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Abstract
Despite rapid advances in large language models (LLMs), their
integration with traditional supervised machine learning (ML) tech-
niques that have proven applicability to medical data remains un-
derexplored. This is particularly true for psychiatric applications,
where narrative data often exhibit nuanced linguistic and contex-
tual complexity, and can benefit from the combination of multiple
models with differing characteristics. Prior research in clinical natu-
ral language processing (NLP) has primarily focused on fine-tuning
transformer-based models or building domain-specific LLMs, but
hybrid approaches that combine deep contextual models with clas-
sical ML algorithms have been underexplored. In this study, we
introduce an ensemble framework for automatically classifying
Attention-Deficit/Hyperactivity Disorder (ADHD) diagnosis (bi-
nary) using narrative transcripts. Our approach integrates three
complementary models: LLaMA3, an open-source LLM that cap-
tures long-range semantic structure; RoBERTa, a pre-trained trans-
former model fine-tuned on labeled clinical narratives; and a Sup-
port Vector Machine (SVM) classifier trained using TF-IDF-based
lexical features. These models are aggregated through a majority
voting mechanism to enhance predictive robustness. The dataset
includes 441 instances, including 352 for training and 89 for valida-
tion. Empirical results show that the ensemble outperforms indi-
vidual models, achieving an F1 score of 0.71 (95% CI: [0.60-0.80]).
Compared to the best-performing individual model (SVM), the en-
semble improved recall while maintaining competitive precision.
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This indicates the strong sensitivity of the ensemble in identify-
ing ADHD-related linguistic cues. These findings demonstrate the
promise of hybrid architectures that leverage the semantic richness
of LLMs alongside the interpretability and pattern recognition ca-
pabilities of traditional supervised ML, offering a new direction for
robust and generalizable psychiatric text classification.
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ractivity Disorder, Machine Learning, Electronic Health Records,
Natural Language Processing
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1 Introduction
Attention-Deficit/Hyperactivity Disorder (ADHD) is a highly het-
erogeneous neurodevelopmental condition, presenting diverse eti-
ologies, clinical profiles, and comorbidities [20]. No single risk fac-
tor or biomarker conclusively accounts for ADHD’s onset; instead,
multiple genetic, environmental, and neurodevelopmental factors
interplay, leading to varied symptom manifestations in different
individuals. Such heterogeneity poses a fundamental challenge for
diagnosis. Clinicians rely on behavioral assessments and patient
history, but ADHD symptoms (inattention, hyperactivity, impul-
sivity) often overlap with other disorders (mood, anxiety, learn-
ing disorders), making differential diagnosis difficult [10]. There
is no single test or “gold-standard” measure to diagnose ADHD in
practice—diagnosis typically requires extensive interviews, stan-
dardized rating scales from parents and teachers, and the exclusion
of alternative explanations [10]. Such comprehensive evaluations
are time-consuming and subjective, leading to variability in diag-
nostic outcomes. In particular, subjectivity and informant bias can
affect clinical assessments; parent and teacher ratings may differ
widely, and self-reports are prone to error. This subjectivity can
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yield inconsistent diagnoses, highlighting the need for more objec-
tive, reproducible diagnostic aids.

Neuroimaging has been explored as an objective route to ADHD
diagnosis, but with limited success. Over two decades of MRI-based
studies have revealed some group-level differences in brain struc-
ture and function, yet no reliable imaging biomarker has emerged
for individual diagnosis. The neuroimaging literature is volumi-
nous and often inconclusive. Meta-analyses, for instance, of ADHD
MRI studies frequently find inconsistent or non-overlapping results
across samples [17, 24]. Variation in normal brain development,
ADHD’s own heterogeneity, and small effect sizes mean that MRI
findings have not translated into clinically useful tests [19]. In
summary, traditional diagnostic methods—clinical evaluation and
neuroimaging—are limited by subjectivity, heterogeneity of pre-
sentations, and lack of definitive biomarkers. This creates a strong
rationale for exploring other computational techniques that can
enhance diagnostic accuracy by integrating multi-modal data and
reducing human bias.

Recent years have seen growing interest in applying machine
learning and data-driven methods to improve ADHD identification
and prognosis. Conventional machine learning on clinical datasets
has achieved moderate success; for example, decision tree classifiers
on neuropsychological and demographic data attained about 75.03%
accuracy in distinguishing ADHD cases from non-ADHD controls
[7], providing interpretable rules to assist clinicians. Similarly, sup-
port vector machines and random forests have been applied to
behavioral questionnaires and social media text. one study using a
random forest on ADHD-related Reddit posts achieved 81% accu-
racy in identifying users with ADHD traits [2]. These approaches
illustrate the promise of algorithmic classifiers but often remain
dataset-specific and can struggle with generalizability due to limited
feature scopes.

Natural language processing (NLP) offers another avenue, espe-
cially given that clinical text (doctor’s notes, psychological reports)
and patient self-descriptions contain rich information about ADHD
symptoms. NLP techniques have previously been used to detect
signs of ADHD in unstructured text. For instance, Malvika et al.
applied a transformer-based model (BioClinicalBERT) to electronic
health records and achieved an F1 score of 0.78 in identifying ADHD
cases [18], demonstrating the utility of textual data in diagnosis.
Likewise, analysis of social media and patient narratives has proven
fruitful: fine-tuned transformer models like RoBERTa [16] have
reached ∼76% accuracy in classifying ADHD-related posts from on-
line forums [15], and SVM classifiers using linguistic and memory-
related features attained F1 ≈ 0.77 in distinguishing ADHD in
personal essays [6]. These advances demonstrate that textual mark-
ers of ADHD, such as patterns of language usage, and descriptions
of attention difficulties, can be learned by machine learning mod-
els, providing a scalable complement to traditional assessments.
Notably, researchers are also prioritizing explainability in these
models. Kim et al. developed an explainability-enhanced classifier
on psychological test reports, which not only achieved high accu-
racy (∼92%) in separating ADHD from intellectual disability, but
could also highlight textual evidence (n-gram features) to justify
its predictions [14]. This ability to provide evidence-based insights
is crucial for physician trust in AI-assisted diagnosis.

In parallel, large language models (LLMs), such as GPT series
[5] developed by OpenAI and LLaMA [1] developed by Meta, have
demonstrated extraordinary capabilities in understanding and gen-
erating human-like text. These models, trained on massive corpora,
have been shown to exhibit cognitive-like competencies. They can
perform tasks requiring reasoning, memory, and attention—key
domains affected in ADHD. Berrezueta-Guzman et al. explored the
use of ChatGPT (GPT-3.5) as a conversational agent to support
ADHD therapy, finding that experts rated it highly in empathy
and adaptability during simulated therapy sessions. Their study
highlights that LLMs can capture subtle aspects of communication
and patient interaction, reinforcing the idea that such models un-
derstand context relevant to ADHD [3]. Another line of research
evaluates LLMs on mental health prediction tasks via zero-shot or
few-shot prompts. Xu et al. evaluated models like GPT-4, Alpaca,
and FLAN-T5 on tasks including detecting ADHD from text, and
found zero-shot LLM performance to be promising yet below spe-
cialized models. Notably, after fine tuning these LLMs on mental
health data, the performance jumped significantly—their fine-tuned
“Mental-Alpaca” outperformed even much larger base models by
over 10% in balanced accuracy [22]. This reveals that while LLMs
have general knowledge (and potentially the ability to recognize
ADHD-related patterns learned from text during pretraining), they
may need domain-specific tuning to reach diagnostic accuracy. Fine-
tuning endows them with jargon understanding and emphasis on
the subtle linguistic cues of ADHD, whereas in a zero-shot setting,
theymight miss context-specific details. In contrast, zero-shot LLMs
bring the advantage of flexibility—they can be deployed without
task-specific training data, an appealing trait when labeled data is
scarce or costly. Beyond direct diagnosis, LLMs are being integrated
with healthcare data pipelines. For example, ensemble approaches
with multiple LLMs have been used to improve medical question-
answering systems. Xiao et al. introduced an LLM ensemble that
uses a weighted majority voting among different LLMs to answer
medical queries, achieving higher accuracy than any single model
by reducing variance and bias [23].

In the broader mental health domain, the integration of LLMs
with more traditional analytical models, like supervised machine
learning classifiers, remains a relatively open frontier. Studies have
repeatedly demonstrated that in the presence of annotated data for
training, supervised models outperform zero- or few-shot LLMs
relying on in-context learning [21]. While generative LLMs like
LLaMA3 have excellent capabilities in understanding nuances of
complex, unstructured texts, in-context learning strategies have
limitations on how many labeled examples can be provided to the
LLM to guide its decision making. This is because the context win-
dow sizes of LLMs are limited (e.g., LLaMA3 70B has a context
window size of 8000 tokens). At the same time, the large number of
parameters in LLMs require very large annotated datasets for mean-
ingful fine-tuning. Thus, traditional supervised machine learning
models often have a relative advantage over LLMs when annotated
data is available for training. There is, however, little past work
attempting to combine the complementary capabilities of LLMs
and traditional machine learning models.

In this paper, we describe an ensemble-based ADHD classifica-
tion model to address this gap. Specifically, we model the ADHD
diagnosis as a binary classification task and attempt to solve it
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by blending state-of-the-art NLP—LLaMA31 and RoBERTa, with
established machine learning techniques—Support Vector Machine
(SVM). This ensemble is, to our knowledge, the first effort to incor-
porate an LLM with a fine-tuned transformer-based model and a
traditional machine learning model for a psychiatric diagnosis task.
The specific contributions of this paper are as follows:

• We designed and refined a prompt that specifies the char-
acteristics to consider when deciding if a transcript should
be labeled as ADHD or not.

• We developed an LLM (LLaMA3-70B), a transformer-based
model (RoBERTa) with supervised learning, and a tradi-
tional machine learning model (SVM) for the automatic
classification of ADHD cases based on the narrative tran-
scripts.

• We developed an an effective ensemble classification frame-
work that combined the individual predictions under the
majority voting scheme.

• We conducted an analysis of the performance and errors
for the classifiers which can provide insights for potential
future research directions.

2 Materials and Methods
2.1 Data Collection and Narrative Elicitation
Our work utilized a subset of the Healthy Brain Network (HBN)
dataset provided by the Child Mind Institute. Following a Data Us-
age Agreement with Child Mind Institute, we retrieved the verbatim
transcripts and clinical diagnosis data for ADHD. The latter is the
final diagnosis given by the clinician after administering the KSADS
and considering other data and interactions provided as part of par-
ticipation into the HBN study. Each of the 441 youths (ages 5–21)
in our dataset watched an emotionally evocative short animated
film (“The Present”) during functional MRI scanning; immediately
upon exiting the scanner, they completed a structured post-scan in-
terview. A set of open-ended questions was used to elicit narrative
recall (e.g., describing the sequence of events), emotional interpre-
tation (e.g., identifying characters’ feelings), and perspective-taking
(e.g., explaining characters’ motivations). These narrative responses
formed the transcripts analyzed by our classification models. We
chose the transcript data as our target model input because natural-
istic narrative language may serve as an alternative, complementary
data source that can ecologically assess ADHD. There is growing
evidence that children with ADHD exhibit subtle but systematic
differences in storytelling—for example, producing narratives that
are less coherent, more error-prone, and less richly detailed than
those of their peers [13]. In the cases of transcripts from partici-
pants with ADHD, responses often lacked direct answers to the
interviewer’s questions or involved redirecting the conversation
by asking questions in return. As shown in the interview excerpt
(2) below, when asked to describe the events of a movie, the partici-
pant provided a fragmented and disjointed recount. Additionally,
the participant frequently expressed confusion or disinterest when
asked to elaborate, such as when responding ’I don’t know’ or
shifting the focus of the conversation back to the interviewer. By
analyzing such patterns across the entire dataset, our study aims to

1We used the LLaMA3-70B model, which we refer to as LLaMA3 for convenience.

develop a reliable approach for identifying ADHD from narrative
transcripts using three classification models and their ensemble
model. Each model approach brings a unique inductive bias to the
task of ADHD detection, which is detailed in the following section.
The comprehensive experiment pipeline is documented by Figure
1.

2.2 Classification Models
We split the dataset into a training, development, and test set with
a ratio of 60/20/20. All classification models were trained using
the same training and development set and evaluated on the same
test set. By holding the input data constant across models, we en-
sure that any improvement from combining models is due to their
complementary modeling strengths rather than differences in data.
Texts were preprocessed by separating interviewer and intervie-
wee texts. For the LLM, the training set was used for testing and
optimizing prompts prior to execution on the test set. The dataset
maintained a balanced distribution between participants diagnosed
with ADHD and non-ADHD (stratified sampling), thus ensuring
consistency in class representation throughout all experimental
stages. The detailed data statistics are shown in Table 2.

2.2.1 Large Language Model: LLaMA3. We employed a classifica-
tion methodology utilizing the large language model LLaMA3. This
approach leveraged the model’s intrinsic capability to interpret
narrative content without specific ADHD-focused fine-tuning. The
model operate through a mechanism called prompting, where users
provide natural language input (known as a prompt) to guide the
model’s behavior. The prompt frames the task (e.g., classification,
summarization, question answering), and the model generates a
response based on the contextual information and patterns it has
learned during training. The quality and structure of the prompt
significantly influence the relevance and accuracy of the output.
Each transcript was interpolated into a fixed prompt template (see
Figure 3), which instructs the model to adopt the role of a psychi-
atrist specializing in DSM-5 ADHD diagnosis. Because LLaMA3
supports up to 8,000 tokens of context, no additional segmentation
was required for our average transcript length.

Our initial prompt was drafted to mirror the DSM-5 diagnostic
criteria for inattention and hyperactivity-impulsivity. We then per-
formed three iterative refinement cycles on the development set. To
maximize diagnostic performance in terms of accuracy, precision,
recall, and F1 score, in each cycle, we (1) ran the full development
set through the model, (2) logged false positives and false negatives,
(3) conducted qualitative error analysis to identify ambiguous or
over-broad language in the prompt, and (4) revised the instructions
to sharpen symptom definitions and output formatting (for example,
explicitly instructing the model to disregard interviewer questions
and to respond with “YES.” or “NO.” at the start of its answer).

For each test-set transcript, we supplied the finalized prompt
plus narrative in a single API call. The model’s first token was
parsed as the binary label (YES = ADHD; NO = non-ADHD), and
the subsequent text served as explanatory justification. Decisions
were recorded without any post-hoc thresholding or ensembling,
isolating the LLaMA3 contribution to our overall framework.
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Figure 1: End-to-end ensemble-based narrative classification pipeline. Narrative transcripts elicited immediately after fMRI
scanning (“post-scan interviews”) undergo preprocessing, including tokenization, TF-IDF vectorization, engineered feature
extraction (e.g., response length, question length), and isolation of interviewee texts, before being fed into three complementary
classifiers: (1) LLaMA3 via optimized prompt engineering; (2) a fine-tuned RoBERTa transformer; and (3) a support vector
machine leveraging both TF-IDF lexical features and additional engineered metrics. Each model independently generates an
ADHD vs. non-ADHD prediction, and these are combined under a majority-voting rule (narratives are labeled ADHD if at least
two models concur) to produce the final diagnostic classification. Directed arrows denote the flow of data through each module,
illustrating the modular architecture of the ensemble framework.

2.2.2 Transformer-Based Model: RoBERTa. RoBERTa is a widely
used transformer-based model pre-trained on large English cor-
pora. The model was selected for its proven effectiveness in tasks
involving contextual language understanding, and its superior per-
formance reported in classification benchmarking studies [12]. The
model takes a text sequence as input, which is first tokenized into
word pieces. Each word piece is then encoded into a dense vec-
tor. The vector corresponding to the first token is used to repre-
sent the entire sequence and is passed through a fully connected
layer followed by a sigmoid activation function. The output is a

two-dimensional vector representing the predictive scores for the
ADHD and non-ADHD classes. The model was explicitly fine-tuned
in participant-generated narratives, excluding any interviewer ques-
tions to isolate participant-driven linguistic and cognitive patterns.
Hyperparameter tuning was performed through iterative experi-
ments by varying the learning rate {1×10−5, 2×10−5, 4×10−5} and
the number of training epochs {10, 15, 20}. Model performance was
evaluated on the validation set, and the optimal configuration was
selected based on validation accuracy. The batch size and maximum
sequence length were empirically set to 32 and 512, respectively.
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Interviewer:        Alright, I hope you enjoyed the last movie. Have you seen it before?

Interviewee:        Yeah.

Interviewer:        Can you tell me what happened in the movie? And try to tell a little story.   

   Remember that stories have a beginning, things happen, and then some     

   kind of an end.

Interviewee:        The kid that was playing a video game, and that the kid was playing a     

   video game. And his mom gave him a package, and when he opened it he  

   saw a puppy. He got a little happy and then he just said "Get lost."

Interviewer:        Then what happened?

Interviewee:       Then, he actually dropped the ball. And he started going to play outside 

  with the dog.

Interviewer:       Do you remember anything else that happened in the movie? No? What   

  are some of the things you liked about the movie?

Interviewee:       I don't know.

Interviewer:       What did you like?

Interviewee:      Why is that camera watching me? Despicable Me.

Interviewer:       No, what'd you like about the dog movie?

Interviewee:       I don't know. I don't know.

Figure 2: Example of narrative data from a post-scan interview illustrating ADHD-related response patterns. The participant’s
answers are fragmented and lack coherence, with shifts in focus and expressions of confusion (e.g., "I don’t know"). These
behaviors—difficulty staying on topic and providing detailed responses—are characteristic of ADHD and serve as key indicators
in the classification process.

One major limitation of the RoBERTa model is its maximum in-
put length of 512 tokens, which is often insufficient for processing
the narratives that exceed this threshold. To address this, we im-
plemented a sliding window approach with a window size of 512
tokens to divide long narratives into overlapping segments. Each
segment was treated as an independent input to the model, allowing
for separate predictions. The final prediction for the entire note
was then determined by majority voting across the predictions of
all segments.

2.2.3 Machine Learning Model: SVM. Support vector machines
(SVMs) [8] are well suited to problems with very high-dimensional
feature spaces, a characteristic that has underpinned their strong
performance in text classification tasks and motivated their selec-
tion for the present study. To convert narratives into feature vectors,
we applied term frequency–inverse document frequency (TF-IDF)
weighting to n-gram representations. In this context, an n-gram
denotes any contiguous sequence of n tokens, and our experiments

incorporated unigrams (n = 1) through four-grams (n = 4). We re-
tained the 1,000 most common across the training corpus to form
our vocabulary. To explore how basic preprocessing might alter
downstream performance, we ran each experiment twice under one
alternate setting for character normalization: once converting all
alphabetic characters to lowercase before tokenization (lowercase
= True) and once leaving original casing intact (lowercase = False).
TF-IDF is a statistical measure designed to reflect how important a
given term is within a document or corpus. The term frequency (TF)
component counts how often each term (i.e., each n-gram) appears
in an individual transcript, while the inverse document frequency
(IDF) component down-weights terms that occur broadly across
the entire training set, thereby emphasizing those that are more
distinctive. As a result, the TF-IDF vectors produced assign higher
weights to n-grams that are unique to particular documents and
lower weights to those that are uniformly distributed throughout
the corpus [11].
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You are a psychiatrist that is specialized in the diagnosis of ADHD.
Read the transcript of a conversation with an interviewed child, who just finished watching an animated emotionally evocative four-minute film, entitled “The Present”, carefully:
{{Transcript Content}}
Please assess the child on the following diagnostic criteria A and B for Attention-Deficit/Hyperactivity Disorder:
A. A persistent pattern of inattention and/or hyperactivity-impulsivity that interferes with functioning or development, as characterized by (1) and/or (2):
1. Inattention: Six (or more) of the following symptoms have persisted to a degree that is inconsistent with developmental level and that negatively impacts directly on social and academic/occupational activities:
Note: The symptoms are not solely a manifestation of oppositional behavior, defiance, hostility, or failure to understand tasks or instructions. 
a. Often fails to give close attention to details or makes careless mistakes in schoolwork, at work, or during other activities (e.g., overlooks or misses details, work is inaccurate).
b. Often has difficulty sustaining attention in tasks or play activities (e.g., has difficulty remaining focused during lectures, conversations, or lengthy reading).
c. Often does not seem to listen when spoken to directly (e.g., mind seems elsewhere, even in the absence of any obvious distraction).
d. Often does not follow through on instructions and fails to finish schoolwork, chores, or duties in the workplace (e.g., starts tasks but quickly loses focus and is easily sidetracked).
e. Often has difficulty organizing tasks and activities (e.g., difficulty managing sequential tasks; difficulty keeping materials and belongings in order; messy, disorganized work; has poor time management; fails to meet deadlines).
f. Often avoids, dislikes, or is reluctant to engage in tasks that require sustained mental effort (e.g., schoolwork or homework; for older adolescents and adults, preparing reports, completing forms, reviewing lengthy papers).
g. Often loses things necessary for tasks or activities (e.g., school materials, pencils, books, tools, wallets, keys, paperwork, eyeglasses, mobile telephones).
h. Is often easily distracted by extraneous stimuli (for older adolescents and adults, may include unrelated thoughts).
i. Is often forgetful in daily activities (e.g., doing chores, running errands; for older adolescents and adults, returning calls, paying bills, keeping appointments).
2. Hyperactivity and impulsivity: Six (or more) of the following symptoms persisted to a degree that is inconsistent with developmental level and that negatively impacts directly on social and academic/occupational activities:
Note: The symptoms are not solely a manifestation of oppositional behavior, defiance, hostility, or a failure to understand tasks or instructions. 
a. Often fidgets with or taps hands or feet or squirms in seat.
b. Often leaves seat in situations when remaining seated is expected (e.g., leaves his or her place in the classroom, in the office or other workplace, or in other situations that require remaining in place).
c. Often runs about or climbs in situations where it is inappropriate. (Note: In adolescents or adults, may be limited to feeling restless.)
d. Often unable to play or engage in leisure activities quietly.
e.Is often “on the go,” acting as if “driven by a motor” (e.g., is unable to be or uncomfortable being still for extended time, as in restaurants, meetings; may be experienced by others as being restless or difficult to keep up with).
f.Often talks excessively.
g.Often blurts out an answer before a question has been completed (e.g., completes people’s sentences; cannot wait for turn in conversation).
h.Often has difficulty waiting his or her turn (e.g., while wating).
i.Often interrupts or intrudes on others (e.g., butts into conversations, or activities; may start using other people’s things without asking or receiving permission; for adolescents and adults, may intrude into or take over what 
others are doing).
B. The symptoms do not occur exclusively during the course of schizophrenia or another psychotic disorder and are not better explained by another mental disorder (e.g., mood disorder, anxiety disorder, dissociative disorder, 
personality disorder, substance intoxication or withdrawal).
Upon completion of the assessment, you must answer whether the child that was being interviewed has ADHD followed by a detailed justification. 
Your answer should be formatted as 
'''
YES/NO.
My reasons are ...
'’’

Figure 3: The full final prompt used in this study.

Table 1: The statistics for the training, development, and test sets.

Dataset Size ADHD non-ADHD

Train 264 134 (50.76%) 130 (49.24%)
Dev 88 45 (51.14%) 43 (48.86%)
Test 89 45 (50.56%) 44 (49.44%)

Table 2: The accuracy, precision, recall, and F1 score with 95% confidence intervals (CIs) of LLaMA3, RoBERTa, SVM and an
ensemble model using majority voting (MV) on the entire test set.

Model Accuracy Precision Recall F1 Score (95% CI)

LLaMA3 0.56 0.54 0.87 0.67 (0.57–0.76)
RoBERTa 0.61 0.57 0.87 0.69 (0.58–0.78)
SVM 0.64 0.62 0.75 0.68 (0.57–0.77)
Ensemble (MV) 0.63 0.59 0.91 0.71 (0.60–0.80)

Recognizing potential feature limitations, we introduced sup-
plementary engineered features calculated directly from narrative
transcripts. We conducted experiments under two configurations:

(1) TF–IDF only: using the 1,000 highest-weighted n-gram fea-
tures derived from TF–IDF.

(2) TF–IDF + engineered features: augmenting the 1,000 TF–IDF
features with the following transcript-based metrics:
• Mean interviewee response length (mean word count

per response), hypothesized to capture the verbosity

and potential attention-related difficulties such as shorter
and less diverse vocabulary usage by some ADHD par-
ticipants [4].

• Total number of interviewee responses, anticipated to
reflect narrative fragmentation or coherence related
to cognitive control deficits.

• Mean interviewer question length (mean word count
per question), included to normalize and account for
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interviewer influence on participant narrative length
and detail.
Furthermore, a customized tokenization pattern that
captures both lexical elements and punctuation was
applied to enhance the richness of textual representa-
tion, preserving critical linguistic nuances (e.g., pauses,
interruptions, emphatic expressions) that may differ-
entiate ADHD and non-ADHD narratives

We performed grid search over the training data to find the best
regularization parameter

𝐶 ∈ {2, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024, 2048}

and the kernel type (linear and radial basis function (rbf )). Op-
timal performance, evaluated through cross-validation accuracy
and F1 score, was achieved using a radial basis function kernel
and a regularization parameter 𝐶 = 1024. In this configuration,
the preprocessing pipeline preserved the original character casing
and incorporated the newly engineered features, both of which
contributed materially to the observed performance gains.

2.2.4 Ensemble Model. The generative LLM can apply its vast
pretrained knowledge to pick up on subtle discourse indicators
of inattention or impulsivity that might be reflected by disorga-
nized storytelling or missing plot details, but it may also produce
false positives by overgeneralizing. The fine-tuned RoBERTa model
learns specific linguistic patterns of ADHD vs. non-ADHD narra-
tives from the training data. Meanwhile, the SVM offers a simpler,
interpretable baseline, using engineered features that can highlight
straightforward differences. The rationale for an ensemble is that
by combining the three weak learners, we can harness their comple-
mentary strengths and mitigate individual weaknesses. In theory,
an effective ensemble will flag an ADHD case if any one model is
sensitive to its particular linguistic quirks, yet require consensus
to declare a positive classification, thus filtering out idiosyncratic
errors from any single model.

For each participant transcript 𝑖 , let

𝑦LLM𝑖 , 𝑦RoBERTa𝑖 , 𝑦SVM𝑖 ∈ {0, 1}

denote the binary predictions (1 = ADHD, 0 = non-ADHD) pro-
duced by the LLaMA3 prompt, the RoBERTa classifier, and the SVM,
respectively. The ensemble decision 𝑦Ens

𝑖
is then given by:

𝑦Ens𝑖 =

{
1, if 𝑦LLM

𝑖
+ 𝑦RoBERTa

𝑖
+ 𝑦SVM

𝑖
≥ 2,

0, otherwise.

This majority voting strategy provides a balanced decision rule:
a narrative is labeled ADHD only if at least two of the three classi-
fiers agree. Predictions from RoBERTa and the SVM were obtained
via their respective predictions on the held-out test set. LLaMA3
outputs were pre-parsed to extract the first token (“YES”→ 1, “NO”
→ 0) before aggregation. We expect that our ensemble will reduce
false negatives (by catching cases one model might miss) while
controlling false positives (by overriding spurious alerts from one
model with the others’ dissent), thereby improving overall diagnos-
tic accuracy.

3 Evaluation Metrics
Model performances were measured by the precision, recall (sensi-
tivity), and F1 score (harmonic mean of precision and recall) metrics
for the ADHD class. The F1 was used as the primary evaluation met-
ric to balance precision and recall, ensuring that improvements in
one did not come at the expense of the other. Bootstrap resampling
was used to compute the 95% confidence intervals of F1 scores [9].
Resampling was performed with replacement (𝑁 = 1000) over 1000
iterations, and the 2.5𝑡ℎ and 97.5𝑡ℎ percentile scores were selected
as the interval boundaries. We also analyzed the confusion matrix
for each classification model to examine their error patterns, includ-
ing false positives and false negatives, and to better understand how
each model performs across the ADHD and non-ADHD classes.

Precision =
True Positive

True Positive + False Positive
(1)

Recall =
True Positive

True Positive + False Negative
(2)

𝐹1-score = 2 × Precision × Recall
Precision + Recall

(3)

Accuracy =
True Positive + True Negative

Total # Instances
(4)

4 Results
Table 2 presents the performance of four models. Among the in-
dividual models, SVM achieved the highest accuracy (0.64) and
precision (0.62), while RoBERTa and SVM achieved recall of 0.87
and 0.75, respectively. The ensemble model outperformed all others
in terms of recall (0.91) and F1 score (0.71), indicating its effective-
ness in identifying positive instances with a better balance between
precision and recall. LLaMA3 showed the lowest accuracy (0.56) and
precision (0.54), though its recall remained high (0.87), suggesting
that it tends to over-predict positive cases. The 95% confidence inter-
vals for the F1 score further support the robustness of the ensemble
approach, with the ensemble achieving the highest upper bound
(0.80) and a relatively narrow interval (0.60–0.80), highlighting its
stability across runs.

Figure 4 presents the confusion matrices for the four classifica-
tion models. LLaMA3 demonstrates a high recall for ADHD cases,
correctly identifying 11 out of 44 ADHD instances, but misclassifies
a large number of true ADHD cases as non-ADHD (33), indicat-
ing a strong tendency toward over-predicting the negative class.
RoBERTa improves upon this with 15 correct ADHD classifications
and fewer false negatives (29), achieving a more balanced perfor-
mance between sensitivity and specificity. SVM shows the most
balanced classification across both classes, with 23 true positives
and 21 false negatives for ADHD, and 11 false positives for non-
ADHD, reflecting its relatively high precision. The ensemble model
achieves the best overall performance by minimizing false positives
(only 4) and increasing correct classifications of non-ADHD (41),
while maintaining a similar true positive rate (15) to RoBERTa. This
confirms the ensemble’s advantage in reducing classification bias
and improving reliability across both classes. Overall, the confu-
sion matrices support the quantitative findings by highlighting
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Figure 4: The confusion matrices for each individual model and the ensemble model.

each model’s classification behavior and reinforcing the ensemble’s
effectiveness in enhancing both precision and recall.

4.1 Qualitative Error Analysis
To complement the quantitative confusion matrices, we examined
a sample of misclassifications from the held-out test set to uncover
model-specific failure modes:

• SVM false positives: Two non-ADHD transcripts containing
repetitive patterns of confusion (“I don’t know”) were over-
weighted by TF–IDF, leading the SVM to mislabel them as
ADHD.

• SVM false negatives: In contrast, some ADHD transcripts
with more formal, coherent language lacked the distinctive
n-grams the SVM relied on, resulting in missed detections.

• RoBERTa errors: RoBERTa’s false negatives typically oc-
curred when ADHD participants delivered concise but dis-
fluent narratives (e.g., short, choppy sentences), suggesting
the model places undue weight on explicit DSM-5 keywords
rather than discourse coherence.

• LLaMA3 errors: LLaMA3’s false negatives often involved
transcripts where the prompt-engineered criteria focused
on symptom keywords over narrative structure, causing it
to overlook subtle signs of inattention.

These examples reveal that each model is sensitive to different
linguistic cues—n-gram sparsity for the SVM, contextual token
patterns for RoBERTa, and prompt formulation for LLaMA3—and
point toward future improvements such as incorporating syntactic
cohesion metrics or refining prompt definitions to better capture
narrative coherence.

5 Discussion
The results presented in Table 2 demonstrate the relative strengths
and limitations of each model in the ADHD classification task.
The ensemble model, which integrates predictions from LLaMA3,
RoBERTa, and SVM through majority voting, achieved the highest
F1 score (0.71) and recall (0.91), indicating its superior ability to
identify ADHD cases with both high sensitivity and balanced perfor-
mance. This suggests that combining diverse model architectures—
ranging from large language models to traditional machine learning
classifiers—can lead to more robust and generalizable outcomes in
psychiatric classification tasks. Among the individual models, SVM
achieved the highest accuracy (0.64) and precision (0.62), highlight-
ing its reliability in reducing false positives. In contrast, LLaMA3

showed the lowest precision (0.54) and accuracy (0.56) but main-
tained a high recall (0.87), implying that while it is effective at
capturing true ADHD cases, it may also over-predict positive la-
bels. RoBERTa displayed moderate performance across all metrics,
balancing between the high recall of LLaMA3 and the precision of
SVM.

Moreover, a closer inspection of the prediction distributions (Ta-
ble 2 and Figure 4) reveals that the SVM classifier issues a higher pro-
portion of positive (ADHD) labels than both LLaMA3 and RoBERTa.
We hypothesize three contributing factors:

(1) Regularization and decision boundary width. The opti-
mal hyperparameter C=1024 creates a narrow margin that
tightly fits the training examples, making the SVM hyper-
sensitive to distinctive n-grams that co-occur with ADHD
labels and thus more prone to over-predict positives.

(2) TF–IDF feature weighting. By design, TF–IDF amplifies
rare but highly distinctive n-grams. If such n-grams are
noisy or spuriously correlated with ADHD in our 1 000-
feature vocabulary, the decision function may tilt toward
the positive class.

(3) Residual class imbalance in high-dimensional space.
Although our dataset was stratified to 50/50 ADHD vs. non-
ADHD, the effective class balance in the transformed feature
space can shift due to sparsity. This can bias the hyperplane
toward the denser region of the ADHD samples.

To mitigate this positive bias in future work, we plan to (a) recal-
ibrate the SVM decision threshold on a validation set, (b) introduce
class-weighted penalties or cost-sensitive learning, and (c) con-
duct ablation studies on n-gram ranges and engineered features to
identify and remove noisy predictors.

These findings illustrate that while LLMs like LLaMA3 can ex-
tract nuanced patterns from unstructured text, they may benefit
from complementary methods to enhance precision. The ensem-
ble approach capitalizes on the unique strengths of each model—
LLaMA3’s language understanding, RoBERTa’s fine-tuned classi-
fication, and SVM’s interpretability and structure-based decision-
making—resulting in improved overall performance. Notably, the
ensemble’s F1 score confidence interval (0.60–0.80) was both higher
and tighter than those of the individual models, further support-
ing its reliability. This work provides early evidence that integrat-
ing LLMs with traditional and transformer-based models can be a
promising direction in psychological and psychiatric informatics.
Future work could explore more sophisticated ensemble strategies,
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such as weighted voting or stacking, and assess generalizability
across larger and more diverse clinical datasets.

5.1 Limitations
While our ensemble-based approach demonstrates promising re-
sults for ADHD classification using narrative transcripts, several
limitations should be acknowledged. First, the dataset used in this
study is relatively small and may not capture the full variability
present in broader clinical or community populations. This limits
the generalizability of our findings and raises the potential for over-
fitting. This limitation also highlights the need for more labeled data
to train more robust and customized systems. Second, the narrative
data were derived from a specific source and may reflect biases in
language use or reporting styles that differ across contexts or demo-
graphic groups. Third, while the ensemble model improves overall
performance, it relies on majority voting, which does not consider
model confidence or weight individual model contributions, poten-
tially limiting its adaptability. Finally, the interpretability of LLMs
such as LLaMA3 remains a challenge, making it difficult to fully
understand the decision-making process behind individual predic-
tions. Future work should explore larger and more diverse datasets,
evaluate model generalization across settings, and investigate more
advanced ensemble techniques that incorporate confidence scores
or learn optimal weights. In addition, integrating interpretable NLP
techniques may help enhance model transparency and clinical trust.

6 Conclusion
In this study, we proposed a reliable ensemble-based framework
for classifying ADHD from narrative transcripts, combining a large
language model (LLaMA3), a transformer-based model (RoBERTa),
and a traditional machine learning classifier (SVM). Our results
show that while individual models offer distinct advantages—such
as high recall from LLaMA3 and high precision from SVM—the en-
semble model consistently outperformed all individual approaches
across key evaluation metrics, particularly in terms of F1 score
and recall. This highlights the potential of integrating LLMs with
conventional models to enhance diagnostic classification in the
psychological domain. Our findings open new avenues for hybrid
modeling approaches in mental health applications and underscore
the value of model diversity in building robust and interpretable
clinical decision support tools. However, further research is needed
to validate these findings on larger and more diverse datasets and to
explore advanced ensemble techniques and longitudinal predictive
modeling.
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