the downstream task. 134

2 Related Work 135

There have been a series of attempts to utilize pho- 136

netic representations of language to improve or 137

extend automatic speech recognition (ASR) mod- 138

els. Some of these jointly model text and audio 139

data using sequences of phonemes combined with 140

sequences of text characters. Sundararaman et al. 141

(2021), for example, uses a joint transformer archi- 142

tecture that encodes sequences of phonemes and 143

sequences of text simultaneously. However, this 144

joint model is utilized to learn representations that 145

are more robust to transcription errors. The archi- 146

tecture still requires text inputs (from ASR tran- 147

scriptions) and generates outputs in both text and 148

phoneme representations. In contrast, our approach 149

allows for text input, audio input, or text plus audio 150

input to language models. 151

Baevski et al. (2021) transforms unlabeled text 152

(i.e., not aligned with corresponding audio files) 153

into phonemes in a scheme to train speech recogni- 154

tion models without any labeled data. This scheme 155

involves a generator model trained jointly with a 156

discriminator model. The generator model converts 157

audio, segmented into phonetic units into predicted 158

phonemes, and the discriminator model attempts 159

to discriminate between these predicted phonemes 160

and the phonemes transliterated from unlabeled 161

text. Although both text and audio are utilized in 162

this work, they are not input to the same model 163

and the primary output of the training scheme is a 164

model that creates good phonetic speech represen- 165

tations from input audio. 166

Outside of speech recognition focused 167

work, Shen et al. (2020) (and other researchers 168

cited therein) attempt to "fuse" audio and text at the 169

word level for emotion recognition. They introduce 170

another architecture that internally represents both 171

audio and text. However, the so-called WISE 172

framework relies on speech recognition to generate 173

the text corresponding to audio frames in real-time. 174

The current work explicitly avoids reliance 175
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on speech recognition. The 2021 Multimodal176

Sentiment Analysis (MuSe) challenge continues177

this vein of research integrating audio, video, text,178

and physiology data in an emotion recognition179

task (Stappen et al., 2021). Contributions to180

this challenge, such as Vlasenko et al. (2021),181

introduce a variety of ways to "fuse" audio and text182

inputs. However, these contributions are squarely183

focused on emotion/sentiment analysis and do not184

propose methods for flexible, phonetic language185

models.186

Lakhotia et al. (2021) introduced functionality187

for "textless" NLP. They explored possibility of188

creating a dialogue system from only audio inputs189

(i.e., without text). As part of this system, language190

models are directly trained on audio units without191

any text. This advances the state-of-the-art with192

regard to self-supervised speech methods, but it193

does not provide the flexibility in audio and/or text194

language modeling introduced here.195

3 Methodology196

Our approach is inspired by the fact that many lan-197

guages are primarily oral, with writing systems198

that represent spoken sounds. We convert both199

text and audio into single common representation200

of sounds, or "phones," represented using the In-201

ternational Phonetic Alphabet, or IPA. Then, we202

perform both language model pre-training and the203

training of models for downstream tasks in this204

phonetic representation. Well-tested architectures,205

such as BERT-style transformer models (Vaswani206

et al., 2017), are thus flexibly extended to either207

speech or audio data.208

Regarding the conversion process of text and209

audio data, we leverage recent advances to translit-210

erate this data into corresponding sounds repre-211

sented by IPA phonetic symbols. This translitera-212

tion is possible for speech/audio data using tools213

such as the Allosaurus universal phone recognizer,214

which can be applied without additional training215

to any language (Li et al., 2020), though it can216

benefit from fine-tuning(Siminyu et al., 2021). To217

convert text data to phonemes we can use tools218

such as the Epitran grapheme-to-phoneme con-219

verter (Mortensen et al., 2018), which is specifi-220

cally designed to provide precise phonetic translit-221

erations in low-resource scenarios.222

Fig. 1 shows how downstream models for certain223

NLP tasks, like Named Entity Recognition (NER),224

are performed in the phonetic representation. La-225

beled data sets for NLP tasks need to be mapped 226

or encoded into the phonetic representation to train 227

downstream models. However, once this mapping 228

is accomplished, models trained in the phonetic 229

representation can perform tasks with audio input 230

that are typically restricted to processing text input. 231

3.1 Phonetic Language Modeling 232

One complication arising from direct speech-to- 233

phone transcription is the loss of word boundaries 234

in the transcription. This is expected, as natural 235

speech does not typically include long pauses be- 236

tween word utterances. This does, however, result 237

in merging text data sets containing clear word 238

boundaries with speech data sets containing no 239

clear word boundaries. 240

Borrowing from techniques used on languages 241

that do not indicate word boundaries by the use 242

of whitespace, we address the problem by remov- 243

ing all whitespace from our data sets after phone 244

transliteration. We train a character-based lan- 245

guage models over the resulting data. Character- 246

based models such as CharFormer (Tay et al., 2021) 247

or ByT5 (Xue et al., 2021) have shown promise in 248

recent years for language modeling, even if this 249

approach is known to have some trade offs related 250

to shorter context windows. 251

3.2 Potential Information Losses 252

The transliteration of text and audio data into pho- 253

netic representations presents several other chal- 254

lenges related to potential loss of information or 255

injection of noise: 256

1. Loss of intonation or "suprasegmental" ef- 257

fects, extending across segments: In some 258

languages, meaning may be encoded through 259

intonation or across sounds. Particularly for 260

tonal languages such as Mandarin Chinese 261

[cmn], this loss can represent a significant in- 262

formational loss particularly for homophones 263

with different tones, as seen in (Amrhein and 264

Sennrich, 2020). While IPA symbols can rep- 265

resent these intricacies, it adds complexity 266

2. Phone/phoneme differences: As noted in (Li 267

et al., 2020), speech sounds which are physi- 268

cally different (different phones), may be per- 269

ceived as the same (one phoneme) by speak- 270

ers of one language, but these same sounds 271

could perhaps be distinguished by speakers of 272

another language. For example, the Spanish 273
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Figure 1: Our approach: input from either modality can be converted by phone recognition, e.g. Epitran for text,
Allosaurus for speech. Then we test on several downstream tasks which we designate NER1, NER2, NER3.

words anos, and años contain phones (n and274

ñ) which sound "the same" to English speak-275

ers, but are semantically different to Spanish276

speakers. In other words, in English, both277

phones map to the same phoneme perceptu-278

ally. As the Allosaurus phone recognizer rec-279

ognizes the actual phones/sounds, not their280

perceived phonemes, it would transcribe these281

two phones to different representations even282

for English speech. This can be mitigated to283

an extent by customizing the output of Al-284

losaurus on a per-language basis, see Sec. 4.3.285

3. Simple errors in phone recognition: As noted286

in (Siminyu et al., 2021), even the best-trained287

Allosaurus models, fine-tuned on language-288

specific data, have a non-trivial Phone Error289

Rate (PER).290

An important question, therefore, is whether291

these added sources of noise/information losses292

are outweighed by the potential benefits in terms293

of flexibility. Does working in a phonetic represen-294

tation cause a prohibitive amount of information295

loss? We constructed our experiments and data sets296

in order to answer this question.297

4 Experiments298

In order to evaluate the quality of learned pho-299

netic representations, we transliterate several text300

and audio data sets in the Swahili [swh] language.301

We pre-train phonetic language models on various302

combinations of these data sets and evaluate down-303

stream performance on NER tasks. See Fig. 2 for a304

detailed overview of these various combinations.305

We refer to these combinations as denoted by306

downstream tasks (SNER for Swahili NER), and307

pre-training language ((K for Kinyarwanda, S for 308

Swahili) as well as data modality (T for text, A for 309

audio). By way of example, the SNER+ST2 model 310

results from pre-training using 2 swh text datasets 311

(ST2) and fine-tuning on the swh NER (SNER) 312

task, whereas the SNER+SAT model results from 313

pre-training using swh audio and text data (SAT). 314

Kinyarwanda [kin] data is used in our experi- 315

ments as a language related to the target language 316

(swh) with existing text and audio resources that, 317

in some ways, surpasses those available in the tar- 318

get language. Thus, we pre-train some models 319

on kin data while fine-tuning for the downstream 320

NER task using swh data. 321

Three different formulations of the NER task, 322

from more simple (NER1) to more compli- 323

cated/granular (NER3), are used (see Fig. 2) to 324

help determine the applicability of our methods 325

to less challenging (NER1) to more challenging 326

(NER3) tasks. The NER1 task tries to determine 327

the presence or absence of certain kinds of entities 328

within an input. For our task we use PER, ORG, 329

DATE, and LOC entities. The NER2 task addition- 330

ally requires models to predict the correct numbers 331

of these entities within an input. Finally, the NER3 332

task requires models to determine entities at the 333

correct locations with an input sequence of phones. 334

For all of these tasks, we first convert text data 335

to phones using Epitran and audio data to phones 336

using Allosaurus. Then, we pre-train on various 337

combinations of data, before fine-tuning on NER. 338

4.1 Data Sources 339

For swh pre-training data we use: (i) the "Lan- 340

guage Modeling Data for Swahili" dataset (Shikali 341

and Refuoe, 2019) hosted on Hugging Face (which 342
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Figure 2: Training scenarios: we pre-train on various combinations of phonemized datasets, evaluating on the
downstream NER task. SNER-ST denotes "Swahili Text (ST) pre-training, Swahili NER (SNER) fine-tuning",
SNER-SAT denotes Swahili NER with Swahili Audio and Text (SAT) pre-training, SNER-KA uses Kinyarwanda
Audio (KA), etc.

we refer to as the "HF Swahili" data set); and (ii)343

the ALFFA speech dataset (Gelas et al., 2012). For344

ALFFA data we process both the audio files (using345

Allosaurus) and the original "gold" text transcrip-346

tions (using Epitran).347

For Kinyarwanda pre-training data, we use348

the Common Voice (CV) Kinyarwanda 6.1 sub-349

set (Ardila et al., 2019). Again, we utilize both the350

audio files and transcriptions. Due to the large size351

of the CV 6.1 Kinyarwanda subset, we processed352

only about 80% of the audio files.353

For fine-tuning the downstream NER task, we354

use the MasakhaNER data set (Adelani et al., 2021).355

As with other text-based data sets, we transform356

the NER sample with Epitran to map the samples357

into the phonetic representation.358

4.2 Entity to Phone Encoding359

For the downstream NER tasks we map or encode360

the NER annotations into the phonetic representa-361

tion. We thus edited the labels (PER, ORG, DATE,362

and LOC) to convert them from word-level labels to363

phone-level labels as shown in Fig. 3. Unlike (Kuru364

et al., 2016), we leave in the B- and I- prefixes.365

Our fork of the MasakhaNER data set, which im-366

Figure 3: Adaptation of word-level NER annotations to
character-level annotations.

plements our phonetic representations of the labels, 367

is published on Github.7 368

4.3 Phone Inventory Considerations 369

As mentioned already, we use Allosaurus for phone 370

recognition with audio inputs. In order to ensure 371

consistency with Epitran, we took advantage of 372

Allosaurus’s inventory customization feature, giv- 373

ing it the phone inventories specified by the same 374

language in Epitran. The inventory used through- 375

out this work (for swh) is the swa-Latn inventory 376

7https://anonymous.4open.science/r/masakhane-ner-
5CC1/README.md
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from Epitran.8 When this inventory is supplied as377

input, Allosaurus will only output symbols from378

the inventory. We followed similar practice when379

transliterating Kinyarwanda data.380

We compare the output of Epitran and Al-381

losaurus on the ALFFA dataset. Following382

the practice of (Li et al., 2020), we used the383

editdistance9 library to calculate the Phone384

Error Rate (PER). Having no ground truth phone385

annotations, we instead take Epitran’s outputs as386

"ground truth" for the sake of comparison. The387

mean PER between the outputs is 23.7%. This388

result is consistent with Siminyu et al. (2021),389

which finds PERs as high as 72.8% when testing390

on on the Bukusu (bxk), Saamia (lsm) and East391

Tusom languages (an endangered subdialect of the392

Tungkhulic language family). However, by train-393

ing the phone recognizer on even minimal amounts394

of data in these languages, PERs were improved395

significantly.396

A spreadsheet with detailed results for 10k sam-397

ples from ALFFA can be found online.10398

4.4 Model Architecture and Training399

All models use the SHIBA implementation of CA-400

NINE (Tanner and Hagiwara, 2021). SHIBA was401

designed for use on the Japanese [jpn] language,402

which does not include spaces between its charac-403

ters (similar to our phonetic representations without404

word boundaries). We used the default hyperpa-405

rameter settings for SHIBA pre-training and fine-406

tuning, because we are primarily concerned with407

the relative impact of various combinations of pre-408

training data on the downstream NER tasks. We409

use the Hugging Face library (Wolf et al., 2020) to410

train all models.411

Because of the small size of the NER data412

set used during fine-tuning, we enabled Hugging413

Face’s early stopping callback for all downstream414

training runs. We stopped these runs if they did not415

improve training loss after 20 evaluations. Nonethe-416

less, we found after a number of trials that the417

models quickly overfit using this setting. We also418

experimented with modifying this on several tri-419

als to stop based on the evaluation loss instead,420

but this change did not significantly influence the421

evaluation results.422

Following the example of Adelani et al. (2021),423

we do not run downstream model trainings once,424

8https://bit.ly/30f8YCI
9https://github.com/roy-ht/editdistance

10https://bit.ly/3F0is3t

Model F1 NER1 F1 NER2
SNER 0.829 0.753
SNER+ST1 0.827 0.770
SNER+ST2 0.824 0.747
SNER+SA 0.817 0.751
SNER+SAT 0.818 0.763
SNER+KT 0.823 0.771
SNER+KA 0.846 0.763

Table 1: Mean results for presence/absence of entity
types (NER1) and presence and count of entity types
(NER2). Average of at least three trials per experiment,
calculated with the scikit-learn library. (Pedregosa et al.,
2011)

but multiple times. We also pre-trained each pho- 425

netic language model multiple times with different 426

random seeds. We report averages of these multiple 427

trials in the following. 428

5 Results and Discussion 429

Table 1 presents the F1 scores for our training sce- 430

narios in the downstream NER1 and NER2 tasks. 431

The models that utilize pre-training on the kin 432

audio and text data give the best results. However, 433

pre-training does not appear to dramatically influ- 434

ence the level. F1 scores in the range of 74-85% 435

suggests the minimum viability of these phonetic 436

models for simple NLP tasks. 437

Table 2 presents the F1 scores for our various 438

training scenarios in the downstream NER3 task, 439

which should be the most challenging for our pho- 440

netic models. The influence of pre-training is more 441

noticeable for this task. Further, the models pre- 442

trained on the kin audio and text data have the 443

best performance. This is likely due to the fact that 444

the kin data is both large and higher quality (in 445

terms of sound quality) as compared to the ALFFA 446

Swahili data. This benefit of this data size and 447

quality appears to outweigh any degradation due to 448

the pre-training occurring in a different (although 449

related) language. 450

The importance (or relative impact) of pre- 451

training phonetic language models increases with 452

the complexity of the NER task. Fig. 4 shows 453

the maximum percentage improvement due to pre- 454

training for each of our NER tasks. This suggests 455

that simple NLP tasks with a small number of out- 456

put classes are much easier to port to phonetic rep- 457

resentations, even without pre-training, while more 458

complicated NLP tasks may require a more sig- 459

nificant amount of text and/or audio data for pre- 460
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Model F1 F1 (strict)
SNER 0.357 0.161
SNER+ST1 0.401 0.213
SNER+ST2 0.394 0.166
SNER+SA 0.363 0.163
SNER+SAT 0.405 0.203
SNER+KT 0.408 0.217
SNER+KA 0.397 0.197

Table 2: Prediction of entity types and precise loca-
tions (NER3) Average of at least three trials per experi-
ment, scores calculated with seqeval library. (Nakayama,
2018)

training. We expect this trend to carry through to461

tasks like sentiment analysis, which could be for-462

mulated as a simple classification task with NEG,463

NEU, and POS sentiment labels or a more compli-464

cated aspect based sentiment analysis task.465

6 Conclusions and Further Work466

The proposed method for multi-modal training us-467

ing phonetic representations of data has minimum468

viability for simple NER tasks. For more compli-469

cated NER tasks, pre-training phonetic language470

models boosts downstream model performance by471

up to 6% in F1 scores. This pre-training can be472

performed in the target language or in a related473

language using text and/or audio data. Thus, the474

method provides flexibility in the data needed to475

train language models, while also allowing for au-476

dio and/or text inputs to models trained on down-477

stream NLP tasks.478

We anticipate exploring various extensions to479

and validations of this method in the future. Specif-480

ically, we would like to explore methods that might481

mitigate performance degradation due to a lack482

of word boundaries in our method. Subword to-483

kenization techniques, such as Byte-Pair Encod-484

ings (BPE) (Sennrich et al., 2016; Gage, 1994),485

or character-based word segmentation techniques486

might help in detecting and exploiting repeating487

patterns within the phonetic representation.488

We would also like to validate our methods on489

a variety of other data sets and tasks. We selected490

the MasakhaNER dataset for evaluation because491

we specifically wished to evaluate results on ac-492

tual low-resource languages supported by both Al-493

losaurus and Epitran. While there are still, we494

argue, detectable improvements in downstream re-495

sults with our method, further work would benefit496

Figure 4: The max percentage improvement with fine-
tuning for each kind of NER task that was explored.
resence/absence of entity types (NER1), presence and
count of entity types (NER2), and prediction of entity
types and precise locations (NER3)

from additional evaluations on other data sets or 497

tasks. In particular, the Swahili News Classifica- 498

tion corpus (David, 2020) corpus may provide a 499

useful evaluation. 500

Finally, it has been shown by Siminyu et al. 501

(2021) that it is possible to improve phone recogni- 502

tion with even small amounts (approximately 100 503

sentences) of annotation. It may be possible to 504

improve phonetic language modeling results by 505

performing this fine-tuning in the target language. 506

References 507

D. Adelani, Jade Z. Abbott, Graham Neubig, Daniel 508
D’souza, Julia Kreutzer, Constantine Lignos, Chester 509
Palen-Michel, Happy Buzaaba, Shruti Rijhwani, Se- 510
bastian Ruder, Stephen Mayhew, Israel Abebe Az- 511
ime, Shamsuddeen Hassan Muhammad, Chris C. 512
Emezue, Joyce Nakatumba-Nabende, Perez Ogayo, 513
Anuoluwapo Aremu, Catherine Gitau, Derguene 514
Mbaye, J. Alabi, Seid Muhie Yimam, Tajuddeen R. 515
Gwadabe, Ignatius Ezeani, Rubungo Andre Niy- 516
ongabo, Jonathan Mukiibi, Verrah A Otiende, Iroro 517
Orife, Davis David, Samba Ngom, Tosin P. Adewumi, 518
Paul Rayson, Mofetoluwa Adeyemi, Gerald Muriuki, 519
Emmanuel Anebi, Chiamaka Ijeoma Chukwuneke, 520
Nkiruka Bridget Odu, Eric Peter Wairagala, S. Aji- 521
boye Oyerinde, Clemencia Siro, Tobius Saul Bateesa, 522

7



Temilola Oloyede, Yvonne Wambui, Victor Akinode,523
Deborah Nabagereka, Maurice Katusiime, Ayodele524
Awokoya, Mouhamadane Mboup, Dibora Gebrey-525
ohannes, Henok Tilaye, Kelechi Nwaike, Degaga526
Wolde, Abdoulaye N Faye, Blessing Sibanda, Ore-527
vaoghene Ahia, Bonaventure F. P. Dossou, Kelechi528
Ogueji, Thierno Ibrahima Diop, Abdoulaye Diallo,529
Adewale Akinfaderin, Tendai Munyaradzi Maren-530
gereke, and Salomey Osei. 2021. MasakhaNER:531
Named Entity Recognition for African Languages.532
Transactions of the Association for Computational533
Linguistics, 9:1116–1131.534

Chantal Amrhein and Rico Sennrich. 2020. On Roman-535
ization for model transfer between scripts in neural536
machine translation. In Findings of the Association537
for Computational Linguistics: EMNLP 2020, pages538
2461–2469, Online. Association for Computational539
Linguistics.540

Rosana Ardila, Megan Branson, Kelly Davis, Michael541
Henretty, Michael Kohler, Josh Meyer, Reuben542
Morais, Lindsay Saunders, Francis M. Tyers, and543
Gregor Weber. 2019. Common voice: A massively-544
multilingual speech corpus. CoRR, abs/1912.06670.545

Alexei Baevski, Wei-Ning Hsu, Alexis Conneau, and546
Michael Auli. 2021. Unsupervised speech recogni-547
tion. ArXiv, abs/2105.11084.548

Damián E. Blasi, Antonios Anastasopoulos, and Gra-549
ham Neubig. 2021. Systematic inequalities in lan-550
guage technology performance across the world’s551
languages. ArXiv, abs/2110.06733.552

Jacqueline Brixey and Ron Artstein. 2021. Choco: a553
multimodal corpus of the choctaw language. Lan-554
guage Resources and Evaluation, 55:241–257.555

Tom Brown, Benjamin Mann, Nick Ryder, Melanie556
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind557
Neelakantan, Pranav Shyam, Girish Sastry, Amanda558
Askell, Sandhini Agarwal, Ariel Herbert-Voss,559
Gretchen Krueger, Tom Henighan, Rewon Child,560
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens561
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-562
teusz Litwin, Scott Gray, Benjamin Chess, Jack563
Clark, Christopher Berner, Sam McCandlish, Alec564
Radford, Ilya Sutskever, and Dario Amodei. 2020.565
Language models are few-shot learners. In Ad-566
vances in Neural Information Processing Systems,567
volume 33, pages 1877–1901. Curran Associates,568
Inc.569

Davis David. 2020. Swahili : News classification570
dataset. The news version contains both train and571
test sets.572

David M. Eberhard, Gary F. Simons, and Charles D.573
Fennig. 2021. Ethnologue: Languages of the World,574
twenty-fourth edition. SIL International, Dallas,575
Texas.576

∀, Wilhelmina Nekoto, Vukosi Marivate, Tshinondiwa577
Matsila, Timi Fasubaa, Tajudeen Kolawole, Taiwo578

Fagbohungbe, Solomon Oluwole Akinola, Sham- 579
suddee Hassan Muhammad, Salomon Kabongo, Sa- 580
lomey Osei, and others. 2020. Participatory research 581
for low-resourced machine translation: A case study 582
in african languages. Findings of EMNLP. 583

Philip Gage. 1994. A new algorithm for data compres- 584
sion. The C Users Journal archive, 12:23–38. 585

Leo Gao, Stella Rose Biderman, Sid Black, Laurence 586
Golding, Travis Hoppe, Charles Foster, Jason Phang, 587
Horace He, Anish Thite, Noa Nabeshima, Shawn 588
Presser, and Connor Leahy. 2021. The pile: An 589
800gb dataset of diverse text for language modeling. 590
ArXiv, abs/2101.00027. 591

Hadrien Gelas, Laurent Besacier, and Francois Pelle- 592
grino. 2012. Developments of Swahili resources for 593
an automatic speech recognition system. In SLTU 594
- Workshop on Spoken Language Technologies for 595
Under-Resourced Languages, Cape-Town, Afrique 596
Du Sud. 597

Onur Kuru, Ozan Arkan Can, and Deniz Yuret. 2016. 598
CharNER: Character-level named entity recognition. 599
In Proceedings of COLING 2016, the 26th Inter- 600
national Conference on Computational Linguistics: 601
Technical Papers, pages 911–921, Osaka, Japan. The 602
COLING 2016 Organizing Committee. 603

Kushal Lakhotia, Evgeny Kharitonov, Wei-Ning 604
Hsu, Yossi Adi, Adam Polyak, Benjamin Bolte, 605
Tu Nguyen, Jade Copet, Alexei Baevski, Adel Ben 606
Mohamed, and Emmanuel Dupoux. 2021. Gener- 607
ative spoken language modeling from raw audio. 608
ArXiv, abs/2102.01192. 609

Xinjian Li, Siddharth Dalmia, Juncheng Li, Matthew 610
Lee, Patrick Littell, Jiali Yao, Antonios Anastasopou- 611
los, David R Mortensen, Graham Neubig, Alan W 612
Black, and Metze Florian. 2020. Universal phone 613
recognition with a multilingual allophone system. 614
In ICASSP 2020-2020 IEEE International Confer- 615
ence on Acoustics, Speech and Signal Processing 616
(ICASSP), pages 8249–8253. IEEE. 617

Stephen A. Marlett and Mark L. Weathers. 2018. The 618
sounds of me’phaa (tlapanec): A new assessment. 619
SIL-Mexico Electronic Working Papers, 25. 620

David R. Mortensen, Siddharth Dalmia, and Patrick 621
Littell. 2018. Epitran: Precision G2P for many lan- 622
guages. In Proceedings of the Eleventh International 623
Conference on Language Resources and Evaluation 624
(LREC 2018), Paris, France. European Language Re- 625
sources Association (ELRA). 626

Hiroki Nakayama. 2018. seqeval: A python framework 627
for sequence labeling evaluation. Software available 628
from https://github.com/chakki-works/seqeval. 629

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram- 630
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel, 631
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin- 632
cent Dubourg, et al. 2011. Scikit-learn: Machine 633
learning in python. Journal of machine learning re- 634
search, 12(Oct):2825–2830. 635

8

https://doi.org/10.18653/v1/2020.findings-emnlp.223
https://doi.org/10.18653/v1/2020.findings-emnlp.223
https://doi.org/10.18653/v1/2020.findings-emnlp.223
https://doi.org/10.18653/v1/2020.findings-emnlp.223
https://doi.org/10.18653/v1/2020.findings-emnlp.223
http://arxiv.org/abs/1912.06670
http://arxiv.org/abs/1912.06670
http://arxiv.org/abs/1912.06670
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.5281/zenodo.5514203
https://doi.org/10.5281/zenodo.5514203
https://doi.org/10.5281/zenodo.5514203
http://www.ethnologue.com
http://hal.inria.fr/hal-00954048
http://hal.inria.fr/hal-00954048
http://hal.inria.fr/hal-00954048
https://aclanthology.org/C16-1087
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval


J. S. Quakenbush. 2007. Chapter 4. sil international636
and endangered austronesian languages. In LD&C637
Special Publication No. 1: Documenting and Revital-638
izing Austronesian Languages.639

Rico Sennrich, Barry Haddow, and Alexandra Birch.640
2016. Neural machine translation of rare words with641
subword units. In Proceedings of the 54th Annual642
Meeting of the Association for Computational Lin-643
guistics (Volume 1: Long Papers), pages 1715–1725,644
Berlin, Germany. Association for Computational Lin-645
guistics.646

Guanghu Shen, Riwei Lai, Rui Chen, Yu Zhang, Kejia647
Zhang, Qilong Han, and Hongtao Song. 2020. Wise:648
Word-level interaction-based multimodal fusion for649
speech emotion recognition. In INTERSPEECH.650

Shivachi Casper Shikali and Mokhosi Refuoe. 2019.651
Language modeling data for Swahili. Type: dataset.652

Kathleen Siminyu, Xinjian Li, Antonios Anastasopou-653
los, David Mortensen, Michael R. Marlo, and Gra-654
ham Neubig. 2021. Phoneme recognition through655
fine tuning of phonetic representations: a case study656
on luhya language varieties.657

Lukas Stappen, Alice Baird, Lea Schumann, and658
Björn W. Schuller. 2021. The multimodal sentiment659
analysis in car reviews (muse-car) dataset: Collection,660
insights and improvements. ArXiv, abs/2101.06053.661

Mukuntha Narayanan Sundararaman, Ayush Kumar,662
and Jithendra Vepa. 2021. Phoneme-bert: Joint lan-663
guage modelling of phoneme sequence and asr tran-664
script. ArXiv, abs/2102.00804.665

Joshua Tanner and Masato Hagiwara. 2021. SHIBA:666
Japanese CANINE model. Publication Title: GitHub667
repository.668

Yi Tay, Vinh Tran, Sebastian Ruder, Jai Gupta,669
Hyung Won Chung, Dara Bahri, Zhen Qin, Simon670
Baumgartner, Cong Yu, and Donald Metzler. 2021.671
Charformer: Fast character transformers via gradient-672
based subword tokenization. ArXiv, abs/2106.12672.673

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob674
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz675
Kaiser, and Illia Polosukhin. 2017. Attention is all676
you need. CoRR, abs/1706.03762.677

Bogdan Vlasenko, RaviShankar Prasad, and Mathew678
Magimai.-Doss. 2021. Fusion of acoustic and lin-679
guistic information using supervised autoencoder for680
improved emotion recognition. Proceedings of the681
2nd on Multimodal Sentiment Analysis Challenge.682

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien683
Chaumond, Clement Delangue, Anthony Moi, Pier-684
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-685
icz, Joe Davison, Sam Shleifer, Patrick von Platen,686
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,687
Teven Le Scao, Sylvain Gugger, Mariama Drame,688
Quentin Lhoest, and Alexander Rush. 2020. Trans-689
formers: State-of-the-art natural language processing.690

In Proceedings of the 2020 Conference on Empirical 691
Methods in Natural Language Processing: System 692
Demonstrations, pages 38–45, Online. Association 693
for Computational Linguistics. 694

Linting Xue, Aditya Barua, Noah Constant, Rami Al- 695
Rfou, Sharan Narang, Mihir Kale, Adam Roberts, 696
and Colin Raffel. 2021. Byt5: Towards a token-free 697
future with pre-trained byte-to-byte models. CoRR, 698
abs/2105.13626. 699

9

https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.5281/zenodo.3553423
http://arxiv.org/abs/2104.01624
http://arxiv.org/abs/2104.01624
http://arxiv.org/abs/2104.01624
http://arxiv.org/abs/2104.01624
http://arxiv.org/abs/2104.01624
https://github.com/octanove/shiba
https://github.com/octanove/shiba
https://github.com/octanove/shiba
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
http://arxiv.org/abs/2105.13626
http://arxiv.org/abs/2105.13626
http://arxiv.org/abs/2105.13626

