

Guided Path Sampling: Steering Diffusion Models Back on Track with Principled Path Guidance

Anonymous Author(s)

Abstract

Iterative refinement methods based on a denoising-inversion cycle are powerful tools for enhancing the quality and control of diffusion models. However, their effectiveness is critically limited when combined with standard Classifier-Free Guidance (CFG). We identify a fundamental limitation: CFG's extrapolative nature systematically pushes the sampling path off the data manifold, causing the approximation error to diverge and undermining the refinement process. To address this, we propose Guided Path Sampling (GPS), a new paradigm for iterative refinement. GPS replaces unstable extrapolation with a principled, manifold-constrained interpolation, ensuring the sampling path remains on the data manifold. We theoretically prove that this correction transforms the error series from unbounded amplification to strictly bounded, guaranteeing stability. Furthermore, we devise an optimal scheduling strategy that dynamically adjusts guidance strength, aligning semantic injection with the model's natural coarse-to-fine generation process. Extensive experiments on modern backbones like SDXL and Hunyuan-DiT show that GPS outperforms existing methods in both perceptual quality and complex prompt adherence. For instance, GPS achieves a superior ImageReward of 0.79 and HPS v2 of 0.2995 on SDXL, while improving overall semantic alignment accuracy on GenEval to 57.45%. Our work establishes that path stability is a prerequisite for effective iterative refinement, and GPS provides a robust framework to achieve it.

Keywords

Text-to-image, Diffusion Models, Off-Manifold

1 INTRODUCTION

Diffusion models have emerged as the dominant paradigm for high-fidelity signal generation [2, 16, 20, 22, 27], with their control largely specified through sampling techniques [17, 28]. The popular of these, which we term Z-sampling[1], leverages Classifier-Free Guidance (CFG)[11] to effectively steer generation. They found that the guidance gap between denoising and inversion could accumulate semantic information and the process of repeatedly applying an inversion-denoising cycle serves to maximize the integration of semantic information. While powerful, we find that Z-sampling suffers from a crucial "off-manifold" limitation [13]. Our analysis, supported by mathematical proof, shows that CFG's core "extrapolation" strategy causes guidance errors to systematically diverge, pushing the denoised estimate away from the true data manifold. This issue presents a primary bottleneck for achieving complex, detailed control [4, 9].

The consequences of this off-manifold problem are especially severe for advanced iterative refinement methods built upon the cycle. During Z-sampling, each CFG-guided denoising step introduces an error by pushing the estimate off-manifold. Because this estimate is no longer on the valid data distribution, the subsequent

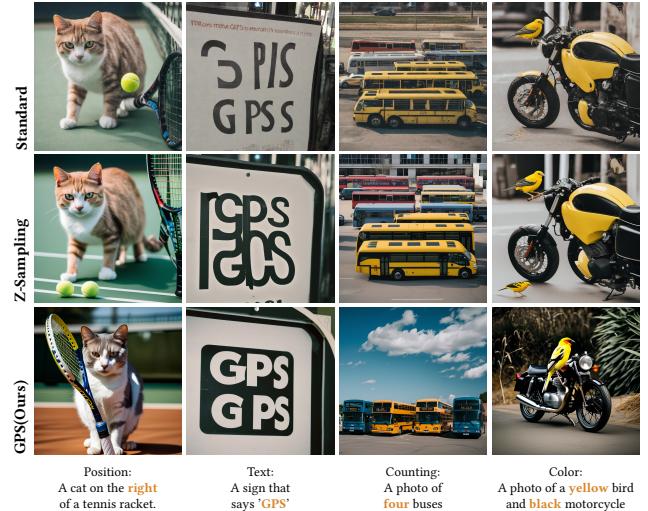


Figure 1: Visual comparison of GPS with baselines on challenging prompts. GPS demonstrates superior performance across tasks involving spatial positioning, text rendering, object counting, and attribute binding. Unlike Standard and Z-Sampling methods which suffer from artifacts or semantic misalignment, GPS maintains high fidelity and prompt adherence.

inversion step is inherently inaccurate [19]. This error is then fed back into the next iteration, where it is compounded by further CFG extrapolation . The continuous introduction and amplification of this error throughout the cycle not only causes visual artifacts and oversaturation but critically disrupts the invertibility of samplers like DDIM [28], ultimately rendering these powerful refinement techniques ineffective.

To counteract CFG's error divergence, one could theoretically use high-order solvers [12], but this is computationally inefficient. We therefore propose a fundamentally different and efficient paradigm, guided by the geometric imperative to remain on the data manifold: Guided Path Sampling (GPS). At its core, GPS re-engineers the denoising-inversion cycle with a manifold-constrained interpolation mechanism [6], replacing unstable extrapolation. This elegantly resolves the cumulative error problem. Drawing further inspiration from the coarse-to-fine nature of diffusion [5], GPS dynamically schedules the guidance strength, which drastically reduces artifacts and enhances semantic fidelity.

Our contributions are twofold. **Theoretically**, we prove that GPS stabilizes iterative refinement by constraining the approximation error within a strictly bounded convex hull, thereby preventing divergence. We also show that a monotonically increasing cosine schedule for guidance strength better simulates cognitive refinement. **Experimentally**, GPS demonstrates marked superiority over

standard and Z-sampling methods across multiple benchmarks. On SDXL [20], it achieves a leading ImageReward of 0.79 and HPS v2 of 0.2995, significantly surpassing the Z-sampling baseline. This superiority extends to the transformer-based Hunyuan-DiT [15], where GPS sets a new benchmark with an ImageReward of 0.97. Furthermore, on GenEval [7], GPS improves overall prompt alignment accuracy to 57.45%, with notable gains in complex compositional tasks. These results validate GPS as a more robust and effective solution for high-fidelity, controllable generation [26].

2 RELATED WORKS

Off-Manifold problems in diffusion models Recent studies have shown that CFG can introduce systematic *off-manifold* errors during the denoising process. Specifically, the linear extrapolation step in CFG pushes intermediate estimates away from the true data manifold \mathcal{M} [3]. Consequently, iterative refinement schemes that rely on a *denoising–inversion* cycle accumulate these deviations, yielding visible artifacts and violating the invertibility guarantees of deterministic samplers such as DDIM.

While interpreting the sampling process as solving an ordinary or stochastic differential equation (ODE/SDE) [29] can partially mitigate the drift, these solvers incur a significant computational overhead that is impractical for interactive editing or real-time applications. To address this limitation, manifold-preserving techniques have been proposed: (i) *geometric projection* methods that explicitly project back onto \mathcal{M} ; (ii) *energy-guided* samplers that penalize off-manifold deviations with learned energy functions [18, 25]; and (iii) *shortcut* algorithms that re-parameterize the sampling path to remain within a learned latent subspace [8]. Despite these advances, existing approaches either require auxiliary networks or rely on costly optimization loops.

3 METHODOLOGY

In this section, we first analyze the origin of systematic error in iterative samplers, then introduce a manifold constraint to resolve it, and finally derive our method **GPS**, based on theoretical analysis.

3.1 Preliminaries & Definitions

To formally ground our analysis, we first establish the key preliminaries and definitions and a core assumption about the data manifold.

3.1.1 Denoising Diffusion Implicit Models. DDIM introduce a deterministic sampling process that is also invertible. This process is defined by a pair of single-step mappings: a denoising operation \mathcal{D} and its exact inverse \mathcal{I} .

The denoising map \mathcal{D} computes a less noisy data sample \mathbf{x}_{t-1} from \mathbf{x}_t as:

$$\mathbf{x}_{t-1} = \mathcal{D}(\mathbf{x}_t) = \sqrt{\bar{\alpha}_{t-1}} \left(\frac{\mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \mathbf{x}_t^\omega}{\sqrt{\bar{\alpha}_t}} \right) + \sqrt{1 - \bar{\alpha}_{t-1}} \mathbf{x}_t^\omega$$

Conversely, the inversion map \mathcal{I} reconstructs the noisier sample \mathbf{x}_t from \mathbf{x}_{t-1} :

$$\tilde{\mathbf{x}}_t = \mathcal{I}(\mathbf{x}_{t-1}) = \frac{\sqrt{\bar{\alpha}_t}}{\sqrt{\bar{\alpha}_{t-1}}} \mathbf{x}_{t-1} + \left(\sqrt{1 - \bar{\alpha}_t} - \frac{\sqrt{\bar{\alpha}_t(1 - \bar{\alpha}_{t-1})}}{\sqrt{\bar{\alpha}_{t-1}}} \right) \mathbf{x}_{t-1}^\omega$$

Here, \mathbf{x}_t denotes the latent state at timestep t , while \mathbf{x}_t^ω represents the noise estimate predicted by the U-Net backbone [24] under the classifier-free guidance scale ω . The term $\bar{\alpha}_t$, defined as $\prod_{i=1}^t (1 - \beta_i)$, characterizes the cumulative noise schedule, where β_i governs the variance of the Gaussian noise injected at each forward step.

3.1.2 Zigzag Sampling. For $t = T, \dots, T - K$, alternate:

$$\text{Zig: } \mathbf{x}_{t-1} = \mathcal{D}(\mathbf{x}_t \mid c, \omega_h),$$

$$\text{Zag: } \tilde{\mathbf{x}}_t = \mathcal{I}(\mathbf{x}_{t-1} \mid c, \omega_l).$$

Z-sampling refines the sampling path by repeatedly alternating between a “Zig” step with a high guidance scale ω_h and a “Zag” step with a low guidance scale ω_l . This iterative process is applied for the initial timesteps before switching to a standard denoising procedure to obtain the final clean image.

Definition 3.1 (Semantic Information Gain). We define the *semantic information gain term* $\tau_1(t)$ as the difference between the noise estimates:

$$\tau_1(t) = \mathbf{x}_t - \tilde{\mathbf{x}}_t. \quad (1)$$

This gain is scheduled to be proportional to the difference in guidance scales, denoted by δ_ω , such that:

$$\tau_1(t) \propto \delta_\omega \quad \text{where } \delta_\omega = \omega_1 - \omega_2. \quad (2)$$

Definition 3.2 (Approximation Error and its Decomposition). The single-step approximation error $\tau_2(t)$ in Z-Sampling is defined and decomposed as:

$$\tau_2(t) = \tilde{\mathbf{x}}_t - \mathbf{x}_{t-1}^\omega = \tau_{\text{manifold}}(t) + \tau_{\text{local}}(t). \quad (3)$$

The two components are defined as:

- **Local Discretization Error** (τ_{local}): The ideal error between two on-manifold points:

$$\tau_{\text{local}}(t) := \tilde{\mathbf{x}}_t^{\text{on}} - \mathbf{x}_{t-1}^{\text{on}} \quad (4)$$

- **Systematic Manifold-Offset Error** (τ_{manifold}): The error induced by the guidance mechanism:

$$\tau_{\text{manifold}}(t) := (\tilde{\mathbf{x}}_t - \tilde{\mathbf{x}}_t^{\text{on}}) - (\mathbf{x}_{t-1} - \mathbf{x}_{t-1}^{\text{on}}) \quad (5)$$

Definition 3.3 (Guidance Mechanisms). We distinguish between two guidance mechanisms. **Off-Manifold Guidance** uses extrapolation ($\omega > 1$), pushing the estimate \mathbf{x}_t^ω off the on-manifold path. In contrast, our **Manifold-Constrained Guidance** uses interpolation ($\lambda \in [0, 1]$), ensuring the estimate \mathbf{x}_t^λ remains on the path. The respective estimates are:

$$\mathbf{x}_t^\omega = (1 - \omega) \mathbf{x}_t^\phi + \omega \mathbf{x}_t^c \quad (6)$$

$$\mathbf{x}_t^\lambda = (1 - \lambda) \mathbf{x}_t^\phi + \lambda \mathbf{x}_t^c \quad (7)$$

3.2 Guided Path Sampling

The cumulative effect of the approximation error $\tau_2(t)$ directly determines the final image quality. We argue that standard CFG’s use of *Off-Manifold Guidance* is the root cause of performance degradation in iterative samplers like Z-Sampling. This continuous off-manifold guidance introduces an ineliminable systematic error, ultimately causing the cumulative error series to diverge.

Algorithm 1 GPS

```

233
234 1: Input: Text prompt  $c$ , Denoising operation  $\mathfrak{D}$ , Inversion operation  $\mathfrak{I}$ , denoising guidance  $\lambda_1 \in [0, 1]$ , inversion guidance scheduling function  $\lambda_2(t)$ , total inference steps  $T$ , self-reflection steps  $K$ .
235 2: Output: Clean image  $\mathbf{x}_0$ .
236 3: Sample Gaussian noise  $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ .
237 4: for  $t = T$  to 1 do
238 5:   if  $t > T - K$  then
239 6:      $\mathbf{x}'_{t-1} \leftarrow \mathfrak{D}(\mathbf{x}_t, c, \lambda_1)$ 
240 7:      $\lambda_{2,t} \leftarrow \lambda_2(t)$ 
241 8:      $\tilde{\mathbf{x}}_t \leftarrow \mathfrak{I}(\mathbf{x}'_{t-1}, c, \lambda_{2,t})$ 
242 9:      $\mathbf{x}_t \leftarrow \tilde{\mathbf{x}}_t$ 
243 10:  end if
244 11:   $\mathbf{x}_{t-1} \leftarrow \mathfrak{D}(\mathbf{x}_t, c, \lambda_1)$ 
245 12: end for
246 13: return  $\mathbf{x}_0$ 
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348

```

THEOREM 3.4 (ERROR DIVERGENCE OF Z-SAMPLING). Assume:

- The noise prediction function is twice continuously differentiable near the data manifold.

Then for Z-Sampling with CFG scale $\omega > 1$, the cumulative inversion error diverges:

$$\sum_{t=1}^T \|\boldsymbol{\tau}_2(t)\| \rightarrow \infty \quad \text{as } T \rightarrow \infty.$$

PROOF. Let $\mathbf{d}(\mathbf{x}_t) := \mathbf{x}_t^c - \mathbf{x}_t^\phi$. At step t , the off-manifold perturbation magnitude is:

$$\|\boldsymbol{\delta}_{t-1}\| \approx \sqrt{\bar{\alpha}_{t-1}} (\omega - 1) \|\mathbf{d}(\mathbf{x}_t)\|.$$

Assuming the manifold has non-vanishing curvature represented by the tensor \mathcal{H} , the second-order manifold error satisfies:

$$\|\boldsymbol{\tau}_{\text{manifold}}(t)\| \approx \frac{1}{2} \|\mathcal{H}(\xi)[\boldsymbol{\delta}_{t-1}, \boldsymbol{\delta}_{t-1}]\| \geq \kappa \|\boldsymbol{\delta}_{t-1}\|^2,$$

where $\kappa > 0$ relates to the manifold curvature. Thus,

$$\|\boldsymbol{\tau}_{\text{manifold}}(t)\| \gtrsim \bar{\alpha}_{t-1} (\omega - 1)^2 \|\mathbf{d}(\mathbf{x}_t)\|^2.$$

Since the guidance term $\mathbf{d}(\mathbf{x}_t)$ represents a semantic direction independent of the step size Δt , this error term is $\mathcal{O}(1)$ with respect to T . Consequently, summing this non-vanishing error over T steps leads to divergence:

$$\sum_{t=1}^T \|\boldsymbol{\tau}_2(t)\| \geq \sum_{t=1}^T c = \Omega(T) \rightarrow \infty.$$

$$\mathfrak{D}(\mathbf{x}_t) = \sqrt{\bar{\alpha}_{t-1}} \left(\frac{\mathbf{x}_t - \sqrt{1 - \bar{\alpha}_t} \mathbf{x}_t^\lambda}{\sqrt{\bar{\alpha}_t}} \right) + \sqrt{1 - \bar{\alpha}_{t-1}} \mathbf{x}_t^\phi \quad (8)$$

$$\mathfrak{I}(\mathbf{x}_{t-1}) = \sqrt{\bar{\alpha}_t} \left(\frac{\mathbf{x}_{t-1} - \sqrt{1 - \bar{\alpha}_{t-1}} \mathbf{x}_{t-1}^\lambda}{\sqrt{\bar{\alpha}_{t-1}}} \right) + \sqrt{1 - \bar{\alpha}_t} \mathbf{x}_{t-1}^\phi \quad (9)$$

To resolve the error divergence issue, we propose **Guided Path Sampling (GPS)**. Its core idea is to adopt the *Manifold-Constrained Guidance* defined in Section 3.1, which fundamentally eliminates the systematic manifold offset error. We then replace part of the guided

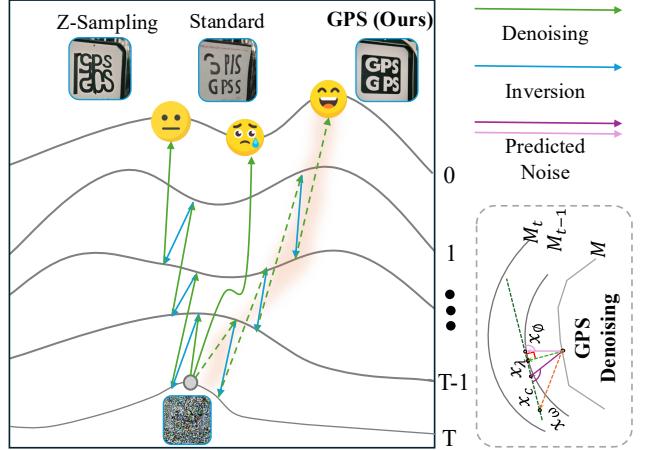


Figure 2: Schematic illustration of GPS. Unlike standard methods that extrapolate off the manifold (red dotted line), GPS employs a manifold-constrained interpolation (green solid line) during the zigzag cycle, ensuring the sampling trajectory remains stable and errors remain bounded.

noise with unconditional noise, as defined in equations $\mathfrak{D}(\mathbf{x}_t)$ and $\mathfrak{I}(\mathbf{x}_{t-1})$. The complete procedure is detailed in Algorithm 1. The stability of this approach is guaranteed by our first core theorem.

THEOREM 3.5 (ERROR BOUNDEDNESS OF GPS). Let the noise predictions be bounded. For GPS employing manifold-constrained guidance (interpolation), the cumulative approximation error $\sum_{t=1}^T \|\boldsymbol{\tau}_2(t)\|$ is **strictly bounded**, ensuring sampling stability.

PROOF. Let \mathbf{x}_t^ϕ and \mathbf{x}_t^c denote the unconditional and conditional noise predictions, respectively, assumed to be bounded in magnitude by a constant M .

Recall that standard CFG (Eq. 6) employs extrapolation with $\omega > 1$, which amplifies the deviation:

$$\|\mathbf{x}_t^\omega\| = \|(1 - \omega)\mathbf{x}_t^\phi + \omega\mathbf{x}_t^c\| = \|\mathbf{x}_t^\phi + \omega(\mathbf{x}_t^c - \mathbf{x}_t^\phi)\|.$$

As ω increases, the norm $\|\mathbf{x}_t^\omega\|$ grows linearly with ω , potentially becoming unbounded and pushing the trajectory off-manifold.

In contrast, GPS (Eq. 7) employs interpolation with $\lambda \in [0, 1]$:

$$\mathbf{x}_t^\lambda = (1 - \lambda)\mathbf{x}_t^\phi + \lambda\mathbf{x}_t^c.$$

By the Triangle Inequality, the magnitude of the guided noise is strictly bounded by the convex hull of the component predictions:

$$\|\mathbf{x}_t^\lambda\| \leq (1 - \lambda)\|\mathbf{x}_t^\phi\| + \lambda\|\mathbf{x}_t^c\| \leq \max(\|\mathbf{x}_t^\phi\|, \|\mathbf{x}_t^c\|) \leq M.$$

Consequently, the manifold offset error $\boldsymbol{\tau}_{\text{manifold}}(t)$ does not diverge. The total cumulative error is dominated by the local discretization error, which is bounded for the finite time horizon T :

$$\sum_{t=1}^T \|\boldsymbol{\tau}_2(t)\| \leq \sum_{t=1}^T (C \cdot \Delta t) = C \cdot T \Delta t = \mathcal{O}(1).$$

Thus, the error series remains bounded, guaranteeing algorithmic stability.

349 4 Experiments

350 4.1 Experimental Setup

352 **Datasets.** We evaluate our model on two complementary benchmarks. For assessing human-perceived **aesthetic quality**, we use 353 the first 100 prompts from Pick-a-Pic [14]. For quantitatively measuring **compositional accuracy** (e.g., object count and position), 354 we use GenEval. This dual evaluation provides a holistic view of 355 our model’s capabilities.

356 **Metrics** We evaluate text-image alignment using CLIP Score [10], 357 and complement it with HPS v2 [30] and ImageReward (IR) [31], two 358 learned metrics trained on extensive human preference judgments 359 to capture subjective quality.

360 **Diffusion Models** We employ different diffusion models as the 361 generation backbone in our experiments. For SD2.1 [23], SDXL 362 [21], and Hunyuan-DiT [15], we perform 50 denoising steps. We 363 set $\omega = 5.5$, $\lambda_1 = 0.5$ and use $\lambda_{2,t}$ that increases from 0.1 to 0.3 using 364 a cosine function in SDXL/SD2.1, and $\omega = 6.0$ in Hunyuan-DiT, 365 aligning with the default recommended values. Finally, the zigzag 366 operation is executed along the entire path ($K = T - 1$). 367

368 4.2 Main Results

371 **Table 1: Comparative results on the Pick-a-Pic benchmark.**

	Method	CLIP \uparrow	HPS v2 \uparrow	IR \uparrow
SDXL	Standard	0.710	0.2899	0.64
	Z-Sampling	0.719	0.2980	0.75
	GPS	0.723	0.2995	0.79
SD-2.1	Standard	0.681	0.2541	-0.54
	Z-Sampling	0.696	0.2686	-0.25
	GPS	0.702	0.2709	-0.18
Hunyuan-DiT	Standard	0.712	0.2915	0.92
	Z-Sampling	0.724	0.3012	0.94
	GPS	0.730	0.3056	0.97

387 **Table 2: Comparative results on GenEval with SDXL.**

Metric	Standard	Z-Sampling	GPS (ours)
Single Obj.	97.50%	100.00%	100.00%
Two Obj.	69.70%	74.75%	76.77%
Count.	33.75%	46.25%	48.75%
Colors	86.71%	87.23%	86.17%
Pos.	10.00%	10.00%	11.00%
Color Attr.	18.00%	24.00%	22.00%
Overall	52.52%	57.04%	57.45%

400 As presented in Table 1 and 2, GPS consistently outperforms 401 both Standard sampling and Z-Sampling methods across varying 402 benchmarks and model architectures.

403 On the Pick-a-Pic benchmark (Table 1), GPS demonstrates superior 404 performance in text-image alignment (CLIP) and human preference 405 metrics (HPS v2, IR). Notably, on the SDXL backbone, GPS

407 achieves an ImageReward of **0.79** and HPS v2 of **0.2995**, surpassing 408 the strong Z-Sampling baseline. This superiority extends to different 409 architectures, including the older SD-2.1 and the Transformer-based 410 Hunyuan-DiT, where GPS sets a new state-of-the-art with 411 an ImageReward of **0.97**. These results indicate that maintaining 412 the manifold structure effectively enhances both semantic fidelity 413 and aesthetic quality.

414 Table 2 further details the fine-grained semantic capabilities 415 on SDXL using the GenEval benchmark. GPS achieves the highest 416 **Overall** score of **57.45%**. Crucially, significant gains are observed in 417 complex compositional tasks, such as **Counting** (48.75% vs. 46.25% 418 for Z-Sampling) and **Two Object** generation (76.77% vs. 74.75%). 419 This suggests that our stable iterative refinement better accumulates 420 semantic details and spatial structures for complex prompts, 421 validating the effectiveness of our manifold constraints.

422 4.3 Ablation Study

423 **Table 3: Ablation of the inversion scheduler $\lambda_{2,t}$ on SDXL.**

Scheduler	CLIP \uparrow	HPS v2 \uparrow	IR \uparrow
Constant (0.1)	0.711	0.2983	0.72
Constant (0.3)	0.714	0.2986	0.73
Sigmoid (0.1 \rightarrow 0.3)	0.719	0.2993	0.74
Linear (0.1 \rightarrow 0.3)	0.721	0.2994	0.75
Cos (0.1 \rightarrow 0.3)	0.723	0.2995	0.79
Cos (0.3 \rightarrow 0.1)	0.717	0.2992	0.74
Cos (0.1 \rightarrow 0.3 \rightarrow 0.1)	0.710	0.2983	0.72

437 Our ablation study on the inversion guidance scheduler (Table 3) 438 provides strong empirical backing for our theory. We evaluated various 439 strategies for scheduling the guidance scale $\lambda_{2,t}$, ranging from 440 fixed Constant values to dynamic schedules like Cos (0.1 \rightarrow 0.3). 441 The results across all metrics (CLIP, HPS v2, and IR) reveal two key 442 findings.

443 First, dynamic scheduling consistently surpasses constant schedules, 444 with the Cos (0.1 \rightarrow 0.3) strategy achieving the highest 445 scores (e.g., **0.79** IR and **0.2995** HPS v2). Second, and most 446 importantly, the results directly validate our proposed “**coarse-to-fine**” 447 **refinement principle**: monotonically increasing schedules for $\lambda_{2,t}$ 448 yield the best performance. This confirms that gradually strengthening 449 the manifold constraint is the optimal strategy. Conversely, 450 schedules that violate this principle by decreasing the scale (Cos 451 (0.3 \rightarrow 0.1)) or being non-monotonic (Cos (0.1 \rightarrow 0.3 \rightarrow 0.1)) 452 fail to maintain this benefit, leading to a noticeable degradation in both 453 semantic alignment and perceptual quality.

455 5 CONCLUSION

457 We identified that standard extrapolative CFG pushes sampling 458 paths off-manifold, causing error divergence. We introduced GPS, 459 which replaces extrapolation with manifold-constrained interpolation, 460 transforming the divergent error of methods like Z-Sampling 461 into a provably convergent process. Furthermore, we proposed an 462 optimal, monotonically increasing guidance schedule to align semantic 463 injection with the model’s coarse-to-fine generation. Our

465 experiments show GPS significantly improves perceptual quality
 466 and semantic alignment. **The key takeaway is that path stability**
 467 **is a prerequisite for effective iterative refinement.** Future work
 468 will focus on extending GPS to stochastic samplers and exploring
 469 learned scheduling functions.

470

472

References

473 [1] Lichen Bai et al. 2024. Zigzag Diffusion Sampling: Diffusion Models Can Self-
 474 Improve via Self-Reflection. *arXiv preprint arXiv:2412.10891* (2024).

475 [2] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej
 476 Kilian, Yann D, Dominik andSV, and Robin Rombach. 2023. Stable Video Diffusion:
 477 Scaling Latent Video Diffusion Models to Large Datasets. *arXiv preprint arXiv:2311.15127* (2023).

478 [3] Huanran Chen et al. 2025. Your Diffusion Model is Secretly a Certifiably Robust
 479 Classifier. *arXiv preprint arXiv:2402.02316* (2025).

480 [4] Minghao Chen et al. 2023. Training-Free Layout Control with Cross-Attention
 481 Guidance. *arXiv preprint arXiv:2304.03373* (2023).

482 [5] Jooyoung Choi, Jungbeom Kim, Hunho Myeong, Seyoung Jeong, Youngjung
 483 Ko, and Sungroh Choi. 2022. Perception Prioritized Training of Diffusion Models.
 484 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 485 Recognition (CVPR)*.

486 [6] Hyungjin Chung et al. 2024. CFG++: Manifold-constrained Classifier Free Guidance
 487 for Diffusion Models. *arXiv preprint arXiv:2406.08070* (2024).

488 [7] Dhruba Ghosh et al. 2023. GenEval: An Object-Focused Framework for Evaluating
 489 Text-to-Image Alignment. *arXiv preprint arXiv:2310.11513* (2023).

490 [8] Yutong He et al. 2024. Manifold Preserving Guided Diffusion. In *International
 491 Conference on Learning Representations (ICLR)*.

492 [9] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel
 493 Cohen-Or. 2022. Prompt-to-Prompt Image Editing with Cross Attention Control.
 494 *arXiv preprint arXiv:2208.01626* (2022).

495 [10] Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi.
 496 2022. CLIPScore: A Reference-free Evaluation Metric for Image Captioning.
 497 *arXiv:2104.08718 [cs.CV]* <https://arxiv.org/abs/2104.08718>

498 [11] Jonathan Ho and Tim Salimans. 2022. Classifier-Free Diffusion Guidance. In
 499 *NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications*.

500 [12] Tero Karras, Miika Aittala, Tima Aila, and Samuli Laine. 2022. Elucidating
 501 the Design Space of Diffusion-Based Generative Models. In *Advances in Neural
 502 Information Processing Systems (NeurIPS)*.

503 [13] Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. 2022. Denoising
 504 diffusion restoration models. *arXiv preprint arXiv:2201.11793* (2022).

505 [14] Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland Matiana, Joe Penna, and
 506 Omer Levy. 2023. Pick-a-Pic: An Open Dataset of User Preferences for Text-to-
 507 Image Generation. In *Advances in Neural Information Processing Systems (NeurIPS)
 508 Datasets and Benchmarks Track*.

509 [15] Zhimin Li, Jianwei Zhang, Qin Lin, Jiangfeng Xiong, Yanxin Long, Xinchi Deng,
 510 Yingfang Zhang, Xingchao Liu, Minbin Huang, Zedong Xiao, Dayou Chen, Ji-
 511 ajun He, Jiahao Li, Wenyue Li, Chen Zhang, Rongwei Quan, Jianxiang Lu, Ji-
 512 abin Huang, Xiaoyan Yuan, Xiaoxiao Zheng, Yixuan Li, Jihong Zhang, Chao
 513 Zhang, Meng Chen, Jie Liu, Zheng Fang, Weiyan Wang, Jinbao Xue, Yangyu Tao,
 514 Jianchen Zhu, Kai Liu, Sihuan Lin, Yifu Sun, Yun Li, Dongdong Wang, Ming-
 515 tao Chen, Zhichao Hu, Xiao Xiao, Yan Chen, Yuhong Liu, Wei Liu, Di Wang,
 516 Yong Yang, Jie Jiang, and Qinglin Lu. 2024. Hunyuan-DiT: A Powerful Multi-
 517 Resolution Diffusion Transformer with Fine-Grained Chinese Understanding.
 518 *arXiv:2405.08748 [cs.CV]* <https://arxiv.org/abs/2405.08748>

519 [16] Shanchuan Lin, Anran Wang, and Hongxiang Yang. 2024. SDXL-Lightning:
 520 Progressive Adversarial Diffusion Distillation. *arXiv preprint arXiv:2402.13929*
 521 (2024).

522 [17] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. 2022.
 523 DPM-Solver: A Fast ODE Solver for Diffusion Probabilistic Model Sampling in
 524 Around 10 Steps. In *Advances in Neural Information Processing Systems (NeurIPS)*.

525 [18] Morteza Mardani et al. 2023. Guided diffusion as likelihood-based energy. In
 526 *International Conference on Machine Learning (ICML)*.

527 [19] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
 528 2023. Null-text Inversion for Editing Real Images using Guided Diffusion Models.
 529 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 530 Recognition (CVPR)*.

531 [20] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn,
 532 Jonas Müller, Joe Penna, and Robin Rombach. 2023. SDXL: Improving Latent
 533 Diffusion Models for High-Resolution Image Synthesis. *arXiv preprint arXiv:2307.01952*
 534 (2023).

535 [21] Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn,
 536 Jonas Müller, Joe Penna, and Robin Rombach. 2023. SDXL: Improving Latent
 537 Diffusion Models for High-Resolution Image Synthesis. *arXiv:2307.01952 [cs.CV]*
 538 <https://arxiv.org/abs/2307.01952>

539 [22] Zipeng Qi et al. 2024. Layered Rendering Diffusion Model for Controllable
 540 Zero-Shot Image Synthesis. *arXiv preprint arXiv:2311.18435* (2024).

541 [23] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
 542 Ommer. 2022. High-Resolution Image Synthesis with Latent Diffusion Models.
 543 *arXiv:2112.10752 [cs.CV]* <https://arxiv.org/abs/2112.10752>

544 [24] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
 545 Networks for Biomedical Image Segmentation. In *Medical Image Computing and
 546 Computer-Assisted Intervention (MICCAI)*.

547 [25] Lior Rout et al. 2023. Perfusion: A parameter-efficient and generalizable approach
 548 for single-image text-to-image personalization. In *Proceedings of the IEEE/CVF
 549 International Conference on Computer Vision (ICCV)*.

550 [26] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily
 551 Denton, Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim
 552 Salimans, et al. 2022. Photorealistic text-to-image diffusion models with deep
 553 language understanding. In *Advances in Neural Information Processing Systems
 554 (NeurIPS)*.

555 [27] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli.
 556 2015. Deep unsupervised learning using nonequilibrium thermodynamics. In
 557 *International Conference on Machine Learning (ICML)*. 2256–2265.

558 [28] Jiaming Song, Chenlin Meng, and Stefano Ermon. 2021. Denoising Diffusion
 559 Implicit Models. In *International Conference on Learning Representations (ICLR)*.

560 [29] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano
 561 Ermon, and Ben Poole. 2021. Score-based generative modeling through stochastic
 562 differential equations. In *International Conference on Learning Representations
 563 (ICLR)*.

564 [30] Xiaoshi Wu et al. 2023. Human Preference Score v2: A Solid Benchmark for
 565 Evaluating Human Preferences of Text-to-Image Synthesis. *arXiv preprint
 566 arXiv:2306.09341* (2023).

567 [31] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie
 568 Tang, and Yuxiao Dong. 2023. ImageReward: Learning and Evaluating Human
 569 Preferences for Text-to-Image Generation. *arXiv:2304.05977 [cs.CV]* <https://arxiv.org/abs/2304.05977>