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Guided Path Sampling: Steering Diffusion Models Back on Track
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Abstract

Iterative refinement methods based on a denoising-inversion cycle
are powerful tools for enhancing the quality and control of diffusion
models. However, their effectiveness is critically limited when com-
bined with standard Classifier-Free Guidance (CFG). We identify
a fundamental limitation: CFG’s extrapolative nature systemati-
cally pushes the sampling path off the data manifold, causing the
approximation error to diverge and undermining the refinement
process. To address this, we propose Guided Path Sampling (GPS),
a new paradigm for iterative refinement. GPS replaces unstable ex-
trapolation with a principled, manifold-constrained interpolation,
ensuring the sampling path remains on the data manifold. We theo-
retically prove that this correction transforms the error series from
unbounded amplification to strictly bounded, guaranteeing stability.
Furthermore, we devise an optimal scheduling strategy that dynam-
ically adjusts guidance strength, aligning semantic injection with
the model’s natural coarse-to-fine generation process. Extensive
experiments on modern backbones like SDXL and Hunyuan-DiT
show that GPS outperforms existing methods in both perceptual
quality and complex prompt adherence. For instance, GPS achieves
a superior ImageReward of 0.79 and HPS v2 of 0.2995 on SDXL,
while improving overall semantic alignment accuracy on GenEval
to 57.45%. Our work establishes that path stability is a prerequi-
site for effective iterative refinement, and GPS provides a robust
framework to achieve it.

Keywords
Text-to-image, Diffusion Models, Off-Manifold

1 INTRODUCTION

Diffusion models have emerged as the dominant paradigm for high-
fidelity signal generation [2, 16, 20, 22, 27], with their control largely
specified through sampling techniques [17, 28]. The popular of
these, which we term Z-sampling[1], leverages Classifier-Free Guid-
ance (CFG)[11] to effectively steer generation. They found that the
guidance gap between denoising and inversion could accumulate
semantic information and the process of repeatedly applying an
inversion-denoising cycle serves to maximize the integration of
semantic information. While powerful, we find that Z-sampling
suffers from a crucial "off-manifold" limitation [13]. Our analysis,
supported by mathematical proof, shows that CFG’s core "extrapo-
lation" strategy causes guidance errors to systematically diverge,
pushing the denoised estimate away from the true data manifold.
This issue presents a primary bottleneck for achieving complex,
detailed control [4, 9].

The consequences of this off-manifold problem are especially
severe for advanced iterative refinement methods built upon the
cycle. During Z-sampling, each CFG-guided denoising step intro-
duces an error by pushing the estimate off-manifold. Because this
estimate is no longer on the valid data distribution, the subsequent

Standard

Z-Sampling
U

-
2
-
=
<
o
&
&}
Position: Text: Counting: Color:
A caton the right A sign that A photo of A photo of a yellow bird
of a tennis racket. says 'GPS’ four buses and black motorcycle

Figure 1: Visual comparison of GPS with baselines on chal-
lenging prompts. GPS demonstrates superior performance
across tasks involving spatial positioning, text rendering,
object counting, and attribute binding. Unlike Standard and
Z-Sampling methods which suffer from artifacts or seman-
tic misalignment, GPS maintains high fidelity and prompt
adherence.

inversion step is inherently inaccurate [19]. This error is then fed
back into the next iteration, where it is compounded by further CFG
extrapolation . The continuous introduction and amplification of
this error throughout the cycle not only causes visual artifacts and
oversaturation but critically disrupts the invertibility of samplers
like DDIM [28], ultimately rendering these powerful refinement
techniques ineffective.

To counteract CFG’s error divergence, one could theoretically use
high-order solvers [12], but this is computationally inefficient. We
therefore propose a fundamentally different and efficient paradigm,
guided by the geometric imperative to remain on the data manifold:
Guided Path Sampling (GPS). At its core, GPS re-engineers the
denoising-inversion cycle with a manifold-constrained interpola-
tion mechanism [6], replacing unstable extrapolation. This elegantly
resolves the cumulative error problem. Drawing further inspiration
from the coarse-to-fine nature of diffusion [5], GPS dynamically
schedules the guidance strength, which drastically reduces artifacts
and enhances semantic fidelity.

Our contributions are twofold. Theoretically, we prove that
GPS stabilizes iterative refinement by constraining the approxima-
tion error within a strictly bounded convex hull, thereby preventing
divergence. We also show that a monotonically increasing cosine
schedule for guidance strength better simulates cognitive refine-
ment. Experimentally, GPS demonstrates marked superiority over
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standard and Z-sampling methods across multiple benchmarks. On
SDXL [20], it achieves a leading ImageReward of 0.79 and HPS v2
of 0.2995, significantly surpassing the Z-sampling baseline. This
superiority extends to the transformer-based Hunyuan-DiT [15],
where GPS sets a new benchmark with an ImageReward of 0.97. Fur-
thermore, on GenEval [7], GPS improves overall prompt alignment
accuracy to 57.45%, with notable gains in complex compositional
tasks. These results validate GPS as a more robust and effective
solution for high-fidelity, controllable generation [26].

2 RELATED WORKS

Off-Manifold problems in diffusion models Recent studies
have shown that CFG can introduce systematic off-manifold errors
during the denoising process. Specifically, the linear extrapolation
step in CFG pushes intermediate estimates away from the true data
manifold M [3]. Consequently, iterative refinement schemes that
rely on a denoising—inversion cycle accumulate these deviations,
yielding visible artifacts and violating the invertibility guarantees
of deterministic samplers such as DDIM.

While interpreting the sampling process as solving an ordinary
or stochastic differential equation (ODE/SDE) [29] can partially
mitigate the drift, these solvers incur a significant computational
overhead that is impractical for interactive editing or real-time appli-
cations. To address this limitation, manifold-preserving techniques
have been proposed: (i) geometric projection methods that explic-
itly project back onto M; (ii) energy-guided samplers that penalize
off-manifold deviations with learned energy functions [18, 25]; and
(ii) shortcut algorithms that re-parameterize the sampling path to
remain within a learned latent subspace [8]. Despite these advances,
existing approaches either require auxiliary networks or rely on
costly optimization loops.

3 METHODOLOGY

In this section, we first analyze the origin of systematic error in
iterative samplers, then introduce a manifold constraint to resolve
it, and finally derive our method GPS, based on theoretical analysis.

3.1 Preliminaries & Definitions

To formally ground our analysis, we first establish the key pre-
liminaries and definitions and a core assumption about the data
manifold.

3.1.1  Denoising Diffusion Implicit Models. DDIM introduce a de-
terministic sampling process that is also invertible. This process is
defined by a pair of single-step mappings: a denoising operation
and its exact inverse 7.

The denoising map D computes a less noisy data sample x;_4
from x; as:

~ 10
Xy — V1 — a; x§
Va;
Conversely, the inversion map J reconstructs the noisier sample
x; from x,_q:

X1 =D(x) = Vo_lt—l( ) + V1= xf

8 va, —  Na(-a)) o
Xy = I(Xt_l) = mxt_l + (Vl — O — T)Xt—l

Anon.

Here, x; denotes the latent state at timestep ¢, while x{’ represents
the noise estimate predicted by the U-Net backbone [24] under the
classifier-free guidance scale w. The term @;, defined as ]_[f:1 (1-5),
characterizes the cumulative noise schedule, where f; governs the
variance of the Gaussian noise injected at each forward step.

3.1.2  Zigzag Sampling. Fort =T, ..., T — K, alternate:
Zig: x,-1=D(x¢ | c,wp),
Zag: % =1 (x¢-1 | c o).

Z-sampling refines the sampling path by repeatedly alternating
between a “Zig” step with a high guidance scale wj, and a “Zag”
step with a low guidance scale w;. This iterative process is applied
for the initial timesteps before switching to a standard denoising
procedure to obtain the final clean image.

Definition 3.1 (Semantic Information Gain). We define the seman-
tic information gain term 7, (t) as the difference between the noise
estimates:

7(t) =X — Xe. (1)
This gain is scheduled to be proportional to the difference in guid-
ance scales, denoted by J,,, such that:

71(t) < 6, where &, =w;— w2. (2)

Definition 3.2 (Approximation Error and its Decomposition). The
single-step approximation error 7, () in Z-Sampling is defined and
decomposed as:

To(t) = X; — X1 = Tmanifold (£) + Tiocal (£)- ®3)
The two components are defined as:

e Local Discretization Error (7joc.): The ideal error be-
tween two on-manifold points:

Tlocal(t) = 5‘?" - X(t)fl (4)

e Systematic Manifold-Offset Error (Tmanifold): The error
induced by the guidance mechanism:

Tmanifold(t) = (it - i;m) - (5([,1 - X(t)fl) (5)

Definition 3.3 (Guidance Mechanisms). We distinguish between
two guidance mechanisms. Off-Manifold Guidance uses extrapo-
lation (w > 1), pushing the estimate x{° off the on-manifold path.
In contrast, our Manifold-Constrained Guidance uses interpola-
tion (A € [0, 1]), ensuring the estimate xﬁ remains on the path. The
respective estimates are:

xP =(1- (u)xf + WX (6)

X = (1-)x? +Ax¢ @)

3.2 Guided Path Sampling

The cumulative effect of the approximation error 7,(t) directly de-
termines the final image quality. We argue that standard CFG’s
use of Off-Manifold Guidance is the root cause of performance
degradation in iterative samplers like Z-Sampling. This continuous
off-manifold guidance introduces an ineliminable systematic error,
ultimately causing the cumulative error series to diverge.
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Algorithm 1 GPS

1: Input: Text prompt ¢, Denoising operation D, Inversion op-
eration J, denoising guidance A; € [0, 1], inversion guidance
scheduling function A, (¢), total inference steps T, self-reflection
steps K.

: Output: Clean image x,.

: Sample Gaussian noise x7 ~ N (0,I).

: fort =T to1do

if t > T — K then

X, — D(xs,¢,41)
Ao — Aa(2)

X S(X;_l, ¢, Aay)

R A A

X; — Xy
end if
11: X1 — D(xs,¢, A1)
12: end for
13: return xg

-
<

THEOREM 3.4 (ERROR DIVERGENCE OF Z-SAMPLING). Assume:

o The noise prediction function is twice continuously differen-
tiable near the data manifold.

Then for Z-Sampling with CFG scale » > 1, the cumulative inversion
error diverges:

T
Dln®l - asT - o,
t=1

é

Proor. Letd(x;) :=x§ —x,.

bation magnitude is:

1811l = Var-1 (0 = 1) [ld(x)l.
Assuming the manifold has non-vanishing curvature represented
by the tensor H, the second-order manifold error satisfies:

”Tmanifold(t)” ~ %”7'{(5)[5:—1, 6[—1] ” 2 K||5t—1||2,
where x > 0 relates to the manifold curvature. Thus,
[ Zmanitold (D] 2 @1 (0 = D2l (x) 1.
Since the guidance term d(x;) represents a semantic direction inde-
pendent of the step size At, this error term is O(1) with respect to
T. Consequently, summing this non-vanishing error over T steps
leads to divergence:

T T
Dln®lz Y e=Q(1) — .

=1

At step ¢, the off-manifold pertur-

D(x,) = \/a,l( +VI—a % ®)

\c
—Vl—o?t_lx 1

a1

Xy — Vl—C_(tX?)
A
f—

o~ — [ X;-1 _

J(x¢-1) = ‘/fx_t( ) +Vl-a; X(f_l 9
To resolve the error divergence issue, we propose Guided Path

Sampling (GPS). Its core idea is to adopt the Manifold-Constrained

Guidance defined in Section 3.1, which fundamentally eliminates the

systematic manifold offset error. We then replace part of the guided

_—
Z-Sampling  Standard GPS (Ours) o
— - . Denoising
&
R | r—
= Inversion
~_ < / 4 _
Predicted
0 Noise

Denoising

Figure 2: Schematic illustration of GPS. Unlike standard
methods that extrapolate off the manifold (red dotted line),
GPS employs a manifold-constrained interpolation (green
solid line) during the zigzag cycle, ensuring the sampling
trajectory remains stable and errors remain bounded.

noise with unconditional noise, as defined in equations D(x;) and
J(x¢-1). The complete procedure is detailed in Algorithm 1. The
stability of this approach is guaranteed by our first core theorem.

THEOREM 3.5 (ERROR BOUNDEDNESS OF GPS). Let the noise predic-
tions be bounded. For GPS employing manifold-constrained guidance
(interpolation), the cumulative approximation error Z,T:I [lz2 ()| is
strictly bounded, ensuring sampling stability.

Proor. Let X? and x{ denote the unconditional and conditional
noise predictions, respectively, assumed to be bounded in magni-
tude by a constant M.

Recall that standard CFG (Eq. 6) employs extrapolation with
> 1, which amplifies the deviation:

Ix21 = 1(1 = w)x? + wx¢ll =[x + o(x¢ —xD)].

As o increases, the norm |[|x{’|| grows linearly with w, potentially
becoming unbounded and pushing the trajectory off-manifold.
In contrast, GPS (Eq. 7) employs interpolation with A € [0, 1]:

x}t=(1- A)xf’ + Ax§.
By the Triangle Inequality, the magnitude of the guided noise is
strictly bounded by the convex hull of the component predictions:
Bl < (1= Il |+ Alx{l] < max( I %) < M.

Consequently, the manifold offset error Tmanifold (t) does not diverge.
The total cumulative error is dominated by the local discretization
error, which is bounded for the finite time horizon T:

T

=1

T
Z e (0] < Z(c -At) =C-TAt = 0(1).
t=1 t

Thus, the error series remains bounded, guaranteeing algorithmic
stability.
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4 Experiments
4.1 Experimental Setup

Datasets. We evaluate our model on two complementary bench-
marks. For assessing human-perceived aesthetic quality, we use
the first 100 prompts from Pick-a-Pic [14]. For quantitatively mea-
suring compositional accuracy (e.g., object count and position),
we use GenEval. This dual evaluation provides a holistic view of
our model’s capabilities.

Metrics We evaluate text-image alignment using CLIP Score [10],
and complement it with HPS v2 [30] and ImageReward (IR) [31], two
learned metrics trained on extensive human preference judgments
to capture subjective quality.

Diffusion Models We employ different diffusion models as the
generation backbone in our experiments. For SD2.1 [23], SDXL
[21], and Hunyuan-DiT [15], we perform 50 denoising steps. We
set w = 5.5, 1; = 0.5 and use A, that increases from 0.1 to 0.3 using
a cosine function in SDXL/SD2.1, and @ = 6.0 in Hunyuan-DiT,
aligning with the default recommended values. Finally, the zigzag
operation is executed along the entire path (K =T — 1).

4.2 Main Results

Table 1: Comparative results on the Pick-a-Pic benchmark.

Method CLIPT HPSv2T IRT
Standard 0.710 0.2899 0.64
SDXL Z-Sampling 0719  0.2980  0.75
GPS 0.723 0.2995 0.79
Standard 0.681 0.2541 -0.54
SD-2.1 Z-Sampling  0.696 0.2686 -0.25
GPS 0.702 0.2709 -0.18
Standard 0.712 0.2915 0.92
Hunyuan-DiT Z-Sampling 0.724 0.3012 0.94
GPS 0.730 0.3056 0.97

Table 2: Comparative results on GenEval with SDXL.

Metric Standard Z-Sampling GPS (ours)
Single Obj;. 97.50% 100.00% 100.00%
Two Obj. 69.70% 74.75% 76.77%
Count. 33.75% 46.25% 48.75%
Colors 86.71% 87.23% 86.17%
Pos. 10.00% 10.00% 11.00%
Color Attr. 18.00% 24.00% 22.00%
Overall 52.52% 57.04% 57.45%

As presented in Table 1 and 2, GPS consistently outperforms
both Standard sampling and Z-Sampling methods across varying
benchmarks and model architectures.

On the Pick-a-Pic benchmark (Table 1), GPS demonstrates supe-
rior performance in text-image alignment (CLIP) and human pref-
erence metrics (HPS v2, IR). Notably, on the SDXL backbone, GPS

Anon.

achieves an ImageReward of 0.79 and HPS v2 of 0.2995, surpassing
the strong Z-Sampling baseline. This superiority extends to differ-
ent architectures, including the older SD-2.1 and the Transformer-
based Hunyuan-DiT, where GPS sets a new state-of-the-art with
an ImageReward of 0.97. These results indicate that maintaining
the manifold structure effectively enhances both semantic fidelity
and aesthetic quality.

Table 2 further details the fine-grained semantic capabilities
on SDXL using the GenEval benchmark. GPS achieves the highest
Overall score of 57.45%. Crucially, significant gains are observed in
complex compositional tasks, such as Counting (48.75% vs. 46.25%
for Z-Sampling) and Two Object generation (76.77% vs. 74.75%).
This suggests that our stable iterative refinement better accumu-
lates semantic details and spatial structures for complex prompts,
validating the effectiveness of our manifold constraints.

4.3 Ablation Study

Table 3: Ablation of the inversion scheduler 1,; on SDXL.

Scheduler CLIPT HPSv2T IRT
Constant (0.1) 0.711 0.2983  0.72
Constant (0.3) 0.714 0.2986 0.73
Sigmoid (0.1—0.3) 0.719 0.2993 0.74
Linear (0.1—0.3) 0.721 0.2994 0.75
Cos (0.1—0.3) 0.723 0.2995 0.79
Cos (0.3—0.1) 0.717 0.2992 0.74
Cos (0.1—0.3—0.1) 0.710 0.2983  0.72

Our ablation study on the inversion guidance scheduler (Table 3)
provides strong empirical backing for our theory. We evaluated var-
ious strategies for scheduling the guidance scale A;;, ranging from
fixed Constant values to dynamic schedules like Cos (0.1—0.3).
The results across all metrics (CLIP, HPS v2, and IR) reveal two key
findings.

First, dynamic scheduling consistently surpasses constant sched-
ules, with the Cos (0.1—0.3) strategy achieving the highest
scores (e.g., 0.79 IR and 0.2995 HPS v2). Second, and most impor-
tantly, the results directly validate our proposed “coarse-to-fine”
refinement principle: monotonically increasing schedules for Az,
yield the best performance. This confirms that gradually strength-
ening the manifold constraint is the optimal strategy. Conversely,
schedules that violate this principle by decreasing the scale (Cos
(0.3—0.1)) or being non-monotonic (Cos (0.1—0.3—0.1))fail
to maintain this benefit, leading to a noticeable degradation in both
semantic alignment and perceptual quality.

5 CONCLUSION

We identified that standard extrapolative CFG pushes sampling
paths off-manifold, causing error divergence. We introduced GPS,
which replaces extrapolation with manifold-constrained interpola-
tion, transforming the divergent error of methods like Z-Sampling
into a provably convergent process. Furthermore, we proposed an
optimal, monotonically increasing guidance schedule to align se-
mantic injection with the model’s coarse-to-fine generation . Our
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experiments show GPS significantly improves perceptual quality
and semantic alignment. The key takeaway is that path stability
is a prerequisite for effective iterative refinement. Future work
will focus on extending GPS to stochastic samplers and exploring
learned scheduling functions.
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