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Abstract
Accurate and reproducible brain morphometry from structural MRI is critical for monitoring neuroanatomical changes
across time and imaging domains. Although deep learning has accelerated segmentation workflows, scanner-induced
variability and reproducibility limitations remain—particularly in longitudinal and multi-site settings. In this study, we
benchmark two state-of-the-art pipelines—FastSurfer and SynthSeg—both integrated into FreeSurfer, one of the most
widely adopted tools in neuroimaging. Using two complementary datasets—a 17-year single-subject longitudinal cohort
(SIMON) and a 9-site test-retest cohort (SRPBS)—we quantify inter-scan segmentation variability using Dice, Surface
Dice, Hausdorff Distance (HD95), and Mean Absolute Percentage Error (MAPE). Our results reveal up to 7–8% volume
variation in small subcortical structures such as the amygdala and ventral diencephalon, even under controlled test-retest
conditions. This raises a critical question: is it feasible to detect subtle longitudinal changes—on the order of 5–10%—in
pea-sized brain regions, given the magnitude of domain-induced morphometric noise? We further analyze the effects of
registration choices and interpolation modes, and propose surface-based quality filtering to improve reliability. This work
provides a reproducible benchmark and calls for harmonization strategies to enable robust morphometry in real-world
neuroimaging studies. Our code is available at https://github.com/kondratevakate/brain-mri-segmentation.
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1. Introduction1

A dvances in AI-driven medical imaging have rev-2

olutionized pathology detection, yet reproducible3

morphometric analysis of healthy brains—especially4

across scanners and over time—remains a challenge. This5

gap limits our ability to monitor individual brain health6

trajectories and detect early pathological changes. While7

artificial intelligence (AI) has significantly advanced medi-8

cal imaging—particularly in pathology segmentation tasks9

such as tumor identification in the BraTS challenge—there10

remains a notable gap in applying these advancements11

to morphometric analyses of healthy brains across varied12

domains. This underexplored area presents opportunities13

for developing robust, generalizable AI models that can14

accurately capture subtle anatomical variations, thereby15

deepening insight into brain aging and development.16

Traditional tools like FreeSurfer (Fischl, 2012) have been17

instrumental in providing detailed morphometric analyses.18

Recent integrations, such as SynthSeg (Billot et al., 2023),19

offer contrast-agnostic segmentation capabilities trained on20

synthetic data, aiming to improve generalizability across21

different imaging protocols. Despite these advancements, 22

challenges persist in ensuring reproducibility of volumetric 23

estimates under real-world conditions, particularly when 24

dealing with data from multiple scanners and protocols. 25

This study aims to assess the consistency of brain vol- 26

ume measurements using FastSurefer and FreeSurfer 8 with 27

integrated SynthSeg across longitudinal MRI scans from a 28

single individual. By quantifying inter-scan variability using 29

metrics like absolute volume difference, Dice, and Surface 30

Dice, we seek to highlight the limitations of current seg- 31

mentation pipelines in personalized brain health monitoring 32

and early detection of neurodegenerative conditions. 33

2. Related Works 34

Related Work 35

2.1 Segmentation Pipelines for Morphometry Extraction 36

Deep learning has significantly advanced individual-level 37

brain morphometry from structural MRI. Traditional pipelines 38

such as FreeSurfer (Fischl, 2012) have long served as a gold 39

standard, producing cortical and subcortical morphometric 40
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features (e.g., thickness, volume, surface area). However,41

these methods are computationally intensive and sensitive42

to scanner variability, limiting their scalability in large-scale43

or multisite studies.44

Recent versions of FreeSurfer integrate SynthSeg (Bil-45

lot et al., 2023), a contrast-agnostic segmentation model46

trained on synthetic data. SynthSeg+ provides robust47

volumetric estimates across diverse contrasts, resolutions,48

and scanners. Its compatibility with standard atlases (e.g.,49

Desikan-Killiany, MUSE) makes it suitable for harmonized50

morphometry across heterogeneous datasets.51

To address runtime bottlenecks, FastSurferVINN (Hen-52

schel et al., 2023) replaces FreeSurfer’s anatomical stream53

with a vision transformer-based model, enabling accurate54

surface-based cortical thickness estimation within minutes.55

Tools such as Brainchop prioritize clinical scalability, though56

often at the cost of generalization to unseen protocols.57

Other high-performing segmentation models include58

nnU-Net (Isensee et al., 2021) and nnFormer ((Zhou et al.,59

2023)), which yield excellent accuracy in controlled bench-60

marks but often require dataset-specific finetuning to gen-61

eralize effectively in clinical or real-world settings.62

Recent segmentation advances also include multi-atlas63

deep learning pipelines (Wang et al., 2025), which inte-64

grate lifespan-spanning templates to enhance anatomical65

precision, particularly in pediatric and geriatric cohorts.66

2.2 Longitudinal Modeling and Individualized67

Morphometry68

Beyond segmentation, recent work has focused on modeling69

spatiotemporal brain changes at the individual level. Latent70

diffusion-based progression modeling, such as Brain Latent71

Progression (BLP) (Puglisi et al., 2025), uses temporally72

conditioned diffusion models to infer personalized disease73

trajectories from serial MRI scans.74

Learning-based Inference of Brain Change (LIBC) (Kim75

et al., 2025) models smooth morphometric changes over76

time using neural timeline embeddings, capturing subtle age-77

and disease-related progression in cortical and subcortical78

structures.79

Normative modeling frameworks (Allen et al., 2024)80

enable the estimation of z-score deviations from large-scale81

population references. This approach is particularly effective82

in identifying early deviations in psychiatric populations and83

supports both clinical and subclinical applications.84

Another widely adopted line of work focuses on brain85

age prediction. BrainAGE (Franke and Gaser, 2012) models86

estimate biological aging based on MRI-derived morphome-87

tric features, frequently using FreeSurfer outputs. These88

models have demonstrated strong longitudinal reliability89

and clinical interpretability.90

Emerging tools like Neurofind (Vieira et al., 2025) offer91

user-friendly platforms that integrate normative modeling 92

and brain age estimation, providing individualized reports 93

based on high-resolution structural MRI images. 94

Despite these advances, challenges remain in achieving 95

sulcal-level surface precision, quantifying uncertainty, and 96

ensuring reproducibility in real-world multisite studies. Al- 97

though morphometry has clear clinical applications (e.g., in 98

epilepsy and dementia1), rigorous longitudinal reproducibil- 99

ity benchmarks remain scarce. 100

2.3 Brain morpometry as a biomarker 101

Longitudinal MRI studies have greatly expanded our un- 102

derstanding of how brain morphometry changes over time, 103

particularly in response to aging, disease, and stress. A 104

growing body of work highlights structural biomarkers in 105

specific brain regions—especially the hippocampus, anterior 106

cingulate, and prefrontal cortex—that reflect vulnerability 107

or resilience to neuropsychiatric conditions. 108

In healthy populations Papagni et al. (2011) demon- 109

strated gray matter volume (GMV) reductions in the an- 110

terior cingulate cortex (ACC), hippocampus, and medial 111

prefrontal cortex (mPFC) in individuals exposed to stress. 112

Similar findings were confirmed in large-scale aging studies, 113

including Schaefer et al. (2018), who reported consistent 114

hippocampal atrophy associated with aging. MacDonald 115

and Pike (2021) provide a broader review of region-specific 116

atrophy across the lifespan. Structural biomarkers also in- 117

form psychiatric research. Cardoner et al. (2024) review 118

evidence of stress-induced degeneration in the ACC and 119

dorsolateral prefrontal cortex (dlPFC), while Carnevali and 120

Sgoifo (2018) identify preserved amygdala volumes as po- 121

tential resilience markers. UK Biobank analyses further 122

support longitudinal volume reductions in fronto-limbic cir- 123

cuits among individuals with high stress exposure (Statsenko 124

et al., 2022). Importantly, several studies have examined 125

structural changes within individuals undergoing therapy. 126

Gryglewski et al. Gryglewski et al. (2019) found hippocam- 127

pal and amygdalar volume increases after electroconvulsive 128

therapy (ECT) in treatment-resistant depression. Furtado 129

et al. (2012) reported volumetric growth in the dlPFC af- 130

ter rTMS. Frodl et al. (2008) showed that psychotherapy 131

attenuated gray matter loss over three years in depression. 132

Together, these findings suggest that MRI-based brain mor- 133

phometry, especially when assessed longitudinally, provides 134

meaningful biomarkers for brain health across both norma- 135

tive and pathological aging. 136

3. Methods 137

We study reproducibility of brain MRI segmentation pipelines 138

across longitudinal and multi-site datasets. We use two 139

1. https://icometrix.com/expertise#mri
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publicly available datasets—SIMON and SRPBS—spanning140

a wide range of scanners and protocols. We compare seg-141

mentation outputs from FreeSurfer 8.0.0, FastSurfer, and142

SynthSeg, using FreeSurfer’s recon-all pipeline as a ref-143

erence. Segmentation reproducibility is evaluated using144

a targeted subset of cortical and subcortical ROIs most145

relevant for neuroimaging biomarkers. For surface-based146

comparisons, we apply rigid registration using ANTs and as-147

sess the effect of different interpolation modes and reference148

spaces. Quantitative evaluation is performed using Dice149

coefficient, Surface Dice, 95th percentile Hausdorff distance150

(HD95), and mean absolute percentage error (MAPE) of151

regional brain volumes.152

3.1 Data153

We utilized two datasets for our analysis:154

SIMON Dataset: This dataset comprises 73 T1-weighted155

MRI scans of a single healthy male subject, collected over156

17 years across multiple sites and 1.5T scanners (Duchesne157

et al., 2019).158

SRPBS Traveling Subject Dataset: This dataset in-159

cludes 411 T1-weighted MRI scans from 9 healthy subjects,160

each scanned at 9 different sites using 3T MRI scanners.161

The data is organized following the BIDS format and in-162

cludes accompanying metadata such as participant demo-163

graphics and scanner parameters (Tanaka et al., 2021). A164

detailed comparison of acquisition parameters between the165

SIMON and SRPBS datasets is provided in Table 1.166

3.2 Segmentation167

We employed FreeSurfer 8.0.0 (released February 27, 2025)168

for cortical surface reconstruction and anatomical segmen-169

tation using the recon-all pipeline. To evaluate seg-170

mentation performance, we compared two state-of-the-art171

deep learning-based methods: FastSurfer Henschel et al.172

(2020) and SynthSeg Billot et al. (2023). FastSurfer of-173

fers rapid and accurate whole-brain segmentation, repli-174

cating FreeSurfer’s anatomical outputs, while SynthSeg175

provides robust segmentation across varying MRI contrasts176

and resolutions without the need for retraining. For consis-177

tency and comprehensive analysis, we selected FreeSurfer’s178

recon-all outputs as the reference standard and assessed179

the Desikan-Killiany-Tourville (DKT) atlas parcellations,180

encompassing 100 cortical and subcortical regions.181

3.3 Registration182

To harmonize parcellation maps, we applied rigid-body183

(6-DOF) registration in ANTs Avants et al. (2011), esti-184

mating transforms from each session’s T1-weighted image.185

We evaluated two label-preserving interpolation modes for186

aparc+aseg resampling: nearestNeighbor and multiLabel.187

Table 1: Acquisition parameters
Acquisition parameter SIMON SRPBS TS

Age
min 29 24
max 46 32
#unique 1 9
Test-retest time, days
min 0 1
max 1154
#unique 45 143
Echo Time, ms
min 0.002 0.001
max 0.003 0.003
#unique 8 24
Repetition Time, ms
min 0.007 0.007
max 2.3 2.3
#unique 8 26
Voxel volume, x
min 0.8 0.8
max 1.1 1.2
#unique 6 35
Voxel volume, y
min 0.8 0.7
max 1.0 1.0
#unique 4 8
Voxel volume, z
min 0.8 0.7
max 1.0 1.0
#unique 4 14

Registrations targeted either the subject’s first session (na- 188

tive reference) or an asymmetric MNI atlas (ICBM152 189

2009c). This design isolates the effects of interpolation 190

strategy and reference space on downstream measurements. 191

3.4 ROI Analysis 192

We focused our analysis on 9 cortical and 8 subcortical 193

bilateral regions of interest (ROIs), selected based on their 194

relevance as biomarkers in neuroimaging studies. The com- 195

plete list of analyzed ROIs is provided in Table 6. Differences 196

observed across successive MRI sessions were interpreted 197

as domain variations. 198

3.5 Metrics 199

To evaluate segmentation reproducibility, we report absolute 200

volume differences, as well as spatial similarity metrics: Dice 201
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coefficient, Surface Dice, and 95th percentile Hausdorff202

Distance (HD95). Each metric captures a different aspect of203

agreement between two segmentations: volumetric overlap,204

boundary proximity, and outlier misalignment. These are205

computed for each region of interest (ROI) and aggregated206

across sessions.207

Dice Coefficient (DSC): Dice measures the voxel-level208

overlap between two binary masks A and B (e.g., predicted209

and reference segmentations):210

DSC = 2|A ∩ B|
|A| + |B|

(1)

Here, |A| and |B| are the number of voxels in each mask,211

and |A ∩ B| is the number of voxels they share. Dice is212

widely used due to its simplicity, but can be insensitive to213

boundary errors.214

Surface Dice (S-DSC): Surface Dice quantifies the pro-215

portion of surface points that lie within a distance τ between216

the two segmentation boundaries ∂A and ∂B:217

S-DSC = |{x ∈ ∂A : d(x, ∂B) ≤ τ}|
|∂A| + |∂B|

+ |{y ∈ ∂B : d(y, ∂A) ≤ τ}|
|∂A| + |∂B|

(2)

Here, d(x, ∂B) denotes the minimum Euclidean distance218

from a point x on the surface of A to the surface of B, and219

τ is the distance tolerance (set to 1 mm in our experiments).220

This metric captures small surface deviations and is well-221

suited for assessing perceptual segmentation accuracy.222

95th Percentile Hausdorff Distance (HD95): HD95223

captures the worst-case boundary discrepancy, ignoring224

extreme outliers by focusing on the 95th percentile of all225

boundary distances:226

HD95(A, B) = max
{

P95 ({d(x, ∂B) : x ∈ ∂A}) ,

P95 ({d(y, ∂A) : y ∈ ∂B})
}

(3)

Where P95 denotes the 95th percentile, and d(x, ∂B) is the227

shortest distance from point x to the other surface. HD95228

is useful for identifying large local deviations in shape or229

topology.230

Mean Absolute Percentage Error (MAPE): To com-231

pare volumes across repeated scans, we use the mean abso-232

lute percentage error between segmentation volumes:233

MAPE = 100%
n

n∑
i=1

∣∣∣∣∣V pred
i − V ref

i

V ref
i

∣∣∣∣∣ (4)

Where V pred
i and V ref

i are the predicted and reference vol- 234

umes for region i, and n is the number of ROIs. MAPE 235

is intuitive for assessing how much segmentations deviate 236

from expected anatomical volumes. 237

3.6 Computations 238

All experiments were conducted on a Google Cloud Platform 239

(GCP) instance equipped with 64 vCPUs and 512 GB of 240

RAM. FreeSurfer 8.0.0 was executed using a single CPU 241

core per subject, with an average processing time of ap- 242

proximately 2 hours per subject. Attempts to utilize GPU 243

acceleration for SynthSeg were unsuccessful due to driver 244

compatibility issues, resulting in all SynthSeg processing 245

being performed on the CPU. 246

4. Results 247

4.1 SRPBS Test-Retest: FastSurfer 248

We analyzed 15 sessions from the SRPBS Traveling Subject 249

dataset (Tanaka et al., 2021) using FastSurfer . As shown 250

in Figure 1, the first five sessions were acquired on the same 251

scanner across five consecutive days, while the remaining 252

sessions involved different scanners and sites. 253

For both hippocampus and amygdala, volume estimates 254

during the same-scanner phase were highly consistent. For 255

example, left hippocampus volumes ranged narrowly be- 256

tween 4.42–4.44 cm3 (SD = 0.01), and right amygdala 257

volumes ranged from 1.73–1.75 cm3 (SD = 0.008). In con- 258

trast, sessions from different scanners showed noticeable 259

variability: left hippocampus ranged from 4.16–4.53 cm3 260

(SD = 0.10), and right amygdala from 1.50–1.85 cm3 (SD 261

= 0.11). 262

This highlights that even in a highly controlled test- 263

retest design, inter-scanner variability introduces morpho- 264

metric noise of up to 10%, especially in small structures 265

like the amygdala. Reliable quantification in longitudinal or 266

multisite settings requires either harmonization or robust 267

outlier filtering. 268

4.2 SIMON Longitudinal: FastSurfer vs. SynthSeg 269

We evaluated segmentation reproducibility across 73 ses- 270

sions over 17 years using FastSurfer and SynthSeg. 271

FastSurfer. FastSurfer recon-all failed on 3 sessions 272

and 8 runs. For valid outputs, subcortical volumes were 273

stable: Left/Right Amygdala: 1.93±0.17 / 2.10±0.12 cm3 274

Left/Right Hippocampus: 4.54 ± 0.19 / 4.82 ± 0.16 cm3 275

Volume trajectories showed small upward trends (R2 = 276

0.12–0.26).3 277

SynthSeg. Subcortical variation averaged 3.1%, peaking 278

at 15–20%. Cortical parcellations varied by 5% on average, 279

with outliers exceeding 40–90%. Volumes were consistently 280
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Figure 1: Volume stability for left/right hippocampus and amygdala across Subject 1, 15 sessions in SRPBS Traveling
Subject dataset. FastSurfer results with ANTS registration. The first 5 days (shaded) were acquired on the same
scanner; subsequent sessions were acquired at different sites.

higher: Amygdala: 2.13 ± 0.07 / 2.22 ± 0.07 cm3 Hip-281

pocampus: 5.10 ± 0.11 / 5.18 ± 0.12 cm3 (Figure 2)282

Volume comparisons show that FastSurfer consistently283

estimates larger volumes than SynthSeg. For example,284

the left hippocampus volume averaged 5.12 ± 0.12 cm3 in285

FastSurfer versus 4.58 ± 0.12 cm3 in SynthSeg.286

Table 2 compares FreeSurfer and FastSurfer across eight287

representative cortical structures. FastSurfer yielded consis-288

tently higher Dice scores (e.g., 0.861 vs. 0.793 for Insula,289

0.816 vs. 0.728 for Fusiform), suggesting improved anatom-290

ical overlap. Surface Dice values remained comparable, with291

minimal variation between methods. Volume differences292

were notably smaller in FastSurfer (e.g., 2.0 mm3 for Insula,293

compared to 31.6 mm3 in FreeSurfer), reflecting reduced294

bias. Interestingly, FreeSurfer produced lower Hausdorff295

distances in some regions (e.g., Superior Frontal Cortex:296

1.21 mm vs. 1.74 mm), but at the cost of greater volume297

deviation. Overall, FastSurfer offers more consistent corti-298

cal segmentation while maintaining competitive boundary299

accuracy.300

4.3 Comparison of Distance Metrics Across Datasets301

Table 4 summarizes segmentation reproducibility across302

eight subcortical structures in the SRPBS and SIMON303

datasets. Volume differences (in cm3) were consistently304

higher in SRPBS, reflecting greater domain variability due305

to inter-scanner effects. In contrast, SIMON—being a306

single-subject longitudinal dataset—showed lower volume307

deviations across repeated scans. Dice and Surface Dice308

scores were uniformly higher in SIMON, indicating improved309

overlap and surface-level agreement. For example, mean310

Dice scores for the caudate and putamen reached 0.868 and311

0.897 in SIMON, compared to 0.802 and 0.848 in SRPBS.312

HD95 distances also decreased in SIMON (e.g., 1.234 mm313

for hippocampus vs. 1.830 mm in SRPBS), highlighting314

reduced boundary inconsistency. These results support315

Figure 2: SIMON dataset: Volume trajectories of Amygdala
and Hippocampus over time for 73 MRI scans in 17 years for
one healthy individual using SynthSeg. Confidence intervals
and regression trends are shown.

Figure 3: SIMON dataset: Comparison of volume distri-
butions from FastSurfer and SynthSeg for Amygdala and
Hippocampus, y-axis denotes volume in cm3.

the utility of repeated intra-subject data for evaluating 316

segmentation consistency. 317

Subcortical filtering based on segmentation quality. 318

To assess the impact of quality-based filtering, we evalu- 319

ated the proportion of subcortical structures removed using 320

various thresholds on Dice and Surface Dice metrics. As 321
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Table 2: Comparison of SynthSeg in FreeSurfer 8 (FS) and FastSurfer (Fast) segmentation performance across subcortical
structures. Volume differences are in mm3, Dice and Surface Dice are unitless, HD95 is in mm.

Metric Accumbens Amygdala Caudate Hippocampus Pallidum Putamen Thalamus Ventral DC
FS Fast FS Fast FS Fast FS Fast FS Fast FS Fast FS Fast FS Fast

Volume Diff (mm3) 5.20 -0.56 0.22 -2.23 14.18 1.36 12.46 -0.17 11.99 1.94 19.99 -5.04 2.27 8.30 12.32 1.06
Dice 0.803 0.827 0.858 0.862 0.868 0.874 0.850 0.868 0.850 0.859 0.897 0.902 0.909 0.917 0.858 0.873
Surface Dice 0.965 0.955 0.961 0.944 0.972 0.957 0.964 0.963 0.958 0.927 0.969 0.956 0.947 0.948 0.959 0.950
HD95 (mm) 1.23 1.60 1.26 1.50 1.20 1.56 1.23 1.34 1.27 1.64 1.21 1.58 1.33 1.45 1.23 1.43

Table 3: Comparison of SynthSeg in FreeSurfer 8 (FS) and FastSurfer segmentation performance across selected cortical
structures. Volume difference is in mm3, Dice and Surface Dice are unitless, HD95 is in mm.

Metric Caudal Ant. Cingulate Entorhinal Cortex Fusiform Gyrus Inferior Parietal Insula Lat. Orbitofrontal Med. Orbitofrontal Superior Frontal Superior Temporal

FS Fast FS Fast FS Fast FS Fast FS Fast FS Fast FS Fast FS Fast FS Fast

Volume Diff 21.62 2.90 7.75 -4.78 58.67 -2.95 113.35 3.51 31.60 2.00 64.48 7.46 35.29 5.04 216.32 42.99 115.34 15.80
Dice 0.746 0.820 0.709 0.794 0.728 0.816 0.726 0.807 0.793 0.861 0.712 0.796 0.663 0.780 0.733 0.807 0.759 0.817
Surface Dice 0.965 0.958 0.922 0.922 0.959 0.964 0.973 0.963 0.970 0.971 0.952 0.948 0.938 0.949 0.970 0.966 0.964 0.958
HD95 1.24 1.64 1.72 1.72 1.28 1.35 1.19 1.47 1.35 1.51 1.34 1.85 1.46 1.84 1.21 1.74 1.26 1.47

summarized in Table 5 in Appendix A, applying a strict322

Surface Dice threshold of 0.92 filtered out only 5% of re-323

gions, while retaining a low mean absolute percentage error324

(MAPE) across the remaining structures (2.8% at 75th325

percentile, 8.6% at 95th). Relaxing the threshold to 0.90326

slightly reduced filtering (3.8%) without degrading MAPE.327

In contrast, filtering with a traditional Dice threshold of 0.80328

excluded more than half of all structures (52.8%), yet re-329

tained comparable or worse error profiles. This supports the330

use of Surface Dice as a more efficient and precise filtering331

criterion for detecting outliers in automated segmentation332

pipelines.333

4.4 Registration334

Rigid-body (6-DOF) registration was performed with ANTs Avants335

et al. (2011). We compared two label-aware interpola-336

tion strategies for parcellations—nearestNeighbor and337

multiLabel—and two reference spaces: subject-native338

(first session) and the ICBM152 2009c asymmetric MNI339

atlas.340

Interpolation choice altered mean regional volumes by341

up to 1.72%, whereas template choice contributed a smaller342

0.07% deviation, consistent with voxel-grid resampling ef-343

fects under rigid transforms.344

5. Conclusion345

This study demonstrates that even state-of-the-art seg-346

mentation tools such as FastSurfer and SynthSeg remain347

sensitive to scanner and protocol variability, particularly in348

multi-site and longitudinal settings. Despite widespread349

use and high reported accuracy, reproducibility across ses-350

sions and scanners remains a challenge—especially for small351

subcortical structures such as the amygdala and pallidum.352

Our test-retest analysis on the SRPBS Traveling Subject353

dataset revealed excellent within-scanner consistency over354

five consecutive days, with volume deviations below 1%. 355

However, cross-site sessions introduced fluctuations up to 356

10%, even when using the same individual and protocol. 357

Similarly, in the longitudinal SIMON dataset spanning 17 358

years, both FastSurfer and SynthSeg showed increasing 359

volume trends over time, but differed in magnitude and 360

stability of outputs. 361

Notably, SynthSeg produced consistently larger sub- 362

cortical volumes than FastSurfer (e.g., left hippocampus: 363

5.10 cm3 vs. 4.58 cm3), and greater inter-scan variation in 364

cortical structures. These findings emphasize the impor- 365

tance of harmonization strategies or quality control filters 366

in real-world neuroimaging pipelines. 367

In this study, we attempted to estimate the reliabil- 368

ity of segmentation using various distance metrics. This 369

approach provided a comprehensive assessment of segmen- 370

tation performance beyond traditional evaluation methods. 371

Our findings highlight the importance of employing multiple 372

metrics to capture different aspects of segmentation quality. 373

While recent research focuses on speed and automation, 374

robustness remains a bottleneck. We hope this lightweight, 375

fully reproducible evaluation encourages more transparent 376

benchmarking of segmentation tools on longitudinal and 377

multi-scanner datasets. 378

5.1 Work Limitations 379

5.1.1 Post-Segmentation Registration 380

This study registered segmentation maps after prediction 381

to enable geometric comparisons. However, the choice 382

of template and interpolation method can meaningfully 383

influence surface metrics. For instance, switching from MNI 384

to subject-native space changed average volumes by 0.07%, 385

while using a non-label-preserving interpolator led to up to 386

1.72% error. Future work should investigate registration- 387

before-segmentation pipelines for robust evaluation. 388
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Figure 4: Inter-scanner variability of cortical volumes in the SIMON dataset. Boxplots show DICE and Surface DICE
metrics between consecutive scans, grouped by hemisphere.

Metric Accumbens Amygdala Caudate Hippocampus Pallidum Putamen Thalamus Ventral DC
SRPBS SIMON SRPBS SIMON SRPBS SIMON SRPBS SIMON SRPBS SIMON SRPBS SIMON SRPBS SIMON SRPBS SIMON

Volume diff (cm3) 0.046 0.030 0.102 0.076 0.119 0.098 0.207 0.125 0.102 0.095 0.206 0.136 0.450 0.374 0.219 0.141
Dice 0.677 0.803 0.790 0.858 0.802 0.868 0.782 0.850 0.789 0.850 0.848 0.897 0.868 0.909 0.806 0.858
Surface Dice 0.849 0.965 0.840 0.961 0.868 0.972 0.845 0.964 0.843 0.958 0.870 0.969 0.820 0.947 0.873 0.959
HD95 (mm) 1.735 1.228 1.697 1.263 1.584 1.200 1.830 1.234 1.675 1.271 1.582 1.210 1.828 1.327 1.620 1.233

Table 4: Comparison of segmentation metrics between the SRPBS and SIMON datasets across subcortical structures.
Volume difference is shown in cm3, Dice and Surface Dice are unitless similarity scores, and HD95 represents the 95th
percentile Hausdorff distance in millimeters.

5.1.2 Lack of Preprocessing and Augmentation389

We processed raw data without denoising, intensity normal-390

ization, or augmentation to isolate the effect of domain391

shift. Although this reflects practical variability, it limits392

reproducibility.393

It has been shown that classical preprocessing tech-394

niques, such as intensity normalization and histogram match-395

ing, do not consistently improve brain tumor segmentation396

performance across different domains. This limitation un-397

derscores the challenges posed by domain shifts in medical398

imaging. However, recent advancements in generative meth-399

ods, including those utilizing generative adversarial networks400

(GANs), offer promising avenues to address these chal-401

lenges. For instance, methods like M-GenSeg employ semi-402

supervised generative training strategies for cross-modality403

tumor segmentation, demonstrating improved generaliza-404

tion across diverse imaging modalities Alefsen de Boisre-405

don d’Assier et al. (2022). Additionally, approaches that406

integrate GANs for synthesizing multi-modal images have 407

been explored to enhance training data diversity and robust- 408

ness Author and Author (2023). 409

5.1.3 No Ground Truth Labels 410

Both SRPBS and SIMON datasets lack manual annotations, 411

preventing true accuracy assessment. We evaluated repro- 412

ducibility under the assumption that anatomical structures 413

remain stable in healthy subjects, but future work should 414

include expert-labeled benchmarks for validation. 415
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Figure 5: Inter-scanner variability of cortical volumes in the SIMON dataset. Boxplots show the percentage difference
from the structure-specific mean across repeated sessions, grouped by hemisphere.

Table 5: Percentage of subcortical regions filtered out using Dice and Surface Dice thresholds, with 75th and 95th
percentile MAPE values across retained regions.

Filtering Metric Threshold Structures % Filtered 75th (% MAPE) 95th (%)
Surface Dice 0.92 Subcortical 5.0 2.8 8.6
Surface Dice 0.90 Subcortical 3.8 2.8 8.8
Dice 0.80 Subcortical 52.8 2.2 5.8
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Appendix A. ROI descripton550

Table 6: List of evaluated ROIs: 9 bilateral cortical and 8
bilateral subcortical regions. FreeSurfer segmentation IDs
are provided, cortical regions go for DKT atlas parcellation
(Left, Right).

Region FreeSurfer IDs
Entorhinal Cortex 1006, 2006
Caudal Anterior Cingulate Cortex 1002, 2002
Inferior Parietal Cortex 1008, 2008
Fusiform Gyrus 1007, 2007
Medial Orbitofrontal Cortex 1014, 2014
Lateral Orbitofrontal Cortex 1012, 2012
Superior Temporal Cortex 1030, 2030
Insula 1035, 2035
Superior Frontal Cortex 1028, 2028
Hippocampus 17, 53
Amygdala 18, 54
Thalamus 10, 49
Caudate 11, 50
Putamen 12, 51
Pallidum 13, 52
Accumbens 26, 58
Ventral Diencephalon (VentralDC) 28, 60
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