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Abstract
Iterative refinement methods based on a denoising-inversion cycle

are powerful tools for enhancing the quality and control of diffusion

models. However, their effectiveness is critically limited when com-

bined with standard Classifier-Free Guidance (CFG). We identify

a fundamental limitation: CFG’s extrapolative nature systemati-

cally pushes the sampling path off the data manifold, causing the

approximation error to diverge and undermining the refinement

process. To address this, we propose Guided Path Sampling (GPS),

a new paradigm for iterative refinement. GPS replaces unstable ex-

trapolation with a principled, manifold-constrained interpolation,

ensuring the sampling path remains on the data manifold. We theo-

retically prove that this correction transforms the error series from

unbounded amplification to strictly bounded, guaranteeing stability.

Furthermore, we devise an optimal scheduling strategy that dynam-

ically adjusts guidance strength, aligning semantic injection with

the model’s natural coarse-to-fine generation process. Extensive

experiments on modern backbones like SDXL and Hunyuan-DiT

show that GPS outperforms existing methods in both perceptual

quality and complex prompt adherence. For instance, GPS achieves

a superior ImageReward of 0.79 and HPS v2 of 0.2995 on SDXL,

while improving overall semantic alignment accuracy on GenEval

to 57.45%. Our work establishes that path stability is a prerequi-

site for effective iterative refinement, and GPS provides a robust

framework to achieve it.

Keywords
Text-to-image, Diffusion Models, Off-Manifold

1 INTRODUCTION
Diffusion models have emerged as the dominant paradigm for high-

fidelity signal generation [2, 16, 20, 22, 27], with their control largely

specified through sampling techniques [17, 28]. The popular of

these, which we term Z-sampling[1], leverages Classifier-Free Guid-

ance (CFG)[11] to effectively steer generation. They found that the

guidance gap between denoising and inversion could accumulate

semantic information and the process of repeatedly applying an

inversion-denoising cycle serves to maximize the integration of

semantic information. While powerful, we find that Z-sampling

suffers from a crucial "off-manifold" limitation [13]. Our analysis,

supported by mathematical proof, shows that CFG’s core "extrapo-

lation" strategy causes guidance errors to systematically diverge,

pushing the denoised estimate away from the true data manifold.

This issue presents a primary bottleneck for achieving complex,

detailed control [4, 9].

The consequences of this off-manifold problem are especially

severe for advanced iterative refinement methods built upon the

cycle. During Z-sampling, each CFG-guided denoising step intro-

duces an error by pushing the estimate off-manifold. Because this

estimate is no longer on the valid data distribution, the subsequent
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Position:

A cat on the right
of a tennis racket.

Text:

A sign that

says ’GPS’

Counting:

A photo of

four buses

Color:

A photo of a yellow bird

and black motorcycle

Figure 1: Visual comparison of GPS with baselines on chal-
lenging prompts. GPS demonstrates superior performance
across tasks involving spatial positioning, text rendering,
object counting, and attribute binding. Unlike Standard and
Z-Sampling methods which suffer from artifacts or seman-
tic misalignment, GPS maintains high fidelity and prompt
adherence.

inversion step is inherently inaccurate [19]. This error is then fed

back into the next iteration, where it is compounded by further CFG

extrapolation . The continuous introduction and amplification of

this error throughout the cycle not only causes visual artifacts and

oversaturation but critically disrupts the invertibility of samplers

like DDIM [28], ultimately rendering these powerful refinement

techniques ineffective.

To counteract CFG’s error divergence, one could theoretically use

high-order solvers [12], but this is computationally inefficient. We

therefore propose a fundamentally different and efficient paradigm,

guided by the geometric imperative to remain on the data manifold:

Guided Path Sampling (GPS). At its core, GPS re-engineers the

denoising-inversion cycle with a manifold-constrained interpola-

tionmechanism [6], replacing unstable extrapolation. This elegantly

resolves the cumulative error problem. Drawing further inspiration

from the coarse-to-fine nature of diffusion [5], GPS dynamically

schedules the guidance strength, which drastically reduces artifacts

and enhances semantic fidelity.

Our contributions are twofold. Theoretically, we prove that
GPS stabilizes iterative refinement by constraining the approxima-

tion error within a strictly bounded convex hull, thereby preventing

divergence. We also show that a monotonically increasing cosine

schedule for guidance strength better simulates cognitive refine-

ment. Experimentally, GPS demonstrates marked superiority over

1
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standard and Z-sampling methods across multiple benchmarks. On

SDXL [20], it achieves a leading ImageReward of 0.79 and HPS v2

of 0.2995, significantly surpassing the Z-sampling baseline. This

superiority extends to the transformer-based Hunyuan-DiT [15],

where GPS sets a new benchmark with an ImageReward of 0.97. Fur-

thermore, on GenEval [7], GPS improves overall prompt alignment

accuracy to 57.45%, with notable gains in complex compositional

tasks. These results validate GPS as a more robust and effective

solution for high-fidelity, controllable generation [26].

2 RELATEDWORKS
Off-Manifold problems in diffusion models Recent studies

have shown that CFG can introduce systematic off-manifold errors

during the denoising process. Specifically, the linear extrapolation

step in CFG pushes intermediate estimates away from the true data

manifoldM [3]. Consequently, iterative refinement schemes that

rely on a denoising–inversion cycle accumulate these deviations,

yielding visible artifacts and violating the invertibility guarantees

of deterministic samplers such as DDIM.

While interpreting the sampling process as solving an ordinary

or stochastic differential equation (ODE/SDE) [29] can partially

mitigate the drift, these solvers incur a significant computational

overhead that is impractical for interactive editing or real-time appli-

cations. To address this limitation, manifold-preserving techniques

have been proposed: (i) geometric projection methods that explic-

itly project back ontoM; (ii) energy-guided samplers that penalize

off-manifold deviations with learned energy functions [18, 25]; and

(iii) shortcut algorithms that re-parameterize the sampling path to

remain within a learned latent subspace [8]. Despite these advances,

existing approaches either require auxiliary networks or rely on

costly optimization loops.

3 METHODOLOGY
In this section, we first analyze the origin of systematic error in

iterative samplers, then introduce a manifold constraint to resolve

it, and finally derive our method GPS, based on theoretical analysis.

3.1 Preliminaries & Definitions
To formally ground our analysis, we first establish the key pre-

liminaries and definitions and a core assumption about the data

manifold.

3.1.1 Denoising Diffusion Implicit Models. DDIM introduce a de-

terministic sampling process that is also invertible. This process is

defined by a pair of single-step mappings: a denoising operation D
and its exact inverse I.

The denoising map D computes a less noisy data sample x𝑡−1

from x𝑡 as:

x𝑡−1 =D(x𝑡 ) =
√
𝛼𝑡−1

(
x𝑡 −
√

1 − 𝛼𝑡 x𝜔𝑡√
𝛼𝑡

)
+
√

1 − 𝛼𝑡−1 x𝜔𝑡

Conversely, the inversion map I reconstructs the noisier sample

x𝑡 from x𝑡−1:

x̃𝑡 = I(x𝑡−1) =
√
𝛼𝑡√
𝛼𝑡−1

x𝑡−1 +
(√

1 − 𝛼𝑡 −
√
𝛼𝑡 (1−𝛼𝑡−1 )√

𝛼𝑡−1

)
x𝜔𝑡−1

Here, x𝑡 denotes the latent state at timestep 𝑡 , while x𝜔𝑡 represents

the noise estimate predicted by the U-Net backbone [24] under the

classifier-free guidance scale𝜔 . The term 𝛼𝑡 , defined as
∏𝑡

𝑖=1
(1−𝛽𝑖 ),

characterizes the cumulative noise schedule, where 𝛽𝑖 governs the

variance of the Gaussian noise injected at each forward step.

3.1.2 Zigzag Sampling. For 𝑡 =𝑇, . . . ,𝑇 − 𝐾 , alternate:
Zig: x𝑡−1 =D

(
x𝑡 | 𝑐, 𝜔ℎ

)
,

Zag: x̃𝑡 = I
(
x𝑡−1 | 𝑐, 𝜔𝑙

)
.

Z-sampling refines the sampling path by repeatedly alternating

between a “Zig” step with a high guidance scale 𝜔ℎ and a “Zag”

step with a low guidance scale 𝜔𝑙 . This iterative process is applied

for the initial timesteps before switching to a standard denoising

procedure to obtain the final clean image.

Definition 3.1 (Semantic Information Gain). We define the seman-
tic information gain term 𝝉1 (𝑡) as the difference between the noise

estimates:

𝝉1 (𝑡) = x𝑡 − x̃𝑡 . (1)

This gain is scheduled to be proportional to the difference in guid-

ance scales, denoted by 𝛿𝜔 , such that:

𝝉1 (𝑡) ∝ 𝛿𝜔 where 𝛿𝜔 = 𝜔1 − 𝜔2 . (2)

Definition 3.2 (Approximation Error and its Decomposition). The
single-step approximation error 𝝉2 (𝑡) in Z-Sampling is defined and

decomposed as:

𝝉2 (𝑡) = x̃𝑡 − x̃𝑡−1 = 𝝉manifold (𝑡) + 𝝉local (𝑡). (3)

The two components are defined as:

• Local Discretization Error (𝝉local): The ideal error be-

tween two on-manifold points:

𝝉local (𝑡) := x̃𝑜𝑛𝑡 − x𝑜𝑛𝑡−1
(4)

• Systematic Manifold-Offset Error (𝝉manifold): The error

induced by the guidance mechanism:

𝝉manifold (𝑡) := (x̃𝑡 − x̃𝑜𝑛𝑡 ) − (x̃𝑡−1 − x𝑜𝑛𝑡−1
) (5)

Definition 3.3 (Guidance Mechanisms). We distinguish between

two guidance mechanisms. Off-Manifold Guidance uses extrapo-
lation (𝜔 > 1) , pushing the estimate x𝜔𝑡 off the on-manifold path.

In contrast, our Manifold-Constrained Guidance uses interpola-
tion (𝜆 ∈ [0, 1]), ensuring the estimate x𝜆𝑡 remains on the path. The

respective estimates are:

x𝜔𝑡 = (1 − 𝜔)x𝜙𝑡 + 𝜔x𝑐𝑡 (6)

x𝜆𝑡 = (1 − 𝜆)x𝜙𝑡 + 𝜆x𝑐𝑡 (7)

3.2 Guided Path Sampling
The cumulative effect of the approximation error 𝝉2 (𝑡) directly de-

termines the final image quality. We argue that standard CFG’s

use of Off-Manifold Guidance is the root cause of performance

degradation in iterative samplers like Z-Sampling. This continuous

off-manifold guidance introduces an ineliminable systematic error,

ultimately causing the cumulative error series to diverge.

2
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Algorithm 1 GPS

1: Input: Text prompt 𝑐 , Denoising operation 𝔇, Inversion op-

eration ℑ, denoising guidance 𝜆1 ∈ [0, 1], inversion guidance

scheduling function 𝜆2 (𝑡), total inference steps𝑇 , self-reflection
steps 𝐾 .

2: Output: Clean image x0.

3: Sample Gaussian noise x𝑇 ∼ N(0, I).
4: for 𝑡 =𝑇 to 1 do
5: if 𝑡 > 𝑇 − 𝐾 then
6: x′𝑡−1

← 𝔇(x𝑡 , 𝑐, 𝜆1)
7: 𝜆2,𝑡 ← 𝜆2 (𝑡)
8: x̃𝑡 ← ℑ(x′𝑡−1

, 𝑐, 𝜆2,𝑡 )
9: x𝑡 ← x̃𝑡
10: end if
11: x𝑡−1 ← 𝔇(x𝑡 , 𝑐, 𝜆1)
12: end for
13: return x0

Theorem 3.4 (Error Divergence of Z-Sampling). Assume:
• The noise prediction function is twice continuously differen-

tiable near the data manifold.
Then for Z-Sampling with CFG scale 𝜔 > 1, the cumulative inversion
error diverges:

𝑇∑︁
𝑡=1

∥𝝉2 (𝑡)∥ → ∞ as 𝑇 →∞.

Proof. Let d(x𝑡 ) := x𝑐𝑡 − x
𝜙

𝑡 . At step 𝑡 , the off-manifold pertur-

bation magnitude is:

∥𝜹𝑡−1∥ ≈
√
𝛼𝑡−1 (𝜔 − 1) ∥d(x𝑡 )∥.

Assuming the manifold has non-vanishing curvature represented

by the tensorH , the second-order manifold error satisfies:

∥𝝉manifold (𝑡)∥ ≈ 1

2
∥H (𝜉) [𝜹𝑡−1, 𝜹𝑡−1] ∥ ≥ 𝜅∥𝜹𝑡−1∥2,

where 𝜅 > 0 relates to the manifold curvature. Thus,

∥𝝉manifold (𝑡)∥ ≳ 𝛼𝑡−1 (𝜔 − 1)2∥d(x𝑡 )∥2 .
Since the guidance term d(x𝑡 ) represents a semantic direction inde-

pendent of the step size Δ𝑡 , this error term is O(1) with respect to

𝑇 . Consequently, summing this non-vanishing error over 𝑇 steps

leads to divergence:

𝑇∑︁
𝑡=1

∥𝝉2 (𝑡)∥ ≥
𝑇∑︁
𝑡=1

𝑐 = Ω(𝑇 ) → ∞.

𝔇(x𝑡 ) =
√
𝛼𝑡−1

(
x𝑡 −
√

1 − 𝛼𝑡 x𝜆𝑡√
𝛼𝑡

)
+
√

1 − 𝛼𝑡−1 x
𝜙

𝑡 (8)

ℑ(x𝑡−1) =
√
𝛼𝑡

(
x𝑡−1 −

√
1 − 𝛼𝑡−1 x𝜆𝑡−1√
𝛼𝑡−1

)
+
√

1 − 𝛼𝑡 x𝜙𝑡−1
(9)

To resolve the error divergence issue, we propose Guided Path
Sampling (GPS). Its core idea is to adopt theManifold-Constrained
Guidance defined in Section 3.1, which fundamentally eliminates the

systematic manifold offset error. We then replace part of the guided

Z-Sampling Standard GPS (Ours)
Denoising

Inversion

Predicted 

Noise

𝑀
𝑡

𝑀
𝑡−
1
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D
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o
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in
g
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1
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Figure 2: Schematic illustration of GPS. Unlike standard
methods that extrapolate off the manifold (red dotted line),
GPS employs a manifold-constrained interpolation (green
solid line) during the zigzag cycle, ensuring the sampling
trajectory remains stable and errors remain bounded.

noise with unconditional noise, as defined in equations𝔇(x𝑡 ) and
ℑ(x𝑡−1). The complete procedure is detailed in Algorithm 1. The

stability of this approach is guaranteed by our first core theorem.

Theorem 3.5 (Error Boundedness of GPS). Let the noise predic-
tions be bounded. For GPS employing manifold-constrained guidance
(interpolation), the cumulative approximation error

∑𝑇
𝑡=1
∥𝝉2 (𝑡)∥ is

strictly bounded, ensuring sampling stability.

Proof. Let x𝜙𝑡 and x𝑐𝑡 denote the unconditional and conditional

noise predictions, respectively, assumed to be bounded in magni-

tude by a constant𝑀 .

Recall that standard CFG (Eq. 6) employs extrapolation with

𝜔 > 1, which amplifies the deviation:

∥x𝜔𝑡 ∥ = ∥(1 − 𝜔)x
𝜙

𝑡 + 𝜔x𝑐𝑡 ∥ = ∥x
𝜙

𝑡 + 𝜔 (x𝑐𝑡 − x
𝜙

𝑡 )∥.

As 𝜔 increases, the norm ∥x𝜔𝑡 ∥ grows linearly with 𝜔 , potentially

becoming unbounded and pushing the trajectory off-manifold.

In contrast, GPS (Eq. 7) employs interpolation with 𝜆 ∈ [0, 1]:

x𝜆𝑡 = (1 − 𝜆)x𝜙𝑡 + 𝜆x𝑐𝑡 .

By the Triangle Inequality, the magnitude of the guided noise is

strictly bounded by the convex hull of the component predictions:

∥x𝜆𝑡 ∥ ≤ (1 − 𝜆)∥x
𝜙

𝑡 ∥ + 𝜆∥x𝑐𝑡 ∥ ≤ max(∥x𝜙𝑡 ∥, ∥x𝑐𝑡 ∥) ≤ 𝑀.

Consequently, the manifold offset error 𝝉manifold (𝑡) does not diverge.
The total cumulative error is dominated by the local discretization

error, which is bounded for the finite time horizon 𝑇 :

𝑇∑︁
𝑡=1

∥𝝉2 (𝑡)∥ ≤
𝑇∑︁
𝑡=1

(𝐶 · Δ𝑡) =𝐶 ·𝑇Δ𝑡 = O(1).

Thus, the error series remains bounded, guaranteeing algorithmic

stability.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

TIME ’26, April 13, 2026, Dubai, United Arab Emirates Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

4 Experiments
4.1 Experimental Setup
Datasets.We evaluate our model on two complementary bench-

marks. For assessing human-perceived aesthetic quality, we use
the first 100 prompts from Pick-a-Pic [14]. For quantitatively mea-

suring compositional accuracy (e.g., object count and position),

we use GenEval. This dual evaluation provides a holistic view of

our model’s capabilities.

MetricsWeevaluate text-image alignment using CLIP Score [10],

and complement it withHPS v2 [30] and ImageReward (IR) [31], two

learned metrics trained on extensive human preference judgments

to capture subjective quality.

Diffusion Models We employ different diffusion models as the

generation backbone in our experiments. For SD2.1 [23], SDXL

[21], and Hunyuan-DiT [15], we perform 50 denoising steps. We

set 𝜔 = 5.5, 𝜆1 = 0.5 and use 𝜆2,𝑡 that increases from 0.1 to 0.3 using

a cosine function in SDXL/SD2.1, and 𝜔 = 6.0 in Hunyuan-DiT,

aligning with the default recommended values. Finally, the zigzag

operation is executed along the entire path (𝐾 =𝑇 − 1).

4.2 Main Results

Table 1: Comparative results on the Pick-a-Pic benchmark.

Method CLIP ↑ HPS v2 ↑ IR ↑

SDXL

Standard 0.710 0.2899 0.64

Z-Sampling 0.719 0.2980 0.75

GPS 0.723 0.2995 0.79

SD-2.1

Standard 0.681 0.2541 -0.54

Z-Sampling 0.696 0.2686 -0.25

GPS 0.702 0.2709 -0.18

Hunyuan-DiT

Standard 0.712 0.2915 0.92

Z-Sampling 0.724 0.3012 0.94

GPS 0.730 0.3056 0.97

Table 2: Comparative results on GenEval with SDXL.

Metric Standard Z-Sampling GPS (ours)

Single Obj. 97.50% 100.00% 100.00%
Two Obj. 69.70% 74.75% 76.77%
Count. 33.75% 46.25% 48.75%
Colors 86.71% 87.23% 86.17%

Pos. 10.00% 10.00% 11.00%
Color Attr. 18.00% 24.00% 22.00%

Overall 52.52% 57.04% 57.45%

As presented in Table 1 and 2, GPS consistently outperforms

both Standard sampling and Z-Sampling methods across varying

benchmarks and model architectures.

On the Pick-a-Pic benchmark (Table 1), GPS demonstrates supe-

rior performance in text-image alignment (CLIP) and human pref-

erence metrics (HPS v2, IR). Notably, on the SDXL backbone, GPS

achieves an ImageReward of 0.79 and HPS v2 of 0.2995, surpassing
the strong Z-Sampling baseline. This superiority extends to differ-

ent architectures, including the older SD-2.1 and the Transformer-

based Hunyuan-DiT, where GPS sets a new state-of-the-art with

an ImageReward of 0.97. These results indicate that maintaining

the manifold structure effectively enhances both semantic fidelity

and aesthetic quality.

Table 2 further details the fine-grained semantic capabilities

on SDXL using the GenEval benchmark. GPS achieves the highest

Overall score of 57.45%. Crucially, significant gains are observed in
complex compositional tasks, such as Counting (48.75% vs. 46.25%

for Z-Sampling) and Two Object generation (76.77% vs. 74.75%).

This suggests that our stable iterative refinement better accumu-

lates semantic details and spatial structures for complex prompts,

validating the effectiveness of our manifold constraints.

4.3 Ablation Study

Table 3: Ablation of the inversion scheduler 𝜆2,𝑡 on SDXL.

Scheduler CLIP ↑ HPS v2 ↑ IR ↑
Constant (0.1) 0.711 0.2983 0.72

Constant (0.3) 0.714 0.2986 0.73

Sigmoid (0.1→0.3) 0.719 0.2993 0.74

Linear (0.1→0.3) 0.721 0.2994 0.75

Cos (0.1→0.3) 0.723 0.2995 0.79
Cos (0.3→0.1) 0.717 0.2992 0.74

Cos (0.1→0.3→0.1) 0.710 0.2983 0.72

Our ablation study on the inversion guidance scheduler (Table 3)

provides strong empirical backing for our theory. We evaluated var-

ious strategies for scheduling the guidance scale 𝜆2,𝑡 , ranging from

fixed Constant values to dynamic schedules like Cos (0.1→0.3).
The results across all metrics (CLIP, HPS v2, and IR) reveal two key

findings.

First, dynamic scheduling consistently surpasses constant sched-

ules, with the Cos (0.1→0.3) strategy achieving the highest

scores (e.g., 0.79 IR and 0.2995 HPS v2). Second, and most impor-

tantly, the results directly validate our proposed “coarse-to-fine”
refinement principle: monotonically increasing schedules for 𝜆2,𝑡

yield the best performance. This confirms that gradually strength-

ening the manifold constraint is the optimal strategy. Conversely,

schedules that violate this principle by decreasing the scale (Cos
(0.3→0.1)) or being non-monotonic (Cos (0.1→0.3→0.1)) fail
to maintain this benefit, leading to a noticeable degradation in both

semantic alignment and perceptual quality.

5 CONCLUSION
We identified that standard extrapolative CFG pushes sampling

paths off-manifold, causing error divergence. We introduced GPS,

which replaces extrapolation with manifold-constrained interpola-

tion, transforming the divergent error of methods like Z-Sampling

into a provably convergent process. Furthermore, we proposed an

optimal, monotonically increasing guidance schedule to align se-

mantic injection with the model’s coarse-to-fine generation . Our

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Guided Path Sampling: Steering Diffusion Models Back on Track with Principled Path Guidance TIME ’26, April 13, 2026, Dubai, United Arab Emirates

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

experiments show GPS significantly improves perceptual quality

and semantic alignment. The key takeaway is that path stability
is a prerequisite for effective iterative refinement. Future work
will focus on extending GPS to stochastic samplers and exploring

learned scheduling functions.
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