
Transformers Can Do Arithmetic with the Right
Embeddings

Sean McLeish1*, Arpit Bansal1∗, Alex Stein1, Neel Jain1, John Kirchenbauer1,
Brian R. Bartoldson2, Bhavya Kailkhura2, Abhinav Bhatele1, Jonas Geiping3,

Avi Schwarzschild4, Tom Goldstein1

1 University of Maryland, 2 Lawrence Livermore National Laboratory, 3 ELLIS Institute Tübingen,
Max Planck Institute for Intelligent Systems, Tübingen AI Center, 4 Carnegie Mellon University

Abstract

The poor performance of transformers on arithmetic tasks seems to stem in large
part from their inability to keep track of the exact position of each digit inside of
a large span of digits. We mend this problem by adding an embedding to each digit
that encodes its position relative to the start of the number. In addition to the boost
these embeddings provide on their own, we show that this fix enables architectural
modifications such as input injection to improve performance even further.
With positions resolved, we can study the logical extrapolation ability of
transformers. Can they solve arithmetic problems that are larger and more
complex than those in their training data? We find that training on only 20 digit
numbers with a single GPU for one day, we can reach state-of-the-art performance,
achieving up to 99% accuracy on 100 digit addition problems. Finally, we show
that these gains in numeracy also unlock improvements on other multi-step
reasoning tasks including sorting and multiplication.

1 Introduction

Much of the recent work on Large Language Models (LLMs) focuses on their ability to solve
problems in natural language and code generation. Despite progress in these domains, transformers
still struggle to perform complex multi-step and algorithmic reasoning tasks in a zero shot setting
without resorting to tool use. To study algorithmic reasoning in a sterile laboratory setting, the
academic community focuses on simple arithmetic test problems like addition. Addition is simple
enough that modest-sized LLMs can (in principle) be trained from scratch to do it without running
into capacity and training budget limitations, yet complex enough that even large industrial models
fail on large numbers without a code interpreter (Loeber, 2024).

Prior studies indicate that addition is hard for transformers (Lee et al., 2023; Shen et al., 2023; Zhou
et al., 2023, 2024). Our experiments indicate that this difficulty stems from their inability to clearly
represent the exact position of a digit within a long sequence of digits. To address this problem, we
propose a simple modification to the data representation that directly addresses this shortcoming.
Our Abacus Embeddings are simple learned positional embeddings that are used to encode positions
within each span of numerical tokens. Combining Abacus Embeddings and standard positional
embeddings, we observe dramatic improvements in accuracy such that models trained with at most 20
digit operands can generalize to problems with 120 digit operands. This represents a state-of-the-art
generalization factor of 6×, with the previous state of the art being only 2.5×. To the best of our
knowledge, these are the longest sequences on which learned addition has ever been demonstrated.

∗Equal Contribution, correspondence to: smcleish@umd.edu, bansal01@umd.edu.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



We also study several other methods of improving arithmetic and generalization in transformers.
We find that incorporating input injection—skip connections inserted between the input layer and
each decoder layer—can reduce generalization errors by 50% over the Abacus Embedding baseline.
We also find that together with our embeddings looped transformer architectures, which contain
recurrent layers in which the same parameters are re-used multiple times, can achieve near-perfect
generalization on addition problems we consider. These results are shown in Appendix Section A.4

Since our proposed methods solve large addition problems successfully, we evaluate whether the
same approaches can be used to improve other kinds of algorithmic learning. In Appendix Section
A.3, we explore multiplication problems of up to 15 digit numbers and sorting over arrays of up to 10
numbers, making this the first study of extreme length generalization techniques for addition that
transfer to other algorithmic tasks. Our contributions can be summarized as follows.

• We propose a new positional embedding called Abacus Embeddings to better capture the
significance of each digit, which leads to near-perfect in-distribution generalization.

• We show that when we combine Abacus Embeddings with input injection and looped
transformers performance further improves, increasing from 92.9% to 99.1% in out-of-
distribution accuracy, an 87% reduction in error compared to using the embeddings with
standard architectures alone.

2 Related Work

Arithmetic. Solving arithmetic with next token prediction is a difficult problem that attracts a lot of
attention (e.g. Saxton et al., 2019). However, in zero-shot settings, even incredibly strong commercial
API models struggle with very large addition problems (e.g. up to 100 digits) without access to tools.
Among attempts to improve arithmetic performance of transformer-based models, reversing the digits
so the arguments are written with the least significant digit first is popular (Lee et al., 2023; Shen
et al., 2023; Zhou et al., 2023, 2024). Furthermore, changing the data format by adding explicit index
characters improves model capability for addition (Zhou et al., 2023, 2024; Olsson et al., 2022).

Weight Sharing. Weight sharing and recurrence can be used to make models adaptive and help
generalize to harder problems (Dehghani et al., 2018; Sukhbaatar et al., 2019; Lan et al., 2020;
Ibarz et al., 2022). Schwarzschild et al. (2021) and Bansal et al. (2022) explore an end-to-end
learning approach using recurrent convolutional neural networks to learn algorithms from input-
output pairs, tackling algorithmic tasks like prefix sums, mazes, and chess. Weight sharing for
algorithmic reasoning is also helpful with transformers and we use the looped transformer in some
of our experiments below. A looped transformer has a transformer block called recurrently on its
own output lending itself to executing iterative algorithms (Giannou et al., 2023; Yang et al., 2023a;
de Luca & Fountoulakis, 2024).

Positional Embeddings. Indicating the position of tokens in a sequence to transformer models is
critical for language modeling (Vaswani et al., 2017). Absolute positional embeddings (APE) are
learned embeddings that are added to token embeddings before the first layer of the transformer
(Vaswani et al., 2017). However, these absolute embeddings inhibit length generalization (Press et al.,
2022). Kazemnejad et al. (2023) show that decoder layers can still learn positional information with
no explicit positional embeddings. No positional embeddings (NoPE) can achieve good length gener-
alization performance for small algorithmic tasks and even outperform some specialized embeddings.
The latest and most useful for arithmetic is Functional Interpolation for Relative Position Embeddings
(FIRE) (Li et al., 2023). FIRE shows the strongest length generalization to date, which leads to length
generalization by 2.5× on addition (Zhou et al., 2024) when combined with randomized embeddings
(Ruoss et al., 2023). We go into more detail on positional embeddings in Appendix A.1.1. In this
work, we focus on NoPE and FIRE embeddings since these are the best performers for addition in
reversed format among existing embeddings (Zhou et al., 2024).

3 Achieving Length Generalization for Addition

We focus on two main hypotheses: (1) the positional information for individual digits within numbers
is being lost and (2) recurrence can improve the reasoning abilities of transformer architectures on

2



Figure 1: Visualization of data formats and positional embeddings. Abacus Embeddings give the
same positional embeddings to all digits of the same significance.

multi-step arithmetic reasoning problems. We briefly discuss the training and evaluation setup before
describing each of our improvements in detail.

Experimental Setup. We train decoder-only causal language models to solve addition problems.
Following prior work (Zhou et al., 2023, 2024; Shen et al., 2023; Kazemnejad et al., 2023; Lee et al.,
2023), inputs are formatted least significant digit first, e.g. 98282 + 3859172 = 2787472. Unlike
prior work, we do not add any padding between digits (Shen et al., 2023) and do not pad any numbers
with zeros, neither in the case of carry digits (Zhou et al., 2024), nor to make all operands the same
length (Shen et al., 2023). We train on all combinations of operand lengths less than or equal to i
and j where i and j are the maximum lengths of the first and second operands, respectively. For this
study all training sets have 20 million samples and i = j, hence we can use one number to define the
dataset i, where i is the maximum length of either operand. For further details on data construction
and training we refer to Appendix A.6.

We report model accuracy for each (i, j) length pair and unlike most existing work, we also include
accuracy for pairs where i ̸= j to highlight all instances of extrapolation. This extensive tabulation is
costly and makes inference the main computational burden of this study. We measure accuracy in the
strict sense where only exact matches of all output digits are counted as correct, i.e. if a single digit
is incorrect then the example is marked as wrong and we refer to this as exact match accuracy. We
have the following three evaluation categories: (i) in distribution (ID) where the models are tested
on problems up to the maximum size seen during training; (ii) out of distribution (OOD) where the
models are tested on problems greater than the maximum size seen during training but both operands
are at most 100 digits; (iii) and extreme out of distribution (100+ digit OOD) where the models are
tested on problems where both operands are of the same length and are both more than 100 digits and
less than 160 digits. In the 100+ OOD setting, we only analyze problems where the operands are the
same length (i = j) due to inference costs at this scale.

We consider two standard transformer architectures. First, we use a standard autoregressive trans-
former model (ST) where multiple decoder layers are stacked in a feedforward manner. Second,
we enhance this standard transformer model by incorporating input injection (ST w/ II), where the
embedded inputs are added to the input of each decoder layer (Ma et al., 2022; Bansal et al., 2022;
Anil et al., 2022a). We visually describe the architectures in the Appendix Figure 19.

ST ST w/ II
Architecture Type

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y 92

.9

3.
6

4.
3

97
.9

2.
9

3.
2

26
.7

0 0

30
.6

0 0

Abacus, OOD
Abacus, 100+ OOD

FIRE, OOD
FIRE, 100+ OOD

NoPE, OOD
NoPE, 100+ OOD

Figure 2: Mean exact match accuracy of three models of depth sixteen on size 20 data, varying the
architecture and embeddings. Abacus Embeddings improve accuracy for addition over FIRE and
NoPE.

3



3.1 Abacus Embeddings Help Align Digits

From prior work and our own initial experiments, we observe that even when input numbers are
presented least-significant digit first and training data is stratified and abundant (several million
examples), standard transformers struggle to learn multi-digit addition. We also observe that humans
do long addition by first aligning the digits of the same significance into columns. Thus, our first
hypothesis is that the significance of each digit (i.e. each digit’s position relative to the beginning of
the number) is not easy for transformers to represent, and that this sub-problem presents more of a
hurdle than the actual addition itself.

Prior work addresses this by proposing explicit index hints in the inputs and outputs of the addition,
for example a6b7c5 + a1b6c3 = a7b3c9; finding that transformers perform much better on addition
with the information provided by such hints (Zhou et al., 2023, 2024). However, index hints of this
form increase the input context length required and double the output length and inference cost of
solving a given addition problem. Furthermore, Zhou et al. (2024) find that the ability of models
trained with index hints to generalize is sensitive to the particular random initialization.

To address the limitations of transformers at representing positional information, we design a specially
built positional embedding that encodes the location of each digit relative to the start of the current
number. We call this Abacus Embeddings. We apply the same positional embedding to all digits of
the same significance, providing an explicit signal that the model can use to align digits. We visually
describe these embeddings in Figure 1.2

We take inspiration from Randomized Embeddings (Ruoss et al., 2023) but instead of using random
ascending indices to represent positions in a sample, we use consecutive ascending indices with a
random starting position to allow for length generalization. Specifically, during training we give
consecutive positional embeddings to each digit in a number, starting from a randomly chosen offset
value from U [1, k], where k is a hyperparameter. Unless otherwise stated the default value for k in
this study is 100. For example, if the input is 123, the positional encodings are β, β + 1, β + 2 where
β ∼ U [1, 100], which are then passed through a learned embedding matrix. The value sampled from
U [1, k] is the same for all numbers in a batch, meaning all digits of the same significance obtain the
same positional embedding. This training scheme allows the model to see a wide range of positional
embeddings, even when training sequences are short. At test time, we set β = 1.

Abacus Embeddings Solve Addition. Abacus Embeddings improve generalization performance
up to 100 digits and beyond for standard transformer architectures. In Figure 2, we highlight the
comparative boost Abacus Embeddings have over standard transformer architectures and embeddings
for performing addition, taking the mean accuracy of three models in all cases. Additionally, In
Appendix A.5.4, we present 2D grid plots for several other experiments that are depicted as bar charts
in the main text. Zhou et al. (2024) find that operand lengths of up to forty digits are required during
training for good generalization to 100 digit addition during testing (albeit not robustly). We find
that with our Abacus Embeddings, we can achieve similar accuracy and larger extrapolation using a
standard model with input injection trained on maximum operand sizes of 20 digits.

As Abacus Embeddings are a variant of absolute positional embeddings, technically they cannot
generalize beyond the relative positions seen during training. However the hyperparameter k that
randomizes the starting offset used for each individual addition example can be increased to enable
generalization by training a larger range of embeddings for a given computational budget. Relatedly,
Appendix Figure 8 shows that training on larger datasets improves performance, even for operands
with fewer than 100 digits.

4 Discussion

Across our experiments, we find that our novel Abacus Embeddings improve performance dra-
matically both when applied to standard transformers as well as recurrent variants. We hope that
our work deepens the community’s understanding of these problems and paves the way for further
advancements in the algorithmic reasoning capabilities of large language models.

2In Appendix A.2, we motivate these embeddings further with experiments demonstrating their utility in
solving a bitwise OR task and show their performance on multiplication and sorting in Appendix A.3.

4



References
Anil, C., Pokle, A., Liang, K., Treutlein, J., Wu, Y., Bai, S., Kolter, J. Z., and Grosse, R. B. Path

independent equilibrium models can better exploit test-time computation. Advances in Neural
Information Processing Systems, 35:7796–7809, 2022a.

Anil, C., Wu, Y., Andreassen, A., Lewkowycz, A., Misra, V., Ramasesh, V., Slone, A., Gur-Ari, G.,
Dyer, E., and Neyshabur, B. Exploring length generalization in large language models. Advances
in Neural Information Processing Systems, 35:38546–38556, 2022b.

Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

Bansal, A., Schwarzschild, A., Borgnia, E., Emam, Z., Huang, F., Goldblum, M., and Goldstein, T.
End-to-end algorithm synthesis with recurrent networks: Logical extrapolation without overthink-
ing. Advances in Neural Information Processing Systems, 35, 2022.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam,
P., Sastry, G., Askell, A., et al. Language models are few-shot learners. Advances in neural
information processing systems, 33:1877–1901, 2020.

Chi, T.-C., Fan, T.-H., Ramadge, P., and Rudnicky, A. Kerple: Kernelized relative positional
embedding for length extrapolation. In Advances in Neural Information Processing Systems, 2022.

Chi, T.-C., Fan, T.-H., Rudnicky, A., and Ramadge, P. Dissecting transformer length extrapolation via
the lens of receptive field analysis. In Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 13522–13537, 2023.

de Luca, A. B. and Fountoulakis, K. Simulation of graph algorithms with looped transformers. arXiv
preprint arXiv:2402.01107, 2024.

Dehghani, M., Gouws, S., Vinyals, O., Uszkoreit, J., and Kaiser, L. Universal transformers. In
International Conference on Learning Representations, 2018.

Dziri, N., Lu, X., Sclar, M., Li, X. L., Jian, L., Lin, B. Y., West, P., Bhagavatula, C., Bras, R. L.,
Hwang, J. D., et al. Faith and fate: Limits of transformers on compositionality. arXiv preprint
arXiv:2305.18654, 2023.

Geiping, J. and Goldstein, T. Cramming: Training a language model on a single gpu in one day. In
International Conference on Machine Learning, pp. 11117–11143. PMLR, 2023.

Giannou, A., Rajput, S., Sohn, J.-y., Lee, K., Lee, J. D., and Papailiopoulos, D. Looped transformers
as programmable computers. In International Conference on Machine Learning, pp. 11398–11442.
PMLR, 2023.

Golkar, S., Pettee, M., Eickenberg, M., Bietti, A., Cranmer, M., Krawezik, G., Lanusse, F., McCabe,
M., Ohana, R., Parker, L., et al. xval: A continuous number encoding for large language models.
arXiv preprint arXiv:2310.02989, 2023.

Ibarz, B., Kurin, V., Papamakarios, G., Nikiforou, K., Bennani, M., Csordás, R., Dudzik, A. J.,
Bošnjak, M., Vitvitskyi, A., Rubanova, Y., et al. A generalist neural algorithmic learner. In
Learning on graphs conference, pp. 2–1. PMLR, 2022.

Jelassi, S., d’Ascoli, S., Domingo-Enrich, C., Wu, Y., Li, Y., and Charton, F. Length generalization in
arithmetic transformers. arXiv preprint arXiv:2306.15400, 2023.

Kazemnejad, A., Padhi, I., Ramamurthy, K. N., Das, P., and Reddy, S. The impact of positional
encoding on length generalization in transformers. arXiv preprint arXiv:2305.19466, 2023.

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., and Soricut, R. Albert: A lite bert for
self-supervised learning of language representations. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=H1eA7AEtvS.

Lee, N., Sreenivasan, K., Lee, J. D., Lee, K., and Papailiopoulos, D. Teaching arithmetic to small
transformers. arXiv preprint arXiv:2307.03381, 2023.

5

https://openreview.net/forum?id=H1eA7AEtvS


Li, S., You, C., Guruganesh, G., Ainslie, J., Ontanon, S., Zaheer, M., Sanghai, S., Yang, Y., Kumar,
S., and Bhojanapalli, S. Functional interpolation for relative positions improves long context
transformers. arXiv preprint arXiv:2310.04418, 2023.

Loeber, J. #16: Notes on Arithmetic in GPT-4, February 2024. URL https://loeber.substack.
com/p/16-notes-on-arithmetic-in-gpt-4.

Loshchilov, I. and Hutter, F. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

Ma, X., Zhou, C., Kong, X., He, J., Gui, L., Neubig, G., May, J., and Zettlemoyer, L. Mega: moving
average equipped gated attention. arXiv preprint arXiv:2209.10655, 2022.

McLeish, S., Schwarzschild, A., and Goldstein, T. Benchmarking chatgpt on algorithmic reasoning.
arXiv preprint arXiv:2404.03441, 2024.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma, N., Henighan, T., Mann, B., Askell, A.,
Bai, Y., Chen, A., et al. In-context learning and induction heads. arXiv preprint arXiv:2209.11895,
2022.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023. URL https://api.
semanticscholar.org/CorpusID:257532815.

Peng, B., Quesnelle, J., Fan, H., and Shippole, E. Yarn: Efficient context window extension of large
language models. International Conference on Learning Representations, 2024.

Press, O., Smith, N., and Lewis, M. Train short, test long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=R8sQPpGCv0.

Qian, J., Wang, H., Li, Z., Li, S., and Yan, X. Limitations of language models in arithmetic and
symbolic induction. arXiv preprint arXiv:2208.05051, 2022.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu, P. J.
Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of machine
learning research, 21(140):1–67, 2020.

Rodionov, G. and Prokhorenkova, L. Discrete neural algorithmic reasoning. arXiv preprint
arXiv:2402.11628, 2024.

Ruoss, A., Delétang, G., Genewein, T., Grau-Moya, J., Csordás, R., Bennani, M., Legg, S., and
Veness, J. Randomized positional encodings boost length generalization of transformers. arXiv
preprint arXiv:2305.16843, 2023.

Saxton, D., Grefenstette, E., Hill, F., and Kohli, P. Analysing mathematical reasoning abilities of
neural models. arXiv preprint arXiv:1904.01557, 2019.

Schwarzschild, A., Borgnia, E., Gupta, A., Huang, F., Vishkin, U., Goldblum, M., and Goldstein, T.
Can you learn an algorithm? generalizing from easy to hard problems with recurrent networks.
Advances in Neural Information Processing Systems, 34, 2021.

Shaw, P., Uszkoreit, J., and Vaswani, A. Self-attention with relative position representations. arXiv
preprint arXiv:1803.02155, 2018.

Shazeer, N. Glu variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Shen, R., Bubeck, S., Eldan, R., Lee, Y. T., Li, Y., and Zhang, Y. Positional description matters for
transformers arithmetic. arXiv preprint arXiv:2311.14737, 2023.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y. Roformer: Enhanced transformer with rotary
position embedding. Neurocomputing, 568:127063, 2024.

6

https://loeber.substack.com/p/16-notes-on-arithmetic-in-gpt-4
https://loeber.substack.com/p/16-notes-on-arithmetic-in-gpt-4
https://api.semanticscholar.org/CorpusID:257532815
https://api.semanticscholar.org/CorpusID:257532815
https://openreview.net/forum?id=R8sQPpGCv0


Sukhbaatar, S., Grave, E., Bojanowski, P., and Joulin, A. Adaptive attention span in transformers. In
Korhonen, A., Traum, D., and Màrquez, L. (eds.), Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pp. 331–335, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1032. URL https://aclanthology.org/
P19-1032.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S.,
Bhargava, P., Bhosale, S., et al. Llama 2: Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Veličković, P., Badia, A. P., Budden, D., Pascanu, R., Banino, A., Dashevskiy, M., Hadsell, R., and
Blundell, C. The clrs algorithmic reasoning benchmark. In International Conference on Machine
Learning, pp. 22084–22102. PMLR, 2022.

Wang, H., Ma, S., Dong, L., Huang, S., Zhang, D., and Wei, F. DeepNet: Scaling Transformers to
1,000 Layers. arXiv:2203.00555 [cs], March 2022. URL http://arxiv.org/abs/2203.00555.

Yang, L., Lee, K., Nowak, R., and Papailiopoulos, D. Looped transformers are better at learning
learning algorithms. arXiv preprint arXiv:2311.12424, 2023a.

Yang, Z., Ding, M., Lv, Q., Jiang, Z., He, Z., Guo, Y., Bai, J., and Tang, J. Gpt can solve mathematical
problems without a calculator. arXiv preprint arXiv:2309.03241, 2023b.

Zhai, X., Kolesnikov, A., Houlsby, N., and Beyer, L. Scaling vision transformers. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 12104–12113, 2022.

Zhou, H., Bradley, A., Littwin, E., Razin, N., Saremi, O., Susskind, J., Bengio, S., and Nakkiran,
P. What algorithms can transformers learn? a study in length generalization. arXiv preprint
arXiv:2310.16028, 2023.

Zhou, Y., Alon, U., Chen, X., Wang, X., Agarwal, R., and Zhou, D. Transformers can achieve length
generalization but not robustly. arXiv preprint arXiv:2402.09371, 2024.

7

https://aclanthology.org/P19-1032
https://aclanthology.org/P19-1032
http://arxiv.org/abs/2203.00555


A Appendix

Limitations There are some intrinsic limitations that accompany any study involving language
model training from scratch under compute constraints. However, the primary point of relevance for
this study is that although we show the compatibility of Abacus Embeddings with FIRE and RoPE
embeddings, we do not actually explore any natural language tasks. In the future, a larger scale study
including natural language would be needed to understand further how Abacus Embeddings would
perform on heterogeneous tasks comprising both numerical and natural language inputs.

A.1 Extended Related Works

A.1.1 Positional Embeddings.

To address this issue of absolute embeddings not generalizing, Shaw et al. (2018) propose relative
embeddings (RPE) which are embedded during the attention computation, a mechanism further
simplified by Raffel et al. (2020). Others further modify relative embeddings to improve length
generalization including Sandwich (Chi et al., 2023), Kerple (Chi et al., 2022), and Alibi (Press
et al., 2022) positional embeddings. Rotary Positional Embeddings (RoPE) (Su et al., 2024) are
commonly used in state-of-the-art open source transformers (e.g. Touvron et al., 2023). However,
RoPE does limit the length generalization as models are trained only using rotations based on training
data length (Kazemnejad et al., 2023; Press et al., 2022). For improved length generalization, one can
add post-training extensions (Peng et al., 2024).

FIRE embeddings are additive embeddings in the attention mechanism: ARPE(X) =

XWQ(XWK)T + B where Bi,j = fθ

(
log(c(i−j)+1)

log(cmax(i,L)+1)

)
and c, L are learnable parameters. Li

et al. (2023) show empirically that these embeddings allow for length generalization and theoretically
show they are capable of representing many other embedding types. Ruoss et al. (2023) propose
using a random subset of a larger set of possible positions during training so that larger positional
embeddings are trained. Zhou et al. (2024) use randomized FIRE (Ruoss et al., 2023; Li et al., 2023)
embeddings to achieve length generalization on arithmetic tasks, which use randomized positions as
input to the small multi layer perceptron used in FIRE embeddings.

A.1.2 Arithmetic and Algorithmic Reasoning.

Golkar et al. (2023) approach arithmetic by embedding real numbers by scaling a single fixed token-
embedding for numbers. Moreover, Dziri et al. (2023) show multiplication is a hard problem for
GPT-3 (Brown et al., 2020) even when finetuned on this task. Dziri et al. (2023) further show that
GPT-4 (OpenAI, 2023) struggles to obtain high in-distribution accuracy on multiplication, even with
a scratchpad. However, Lee et al. (2023) find that with a detailed scratchpad, small transformers
can perform multiplication in-distribution. Arithmetic is a subset of the larger class of algorithmic
reasoning problems that focus on the ability to learn and execute algorithms and generalize to longer
problems (Anil et al., 2022b; Jelassi et al., 2023; Yang et al., 2023b; Veličković et al., 2022; Rodionov
& Prokhorenkova, 2024). The more general algorithmic reasoning field includes work on various
architectures and data modalities aimed at learning algorithms from data. Veličković et al. (2022) and
Rodionov & Prokhorenkova (2024), for example, train neural networks to execute specific algorithmic
tasks by training on input-output pairs as well as intermediate steps and hints. Additionally, recent
work aims to improve reasoning in LLMs (Zhou et al., 2023), but McLeish et al. (2024) demonstrate
that LLMs, even with code interpreters, are less than perfect at algorithmic reasoning tasks, indicating
a crucial need for advancements in our methodologies. This paper takes a step towards improving
LLM arithmetic and algorithmic capabilities without tool use.

A.2 Bitwise OR on Binary Vectors

A necessary condition to perform addition is aligning digits of the same significance. We begin
by examining positional embeddings for exactly this task. To do this we analyze the bitwise OR
task, where the model has to output left aligned position wise OR of two binary vectors. We present
samples from the dataset in Section A.2.1, these are left aligned to be representative of the task of
aligning digits for reversed addition.

8



LT ST ST w/ II
Architecture Type

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

71
.8

7.
1 10

.5

83
.1

3.
7 6.
8

55
.6

6.
4

4.
7

Abacus, OOD FIRE, OOD NoPE, OOD

Figure 3: Accuracy of models on the bitwise OR task when trained on data with size up to 20,
varying over different positional embeddings and architectures. Abacus Embeddings heavily improve
performance on this task.

We train standard transformer, standard transformer with input injection and looped transformer
models on the position wise or task, on a dataset where the maximum length of either input vector is
twenty. This result is shown in Figure 3. Here we see that the Abacus Embeddings allow all models
to generalize further on this task than the other embeddings which prior work for addition focuses on.
As with addition, we see that looped transformers perform better than the standard architectures with
FIRE or NoPE embeddings. We do note that these accuracies are not as high we report for addition.
We hypothesize this is because the model is having to repeatedly predict the same token multiple
times, this has been thought to be the cause of errors in prior addition work(Qian et al., 2022). When
we analyzed the errors in this task we found they were predominantly caused by the model outputting
one too few or too many zeros.

A.2.1 Example Data

000010⊕ 00000000000000 = 00001000000000

000100⊕ 0000000 = 0001000

001⊕ 00000 = 00100

A.3 Pushing the Limits of Algorithmic Reasoning for Transformers

While there is an emphasis on addition as a difficult problem in existing work, our methods perform
so well that we look beyond addition and apply our tools to even more difficult problems, including
multiplication and sorting.

A.4 Recurrence In Transformers Boosts Performance

With positional embeddings addressed, next we explore whether recurrent architectures can further
improve the ability of transformers to perform multi-digit addition. We use the term recurrent block
to refer to a set of decoder layers with distinct weights and recurrences to refer to the number of
times the recurrent block is repeated. We use the term effective depth to mean the number of layers
used in a transformer, whether their weights are unique or not. Unless otherwise stated, we use a
maximally recurrent architecture, i.e. only one unique layer recurred to achieve the effective depth.
We also employ input injection, skip-connections that propagate a copy of the input to each layer in
the network.

The Benefits of Recurrence. We explore the effect of varying the size of the recurrent block while
keeping the effective depth fixed. We perform this ablation by halving the number of layers in the
recurrent block and doubling the number of recurrences, sweeping from a model with sixteen layers in

9



the block and a single recurrence (16×1, i.e. a standard transformer), through to one layer in the block
with sixteen recurrences (1× 16). Analyzing Figure 4, we see further performance improvements
are possible in some cases with the combination of both recurrence and Abacus Embeddings. In
particular, a model with two recurrences (8×2) incurs half the error of the purely non-recurrent model
(16× 1) for OOD problems and enjoys increased accuracy on 100+ OOD problems. Although the
experiments presented in Figure 4 are a fair comparison across depth, the purely standard transformer
models have many more parameters than their recurrent counterparts.

16x1 8x2 4x4 2x8 1x16
Layers in Recurrent Block X Number of Recurrences

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y 97

.9

2.
9

3.
2

99
.1

3.
6

3.
7

98
.8

5.
5

4.
8

97
.9

3.
7

2.
8

79
.8

5.
3 7.
9

30
.6

0 0

31
.3

0 0

30
.1

0 0

29
.1

0 0

13
.7

0 0

Abacus, OOD
Abacus, 100+ OOD

FIRE, OOD
FIRE, 100+ OOD

NoPE, OOD
NoPE, 100+ OOD

Figure 4: Varying the size of the recurrent block, while maintaining an effective depth of 16 and
training on size 20 data. We see that a recurrent model with eight layers in the recurrent block and
two recurrences is the most accurate of all effective depth 16 models, halving the error rate of a
standard model with input injection in the OOD evaluation when using Abacus Embeddings.

A.4.1 Integer Multiplication

We now study a harder task, multiplication of natural numbers, where the length of the output may be
the sum of the lengths of the operands. Compared to addition, where the output is at most one digit
more than the longest operand, multiplication has longer-distance dependency and the output length
scales much faster as problem size increases.

To adapt from addition to multiplication, we make some small changes to our set-up. First, we
remove the input injection from inside the recurrent block and second, we divide the gradients in the
recurrent block by the number of recurrences, down-weighing the gradient update from batches with
many recurrences (Bansal et al., 2022). (We analyze the impact of these design decisions for addition
models in Appendix Figure 16.) We only examine looped transformers as the compute required for
training and hyperparameter search for multiplication is far greater than for addition, limiting us to a
much smaller scale analysis.

Abacus Embeddings help looped transformers reach near-perfect accuracy in-distribution for mul-
tiplication. In Figure 5, we show how the training distribution, surrounded by the red square fully
saturates with Abacus Embeddings. In fact, models with our Abacus Embeddings achieve higher in
distribution accuracy on 15 digit multiplication than prior work (Shen et al., 2023) and do not require
padding each operand to the same length with zeros. In particular, we highlight that the specific
problems that models trained with FIRE embeddings struggle to solve are the hardest problems in the
training set and Abacus Embeddings outperform them in this key area (see the lower right corner of
the red boxes in Figure 5).

A.4.2 Array Sorting

While both addition and multiplication accept only two operands, we now analyze the task of sorting
arrays of multiple variable length numbers, a more challenging testbed for evaluating the generaliza-
tion abilities of our Abacus Embeddings. We present each sorting problem using alphabetical indices
for each (reversed) number in an input array where the expected output is the alphabetical indices in
ascending order. For example, a : 64957, b : 99963, c : 10218, d : 7141, e : 05781 = d, e, b, a, c. We
train with arrays of up to 10 numbers each having up to 10 digits and then evaluate with arrays of

10



0 5 10 15 20

0

5

10

15

20

Abacus

0 5 10 15 20

Abacus + FIRE

0 5 10 15 20

FIRE

0

50

100

A
cc

ur
ac

y

Length of Operand Two
Le

ng
th

 o
f

O
pe

ra
nd

 O
ne

Figure 5: Exact match accuracy of looped transformer models trained on multiplication, with four
layers in the recurrent block and four recurrences. The red square denotes in distribution testing on up
to 15 digit operands. We see the models with Abacus Embeddings achieve near perfect in distribution
accuracy. Combining Abacus Embeddings with FIRE also improves in distribution accuracy on the
hardest in distribution problems (bottom right), comparing to the FIRE-only baseline.

Table 1: Exact match accuracy for sorting with various positional embeddings. All results are
percentages of the test set and all models here are standard transformers with eight layers.

FIRE Abacus Abacus + FIRE

OOD (number length - 30) 55.32 68.63 67.28
OOD (array length - 30) 21.35 9.67 21.11
All OOD (30× 30) 3.73 2.65 4.48
All OOD (20× 20) 14.65 9.78 16.91

Table 2: Accuracy for sorting with various architectures for sorting. ST denotes standard transformer,
ST w/ II denotes standard transformer with input injection, and LT denotes looped transformer
models. The standard transformer has the best exact match accuracy. When measuring the accuracy
on identifying only the minimum element of the array, looped transformers outperform all others. All
results are percentages of the test set.

ST ST w/ II LT

All OOD (exact string match) 4.48 3.84 2.60
All OOD (min. elem. only) 49.73 60.09 68.51

up to 30 numbers each having up to 30 digits. We give more detail on the sorting data construction
process in Appendix A.6.

In this setting, we explore two axes of generalization. First, we increase the maximum possible
length of the input numbers to 30 digits while maintaining the maximum array length to 10 and refer
to this scenario as “OOD (number length - 30).” Second, we increase the number of inputs in the
array to be sorted to 30 while keeping the maximum digit length of each number at 10 and term this
scenario “OOD (array length - 30).” Finally, we consider a scenario where both axes are increased
simultaneously, referred to as “all OOD.”

In Table 1, we illustrate the performance of a standard transformer (eight layers) trained with different
embeddings—FIRE, Abacus, and their combination. Again, our results demonstrate that the combined
embedding approach enhances the model’s ability to generalize, surpassing the performance of either
embedding alone in the “all OOD” setting. However, in Table 2, we observe mixed results when
pairing the Abacus+FIRE Embeddings combination with different model architectures with effective
depth eight. For sorting, different architectures appear to be better suited to different types of
extrapolation, for example the looped transformer is best at extrapolating for finding the minimum
element but not for sorting the whole array.

Overall, the superior sorting performance of the Abacus Embeddings underscores their potential
utility across a broader spectrum of algorithmic tasks beyond basic arithmetic. Abacus Embeddings
may be instrumental in use cases requiring transformer models to perform a variety of complex
positional, numerical, and/or relational reasoning tasks.

11



A.4.3 Abacus and Relative Embeddings

As Abacus Embeddings are only applied to numbers, to incorporate Abacus Embeddings into a
general purpose model, they must be compatible with other relative embeddings to maintain good
downstream performance on non-arithmetic tasks. We examine these types of combinations here and
conclude that Abacus Embeddings complement techniques that are good for natural language well,
suggesting that these combinations could be powerful for large-scale general models.

Although Abacus Embeddings are implicitly combined with NoPE (no positional embeddings)
embeddings for all experiments seen so far, most state-of-the-art open source models use Rotary
Embeddings. Rotary Embeddings are weak for length generalization. We show that combining
Abacus Embeddings with RoPE does, in fact, yield improvement in operand length generalization.
However, in Figure 6, we demonstrate the true potential for integrating Abacus Embeddings into
a more general system, showing that the combination of Abacus Embeddings with FIRE unlocks
generalization well beyond the problems that FIRE embeddings can solve on their own.

0 50 100

0

50

100

ST w/ II
Abacus + FIRE

0 50 100

ST w/ II
FIRE

0 50 100

ST w/ II
Abacus + RoPE

0 50 100

ST w/ II
RoPE

0

50

100

A
cc

ur
ac

y

Length of Operand TwoLe
ng

th
 o

f O
pe

ra
nd

 O
ne

Figure 6: Exact match accuracy of standard transformer of depth 16 with input injection, trained on
up to size 20 data. The red square denotes in distribution testing. Combining Abacus Embeddings
with FIRE or RoPE embeddings improves out of distribution accuracy for addition, over the baseline
models without Abacus Embeddings.

A.5 Further Addition Results

A.5.1 The Impact of Recurrence without Abacus

In Figure 7, we compare all architecture variants using both FIRE and NoPE embeddings trained on
addition over operands with up to 40 digits. Despite having approximately 10× fewer parameters than
the other models, we see that the looped transformer (recurrent, with input injection and progressive
loss), achieves the best out of distribution performance using either position embedding. In Figure 8
in the Appendix, we show this result is robust across multiple training data sizes.

With recurrent models, we can choose to vary the number of recurrences for each forward pass while
training. This tends to improve generalization to harder tasks at test time and is also referred to as
progressive loss computation (Bansal et al., 2022). This loss function is a convex combination of the
loss values from two forward passes, one with the nominal number of recurrences (so 16 for a 1× 16
model) and one with a random smaller number of recurrences.

A.5.2 Addition Models Trained on Varying Data Sizes

Across Figure 8, we see that increasing the size of the operands in the training set allows for better
generalization above one hundred digits for all models. This is partially due to the sampling method
for training Abacus Embeddings. As the offset randomization hyperparameter k = 100 is fixed across
experiments, there are more embeddings trained if the operands seen during training are longer. The
size of the OOD set below 100 is reduced as the size of the operands seen during training increases,
as the ID category now includes this data. However, this does still show that the size of the operands
seen during training directly impacts the generalization, with larger training sizes allowing for better
generalization.

12



LT ST ST w/ II
Architecture Type

0

5

10

15

20

25

30

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

24
.3

23
.9

15
.3

11
.4

8.
7 11

.0

FIRE, OOD NoPE, OOD

Figure 7: Mean exact match accuracy of three models of effective depth sixteen on size 40 data,
varying over NoPE or FIRE embeddings and architectures. Recurrent looped transformer models
improve accuracy for addition for both the FIRE and NoPE embeddings.

LT ST ST w/ II
Architecture Type

0

50

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

35
.8

0.
8

1.
1

21
.7

1.
1

0.
7

68
.9

0.
9

0.
73.
3

0 0 0.
5

0 0

9.
1

0 0
Train Data Size: 10

LT ST ST w/ II
Architecture Type

0

50

100

79
.8

5.
3 7.
9

92
.9

3.
6

4.
3

97
.9

2.
9

3.
213

.7

0 0

26
.7

0 0

30
.6

0 0

Train Data Size: 20

LT ST ST w/ II
Architecture Type

0

50

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

96
.8

16
.1

15
.8

99
.6

6.
2 7.
6

99
.4

5.
8

6.
6

32
.5

0 0

48
.0

0 0

47
.0

0 0

Train Data Size: 30

LT ST ST w/ II
Architecture Type

0

50

100 99
.1

24
.3

23
.9

99
.9

15
.3

11
.4

99
.3

8.
7 11
.0

60
.4

0 0

64
.1

0 0

62
.5

0 0

Train Data Size: 40

Abacus, OOD
Abacus, 100+ OOD

FIRE, OOD
FIRE, 100+ OOD

NoPE, OOD
NoPE, 100+ OOD

Figure 8: Mean exact match accuracy of three models of effective depth sixteen, varying the training
data and architecture. We omit from the plot the in distribution accuracies as these are all 100% or
very close to 100% for all models, this can be verified by the dark blue inside of all of the red squares
in Section A.5.4. Models trained on larger operands achieve higher OOD accuracy.

A.5.3 Extreme Length Generalization for Addition

Absolute positional embeddings must be learned during training otherwise they are unusable at
test time. This limits our Abacus Embeddings which are trained with the offset randomization
hyperparameter k = 100. One possible way to resolve this generalization problem is to increase the
value of k during testing. In Figure 9, we show the exact match accuracy of five looped transformer
models, with eight layers in the recurrent block and two recurrences trained on size 20 data with
Abacus Embeddings and k = 101, generalizing to 120 digit addition. We only show the accuracy for
operands of the same length in Figure 9, seeing these models consistently achieve accuracies of 95%
and above. We see this across the paper this method is much more robust than that presented by Zhou
et al. (2024).

13



0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

Operand Length

0
10
20
30
40
50
60
70
80
90

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y Run 1

Run 2
Run 3
Run 4
Run 5
In Distribution

Figure 9: Exact match accuracy of five models trained on size 20 data, generalizing well to 120 digit
addition, an extrapolation of 6×. Only showing the accuracy for operands of the same length.

A.5.4 Addition Full 100 x 100 Plots

Here we present the mean accuracy as heatmaps for the main addition experiments shown throughout
the paper. Figure 10 (left) corresponds to Top Left of Figure 8. Figure 10 (right) corresponds to Top
Right of Figure 8 and Figure 2. Figure 11 (left) corresponds to Bottom Left Figure 8. Figure 11
(right) corresponds to Bottom Right Figure 8 and Figure 7. Figure 12 corresponds to Figure 4. All of
these figures show the Abacus Embeddings ability to generalize in both dimensions of the addition
problem.

0

50

100

LT, Abacus LT, FIRE LT, NoPE

0

50

100

ST, Abacus ST, FIRE ST, NoPE

0 50 100

0

50

100

ST w/ II, Abacus

0 50 100

ST w/ II, FIRE

0 50 100

ST w/ II, NoPE

0

20

40

60

80

100

Length of Operand Two

Le
ng

th
 o

f O
pe

ra
nd

 O
ne

0

50

100

LT, Abacus LT, FIRE LT, NoPE

0

50

100

ST, Abacus ST, FIRE ST, NoPE

0 50 100

0

50

100

ST w/ II, Abacus

0 50 100

ST w/ II, FIRE

0 50 100

ST w/ II, NoPE

0

20

40

60

80

100

Length of Operand Two

Le
ng

th
 o

f O
pe

ra
nd

 O
ne

Figure 10: Full 100×100 exact match accuracy plots, taking the mean over three models. Left: Size
10 training data, corresponding to Top Left of Figure 8; Right: Size 20 training data, corresponding
to Top Right of Figure 8 and Figure 2.

A.6 Datasets

Addition: We sample equally, with replacement, from all i× i possible operand lengths up to the
maximum dataset size of 20 million, we call this a dataset of size i in the main text. For evaluation
we sample 100 samples for each pair of operand lengths evaluated.

Bitwise OR: The input for this problem is two binary vectors, the longer input vector is all zeros
and the shorter input contains a one. The output should be the length of the longer vector with the
one in the same position as in the shorter vector. If the inputs are the same length, the one can be
in either vector. E.g. 001⊕ 00000 = 00100. For training, we exhaustively sample the space of all
vectors of sizes less than or equal to the predefined maximum input vector size.

14



0

50

100

LT, Abacus LT, FIRE LT, NoPE

0

50

100

ST, Abacus ST, FIRE ST, NoPE

0 50 100

0

50

100

ST w/ II, Abacus

0 50 100

ST w/ II, FIRE

0 50 100

ST w/ II, NoPE

0

20

40

60

80

100

Length of Operand Two

Le
ng

th
 o

f O
pe

ra
nd

 O
ne

0

50

100

LT, Abacus LT, FIRE LT, NoPE

0

50

100

ST, Abacus ST, FIRE ST, NoPE

0 50 100

0

50

100

ST w/ II, Abacus

0 50 100

ST w/ II, FIRE

0 50 100

ST w/ II, NoPE

0

20

40

60

80

100

Length of Operand Two

Le
ng

th
 o

f O
pe

ra
nd

 O
ne

Figure 11: Full 100×100 exact match accuracy plots, taking the mean over three models. Left: Size
30 training data, corresponding to Bottom Left Figure 8; Right: Size 40 training data, corresponding
to Bottom Right Figure 8 and Figure 7.

0

50

100

16x1, Abacus 16x1, FIRE 16x1, NoPE

0

50

100

8x2, Abacus 8x2, FIRE 8x2, NoPE

0

50

100

4x4, Abacus 4x4, FIRE 4x4, NoPE

0

50

100

2x8, Abacus 2x8, FIRE 2x8, NoPE

0 50 100

0

50

100

1x16, Abacus

0 50 100

1x16, FIRE

0 50 100

1x16, NoPE

0

20

40

60

80

100

Length of Operand Two

Le
ng

th
 o

f O
pe

ra
nd

 O
ne

Figure 12: Full 100x100 exact match accuracy plots, taking the mean over three models, relating to
Figure 4.

Sorting: Given a list of reversed integers indexed by characters, output the characters in ascending
order. E.g. a : 64957, b : 99963, c : 10218, d : 7141, e : 05781 = d, e, b, a, c. We implement the
sampling process for sorting in a grid like manor. We query each “square” of an [1, n]× [1, n] grid

15



until the maximum size has been reached for the dataset. When querying “square” (i, j) we randomly
sample i integers of size less than or equal to j digits. We randomly sample consecutive indices for
the natural numbers in our list at both train and test time.

Multiplication: We implement the multiplication datasets for both training and testing the exact
same manor as for addition, only changing the operation used to calculate the answer.

A.7 Addition Ablations

A.7.1 Analyzing the Intermediate Properties of Recurrence

Thanks to the looped transformer architecture, we can extract intermediate solutions from the models,
allowing us to plot the models outputs over iterations of the recurrent block. We present an example
in Figure 13 and suggest that this level of interpretability could be leveraged in future work. The
model presented is a 1× 16 model, one decoder layer and sixteen recurrences. We do not show the
full 16 iterations in this plot for readability but these models do maintain a fixed point to 16 iterations
and beyond.

Figure 13: Plot showing the improvement of the prediction over “thinking” iterations on a 100 digit
addition problem.
Input Prompt:
587928785434679080355608971949871667189221012941443697496891519051264419888571617
0096255295233702836+4358110391552830769683978480187501721764900525218097903808750
786159803668915002036143168815597779644=
Answer:
919576073626374550845911684630020084191658772891994105418527595750262943203928417
58606474262584957001[EOS]
(Note that the plot is truncated.)

A.7.2 Removing Masking Before Equals

We mask all tokens before the equals sign in all of our experiments, we hypothesize that with more
training time this constraint may be able to be removed. In Figure 14, we show the effect of training
with the same amount of flops as the other addition experiments without masking before the equals
sign.

A.7.3 Varying Effective Depth

In Figure 15, we present models with effective depths 8 and more than 16, respectively. In Figure
15 (left), we see that the effective depth 8 models under perform the models with 8 layers in the
recurrent block and two recurrences shown in Figure 4, demonstrating the benefit of recurrence in this
case. We see very high accuracy from all models in Figure 15 (right). Again, the depth 32 recurrent

16



LT ST ST w/ II
Architecture Type

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

9.
1

0.
5

0.
8

53
.0

0.
7

1.
3

84
.9

3.
5

2.
1

Abacus, OOD FIRE, OOD NoPE, OOD

Figure 14: Effect of removing the masking of the loss before the “=” sign in the addition task. All
models perform worse when trained for 24 hours on a single Nvidia RTXA4000 if we do not mask
the input question in the loss function.

models outperform the standard models with input injection, even though it only has approximately
a quarter of the parameters and achieves the highest OOD mean accuracy of all models presented.
These ablations show that with Abacus Embeddings the addition task can be learned across many
effective depths to varying degrees of accuracy.

LT ST ST w/ II
Architecture Type

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

49
.2

4.
1

2.
2

96
.4

4.
5

4.
7

97
.5

4.
1

3.
6

0.
1

0 0

28
.1

0 0

29
.7

0 0

Abacus, OOD
Abacus, 100+ OOD

FIRE, OOD
FIRE, 100+ OOD

NoPE, OOD
NoPE, 100+ OOD

1x32 4x8 8x8
Recurrences X Size of Block

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y 98

.6

3.
4

3.
9

99
.6

4.
9

5.
5

98
.2

4.
1

4.
2

28
.6

0 0

30
.5

0 0

29
.1

0 0

Abacus, OOD
Abacus, 100+ OOD

FIRE, OOD
FIRE, 100+ OOD

NoPE, OOD
NoPE, 100+ OOD

Figure 15: Left: Effective depth 8 models, trained on size 20 data. These models under perform
the models with eight layers in the recurrent block and two recurrences shown in Figure 4, showing
the benefit of recurrence for addition. Right: Effective depth >16 models, trained on size 20 data.
The models contain many more parameters than all other models we present, showing more that an
effective depth of more than 16 does not necessarily improve accuracy in this setting.

In Figure 16 (left), we remove the input injection to the intermediate layers in the recurrent block,
only keeping input injection to the first layer of the recurrent block. In Figure 16 (right) we divide
the gradients in the recurrent block by the number of recurrences for the looped transformer models
during training. We see very minor performance changes for all models shown in Figure 16, with the
2× 8 model improving its performance slightly in left plot and the 4× 4 model improving slightly
in the right plot. We ablate this design choices as we have to remove the input injection inside of
the recurrent and divide the gradients in the recurrent block by the number of recurrences for the
multiplication models show in Figure 5. Hence, we can conclude there would only be very minor
performance changes in this case for addition.

A.7.4 Adding randomized Padding

Abacus Embeddings give strong priors for numerical tasks but without them, looped transformers
perform better than the standard transformer architectures we present. The result shown in Figure
17 aligns well with the hypothesis that with fewer priors the looped transformer models are able to
generalize better. In this case the priors are reduced as the training data is noised with random pad
symbols, a method which was shown to improve length generalization in prior work (Shen et al.,
2023).

17



8x2 4x4 2x8
Layers in Recurrent Block X Number of Recurrences

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y 97

.1

98
.3

98
.1

29
.1

30
.7

26
.3

Abacus, OOD Abacus, 100+ OOD

8x2 4x4 2x8
Layers in Recurrent Block X Number of Recurrences

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y 98

.3

99
.6

95
.2

29
.9

30
.7

31
.3

Abacus, OOD Abacus, 100+ OOD

Figure 16: Replicas of the looped transformer models shown in Figure 4, to check the modifications
we use to train addition models do not adversarially impact addition training, taking the mean of
three models in each case. Left: without the input injection to the layers inside of the recurrent block,
only to the first layer of the recurrent block. Right: dividing the gradients in the recurrent block by
the number of recurrences.

LT ST ST w/ II
Architecture Type

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

72
.8

4.
9 6.
3

1.
5 3.
6

3.
3

1.
4 2.
9

3.
4

Abacus, OOD FIRE, OOD NoPE, OOD

Figure 17: Effect of adding randomized padding into training data only for the addition task. Looped
transformer models are able to maintain high accuracy when random padding is added into the data.

A.7.5 Index Hints

Zhou et al. (2023) “randomly sample consecutive index hints from a pre-defined ordered set of hints
with 102 symbols,” for example a6b7c5 + a1b6c3 = a7b3c9. We implement this method two ways.
Firstly, cyclic, here we treat the list as cyclic when sampling. Secondly, non-cyclic, this reduces the
number of samples which receive the embeddings later in the ordering as we only sample from the
list in order. We see similar results for models trained on up to twenty digits as Zhou et al. (2023).
We do note that our format of taking the mean exact match accuracy does highlight robustness as
if one of the three models tested were to not generalize well, this would impact reported accuracy
heavily. We only show a comparison to size 20 training data due to the increased cost of evaluating
these index hint models, as the inputs and outputs are approximately double the length of regular
questions the inference time is heavily increased. Due to the robustness issues highlighted by Zhou
et al. (2024) with their methods, we try to the best of our abilities to faithfully reproduce their work
within our experimental set up, noting that perhaps a better random seed or initialization may be able
to produce better results for these models.

A.8 Additional Experimental Information

In this work, we consider three different model types, the classical standard transformer, standard
transformer with input injection, and looped transformers. We visually describe these in Figure 19.
Due to the looped transformer architecture the number of recurrences at train time can be different to
the number of recurrences at test time, although we do not make use of this in this work.

18



LT ST ST w/ II
Architecture Type

0

20

40

60

80

100

Ex
ac

t M
at

ch
 A

cc
ur

ac
y

13
.8

6.
0 14

.6

12
.3

9.
9

5.
8

FIRE Rand, OOD FIRE Rand Circular Hints, OOD

Figure 18: Using index hints and randomized FIRE embeddings, presented by Zhou et al. (2024),
training on size 20 data with our methodology, such as masking before the equals sign. This would
be comparable to “1 to 20” in Figure 13 presented by Zhou et al. (2024) and Figure 2 of our work.

Figure 19: Visualization of the three architectures we study.

As Abacus Embeddings are a variant of absolute embeddings, reused only for numbers, they could
be combined with relative embeddings being deployed in current models. If all digits input to the
model are tokenized individually, we can perform a linear time operation to find and assign relative
embeddings to all numbers in an input, which is lower than the quadratic cost incurred by attention.
Training a small number of Abacus Embeddings may be enough to handle all numerical inputs for
addition as they are reused. To fully implement our methodology all numbers also have to be reversed,
this can be implemented with simple regular expressions on all inputs and outputs.

To facilitate training of many models from scratch, we use a language model cramming setup (Geiping
& Goldstein, 2023) and limit each training run to 8 exaFLOP of compute (a single Nvidia RTXA4000
GPU for 24 hours); for multiplication results we allow 64 exaFLOP (eight Nvidia RTXA4000 GPUs
for 24 hours). During training, we mask the input question and only compute loss on the answer
digits. We use a character level tokenizer for all experiments and greedy decoding in all testing.
We train all models with a local batch size which is the maximum batch size that is a power of two
that will fit into the sixteen gigabytes of GPU memory. For multiplication models we first take the
mean loss across samples before taking the mean across all samples in a batch, instead of taking the
mean loss across all token in a batch; we find this leads to slightly more stable training. We note that
training models to solve multiplication requires more hyperparameter tuning than addition, perhaps
implying it is a trickier task to learn. Also, FIRE models require a much greater compute budget for
hyperparameter search as compared to Abacus models for multiplication. In Table 3, we present the
approximate parameter counts for models trained with input injection and Abacus Embeddings.

Compute Usage. We detail the default use of GPUs for each experiment in Table 4. For some
experiments, such as extreme length generalization (Figure 9) and index hints (Figure 18) more
GPU hours are required for testing, these are included in the total number of GPU hours used. Our
testing pipeline for addition and Bitise OR uses Nvidia V100 GPUs. Due to a technical problem,
‘torch.compile’ cannot be used on the V100 GPUs we use, therefore others may be able to reduce
this compute time in future studies. All compute was provided by internal resources. During the
exploratory phase of this project, we used more GPU hours to test and design the experiments shown,

19



Table 3: Number of parameters, to the nearest million, in a model with Abacus Embeddings and input
injection.

Layers in Recurrent Block Recurrences Parameters (Millions)

16 1 122
8 2 64
4 4 34
2 8 19
1 16 12

Table 4: Default number of Nvidia GPU hours used to train a model.

Dataset Number of GPU Hours (training) Number of GPU Hours (testing)

Addition 24 - RTXA4000 65.8 - V100

Bitwise OR 1 - RTXA4000 45 - V100

Sorting 24 - RTXA4000 64 - RTXA4000

Multiplication 192 - RTXA4000 0.83 - RTXA4000

using approximately 1.5 terabytes of storage of the entire project. An estimate of the total compute
required for all of the results presented in the main paper is 10, 039 GPU hours. The appendix results
require a further 18, 278 GPU hours.

A.8.1 Hyperparameters

We detail what we believe to be an important subset of the default hyperparameter values in Table
5. A full list of all hyperparameters and model configurations is contained in the code release. For
multiplication models with FIRE embeddings, the learning rate is 0.00006, due to large instabilities
in higher learning rates which were not experienced for the Abacus Embeddings.

A.8.2 Code Release

We will release all code and datasets on GitHub with an MIT License.

Table 5: Default hyperparameter values.
Hyperparameter Default Value

Hidden Size 1024
Intermediate Size 2048
Embedding Size 1024
Number of Attention Heads 16
Progressive Loss Alpha (Bansal et al., 2022) 1.0
Data Type float16/float32
Optimizer AdamW (Loshchilov & Hutter, 2017)
Global Batch Size 8192
Batch Size Ramp 0.6
Learning Rate 0.0001
Learning Rate Scheduler Trapezoid (Zhai et al., 2022)
Activation Function GELUglu (Shazeer, 2020)
Normalization Layer LayerNorm (Ba et al., 2016)
Normalization Type Post
Offset Randomization Hyperparameter (k) 100
Initialization Deepnorm (Wang et al., 2022)

20


	Introduction
	Related Work
	Achieving Length Generalization for Addition
	Abacus Embeddings Help Align Digits

	Discussion
	Appendix
	Extended Related Works
	Positional Embeddings.
	Arithmetic and Algorithmic Reasoning.

	Bitwise OR on Binary Vectors
	Example Data

	Pushing the Limits of Algorithmic Reasoning for Transformers
	Recurrence In Transformers Boosts Performance
	Integer Multiplication
	Array Sorting
	Abacus and Relative Embeddings

	Further Addition Results
	The Impact of Recurrence without Abacus
	Addition Models Trained on Varying Data Sizes
	Extreme Length Generalization for Addition
	Addition Full 100 x 100 Plots

	Datasets
	Addition Ablations
	Analyzing the Intermediate Properties of Recurrence
	Removing Masking Before Equals
	Varying Effective Depth
	Adding randomized Padding
	Index Hints

	Additional Experimental Information
	Hyperparameters
	Code Release



