
Under review as submission to TMLR

Accelerated Deep Active Learning with Graph-based Sub-
Sampling

Anonymous authors
Paper under double-blind review

Abstract

Past years have witnessed the fast and thorough development of active learning, a human-in-
the-loop semi-supervised learning that helps reduce the burden of expensive data annotation.
Diverse techniques have been proposed to improve the efficiency of label acquisition. However,
the existing techniques are mostly intractable at scale on massive unlabeled instances. In
particular, the query time and model retraining time of large scale image-data models is
usually linear or even quadratic in the size of the unlabeled pool set and its dimension. The
main reason for this intractability is the iterative need to scan the pool set at least once in
order to select the best samples for label annotation.

To alleviate this computational burden we propose efficient Diffusion Graph Active Learning
(DGAL). DGAL is used on a pre-computed Variational-Auto-Encoders (VAE) latent space to
restrict the pool set to a much smaller candidates set. The sub-sample is then used in deep
architectures, to reduce the query time, via an additional standard active learning baseline
criterion. DGAL demonstrates a query time versus accuracy trade-off that is two or more
orders of magnitude acceleration over state-of-the-art methods. Moreover, we demonstrate
the important exploration-exploitation trade-off in DGAL that allows the restricted set to
capture the most impactful samples for active learning at each iteration.

1 Introduction

Deep learning has provided unprecedented performance in various semi-supervised learning tasks ranging
from speech recognition to computer vision and natural language processing. Deep Convolutional Neural
Networks (CNN), in particular, have demonstrated object recognition that exceeds human’s performance.
However, this success comes with the requirement for massive amounts of labeled data. While data collection
at large scale has become easier, its annotation with labels has become a major bottleneck for execution
in many real-life use cases. Active learning provides a plethora of techniques that allow to select a set of
data points for labeling which optimally minimize the error probability under a fixed budget of a labeling
effort (see Settles (2009) for review). As such it is a key technology for reducing the data annotation effort in
training and developing semi-supervised models.

One of the key caveats in active learning, preventing it from being used on an industrial web-scale, is the
computational burden of selecting the best samples for annotation at each step of active learning. This
complexity is rooted in a variety of important criteria that need to be optimized in active learning. Referred
to as the ‘two faces of active learning’ Dasgupta (2011), the most common selection mechanisms can be
categorized into two parts: uncertainty (e.g. Lewis & Gale (1994)) and diversity sampling (e.g Ash et al.
(2019a); Sener & Savarese (2017a)). The intuition of the former is to select query points that improve the
model as rapidly as possible. The latter exploits heterogeneity in the feature space, sometimes characterized
by natural clusters, to avoid redundancy in sampling. The combination of the uncertainty and diversity
criteria has been an important subject of recent works (Yuan et al., 2020; Zhu et al., 2008; Shen et al.,
2004; Ducoffe & Precioso, 2018; Margatina et al., 2021; Sinha et al., 2019a; Gissin & Shalev-Shwartz, 2019;
Parvaneh et al., 2022; Huijser & van Gemert, 2017; Zhang et al., 2020).
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Optimizing for uncertainty or diversity (or both) may require scanning all data at least once, and sometimes
even applying methodology with computational costs that scales quadratic or more in the unlabeled pool
size (e.g. Bodó et al. (2011); Tong & Koller (2001); Sener & Savarese (2017a)). An active learning cycle
repeats the time-consuming model (re-)training and query selection process multiple times. In many cases
this cumbersome repetitions render active learning as impractical on real large scale data sets. In fact, even a
single feed-forward process in a deep learning network for uncertainty calculation (e.g. Gal et al. (2017))
may impose a significant delay in query time. In fact, it may scale non-linearly in the dimension of the data
(e.g. number of pixels) for each query candidate in many deep network architectures, where fully connected
layers exists. To this end, only a few approaches have been suggested to overcome this bottleneck in the
context of deep learning. Most notable is SEALS (Coleman et al., 2022a), which improves the computational
efficiency of active learning and rare class search methods by restricting the candidate pool for labeling to
the nearest neighbors of the currently labeled set instead of scanning over all of the unlabeled data. The
restricted set is given as an input to the task classifier for a second selection step, and using a second basic
uncertainty criterion a final query set is selected for annotation. We identified that for that SEALS criterion
for selecting k-nearest neighbors to the restricted pool does not address the diversification criterion in query
selection. In fact, it also does not capture the exploration-refinement transition which improves active learning
tremendously. We therefore propose a different algorithm for selection of the restricted pool set based on
a graph diffusion algorithm inspired by Kushnir (2014); Kushnir & luca Venturi (2023). We refer to it as
Diffusion Graph Active Learning (DGAL). In DGAL, the proximity graph is computed only once for a
latent Variational Auto Encoder (VAE) Kingma & Welling (2013) representation space which is trained once
prior to the annotation cycles. This graph representation is then used for a label diffusion process to select
the most diversified and uncertain candidates in time that is linear in the data size. The graph, computed
only once, allows faster linear query time in each diffusion process, unlike SEALS (Coleman et al., 2022a),
whose query time keeps growing by a factor dependant linearly on k.

As seen in the overview of our method in figure 1, our method is comprised of two components: a representation
component in which a VAE training is occurring once and used to generate a graph representation that is
then shared in the iterative stage of the active learning component. The same graph is used throughout the
active learning iterations, in the second component, to select a restricted and small set of candidates which is
fed into the classification neural net for the final query selection (e.g. uncertainty sampling (Lewis & Gale,
1994), margin (Scheffer et al., 2001), etc.). As shown in our paper the restriction t a smaller set via our graph
construction accelrate active learning which achieving state of the art or better accuracy.

The graph-based diffusion algorithm used in DGAL enhances important criterion in active learning referred to
as the exploration-exploitation (or exploration-refinement criterion). Exploration addresses a stage in active
learning in which data is sampled and annotated to first map decision boundaries in the data. On the other
hand, exploitation takes the so far detected boundaries and samples points around it to better localize it. At
early stages of AL an exploratory strategy typically yields better gains in accuracy over boundary refinement
ones. However, once all boundaries are detected, typically a refinement stage provides better accuracy gains
over further exploration. This important trade-off is not leveraged in standard simple AL criteria such as
probabilistic uncertainty sampling or diversification per-se. In particular, a k-nearest neighbors to the training
set (Coleman et al. (2022a)) also does not reflect this trade-off. We demonstrate in this paper that our
combined graph methodology for pool set restriction improves AL query time, and scales it to large scale
data sets. We summarize our contributions below:

• We propose DGAL, a two-step active learning algorithm, that starts with restricting the pool set to
a smaller set using a graph-diffusion process, and then uses the restricted set to perform deep active
learning efficiently.

• DGAL achieved orders of magnitude acceleration in query time compared to state-of-the-art (SOTA)
active learning schemes, while maintaining most competitive accuracy.
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Figure 1: Overview of our DGAL approach. A Representation component that involving a single pass
on the data for deriving a VAE-based latent graph representation. An Active Learning iterative component
which uses the VAEs latent representation graph in conjunction with existing label information to select a
restricted set of query candidates. The set of candidates is fed into a task neural net, where a second criterion
is used to select the final label queries for annotation.

2 Related research

Efficient Active Learning. The application of active selection criteria on large pool sets and its computa-
tional costs has been an impediment for the application of active learning of industrial large scale data. This
realization has motivated the development of more compact, efficient AL algorithms to cope with large-scale
data sets/models .

In SEALS (Coleman et al., 2022a) the candidate pool is restricted to the k-Nearest Neighbours (KNN) of
so-far-labeled instances, to avoid the computational burden of batch selection with large pool sets. However,
the KNN set is typically very similar to the already labeled training data and therefore its information content
for improving the classifier is low. This lack of diversification and exploration in SEALS yields sub-optimal
accuracy. Moreover, the number of nearest neighbours being fed later to the tasks neural net is growing by a
factor of k on each query step. This leads to an increasingly higher query time when the restricted pool is fed
into the task network. Xie et al. (2021) propose knowledge clusters extracted from intermediate features over
pre-trained models by a single pass. Ertekin et al. (2007); Doucette & Heywood (2008) proposed to actively
subsample unlabeled candidates under imbalanced datasets in general learning schemes, different than deep
learning. Generating informative samples (Mayer & Timofte, 2020; Huijser & van Gemert, 2017; Zhu &
Bento, 2017) saves time from unlabeled data acquisition aspect. Small but well-trained auxiliary models have
been used to select data in order to reduce the computational cost of extracting feature representation from
the unlabeled pool (Yoo & Kweon, 2019; Coleman et al., 2019).

Graph-based Semi-Supervised Learning (GSSL) Semi-supervised learning (SSL) (Zhu, 2005) exploits
the information of both the labeled and unlabeled datasets to learn a good classifier. As a form of SSL, active
learning automates the process of data acquisition from a large pool of unlabeled dataset for annotation to
achieve the maximal performance of the classifier (usually) under a limited budget. GSSL (Zhu, 2005; Song

3



Under review as submission to TMLR

et al., 2022; Zha et al., 2009) is a classic branch of the SSL that aims to represent the data in a graph such
that the label information of the unlabeled set can be inferred using the labeled data. A classic and solid
technique is the label propagation or Laplace learning (Zhu et al., 2003), which diffuses label information
from labeled set to unlabeled instances.Notably, the computation complexity of typical label propagation
algorithms is only linear in the size of the data, which renders them as an efficient choice for learning.

The success of label propagation hinges on an informative graph that retains similarity of the data points.
Due to the volatile property of image pixels, i.e., unstable to noise, rotation, etc., feature transformations
Lowe (1999); Bruna & Mallat (2013); Simonyan & Zisserman (2014) are usually applied to build good quality
graphs. Past research Doersch (2016); Kingma et al. (2019); Mei et al. (2019); Miller et al. (2022); Calder
et al. (2020) has shown that the VAE can generate high-quality latent representation of data for feature
extraction and similarity graph construction. We utilize these properties in our DGAL framework.

Generative Models in Active Learning. Deep generative models have been used to learn the latent
representation of data in both semi-supervised and unsupervised learning (Kingma et al., 2019; 2014). Except
for constructing similarity graph in GSSL, they can also be exploited to generate adversarial data/models for
more efficient and robust AL. For example, Sinha et al. (2019a) proposed a task-agnostic model that trains
an adversarial network to select unlabeled instances that are distinct from the labeled set in the latent space
of a Variational Auto-Encoder (VAE). The DAL (Gissin & Shalev-Shwartz, 2019) selects samples in a way to
make the labeled and unlabeled set hard to be distinguished in a learned representation of the data. Miller
et al. (2022) embeds the Synthetic Aperture Radar (SAR) data in a latent space of VAE and apply a GSSL
method on constructed similarity graph in this feature space. Pourkamali-Anaraki & Wakin (2019) aims at
finding a diverse coreset in a representative latent space using K-Means clustering.

3 Notation and problem setup

Algorithm 1 A general active learning algorithm
Input: Labeled data Dl, unlabeled pool Du,
budget size B, maximum round R, task model fθ

Initialize Dl by random sampling and train fθ on
for i = 1 to R do

query D′ = QueryStrategy(Dl, Du, B, fθ)
update Dl = Dl

⋃
D′, Du = Du/D′

train model fθ on new labeled pool Dl

end for

We consider a data set D in Rd of cardinally [n]. D
can split into a labelled set Dl which represents a
labeled subset of D, and an unlabeled subset Du. C
denotes the number of classes. Fixing a batch size
of B, we seek for the most ‘informative’ subset D⋆

to be annotated from an unlabeled pool set given a
limited budget for annotation.

Active Learning Problem Statement. Let fθ

be a classifier. Assume data are sampled i.i.d. over
a space D × [C], denoting {xi, yi}i∈[n] ∼ PZ . We
want to find a subset D⋆ such that

min
D′:|D′|<B

Ex,y∈D′ [I{arg max
c∈[C]

fc(x) ̸= y}]

gives the minimum expected error. We consider the multi-step active learning in algorithm 1.

4 Methodology

Below we explain the various components of VAE-DGAL, and then connect them to provide the overall DGAL
scheme. Active learning is used in DGAL in a similar scheme to what is proposed in algorithm 1. However, we
are using an active criterion in two components: first, we use a very efficient graph-diffusion-based selection
criterion Kushnir & luca Venturi (2023) in the VAE latent space to restrict the pool set to a much smaller
set of candidates. In the second component we use a second acquisition criterion to select from the set of
query candidates the final query set for annotation. The second selection criterion bay be computationally
intensive due to its nature, but also because it requires a feed-forward transmission. However, when applied
to a smaller, restricted set can be executed extremely fast. We provide the pseudo code of our method in
Algorithm 2.
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The VAE-representation space can be replaced by other representations. Its advantage is in being derived via
an unsupervised method which requires no labels, and can be performed only once, prior to label acquisition.
The underlying assumption is that the representation space bears structure that correlates with the class
function, and therefore can be used to restrict the pool set to a smaller, yet, impactful set of candidates for
annotation.

4.1 VAE-based data representation

Latent variable models such as the VAEs are well-acknowledged for learning representations of data, especially
images. VAE is a generative neural network consisting of a probabilistic encoder q(z|x) and a generative
model p(x|z). The generator models a distribution over the input data x, conditioned on a latent variable
z with prior distribution pθ(z). The encoder approximates the posterior distribution p(z|x) of the latent
variables z given input data x and is trained along with the generative model by maximizing the evidence
lower bound (ELBO):

ELBO(x) = Eq(z|x)[log(p(x|z)] − KL(q(z|x)||p(z))

where KL is the Kullback–Libeler divergence and log(p(x)) ≥ ELBO(x).

Figure 2: A VAE representation of digits ’4’ and
’9’ from MNIST.

To get a representative latent space from data (without
label information), we use a ResNet18 (He et al., 2016)
based encoder for large datasets and a CNN-based VAE for
all other datasets. In the first term, Eq(z|x)[log(p(x|z)] =
1
n

∑n
i (xi−x′

i)2 where x′
i is the i-th (out of n) reconstructed

image. We use the MSE loss for the first term, i.e. the
reconstruction loss. Next, we construct a proximity graph
from the latent representation to be used within a graph
diffusion process and label acquisition.

Figure 2 visualizes a 2D projection of a CNN-VAE 5D rep-
resentation of digits ’4’ and ’9’ from the MNIST dataset.
To demonstrate the important semantics of this representa-
tion for active learning, we focus on the decision boundary
between digits. we observe samples of ’4’s that are similar
to samples from ’9’ class along the boundary.

4.2 Diffusion on graphs

We use the optimized latent representation g(D) = Z to construct a KNN proximity graph G = (V, E), where

Wij = m

(
−ρ(zi, zj)

σij

)
I{j ∈ N(i)}

with m as a similarity metric, ρ as a distance metric, σij as a local scaling factor, and N(i) as the K -NN
neighbourhood of node i in the latent space. We define a graph transition matrix by

M
.= T −1W, (1)

where Tii =
∑

j Wij . M stands for the transition probabilities of a Markov random walk on G.

Label diffusion can be considered as a Markov process to propagate the label information of Dl to Du. The
transition probability of a single step between state i and j can be denoted as Mij . Considering a binary
classification, we associate the classification probability P (y(zi) = 1|zi) with a t-step random walk probability
Pt(y(z) = 1|i) from zi to a training sample z with label 1. We assign ’1’ to zi in Zu based on Pt(y(z) = 1|i).

Let Xi = 2Pt(y(z) = 1|i) − 1 ∈ [−1, 1] denote an approximation to the label function, where the entries of X
stands for the binary class. Denote

T =
(

Tll 0
0 Tuu

)
, W =

(
Wll Wlu

Wul Wuu

)
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In matrix form

Xu = [T −1
uu Wul|T −1

uu Wuu]
(

Xl

Xu

)
.

Let the graph laplacian L = D − W in the system, then

LuuXu = WulXl ⇐⇒ LuuXuu = −Lulyl (2)

Equation (2) above can be solved via the iteration (Chapelle et al., 2009):

X (t+1)
i = 1

Luu,ij

−(Lulyl)i −
∑
j ̸=i

Luu,ijX (t)
j

 . (3)

Equation (3) is transducing a label X t+1
i to Xi as a weighted average of the labels of its neighbors with the

transition weights. The diffusion process initializes with

X (0)
ic =

 1 if zi ∈ Zl and c = yi

−1 if zi ∈ Zl and c ̸= yi

0 if zi ∈ Zu.

The labels are propagated to Xu gradually for t steps. At the t-th step,

X (t)
ic =


1 if zi ∈ Zl and c = yi

−1 if zi ∈ Zl and c ̸= yi

(MX (t−1)
:,c )i if zi ∈ Zu.

4.3 Query criterion

The matrix χ(T ) of propagated values can be interpreted as uncertainties measured by the absolute value
|χ(T )

c,i |. Specifically, the absolute value magnitude represents a measure of uncertainty on whether vertex i
belongs to class c. The magnitude can be used to select the new batch to query as

D′
sub = {xi : arg minB

zi∈Zu
min
c∈[C]

∥χ
(T )
c,i ∥}, (4)

where minB denotes the B smallest elements. The selection criterion in Equation (4) depends on the
initialization strategy used. Above we considered a one-vs-all approach, in supplementary material other
variants are suggested.

We demonstrate the exploration-refinement trade-off of (4) in Figure 3, with a subset of MNIST (LeCun
et al., 1998) representation in a trained ResNet18 (He et al., 2016). Higher query rate is observed close to the
decision boundary after the overall clusters have been explored (queried samples are in bold round points).
We also demonstrate that the query selection along the boundary captures ‘4’s and ‘9’s that have similar
shape, ‘leg’ size, and orientation. These samples whose similarity can be best learned via annotation are
automatically selected by our criterion (4) for annotation.

In Figure 4 plot the latent representation of CIFAR10 (Krizhevsky et al., 2009). We mark the points selected
by the first five rounds as dark, round dots and data selected by the next five rounds as rectangular, dark
dots. Different color stands for different classes and data in lighter color are the latent representation of all
the CIFAR10 data. Here a similar trend is captured showing the sample selection start with exploration and
then tends to the refinement of decision boundaries between clusters of different classes.

Exploration and Refinement. Our query criterion coupled with the diffusion process allows to explore
the data set at early stages of active learning and switch to refinement when exploration has saturated. To
understand this mechanism we show in the following that the diffusion iterant χt converges to the second
eigenvector ϕ2 of the graph’s Laplacian as t → ∞. As we show below, asymptotically ϕ2 provides a relaxed
solution to the minimal normalized cut problem, where the cut corresponds to the decision boundary between
the two classes in G(V, E, W ).
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Short legs

Long legs

Figure 3: The DGMG selection of digits 4s and 9s
(from MNIST) in an embedding space of ResNet18
well-trained with full data and labels.

Figure 4: The DGMG selection of CIFAR10 in a
ResNet18 embedding space. The dark dots are
selected points by DGMG.

Algorithm 2 The DGAL strategy
Input: Labeled data Dl, unlabeled pool Du, the
initial VAE
model g,the task model fθ, batch size B, round R, a
query strategy Q
Train g with the full dataset (without label infor-
mation)
Build the graph G = (V, E, W ) using the latent
space g(D) = Z
for r = 1 to R do

Initialize X (0) based on Dl

for t = 1 to T do
X (t) = MX (t−1)

X (t) = X (t−1)|Dl

end for
Query a restricted set D′

sub = {xq : zq =
arg mini∈Zu,c∈[C] |X (T )

i,c |}
Active sub-sampling of batch B from D′

sub

with criterion Q
and network fθ: D⋆ = Q(fθ, D′

sub)
Annotate D⋆

Update Dl = Dl

⋃
D⋆

Train fθ with Dl

end for

At early stages of label acquisition low magnitude
entries in χ correspond to data points that are un-
reachable from the training set via diffusion and need
to be explored. At later stages all unlabelled data
points Xu are reachable via diffusion from the la-
belled set Xl. At this stage low magnitude entries
correspond to the transition between the two classes
-1 and 1. These nodes capture the eigenvector’s tran-
sition from negative to positive entries. Therefore,
sampling these points corresponds to the refinement
of the decision boundary. We provide the main the-
oretical result on the convergence of χ(t) and refer
for further details in Kushnir & luca Venturi (2023).

Lemma 4.1. Let λ1, ..., λn, ϕ1, ..., ϕn be the solu-
tions to the system: Lϕ = (1 − λ)Dϕ. Then χ(t)

converges to ϕ2 via the iteration (3) with M , as
t → ∞.

4.4 Deep active learning with the task classifier

At the last stage of the algorithm we input the re-
stricted subset D′

sub into the task net and using a
baseline active learning criterion we select the final
set D∗ to be sent for annotation. Clearly feeding pool data into the network poses a significant computational
cost. However, since the restricted set D′

sub is significantly smaller than Du we observe a significant speedup in
the query time. In our experiments we used two simple baseline to demonstrate the speed of DGAL. However,
any other deep active learning criterion can be used, including another diffusion-based criterion (Kushnir &
luca Venturi, 2023).

Least Confidence. Confidence sampling (Lewis, 1995): x⋆ = arg maxx(1 − fĉ(x)), where f(x) is the
prediction probability and ĉ = arg max f(x). Denoted as DGLC. Margin. Margin sampling (Scheffer et al.,
2001): x⋆ = arg minx(fĉ1(x) − fĉ2(x)), where ĉ1, ĉ2 are the first and second most probable prediction labels
respectively. Denoted as DGMG.
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4.5 The VAE-DGAL algorithm

We provide VAE-DGAL pseudo code in Algorithm 2. We note that the input to VAE-DGAL includes the
labeled and unlabeled pool set, the VAE architecture, and the task classification network fθ. After training
the representation model g, we start the active learning cycles that entails diffusion based selection for
restricting the pool set, feeding the restricted set to the task network fθ and using a baseline active learning
criterion to select the final set. After augmenting the training set with the final set, fθ is trained again and
the process repeats.

5 Experiments

As shown in this section, our experiments validate our goal achievement to reduce the query time while
maintaining highest accuracy. We report DGAL improved query time vs. accuracy trade-off and compare it
with pivotal SOTA baselines, including SEAL which aims, as well, to reduce query time. Additionally, we
provide classical active learning empirical analysis results of the trade-off between the number of queried data
points and accuracy, and we provide average query times, for all baselines and data sets. We also provide an
ablation study with VAE-SEALS (see Algorithm 3) and with random versions of pool set restriction.

5.1 Benchmarks

• Random: selects samples uniformly at random for annotation.

• Confidence based methods: A set of conventional selection strategies includes Least-Confidence
(LC) (Lewis, 1995), Margin (Scheffer et al., 2001; Luo et al., 2005) and Entropy (Holub et al., 2008).
In LC, the instance whose prediction is least confident is selected; Margin selects data that has
minimum difference between the prediction probability of the first and second most confident class
labels. Entropy selects samples that are most uncertain over all class probabilities in average.

• BADGE (Ash et al., 2019a;b): A strategy that selects points based on their gradient magnitude
and diversity.

• CoreSet (Sener & Savarese, 2017a;b): An algorithm that selects a core-set of points that λ-cover
the pool set.

• SEALS (Coleman et al., 2022a;b): designated for efficient rare class search that restricts the candidate
pool to the nearest neighbors of the currently labeled set to improve computational efficiency. We
examine two versions of SEALS, one which updates the feature extractor, and another that sets it
fixed using a VAE.

• GANVAE (Sinha et al., 2019a;b): A task-agnostic method that selects data points that are not
well represented in the label pool using a VAE and an adversarial network. In the original paper, it
is referred to as ‘VAAL’.

Data sets and setting. Experiments are conducted on multiple data sets to evaluate how DGAL performs
in comparison to SOTA benchmarks. We also perform an ablation study. We experimented with benchmark
data sets MNIST LeCun et al. (1998), EMNIST Cohen et al. (2017), SVHN Netzer et al. (2011), CIFAR10
Krizhevsky et al. (2009), CIFAR100 Krizhevsky et al. (2009), and Mini-ImageNet Ravi & Larochelle (2017)
data sets. We include classic networks CNN LeCun et al. (1998), ResNet18 He et al. (2016), ResNet50 He
et al. (2016), and ViT-Small Dosovitskiy et al. (2020). Data and architecture details are provided in table
Table 1. We provide additional training details in the appendix.

5.2 DGMG vs. Benchmarks

Test accuracy vs. query time. In Figure 5 we report accuracy per total query time for a fixed number of
queries. We observe for all data sets that DGMG’s accuracy per query time is by far higher than SOTA.
Moreover, we also emphasize its ability to reach the highest accuracy vs. the random baseline, which is
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Table 1: A summary of data and experimental settings that we used in our paper. Here ‘Pre_n’ is the size of
restricted subset D′

sub in Algorithm 2. ‘Budget’ is the number of queried data points per round, i.e., the size
of D⋆. ‘Round’ stands for the total sampling rounds.

Dataset Pool
size

Label
size Input Initial #

of data DimVAE Pre_n/Budget
/Round Architectures Pre-

trained
Test
size

MNIST 60,000 10 28x28 10 50 100/10/30 CNN False 10,000
EMNIST
letter 124,800 26 28x28 20 256 200/20/50 ResNet18 True 20,800

SVHN 73,257 10 32x32 100 100 500/50/50 ResNet50 False 26,032
CIFAR10 50,000 10 32x32 100 100 5k/200/20 ResNet50 True 10,000
CIFAR100 50,000 100 32x32 100 100 5k/200/20 ViT-Small True 10,000
Mini-
ImageNet 48,000 100 84x84 100 100 5k/200/20 ViT-Small True 10,000

the fastest method with essentially close to zero query time (approx. 10−3 secs.). It can be seen that the
acceleration of DGAL is of order of x1000 with respect to the lowest performing benchmark method and
x100 with respect to the next best performing method. These results emphasize the advantage of DGALs
graph diffusion approach in selecting more impactful samples for the pool set restriction. In particular, the
advantage over using the nearest-neighbors to the existing training set, as proposed in SEALS. The KNN
criterion does not select a diversified set or even focus on decision boundaries refinement in the restricted set.
Consequently, its accuracy gain in each query step is lower. Additionally, the ever growing candidates size in
SEALS (by factor of k) is increasing the total query time.
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Figure 5: Plots of test accuracy vs. total query time for 6 datasets over 6 benchmarks. The horizontal lines
capture the highest and lowest test accuracy among all methods.

We note that in our experiments for Figure 5, SEALS feature extractor is trained with labelled data prior to
any acquisition cycles by using a part of the labelled data in order to implement the k-nearest neighbors
(KNN) data structure. The remaining data serves for pool acquisition. Clearly, such an approach is not
applicable to active learning where initial labels may not even exist, unless transferred from a pre-trained
model, as suggested in Coleman et al. (2019). To provide a consistent benchmark, i.e. applying SEALS in
the same way for all datasets, we adjust the algorithm by feeding the datasets into the trained task model to
get an embedding representation as the feature extractor, which adds up query time. Below, we demonstrate
another version of VAE-SEALS when using our unsupervised VAE for fixing the feature extractor to compute
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Figure 6: Plots of test accuracy vs. size of queried data. Each experiment is run at fixed query rounds for
different methods and has been repeated 5 times.

the KNN graph only once, discarding the featurizer from the query time calculation. Even then SEALS is
slower than DGAL in query time and worse in its query-vs-accuracy trade off.

Test accuracy vs. number of selected labels. In Figure 6, we report the classical active learning
trade off between accuracy and training set size. DGAL is observed to be competitive with several SOTA
benchmarks, in particular, BADGE of Ash et al. (2019a) and CoreSet of Sener & Savarese (2017a). SEALS
on the other hand, is observed to be lagging in several data sets in early stage of the active learning because
its selection criterion is relying on the nearest neighbors of the existing training set which does not diversify
the restricted set enough. In fact, even its accuracy in the late stage of active learning does not get close to
existing benchmarks because refinement is not occurring either in the nearest neighbor-based query criterion.

Average query time. In Figure 7 DGALs average query time is an order of magnitude lower than that of
all benchmarks. Note that random (RS) baseline has an almost zero query time (at most 10−3 secs).

VAE and graph construction time. We provide running time for the VAE and graph construction in
Table 2 in the appendix. As seen, even with the pre-processing time our method is still faster than other
methods, in particular, faster than the SEALS algorithm without its additional pre-processing time. We note
that the pre-processing time is a one-time procedure, while the query is repeated multitude times, depending
on each case. Hence, total query time can increase significantly higher than the pre-processing time. Hence
the advantage of reducing it even with the price of pre-processing time.

5.3 DGMG vs. VAE-SEALS in accuracy and query time

In this section, we compare DGMG and DGLC with VAE-SEALS (see Algorithm 3). In VAE-SEALS, instead
of extracting the features of unlabeled data from the task model and re-computing its KNN graph at each
round, we use the same VAE latent space as used in DGMG. We note that in the SEALS paper Coleman et al.
(2019), the authors didn’t specify the ‘featurizer’ or mention a specific representation space in the algorithm.

To some extent this is another ablation study to verify that our query component based on the diffusion is
outperforming existing KNN criterion of SEALS, where the same representation is used. We provide Figure 8
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Figure 7: Query time for 6 benchmarks and DGMG, averaged over a fixed number of rounds for each method.
The average time is averaged over 5 repetitions for each experiment.

below and figures 9 and 10 in the appendix. This study provides different experimentation on using a static
pre-computed data representation with the KNN criterion, and its effect on the overall accuracy and query
time of the methods. It also provides a view on the different versions of DGAL (DGMG and DGLC) and
the advantage of the DGAL latent diffusion methodology over other restriction criteria. In particular, the
comparison between VAE-SEALS and DGAL versions shows that DGAL is faster and achieve better accuracy.
And, as seen in Figs. 8, DGMG has better accuracy than DGLC in most data sets.

Algorithm 3 The VAE-SEALS strategy
Input: Labeled data Dl, unlabeled pool Du, the
initial
VAE model g, the task model fθ, batch size B, round
R,
a query strategy Q, label y
train g with the full dataset (without label informa-
tion)
implement the k-nearest neighbors structure N (·, ·)
on the latent space g(D) = Z
initialize the limited unlabeled pool as
Du = ∪(Z,y)∈Dl

N (Z, k)
for r = 1 to R do

active sub-sampling of a batch B from Du

with
criterion Q and network fθ: D⋆ = Q(fθ, Du)
annotate D⋆

update Dl = Dl

⋃
D⋆, Du = (Du\D⋆)∪N(D⋆, k)

train fθ with Dl

end for

In Figure 8, DGAL versions have an advantage over
the VAE-SEALS. The VAE-SEALS can achieve sim-
ilar accuracy with EMNIST, SVHN, CIFAR10 and
Mini-ImageNet but uses more time than ours in these
cases. It shows that the diffusion graph on latent
space is more powerful than simply applying KNN
on a latent space. On the other data sets SEALS
doesn’t achieve the accuracy that DGAL achieves
within the same range of queries.

Comparing DGLC with VAE-SEALS in Figure 9,
we observe the importance of pre-selection. The
pre-selection of SEALS lacks diversity at the first
few rounds of data acquisition. Under the same
sub-sampling method (the least confidence sampling)
after pre-selection, DGLC has an obvious advantage
over VAE-SEALS at the beginning of the active learn-
ing cycles, especially for MNIST, EMNIST, CIFAR10
and CIFAR100. Also we see in this experiment that
DGMG outperforms DGLC in accuracy over most
data-sets. Mostly due to Margin’s exploratory na-
ture.
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In Figure 10, we observe that in most cases, our methods (DGMG, DGLC) win over the others in average
query time. But still the overall difference is quite close. Due to the nature of the restriction process all
methods reduce the query time due to a smaller pool set. Nevertheless, as we see in Figures 8 and 9, while
VAE-SEALS average query time may be similar to DGAL’s, its accuracy trade-off with the query time is
significantly worse than DGALs.
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Figure 8: Test accuracy vs. total query time for VAE-SEALS, DGMG, DGLC, and Random (RS). The
horizontal lines capture the highest and lowest test accuracy among all methods.

5.4 Ablation study

In the ablation study, we compare DGMG with RSMG, Margin and the baseline Random Sampling (RS). In
RSMG, the pre-selection is random sampling while in DGMG it’s based on label diffusion. Due to space
limitation we provide plotted results in the appendix.

In Figure 11 we plot the test accuracy vs. size of queried data, and observe DGMGs advantage especially at
the early stage of learning. For example, in Figure 11d, DGMG is above RSMG and RS from 100 to 700 at
the total number of labels. Similar trend exists also in Figure 11b, Figure 11c, and Figure 11e. It shows
the latent diffusion graph pre-selects better than random sampling. In Mini-ImageNet, DGMG is close to
RSMG, perhaps because larger data sets require more exploration and the random baseline is a good explorer
criterion. Margin sometimes achieves worse results at early learning. Yet it achieves similar accuracy as in
DGMG at later stages of learning as it essentially uses a similar criterion but without the pre-selection. On
the other hand, Margin’s query time is worse than DGMG and RSMG as seen consistently in Figure 12.

In Figure 12 we provide the average query time for each method. We observe advantage for DGMG and
RSMG in query time in comparison with Margin, mostly due to the efficiency of the restriction method.
DGMG uses about 1/8 time of Margin while achieving better test accuracy, as seen in Figure 12. While
RSMG uses a small amount of query time, DGMG, in most cases, trades better additional time for better
accuracy, as seen in Figure 11.
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A Experimental settings

In the choice of network architectures, we employed different deep neural architectures: CNN, ResNet18,
and small vision transformers (ViTs), as presented in Table 1. If not specifically mentioned otherwise, we
optimized the network for the cross-entropy loss with SGD Kiefer & Wolfowitz (1952); Sutskever et al. (2013)
optimizer at the learning rate 1e-3, momentum 0.9, weight decay 5e-4 for non-pre-trained models. The Adam
Kingma & Ba (2014) optimizer with learning rate 1e-3 is used for pre-trained models. For methods that
include VAE training, we use Adam optimizer with 5e-4 learning rate by default. For all experiments we
adopted an early stopping criterion for epochs iterations with patience 10. For all the methods that need a
data embedding feature space (i.e. CoreSet, SEALS and BADGE) from the task model at each round, we
added a linear layer at each network architecture of size 50 before the output layer, which are extracted by
Pytorch Hooks. All the experiments were carried out on a NVIDIA RTX A6000. All the datasets and neural
network information in the appendix follows the same details as showed in Table 1 in the main text.

Latent space generation. To get a representative latent space from data, we use a ResNet18 based
encoder for CIFAR100 and MiniImageNet and a CNN-based VAE for the rest of the datasets. We use an
Adam optimizer with learning rate 5e-4 and epoch 300. An early stopping criterion is used with patience 20.
For the training of GANVAE, we use the same VAE and discriminator with learning rate 1e-4, total epochs
100 and no early stopping.

B Variants of multi-class extension

We propose in the following other possible formulations to extend the diffusion-based active learning criterion
to the multi-class setting..

One-vs-all approach In the one-vs-all setting described the batch is queried according to

X̂ = arg minB
i∈Xu

q
(

χ
(T )
:,i

)
for some chosen function q which measures a notion of uncertainty at point xi, given the matrix χ(T ). In
Section ??, we chose q to be

q
(

χ
(T )
:,i

)
= min

c∈[C]

∣∣∣χ(T )
c,i

∣∣∣, or q
(

χ
(T )
:,i

)
=

∥∥∥χ
(T )
:,i

∥∥∥
p

for some p ∈ [1, ∞].

Multivariate diffusion approach Moving from the one-vs-all approach, we can performs the query as
follows, using the property that M is a stochastic matrix. For each data point xi, we propagate a probability
vector χ

(t)
i ∈ ∆C . This vector can be initialized as

χ
(0)
i,c =


1 if i ∈ Xℓ and c = yi

0 if i ∈ Xℓ and c ̸= yi

1
C otherwise

We can therefore diffuse the matrix aggregating the signal for all the points, χ(t) ∈ RN×C , and diffuse it as in
the binary case:

χ(t) = Mχ(t−1), χ(t)|Xℓ
= χ(0)|Xℓ

Since M is stochastic, it holds that χ(t) ∈ ∆C at each iteration t. Therefore we can interpret each vector χ
(t)
i

as a probability vector of the data point xi belonging to different classes, obtained by the diffusion above. It
therefore makes sense to choose the points to query as

X̂ = arg minB
k∈Xu

q
(

χ
(T )
i

)
where q : ∆C → R is some measure of uncertainty. Possible choices include:
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• Uncertainty: q(p) = pc∗ , where c∗ = arg maxc pc;

• Margin: q(p) = pc∗ − pc∗
2
, where c∗ is defined as above and c∗

2 = arg maxc∈[C]\{c∗} pc;

• Negative entropy: q(p) =
∑

c∈[C] pc log pc.

C VAE training and graph building time

Here we provide the total training time for VAE and graph construction time with latent variables.

Table 2: A summary of the VAE training time and graph building time for DGAL (measured in seconds).

Dataset VAE training Graph construction
MNIST 182 139

EMNIST
letter 478 731

SVHN 276 207
CIFAR10 208 108
CIFAR100 1134 125

MiniImageNet 864 133

D Supplamentary results
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Figure 9: Test accuracy vs. size of queried data for VAE-SEALS, DGMG, DGLC, and Random Sampling
(RS) over limited total number of labels. Each experiment is run at fixed query rounds for different methods
and repeated 5 times.

D.0.2 Ablation study
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Figure 10: Query time for DGAL methods, VAE-SEALS and Random Sampling (RS), averaged over a fixed
number of rounds for each method. The average time is averaged over 5 repetitions for each experiment.
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(f) Mini ImageNet

Figure 11: Test accuracy vs. size of queried data for 3 baselines and DGMG. Each experiment is run at fixed
query rounds for different methods and has been repeated 5 times.
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Figure 12: Query time for 3 baselines and DGMG, averaged over fixed rounds for each method. The average
time is averaged over 5 repetitions for each experiment.
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