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Abstract

We present a novel algorithm for text-driven image-to-image translation based
on a pretrained text-to-image diffusion model. Our method aims to generate a
target image by selectively editing regions of interest in a source image, defined
by a modifying text, while preserving the remaining parts. In contrast to existing
techniques that solely rely on a target prompt, we introduce a new score function
that additionally considers both the source image and the source text prompt,
tailored to address specific translation tasks. To this end, we derive the conditional
score function in a principled way, decomposing it into the standard score and a
guiding term for target image generation. For the gradient computation about the
guiding term, we assume a Gaussian distribution for the posterior distribution and
estimate its mean and variance to adjust the gradient without additional training. In
addition, to improve the quality of the conditional score guidance, we incorporate
a simple yet effective mixup technique, which combines two cross-attention maps
derived from the source and target latents. This strategy is effective for promoting
a desirable fusion of the invariant parts in the source image and the edited regions
aligned with the target prompt, leading to high-fidelity target image generation.
Through comprehensive experiments, we demonstrate that our approach achieves
outstanding image-to-image translation performance on various tasks. Code is
available at https://github.com/Hleephilip/CSG.

1 Introduction

Diffusion models [1–4] have recently shown remarkable performance in various tasks such as
unconditional generation of text [5, 6] or images [7, 8] and conditional generation of images [9–11],
3D scenes [12, 13], motion [14, 15], videos [16, 17], or audio [18, 19] given text and/or images.
Thanks to large-scale labeled datasets of text-image pairs [20–24], text-to-image diffusion models [25–
29] have been successfully trained and have achieved outstanding performance. Despite the success
of the text-to-image generation models, it is not straightforward to extend the models to text-driven
image-to-image translation tasks due to the limited controllability on the generated images. For
example, in the case of the “cat-to-dog” task, naïve text-to-image diffusion models often fail to focus
on the area of cats in a source image for updates and simply generate a dog image with a completely
different appearance.

To sidestep such a critical problem, existing image-to-image translation methods [30–33, 11, 34, 35]
based on diffusion models aim to update the semantic content in the source image specified by a
given condition while preserving the region irrelevant to the condition for target image generation.
For example, [31, 34] fine-tune the pretrained text-to-image diffusion model to reduce the distance
between the background in the source image and the generated target image, while bringing the
translated image closer to the target domain. On the other hand, [30, 32, 33, 11, 35] revise the
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generative processes based on the pretrained diffusion models for the text-driven image editing tasks
without extra training.

The main idea of this work is to estimate a score function conditioned on both the source image
and source text in addition to the standard condition with the target text. The new score function
is composed of two terms: (a) the standard score function conditioned only on the target prompt
and (b) the guiding term, i.e., the gradient of the log-posterior of the source latent given the target
latent and the target prompt with respect to the target latent. Note that the posterior is modeled by a
Gaussian distribution whose mean and covariance matrix are estimated without an additional training
process. We also employ an effective mixup strategy in cross-attention layers to achieve high-fidelity
image-to-image translation. The main contributions of our paper are summarized as follows:

• We mathematically derive a conditional score that provides guidance for controllable image
generation in image-to-image translation tasks; the score can be conveniently incorporated
into existing text-to-image diffusion models.

• We propose a novel cross-attention mixup technique based on text-to-image diffusion
models for image-to-image translation tasks, which adaptively combines the two outputs of
cross-attention layers estimated with the latent source and target images at each time step.

• We introduce an intuitive performance evaluation metric that measures the fidelity of pairwise
relationships between images before and after translation. Experimental results verify that
our method consistently achieves outstanding performance on various tasks with respect to
the standard and the proposed metrics.

The rest of the paper is organized as follows. Section 2 reviews the related work and Section 3
discusses basic concepts and practices of image-to-image translation based on diffusion models. The
details of our approach are described in Section 4, and the experimental results are presented in
Section 5. Finally, we conclude this paper in Section 6.

2 Related Work

This section describes existing text-to-image diffusion models and their applications to image-to-
image translation tasks.

2.1 Text-to-Image Diffusion Models

Diffusion models [1–4] have achieved exceptionally promising results in text-to-image generation.
For example, Stable Diffusion and Latent Diffusion Models (LDM) [26] employ a two-stage frame-
work [36, 37], where an input image is first projected onto a low-dimensional feature space using
a pretrained encoder and a generative model is trained to synthesize the feature conditioned on a
text embedding. At inference time, the image is sampled by generating the representation and then
decoding it. In the two-stage framework, Denoising Diffusion Probabilistic Model (DDPM) [2] is
employed as the generative model while a text prompt is represented using a text encoder given by
Contrastive Language-Image Pretraining (CLIP) [38]. On the other hand, DALL-E 2 [28] consists of
two main components: a prior model and a decoder. The prior model infers a CLIP image embedding
from a text representation encoded by the CLIP text encoder while the decoder synthesizes an image
conditioned on both its CLIP embedding and text information. In addition, Imagen [25] generates
an image conditioned on a text embedding provided by a powerful language encoder [39], which is
trained on text-only corpora to faithfully represent a text prompt.

2.2 Text-Driven Image-to-Image Translation Methods using Diffusion Models

Existing image-to-image translation methods [30–32, 34, 33, 11, 35] aim to preserve the background
while editing the object part only. Specifically, Stochastic Differential Editing (SDEdit) [30] infers a
latent variable at an intermediate time step based on a source image and then synthesizes a target
image by solving the reverse time stochastic differential equation from the intermediate time step
to the origin. DiffusionCLIP [31] fine-tunes a text-to-image generative network using the local
directional loss [40] computed from CLIP [38] while this method also employs the L1 reconstruction
loss for preserving the background and optionally the face identity loss [41] only for human face
image manipulation tasks. Also, Imagic [34] optimizes a pretrained text-to-image diffusion model
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(a) Source image (b) Target image

Figure 1: Image translation results of xtgt
0 based on xsrc

0 using the simple naïve DDIM generative
process based on Eq (3).

conditioned on the inferred text feature to faithfully reconstruct a given image. Using the fine-tuned
model, at inference time, the target image is synthesized based on the linear combination of the two
features of the predicted source and the target text. In contrast, Blended Diffusion [32] requires
a user-provided background mask so that the latents of the source and target images are mixed
according to the mask to preserve the background while selectively updating the region of interest.

3 Preliminary: Image-to-Image Translation based on Diffusion Models

3.1 Estimation of Latent Variables for Source Images

Diffusion models [1, 2, 4] estimate a series of latent variables x1,x2, · · ·xT with the same dimension-
ality as a data sample x0 ∈ RH×W×C , where the forward sampling process of xt depends on xt−1
and x0 in DDIM [4] while DDPM [2] assumes the data generating process follows a Markov chain.
For image-to-image translation, existing works [33, 11, 35] often employ a deterministic inference
using DDIM instead of a stochastic method such as DDPM, which is given by

xsrc
t+1 =

√
αt+1fθ(x

src
t , t,y

src) +
√
1− αt+1εθ(x

src
t , t,y

src), (1)

where xsrc
t and ysrc denote the latent variable of a source image xsrc

0 and the text embedding of
a source prompt using pretrained models [38, 39], and αt ∈ (0, 1] is an element in a predefined
decreasing sequence. In the above equation, εθ(·, ·, ·) is a noise prediction network parametrized with
a U-Net backbone [42] and fθ(·, ·, ·) is defined as

fθ(xt, t,y) :=
xt −

√
1− αtεθ(xt, t,y)√

αt
. (2)

The last latent variable xsrc
T is sampled recursively using Eq. (1), from which the reverse process

starts for the generation of the target image or the reconstruction of the source image. Note that,
for simplicity, we write equations for each channel of xt because the operations in all channels are
identical.

3.2 Generative Process of Target Images

A naïve image-to-image translation technique based on diffusion models simply generates the target
image xtgt

0 from xtgt
T , which is set to xsrc

T , recursively using the reverse DDIM process as follows:

xtgt
t−1 =

√
αt−1fθ(x

tgt
t , t,y

tgt) +
√

1− αt−1εθ(xtgt
t , t,y

tgt), (3)

where ytgt denotes the text embedding of the target prompt. Although the naïve DDIM-based
translation guarantees the cycle-consistency as discussed in [43], the simple translation algorithm
often results in poor generation results, failing to maintain the content structure and the background
information that should be invariant to translation, as presented in Figure 1.

To address this issue, previous approaches employ the information obtained from the reverse process
of xsrc

t when synthesizing the target image. Specifically, to preserve the background in the source
image during the early steps in the reverse process of xtgt

t , Prompt-to-Prompt [33] replaces the
cross-attention maps of the target latents with those obtained from the source latents while Plug-
and-Play [11] injects the self-attention and intermediate feature maps into the matching layers in
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Figure 2: Graphical model of the proposed method for target image generation.

the noise prediction network. For the remaining steps, the reverse DDIM process defined as Eq. (3)
is simply employed to generate the target image without any modification. On the other hand,
Pix2Pix-Zero [35] first updates the latent xtgt

t to minimize the distance between the cross-attention
maps given by the reverse process of xsrc

t and xtgt
t , and then performs the DDIM generation process

using the updated latent.

4 Conditional Score Guidance with Cross-Attention Mixup

This section discusses how to derive our conditional score guidance using cross-attention mixup for
high-fidelity text-driven image-to-image translation.

4.1 Overview

The naïve reverse process of DDIM for image-to-image translation can be rewritten by plugging
Eq. (2) into Eq. (3) and adopting the approximate score function suggested in [3] as follows:

xtgt
t−1 =

√
αt−1√
αt

xtgt
t −

√
1− αtγtεθ(xtgt

t , t,y
tgt) (4)

≈
√
αt−1√
αt

xtgt
t + (1− αt)γt∇xtgt

t
log p(xtgt

t |ytgt), (5)

where

∇xtgt
t
log p(xtgt

t |ytgt) ≈ − 1√
1− αt

εθ(x
tgt
t , t,y

tgt) and γt :=

√
αt−1
αt
−
√

1− αt−1
1− αt

. (6)

Our approach designs a new reverse process guided by the proposed conditional score, for which we
replace the original score function,∇xtgt

t
log p(xtgt

t |ytgt), in Eq. (5), with the one conditioned on the
source information, ∇xtgt

t
log p(xtgt

t |xsrc
0 ,y

tgt,ysrc). The rest of this section discusses how to derive
the new conditional score function, where we incorporate a novel technique, cross-attention mixup, to
estimate a mask with the foreground/background probability, and further revise the conditional score
function using the mask. We refer our algorithm to Conditional Score Guidance (CSG). Figure 2
depicts the graphical model of the proposed text-driven image-to-image translation process, and
Algorithm 1 shows the detailed procedure of CSG.

4.2 Conditional Score Estimation

For the conditional reverse process of image-to-image translation, we propose the novel conditional
score,∇xtgt

t
log p(xtgt

t |xsrc
0 ,y

tgt,ysrc), which is given by

∇xtgt
t
log p(xtgt

t |xsrc
0 ,y

tgt,ysrc) = ∇xtgt
t
log

∫
p(xtgt

t ,x
src
t |xsrc

0 ,y
tgt,ysrc) dxsrc

t

= ∇xtgt
t
log

∫
p(xtgt

t |xsrc
t ,x

src
0 ,y

tgt,ysrc) · p(xsrc
t |xsrc

0 ,y
tgt,ysrc) dxsrc

t

= ∇xtgt
t
log

∫
p(xtgt

t |xsrc
t ,y

tgt) · p(xsrc
t |xsrc

0 ,y
src) dxsrc

t (7)

≈ ∇xtgt
t
log p(xtgt

t |x̂src
t ,y

tgt). (8)
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(a) Source image (b) Content mask (c) Regularized content mask

Figure 3: Visualization of the source image, the content mask Msrc[k], and the corresponding
regularized mask M̂src[k], where the kth token in the source prompt contains the semantic information
about the region to be edited in the source image.

In Eq. (7), xtgt
t is independent of ysrc and xsrc

0 as illustrated in Figure 2, and xsrc
t is orthogonal to ytgt.

In Eq. (8) , x̂src
t is a sample drawn from p(xsrc

t |xsrc
0 ,y

src) using the forward deterministic inference in
Eq. (1). Then, we decompose the right-hand side of Eq. (8) as

∇xtgt
t
log p(xtgt

t |x̂src
t ,y

tgt) = ∇xtgt
t
log p(xtgt

t |ytgt) +∇xtgt
t
log p(x̂src

t |x
tgt
t ,y

tgt), (9)

where the first term∇xtgt
t
log p(xtgt

t |ytgt) is estimated by the noise prediction network as the standard
reverse process. Finally, the conditional score in our approach is given by

∇xtgt
t
log p(xtgt

t |xsrc
0 ,y

tgt,ysrc) ≈ ∇xtgt
t
log p(xtgt

t |ytgt) +∇xtgt
t
log p(x̂src

t |x
tgt
t ,y

tgt). (10)

4.3 Cross-Attention Mixup

To improve the derived score function, we estimate a mask Psrc ∈ (0, 1)H×W indicating where to
preserve and edit in the source image, and use the mask for the computation of the score function. To
this end, motivated by the observed property [33] that the spatial layout of a generated image depends
on the cross-attention map, we first compute the average cross-attention maps Msrc ∈ RL×H×W of
the time-dependent cross-attention maps {Msrc

t }t=1:T in the noise prediction network using xsrc
t ’s

as its inputs. Then, we select a content mask Msrc[k] ∈ RH×W , which contains the semantic
information of the to-be-edited region in the source image, where k denotes the position of the source
prompt token to be updated in the target prompt. However, the application of the content mask
Msrc[k] is limited to highlighting only small parts within the content of interest. For example, in the
case of the “cat-to-dog” task, the head region in Msrc[k] exhibits high activations while the body area
yields relatively low responses as illustrated in Figure 3b.

To alleviate such a drawback, our approach applies a regularization technique to the content mask
Msrc[k] for spatial smoothness as depicted in Figure 3c. For the regularization, we compute the
average self-attention map, Asrc ∈ RH×W×H×W over time-dependent self-attention maps in the
noise prediction network during the reverse DDIM process. The motivation behind this strategy
is from the observation in [11] that the averaged self-attention map tends to hold semantically
well-aligned attention information.

Using the content mask and the average self-attention map, we compute the regularized content mask,
M̂src[k] ∈ RH×W , as follows:

M̂src[k][h,w] := tr
(
Asrc[h,w](Msrc[k])T

)
, (11)

where tr(·) is the trace operator and [h,w] denotes the pixel position. Then, the background mask
Psrc ∈ RH×W for image-to-image translation is given by

Psrc := 1− M̂src[k], (12)

where 1 ∈ RH×W denotes the matrix whose elements are 1. Each element in Psrc indicates the
probability that the corresponding pixel in the image belongs to the region to be preserved even after
translation.

Given the background mask Psrc, we propose a new cross-attention guidance method called cross-
attention mixup to estimate the cross-attention map for an arbitrary `th text token as

M̂tgt
t [`] := Msrc

t [`]�Psrc + Mtgt
t [`]� (1−Psrc), (13)
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(a) Source image (b) Precision matrix Ωt at time step t

Figure 4: Visualization of the source image and estimated precision matrix Ωt ranging from time
step t = T to t = 1.

Algorithm 1 Conditional Score Guidance with Cross-Attention Mixup

Inputs: source image xsrc
0 , source prompt embedding ysrc, target prompt embedding ytgt, hyperpa-

rameter λpre

for t← 0, · · · , T − 1 do
Compute xsrc

t+1 by Eq. (1) while saving Msrc
t and Asrc

t
end for
xtgt
T ← xsrc

T
Compute Msrc[k] and Asrc by averaging Msrc

t and Asrc
t over all time steps

Compute M̂src[k] using Msrc[k] and Asrc by Eq. (11)
Compute Psrc ← 1− M̂src[k] by Eq. (12)
for t← T, · · · , 1 do

Compute ε̂θ(x
tgt
t , t,y

tgt) using cross-attention mixup in Eq. (13)

Compute γt ←
√

αt−1

αt
−
√

1−αt−1

1−αt and obtain Ωt using Eq. (15)
Perform the proposed conditional score guidance given by Eq. (18):
x̂src
t ← xsrc

t

xtgt
t−1 ←

√
αt−1

(
xtgt
t −
√
1−αt ε̂θ(xtgt

t ,t,y
tgt)√

αt

)
+
√
1− αt−1ε̂θ(xtgt

t , t,y
tgt)− γtΩt(x

tgt
t − x̂src

t )

end for
Output: target image xtgt

0

where � is the Hadamard product operator and Mtgt
t denotes the cross-attention map in the noise

prediction network given an input xtgt
t . Note that the cross-attention mixup is helpful to preserve the

background conditioned on the text prompts while allowing us to edit the regions of interest. By
integrating the cross-attention mixup in Eq. (13), we obtain the modified prediction ε̂θ(x

tgt
t , t,y

tgt)

using M̂tgt
t instead of Mtgt

t at every time step t.

4.4 Conditional Score Guidance

We still need to formulate the guidance term, ∇xtgt
t
log p(x̂src

t |x
tgt
t ,y

tgt). To this end, we assume a
Gaussian distribution for p(x̂src

t |x
tgt
t ,y

tgt) with a diagonal precision matrix Ωt ∈ RHW×HW , i.e.,
p(x̂src

t |x
tgt
t ,y

tgt) ∼ N (xtgt
t , (1− αt)Ω−1t ). The guidance term is then given by

∇xtgt
t
log p(x̂src

t |x
tgt
t ,y

tgt) = −Ωt(x
tgt
t − x̂src

t )

1− αt
, (14)

where each diagonal element in Ωt has a large precision value if it corresponds to the pixel that
should be preserved and consequently has a low variance, and vice versa.
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Given the background mask Psrc and a hyperparameter λpre to control the magnitude of each element
in Ωt, the diagonal entries of Ωt are given by

Diag(Ωt) := λpre · Vec(Bt �Psrc), (15)

where Diag(·) refers to the vectorized diagonal elements of the input matrix while Vec(·) is an
operator to reshape a matrix into a vector. In Eq. (15), Bt ∈ RH×W is a binary matrix dependent on
t and Psrc, which is heuristically defined as

Bt[h,w] := I
[
Psrc[h,w] ≥ 1− cos

(
π(T − t)
Tδ

)]
, (16)

where I[·] is the indicator function. Note that δ is a hyperparameter that controls the period of the
cosine function and is simply set to 1.5 in our implementation, which makes the cosine function
monotonically decreasing. The binary mask Bt allows us to ignore the error between the true mean
of the posterior p(x̂src

t |x
tgt
t ,y

tgt) and its estimate xtgt
t in foreground regions. As visualized in Figure 4,

Bt encourages the editable foreground area to be larger as the time step t gets closer to 0.

4.5 Update Equation

The new reverse process based on the proposed conditional score in Eq. (10) is given by

xtgt
t−1 ≈

√
αt−1√
αt

xtgt
t + (1− αt)γt

(
∇xtgt

t
log p(xtgt

t |ytgt) +∇xtgt
t
log p(x̂src

t |x
tgt
t ,y

tgt)
)
, (17)

where the additional guidance term comes from the replacement of the standard score function in
Eq. (5). Finally, the equation for our reverse process is derived by using Eq. (14) and converting to a
similar form as Eq. (3) as

xtgt
t−1 =

√
αt−1f̂θ(x

tgt
t , t,y

tgt) +
√
1− αt−1ε̂θ(xtgt

t , t,y
tgt)− γtΩt(x

tgt
t − x̂src

t ), (18)

where the noise prediction εθ(x
tgt
t , t,y

tgt) is replaced by the enhanced noise estimation ε̂θ(x
tgt
t , t,y

tgt)
with the proposed cross-attention mixup. Therefore, compared to the original score function, the
proposed conditional guidance adjusts xtgt

t towards x̂src
t depending on the elements in the precision

matrix Ωt.

5 Experiments

This section compares the proposed method, referred to as CSG, with the state-of-the-art methods
such as Prompt-to-Prompt [33] and Pix2Pix-Zero [35], along with the simple variant of DDIM
described in Section 3.2 on top of the pretrained Stable Diffusion model [26]. We also present
ablation study results to analyze the performance of the proposed components.

5.1 Implementation Details

Our method is implemented based on the publicly available official code of Pix2Pix-Zero [35] in
PyTorch [44] and tested on a single NVIDIA A100 GPU. For faster generation, we adopt 50 forward
steps using Eq. (1) and 50 reverse steps for target image generation. We obtain a source prompt by
employing the pretrained vision-language model [45] while a target prompt is made by replacing
words in the source prompt with the target-specific ones. For example, in the case of the “dog-to-cat”
task, if the source prompt is “a cute little white dog”, the target prompt is set to “a cute little white
cat”. For translating target images, all methods employ the classifier-free guidance [46]. For fair
comparisons, we run the official codes of Prompt-to-Prompt [33]1 and Pix2Pix-Zero [35]2, where we
utilize the same final latent and target prompt when synthesizing target images.

1https://github.com/google/prompt-to-prompt
2https://github.com/pix2pixzero/pix2pix-zero
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Table 1: Quantitative comparisons with existing methods [4, 33, 35] relying on the pretrained
Stable Diffusion [26], where real images are sampled from LAION 5B dataset [20]. DDIM denotes
the simple inference using Eq. (3). Bold-faced numbers in black and red represent the best and
second-best performance in each row.

Task DDIM [4] Prompt-to-Prompt [33] Pix2Pix-Zero [35] CSG (Ours)

CS (↑) SD (↓) RD (↓) CS (↑) SD (↓) RD (↓) CS (↑) SD (↓) RD (↓) CS (↑) SD (↓) RD (↓)
cat→ dog 0.2921 0.0725 0.4325 0.2992 0.0338 0.1756 0.3015 0.0226 0.1589 0.3014 0.0192 0.0217
dog→ cat 0.2903 0.0748 0.4608 0.2959 0.0295 0.2085 0.2954 0.0220 0.3229 0.2958 0.0150 0.0192
wolf→ lion 0.2990 0.0726 0.8856 0.2934 0.0307 0.2569 0.3014 0.0269 0.1827 0.2999 0.0253 0.0778
zebra→ horse 0.3006 0.0933 0.8659 0.2939 0.0423 0.7944 0.2944 0.0212 0.1372 0.2918 0.0189 0.1176
dog→ dog w/ glasses 0.3139 0.0689 0.3541 0.3250 0.0184 0.1340 0.3247 0.0104 0.0921 0.3240 0.0097 0.0139

Table 2: Contribution of the conditional score guidance and the cross-attention mixup tested on
LAION 5B [20]. ‘CSG w/o Mixup’ synthesizes target images without the cross-attention mixup.

Task DDIM [4] CSG w/o Mixup CSG

CS (↑) SD (↓) RD (↓) CS (↑) SD (↓) RD (↓) CS (↑) SD (↓) RD (↓)
cat→ dog 0.2921 0.0725 0.4325 0.3008 0.0199 0.0229 0.3014 0.0192 0.0217
dog→ cat 0.2903 0.0748 0.4608 0.2959 0.0161 0.0226 0.2958 0.0150 0.0192
wolf→ lion 0.2990 0.0726 0.8856 0.3000 0.0273 0.0829 0.2999 0.0253 0.0778
zebra→ horse 0.3006 0.0933 0.8659 0.2916 0.0195 0.1231 0.2918 0.0189 0.1176
dog→ dog w/ glasses 0.3139 0.0689 0.3541 0.3238 0.0103 0.0654 0.3240 0.0097 0.0139

5.2 Evaluation Metrics

To compare the proposed method with previous state-of-the-art techniques, we employ two evaluation
metrics widely used in existing studies: CLIP-similarity (CS) [47] and Structure Distance (SD) [48].
CS assesses the alignment between the target image and the target prompt while SD estimates the
overall structural disparity between the source and target images.

Furthermore, we introduce a novel metric referred to as Relational Distance (RD), which quantifies
how faithfully the relational information between source images is preserved between translated
target images. With an ideal image-to-image translation algorithm, the distance between two source
images should have a strong correlation with the distance between their corresponding target images.
Note that this metric has proven successful in the context of knowledge distillation [49]. To compute
the distance between two images, we adopt the perceptual loss [50]. In Section A.1, we provide a
detailed description of RD. For quantitative evaluation, we select 250 images with the highest CLIP
similarity from the LAION 5B dataset [20].

5.3 Quantitative Results

Table 1 presents the quantitative results in comparison with the state-of-the-art methods [33, 35] and
the naïve DDIM [4] inference using Eq. (3). As presented in the table, CSG is always the best in
terms of SD and RD while it is outperformed by other methods in terms of CS. Although existing
approaches have higher values of CS, our algorithm is more effective for preserving the structure. In
addition, CSG is more efficient than Pix2Pix-Zero in terms of speed and memory usage since we do
not need to perform the backpropagation through the noise prediction network.

5.4 Qualitative Results

Figure 5 visualizes images generated by reconstruction, the naïve DDIM method using Eq. (3),
Prompt-to-Prompt [33], Pix2Pix-Zero [35], and CSG. As illustrated in the figure, CSG successfully
edits the content effectively and preserves the background properly while all other methods often fail
to preserve the structural information of the primary objects. In addition to the real examples, we
present additional qualitative results using synthesized images by Stable Diffusion in Figure 6, which
also demonstrates that CSG achieves outstanding performance.
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Figure 5: Qualitative comparisons between CSG and other methods tested with the real images
sampled from LAION 5B dataset [20]. CSG produces translated images with higher-fidelity.

5.5 Ablation Study

Table 2 presents the results from the ablation study that analyzes the effect of the proposed components
on various tasks when implemented on top of the Stable Diffusion model. The results imply that
the conditional score guidance without the cross-attention mixup in Eq. (13), denoted by ‘CSG w/o
Mixup’, is still helpful, and the cross-attention mixup further enhances text-driven image editing
performance when combined with the conditional score guidance.

6 Conclusion

We presented a training-free text-driven image translation method using a pretrained text-to-image
diffusion model. Different from existing methods relying on a simple score conditioned only on
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31

Street → Snowy Street Tree → Blossom Tree

Bird → Rubber Duck Picture → Oil pastel

Editing synthetic images

Car → Old Car

Dog → Jumping Dog House → Eiffel Tower

Horse → Zebra House → Car

Flowers → Strawberries

Photo → Cartoon Truck → Tree

Figure 6: Qualitative results of the proposed method on the synthesized images by the pretrained
Stable Diffusion [26].

a target textual input, we formulated a conditional score conditioned on both a source image and
a source text in addition to the target prompt. To compute the additional guiding term in our
novel conditional score function, we assumed a Gaussian distribution for the posterior distribution,
where its mean is simply set to the target latent while the covariance matrix is estimated based on the
background mask. For a more accurate estimation of the conditional score function, we incorporated a
new cross-attention mixup. Experimental results show that the proposed method achieves outstanding
performance in various text-driven image-to-image translation scenarios.
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A Appendix

In this appendix, we first formulate our introduced metric regarding relational distance (RD). Then, we
present additional quantitative results to show the effectiveness of the proposed method by measuring
the background difference between source and target images using Learned Perceptual Image Patch
Similarity metric [51] referred to as BG-LPIPS. Also, we demonstrate additional qualitative results
of CSG compared with the state-of-the-art methods [4, 33, 35]. Finally, we discuss the limitations
and potential negative societal impacts.

A.1 Relational Distance

Relational distance (RD) is introduced to measure how faithfully the relational information between
source images is preserved between synthesized target images, which is given by

RD = min
γ

1

n
‖Gtgt − γGsrc‖2F , (19)

where ‖ · ‖F denotes the Frobenius norm. In the above equation, Gtgt and Gsrc are n× n matrices,
where the entry Gtgt[i, j] in the ith row and jth column of Gtgt denotes the perceptual distance [50]
between the ith and jth target images while Gsrc[i, j] represents the perceptual distance between the
ith and jth source images.

A.2 Additional Quantitative Results

In addition to Table 1 and 2, which utilize CLIP-similarity [47], structure distance [48], and relational
distance for evaluation, we also report BG-LPIPS scores of the proposed method and existing
frameworks [4, 33, 35], where BG-LPIPS aims to measure the background difference between source
and target images based on the LPIPS metric [51]. As presented in Table 3, CSG always achieves
the lowest BG-LPIPS scores, implying that the proposed method more effectively preserves the
background region. Moreover, Table 4 demonstrates the superiority of our conditional guidance and
cross-attention mixup strategy.

Table 3: Additional quantitative results to compare the proposed method with text-driven image-to-
image translation methods [4, 33, 35] using the pretrained Stable Diffusion [26], where real images
are sampled from LAION 5B dataset [20]. DDIM denotes the simple inference using Eq. 18. Black
and red bold-faced numbers represent the best and second-best performance in each row.

Task DDIM [4] Prompt-to-Prompt [33] Pix2Pix-Zero [35] CSG (Ours)

BG-LPIPS (↓) BG-LPIPS (↓) BG-LPIPS (↓) BG-LPIPS (↓)
cat→ dog 0.3834 0.2502 0.2111 0.1867
dog→ cat 0.3602 0.2333 0.1983 0.1645
wolf→ lion 0.4042 0.2852 0.2402 0.2384
zebra→ horse 0.4127 0.3162 0.2312 0.2303

Table 4: Additional ablation study results from LAION 5B dataset [20] to analyze the effectiveness
of the conditional score guidance and the cross-attention mixup. ‘CSG w/o Mixup’ synthesizes target
images without using the cross-attention mixup.

Task DDIM [4] CSG w/o Mixup CSG

BG-LPIPS (↓) BG-LPIPS (↓) BG-LPIPS (↓)
cat→ dog 0.3834 0.1896 0.1867
dog→ cat 0.3602 0.1682 0.1645
wolf→ lion 0.4042 0.2510 0.2384
zebra→ horse 0.4127 0.2355 0.2303

A.3 Additional Qualitative Results

We provide additional qualitative results using real images sampled from the LAION 5B dataset [20]
in Figure 7, 8, 9, 10, and 11, which imply the superiority of CSG compared with the state-of-the-art
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methods [4, 33, 35]. Additionally, Figure 12, 13, and 14 demonstrate that the proposed method
achieves outstanding performance on synthesized images which are given by the pretrained Stable
Diffusion [26]. Furthermore, we visualize additional qualitative results in Figure 15 to compare
CSG with Pix2Pix-Zero using the synthesized samples, which illustrates that CSG outperforms
Pix2Pix-Zero. Unlike CSG, Pix2Pix-Zero struggles with dissimilar object-centric tasks such as
house-to-Eiffel tower as presented in the figure since Pix2Pix-Zero enforces shape matching through
cross-attention layers.

A.4 Limitations and Potential Negative Societal Impacts

Our method may fail to edit images with complex prompts due to the incompetence of pretrained
text-to-image diffusion models. Similar to other text-driven image-to-image translation methods, our
approach also encounters a limitation that it cannot be applied to complex tasks, such as enlarging
parts of an object or moving the object, where it would be an interesting future work to tackle
these challenges. Regarding potential negative social impacts, our method can generate harmful or
misleading contents due to the pretrained model.
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Source Pix2Pix-Zero CSG (Ours)DDIM Prompt-to-Prompt 
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Figure 7: Additional qualitative comparisons between CSG and other state-of-the-art methods tested
with the real images sampled from LAION 5B dataset [20] on the cat-to-dog task.
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Source Pix2Pix-Zero CSG (Ours)DDIM Prompt-to-Prompt 
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Figure 8: Additional qualitative comparisons between CSG and other state-of-the-art methods tested
with the real images sampled from LAION 5B dataset [20] on the dog-to-cat task.
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Source Pix2Pix-Zero CSG (Ours)DDIM Prompt-to-Prompt 
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Figure 9: Additional qualitative comparisons between CSG and other state-of-the-art methods tested
with the real images sampled from LAION 5B dataset [20] on the zebra-to-horse task.
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Figure 10: Additional qualitative comparisons between CSG and other state-of-the-art methods tested
with the real images sampled from LAION 5B dataset [20] on the wolf-to-lion task.
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Figure 11: Additional qualitative comparisons between CSG and other state-of-the-art methods tested
with the real images sampled from LAION 5B dataset [20] on the dog-to-dog with glasses task.
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Cookies → Tennis balls Cookies → Flowers

Cat → Cat w/ glasses Cat → Flower

Snowman → Robot

Editing synthetic images

Cookies → Pumpkins

Cat → Teddy bear

Cake → Cake decorated w/ jelly beans

Snowman → Chair Snowy street → Flooded street

Cat → Squirrel

Roses → Daisies Roses → Tulips Grass → Beach

Hamburger → PizzaCat → Bear

Cat → Crocodile Cat → Leopard Cat → Tiger

Figure 12: Additional qualitative results of the proposed method on the synthesized images by the
pretrained Stable Diffusion [26].
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Editing synthetic images

Cake → Cake decorated w/ jelly beans

Cat → Penguin Spaghetti → Oranges

Suit → Suit w/ checked pattern

Street → Street in the forest

Mountain → Snowy mountain

Cat → Cat w/ colorful sunglasses Tree → Tree decorated with easter eggs

Street → Street in the forest

Suit → Suit w/ checked pattern

Figure 13: Additional qualitative results of the proposed method on the synthesized images by the
pretrained Stable Diffusion [26].
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Editing synthetic images
(Only ours)

Bird → Crochet bird Bird → Origami bird

Car → Limousine

Dog → Crochet dogDog → Dog w/ necklace

Car → Crashed car

Mountains → Mountains w/ red soils

Drawing → Photorealistic picture Sketch → Watercolor painting

Pepperoni → Meatball

Figure 14: Additional qualitative results of the proposed method on the synthesized images by the
pretrained Stable Diffusion [26].
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Source Pix2Pix-Zero CSG

Street → Snowy Street

Drawing → Realistic Photo

Street → Street in the Minecraft World

House → Eiffel Tower

Figure B (Street → Street in the Minecraft World (left) and House → Eiffel Tower (right)  tasks): Qualitative results of the pre-trained 
Stable Diffusion and its synthesized images. 

Figure A-1 (Street → Snowy Street task): Qualitative results of the pre-trained Stable Diffusion and its synthesized images. 

Street → Snowy Street

Figure A -2 (Drawing → Realistic Photo task): Qualitative results of the pre-trained Stable Diffusion and its synthesized images. 

Drawing → Realistic Photo

Figure 15: Qualitative comparisons between CSG and Pix2Pix-Zero on the synthesized images by
the pretrained Stable Diffusion [26].

24


	Introduction
	Related Work
	Text-to-Image Diffusion Models
	Text-Driven Image-to-Image Translation Methods using Diffusion Models

	Preliminary: Image-to-Image Translation based on Diffusion Models
	Estimation of Latent Variables for Source Images
	Generative Process of Target Images

	Conditional Score Guidance with Cross-Attention Mixup
	Overview
	Conditional Score Estimation
	Cross-Attention Mixup
	Conditional Score Guidance
	Update Equation

	Experiments
	Implementation Details
	Evaluation Metrics
	Quantitative Results
	Qualitative Results
	Ablation Study

	Conclusion
	Appendix
	Relational Distance
	Additional Quantitative Results
	Additional Qualitative Results
	Limitations and Potential Negative Societal Impacts


