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Abstract

Skin Lesion Segmentation with supportive Deep Learning has become essential in skin
lesion analysis and skin cancer diagnosis. However, in the practical scenario of clinical im-
plementation, there is a limitation in human-annotated labels for training data, which leads
to poor performance in supervised training models. In this paper, we propose Dual Mask
Ensemble (DME) based on a dual-branch co-training network, which aims to enforce two
models to exploit information from different views. Specifically, we introduce a novel feature
discrepancy loss trained with a cross-pseudo supervision strategy, which enhances model
representation by encouraging the sub-networks to learn from distinct features, thereby
mitigating feature collapse. Additionally, Dual Mask Ensemble training enables the sub-
models to extract more meaningful information from unlabeled data by combining mask
predictions. Experimental results demonstrate the effectiveness of our approach, achieving
state-of-the-art performance across several metrics (Dice and Jaccard) on the ISIC2018 and
HAM10000 datasets. Our code is available at https://github.com/antares0811/DME-FD.

1. Introduction

Lesion segmentation plays an important role in automated skin lesion analysis, as it facil-
itates the extraction of clinically relevant features such as lesion size, border irregularity,
and contrast with the surrounding skin. While many successful machine learning models
bypass explicit segmentation, studies have shown that these features contribute to improved
lesion characterization and diagnosis (Marchetti et al., 2023). By accurately delineating the
lesion, segmentation can enhance downstream tasks such as feature extraction and classi-
fication. However, manual annotation of skin lesion images is labor-intensive and prone
to variability, making it difficult to produce large, accurately labeled datasets required for
training robust models. These challenges underscore the importance of semi-supervised
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learning approaches, which leverage both labeled and unlabeled data to reduce dependence
on extensively labeled datasets while improving real-world model generalization deployment.

In recent years, semi-supervised learning (SSL) techniques have gained significant atten-
tion for training models with limited pixel-wise annotated data and a larger set of unlabeled
data. Among these, pseudo-labeling methods (Yang et al., 2022; Mendel et al., 2020) are
widely used. However, they often face challenges related to confirmation bias (Yang et al.,
2022), where incorrect pseudo-labels reinforce errors during training, leading to perfor-
mance degradation due to training instability. Consistency regularization-based methods
(Sohn et al., 2020; Yang et al., 2023) generate predictions from weakly perturbed inputs to
create pseudo-labels but still remain vulnerable to confirmation bias issues.

Conversely, co-training allows different sub-networks to infer the same instance from
various perspectives and transfer knowledge from one view to another through pseudo-
labeling. Co-training, in particular, leverages multi-view references to improve the model’s
perception and increase the reliability of the pseudo-labels generated (Qiao et al., 2018).
Cross-pseudo supervision (CPS) (Chen et al., 2021) enforces consistency between the out-
puts of two networks by using cross-network pseudo-labels. CCVC (Wang et al., 2023)
proposes a cross-view consistency strategy that pushes the feature extractor outputs of two
networks apart, enabling the sub-networks to learn richer semantic information from con-
flicting predictions. (Zeng et al., 2024) employs a single-encoder dual-decoder architecture,
where differential decoder features are then served as feedback signals to the encoder.

To design an effective method that prevents sub-networks from collapsing into similar,
ineffective representations, we revisit the dual-branch networks (Chen et al., 2021) and ex-
tend it with a proposal of a Dual Mask Ensemble (DME) for semi-supervised segmentation.
Unlike CPS, our method leverages not only the information from the opposing subnet but
also its own generated mask. This self-generated mask is combined with the opponent’s
predicted mask to guide the model during backpropagation. Specifically, we first introduce
the Dual Mask Ensemble, a mask combination technique designed to enable the model to
extract additional information from unlabeled data, thereby enhancing its ability to produce
precise and reliable predictions. Similar to (Wang et al., 2023; Zeng et al., 2025), to prevent
the sub-networks from collapsing into similar representations, we propose a new feature
discrepancy loss that encourages the models to extract distinct features, thus diversifying
their representation space. However, (Wang et al., 2023) relies on conflict-based consistency
but lacks an explicit mechanism to address low-confidence predictions. In contrast, our ad-
vanced DME module adaptively combines predictions from dual sub-networks based on
their confidence and consistency, resulting in more stable pseudo-labels and better general-
ization. Furthermore, unlike (Zeng et al., 2025), which focuses on decoder-level discrepancy
learning, our Feature Discrepancy module emphasizes learning from representation-level
discrepancies between sub-networks, enhancing the diversity and complementarity of their
predictions. Our contribution can be summarized as follows:

• We introduce the Dual Mask Ensemble, integrated with a dual-branch co-training
framework, to enhance the model’s ability to generate more reliable predictions.

• We propose a novel feature discrepancy loss that promotes the extraction of distinct
features, effectively diversifying the model’s representation space.
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Figure 1: Overview of our proposed method. The Dual Mask Ensemble module combines
masks predicted from weakly augmented inputs into a reliable mask and computes
the DME loss with those predicted from strongly augmented inputs. The feature
discrepancy loss is applied to features from both sub-networks’ encoder outputs.

• Extensive experiments with our method on the ISIC2018 (Codella et al., 2018) and
HAM10000 (Tschandl et al., 2018, 2020) datasets show state-of-the-art performance,
demonstrating our robustness in the semi-supervised skin segmentation task.

2. Methodology

Given a set of label images Dl = {(xl, yl)} along with unlabeled images Du = {xu}. The
main objective is to leverage information from the unlabeled set through two distinct train-
ing flows: Cross-Pseudo Supervision training (Chen et al., 2021) and Dual Mask Ensemble
training (2.1). However, using both flows may lead to model collapse, where the predictions
of the two models become identical. To address this, we propose a feature discrepancy loss
(2.2) to preserve the diversity between the model views. A brief overview of our pipeline is
provided in 2.3 and illustrated in Figure 1.

2.1. Dual Mask Ensemble

To fully exploit the information from unlabeled data, we adopt a weak-to-strong paradigm
to help each model understand the semantic meaning of images by themselves. Let Aw

and As denote weak and strong augmentations, respectively. Weak augmentation involves
Random Flipping, while strong augmentations include Gaussian Noise, Brightness Contrast,
and Color Jittering.
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Figure 2: Visualization of the combination of Strong-Weak Augmentation, Feature Discrep-
ancy Loss, and the Dual Mask Ensemble module from a feature perspective.

Firstly, the unlabeled input xu is transformed into weak (Xw) and strong (Xs) aug-
mented versions as Xw = Aw(x

u) and Xs = As(Aw(x
u)). Then, the transformed inputs are

fed into each model to obtain the confidence maps:

PW
1 = g1(f1(Xw)), P

S
1 = g1(f1(Xs)), PW

2 = g2(f2(Xw)), P
S
2 = g2(f2(Xs)). (1)

Finally, we compute the loss between them. Both one-hot label maps of the weak ones
are integrated to guide the stronger ones. However, raw predictions from weakly augmented
images may contain noise, which can degrade model performance. To mitigate this, a fixed
confidence threshold τ is applied:

Y W
1 = 1 (max(pi) ≥ τ) argmax

c
pi(y = c | PW

1 ), (2)

Y W
2 = 1 (max(pi) ≥ τ) argmax

c
pi(y = c | PW

2 ). (3)

Here, τ serves to separate object pixels from background pixels, Y W
1 and Y W

2 are the
pseudo-label masks from the two models, which are then combined using the summation
(OR) operation:

Ŷ W = Y W
1 ⊕ Y W

2 (4)

The loss for the Dual Mask Ensemble (DME), LDME is defined as:

LDME = Lbce,dice(P
S
1 , Ŷ

W ) +Lbce,dice(P
S
2 , Ŷ

W ) (5)

2.2. Feature Discrepancy Loss

The combination of both cross-supervision loss and DME loss can lead to model collapse,
where all models produce identical predictions for a sample (Wu and Cui, 2024). To pre-
vent this issue, we propose a feature discrepancy loss that ensures diversity in the model
predictions by maintaining differences in the representation space. The feature discrepancy
loss (Ldis), indicated in Figure 2, is defined as:

Ldis(f1, f2) =
1

D(f1, f2) + ϵ
(6)
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where ϵ = 1e−6 prevents division by zero, f1 and f2 are the features from two models, and
D represents the Manhattan distance function.

We first extract the feature representations from the model encoder’s output. F sup
1 and

Fw
1 are the features of supervised and weakly augmented samples from the first model, while

F sup
2 and Fw

2 are the corresponding features for the second model. Next, we normalize the
feature values using the Softmax function:

F sup
1 , Fw

1 = Softmax(f1([x
l, Xw])), F sup

2 , Fw
2 = Softmax(f2([x

l, Xw])). (7)

Finally, the feature discrepancy loss is applied to both the supervised and weakly augmented
features:

LFDL =
1

2
(Ldis(F

sup
1 , F sup

2 ) + Ldis(F
w
1 , Fw

2 )) (8)

2.3. Overall framework

Overall, the final objective loss is written as:

L = Lsup + α(Lcps + LDME) + βLFDL (9)

where α is Consistency Warm-up in (Laine and Aila, 2017). Although using the feature
discrepancy loss can increase the model’s diversity between different views, it could harm
the model by not getting the convergent point in the last epochs. To avoid this behavior,
β = 10−t/(T∗0.25) is added as a decay for LFDL, where t is the current epoch and T is the
maximum number of epochs.

3. Experiments

3.1. Experimental Settings

We evaluated our proposed methods on two publicly available datasets dedicated to the
skin lesion segmentation task. The number of labeled samples is selected by 1%, 2%, 4%
of the total training samples, and the rest were used as unlabeled data. We also adopted
5-fold cross-validation to measure model performance.

ISIC-2018: The ISIC-2018 (Codella et al., 2018) dataset contains 3694 images with
labeled masks. We used 2955 samples for training and 739 samples for evaluating the
performance.

HAM10000: The HAM10000 (Tschandl et al., 2018, 2020) dataset consists of 10015
samples, partitioned into 8012 samples for training and 2003 samples for validation.

3.2. Implementation Details

The proposed method was implemented with PyTorch and trained on a single NVIDIA
RTX A6000 card with 48 GB of memory. SwinUnet (Cao et al., 2023) is utilized as our
main model architecture. We use the AdamW optimizer with an initial learning rate of
1×10−4, a linear decay scheduler whose step size is 50 and decay factor γ = 0.5. The input
images were resized to 224 × 224. The batch size was set to 8 for ISIC-2018 and 24 for
HAM10000. The model was trained for 80 epochs. In the augmentation stages, we adopted
Random Flipping for weak augmentation, while Random Color Distortion, Color Jitter,
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Table 1: Quantitative results on the ISIC-2018 under two labeled ratio configurations.
L and U are the training ratios of labeled and unlabeled sets, respectively.

Method
Ratio (%) Metrics
L U Dice (%) JC (%) PRE (%) ACC (%)
2 - 74.65 ±2.92 60.81 ±2.99 76.09 ±7.54 89.22 ±1.52

SupOnly 4 - 77.23 ±0.48 65.35 ±0.56 80.28 ±1.60 90.78 ±0.30

100 - 87.66 ±0.93 78.49 ±1.38 88.35 ±1.12 94.86 ±0.31

PseudoSeg 76.34 ±3.88 64.29 ±5.03 81.92 ±4.28 90.30 ±2.01

CCT 75.11 ±4.10 62.99 ±5.79 81.01 ±2.40 89.23 ±2.93

CPS 1 99 76.59 ±3.86 64.31 ±3.81 81.98 ±3.05 90.01 ±1.40

GTA-Seg 75.67 ±4.49 63.87 ±4.18 78.44 ±6.01 89.55 ±1.39

UniMatch 77.16 ±3.16 65.05 ±4.45 82.43 ±5.17 90.41 ±2.19

Ours 78.63 ±2.32 66.28 ±3.98 82.12 ±2.87 90.86 ±1.66

PseudoSeg 79.76 ±2.11 67.16 ±2.77 84.56 ±2.29 91.67 ±1.12

CCT 78.66 ±2.02 65.80 ±2.63 81.84 ±1.85 91.28 ±1.02

CPS 2 98 79.61 ±1.66 67.04 ±2.28 82.24 ±2.81 91.56 ±0.86

GTA-Seg 77.33 ±2.20 64.21 ±2.59 76.65 ±5.66 90.30 ±0.73

UniMatch 80.03 ±2.04 67.55 ±2.71 83.30 ±3.87 91.74 ±1.00

Ours 80.07 ±1.75 67.62 ±2.37 82.59 ±1.52 91.75 ±0.98

PseudoSeg 81.77 ±0.66 71.18 ±1.03 85.23 ±2.47 92.72 ±0.30

CCT 80.96 ±1.11 68.95 ±1.41 83.37 ±0.83 92.22 ±0.55

CPS 4 96 80.89 ±0.91 70.31 ±1.07 83.90 ±2.26 92.29 ±0.28

GTA-Seg 80.83 ±0.80 70.03 ±1.07 83.30 ±2.45 91.96 ±0.84

UniMatch 81.41 ±1.22 69.46 ±1.58 84.51 ±2.05 92.43 ±0.77

Ours 82.06 ±0.69 71.54 ±1.04 84.81 ±1.55 92.83 ±0.40

PseudoSeg 83.96 ±0.86 73.08 ±1.27 85.98 ±2.62 93.48 ±0.25

CCT 83.65 ±0.93 72.58 ±1.36 85.32 ±2.40 93.24 ±0.25

CPS 8 92 83.75 ±0.74 72.77 ±1.14 85.04 ±1.45 93.34 ±0.13

GTA-Seg 83.65 ±0.98 72.62 ±1.51 83.98 ±1.38 93.21 ±0.50

UniMatch 83.90 ±0.56 72.89 ±0.80 84.64 ±2.20 93.30 ±0.06

Ours 84.00 ±0.31 73.06 ±0.52 86.58 ±0.52 93.44 ±0.24

and Gaussian Noise were implemented for strong augmentation. The confidence threshold
τ was set to 0.85. We evaluated performance using mean Dice similarity coefficient (Dice),
Jaccard coefficient (JC), precision (PRE), and accuracy (ACC).

3.3. Comparison With Existing Methods

Table 2: Quantitative results on the HAM10000 under two labeled ratio configurations.

Method
Ratio (%) Metrics
L U Dice (%) JC (%) PRE (%) ACC (%)
2 - 88.15 ±0.21 78.90 ±0.31 88.12 ±0.42 93.73 ±0.07

SupOnly 4 - 89.59 ±0.07 81.24 ±0.12 90.83 ±1.17 94.56 ±0.09

100 - 93.54 ±0.25 87.92 ±0.42 93.89 ±0.57 96.58 ±0.16

PseudoSeg 90.02 ±0.17 81.94 ±0.28 92.11 ±1.26 94.81 ±0.18

CCT 89.93 ±0.10 81.79 ±0.15 91.55 ±0.96 94.75 ±0.11

CPS 2 98 89.94 ±0.14 81.81 ±0.23 92.21±0.77 94.78 ±0.15

GTA-Seg 89.55 ±0.32 81.17 ±0.54 90.39 ±0.10 94.48 ±0.21

UniMatch 89.66 ±0.15 81.35 ±0.26 91.68 ±0.60 94.62 ±0.20

Ours 90.45 ±0.17 82.65 ±0.27 92.40 ±1.02 95.04 ±0.20

PseudoSeg 90.97 ±0.39 83.21 ±0.64 92.72 ±1.19 95.20 ±0.28

CCT 90.64 ±0.53 82.97 ±0.86 92.43 ±0.15 95.12 ±0.25

CPS 4 96 90.76 ±0.51 83.17 ±0.84 92.56 ±0.46 95.16 ±0.29

GTA-Seg 90.86 ±0.19 83.34 ±0.31 92.18 ±0.54 95.21 ±0.12

UniMatch 90.32 ±0.44 82.43 ±0.73 91.96 ±1.21 94.95 ±0.30

Ours 91.13 ±0.30 83.79 ±0.50 92.36 ±0.30 95.34 ±0.19
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Figure 3: Visualization of semi-supervised model performance on ISIC2018 dataset under
various supervised training sample ratio: A: 2%; B: 4%; C: 8%

3.3.1. Quantitative Comparison

Our proposed framework is fairly compared with PseudoSeg, CCT, CPS, and UniMatch
on ISIC-2018 and HAM10000. Quantitative results are detailed in Table 1 and Table 2.
A supervised baseline using only labeled data (”SupOnly”) is also evaluated. All meth-
ods employ the same data augmentation, training strategies, and backbones to ensure fair
comparisons.

Segmentation Results on ISIC-2018: Table 1 compares our method with other
semi-supervised segmentation frameworks on the ISIC-2018 dataset. With a setting of
limited 2% labeled data (59 labeled and 1896 unlabeled samples), our approach achieves
notable improvements in both the Dice score (80.07%) and the Jaccard coefficient (67.62%),
outperforming all competing methods. When the ratio of labeled data increases to 4% (118
samples), the Dice and Jaccard scores further improve to 82.06% and 71.54%, maintaining
the leading position. With an 8% labeled dataset (236 labeled and 2791 unlabeled samples),
our method achieves the highest Dice score (84.12%) and ranks second in the Jaccard
coefficient (73.24%), slightly below the full-supervised baseline, while surpassing state-of-
the-art methods like UniMatch and CPS.

Segmentation Results on HAM10000: Table 2 displays a comparison of our per-
formance with other semi-supervised segmentation frameworks on the HAM10000 dataset.
Provided a limited set of 2% labeled data (160 labeled and 7852 unlabeled images), our ap-
proach shows a marked improvement in both Dice score and Jaccard coefficient, achieving
90.45% and 82.65%, respectively. With 4% (320) labeled images, our method achieves the
highest performance, with a Dice score of 91.13% and a Jaccard coefficient of 83.79%.

3.3.2. Qualitative Comparison

Figs. 3 and 4 visually compare the proposed method with existing approaches, alongside
the original images, ground-truth labels, and full-supervised predictions for a detailed as-
sessment. Our method clearly delivers smoother predictions with fewer blending pixels
compared to other methods. We also visualized the effectiveness of our method on different
types of lesions and cross-domain scenarios between HAM10000 and ISIC2018. The detailed
figures are provided in the Appendix.
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Figure 4: Visualization of semi-supervised model performance on the HAM10000 dataset
under various supervised training sample ratio: A: 2%; B: 4%

3.4. Ablation Study

Table 3: Results on Mask Refinement Training with 4% Labeled Samples in two datasets

Method
ISIC-2018 HAM10000

Dice (%) JC (%) Dice (%) JC (%)
Intersect 81.41 ±0.68 70.82 ±0.99 91.00 ±0.36 83.56 ±0.60

Union 82.06 ±0.69 71.54 ±1.04 91.13 ±0.30 83.79 ±0.50

Self-teaching 81.39 ±1.10 70.73 ±1.49 91.08 ±0.36 83.71 ±0.59

Cross-view teaching 81.49 ±0.97 70.89 ±1.38 91.07 ±0.42 83.70 ±0.70

3.4.1. Mask Refinement Mechanism

Table 3 compares four different approaches of mask integration for skin lesion segmentation
on the ISIC2018 and HAM10000 datasets, using 4% of labeled samples. The investigated
approaches include Intersect, Union, Self-Teaching, and Cross-View Teaching.

Intersect Method employs a multiplication (AND) operation for mask integration,
aiming to retain only the overlapping regions between different predictions. The perfor-
mance, shown in Table 3, indicates that the strict intersection strategy can effectively filter
out noisy predictions but risks discarding valuable information, leading to lower scores
compared to other methods.

Union Method applies a summation (OR) operation to combine masks, encompassing
all possible regions covered by different predictions. This method, adopted as our current
approach, exhibits superior performance, particularly on the ISIC2018 dataset, with a Dice
coefficient of 82.06% ± 0.69 and a JC of 71.54% ± 1.04. Similarly, in the HAM10000 dataset,
the Union approach continues to deliver top performance with a Dice of 91.13% ± 0.30 and

Table 4: Ablation studies of our framework with 4% labeled samples on ISIC2018

Sup CPS DME FDL Dice (%) JC (%)
✓ 77.23 ±0.48 65.35 ±0.56

✓ ✓ 79.61 ±1.66 67.04 ±2.28

✓ ✓ ✓ 81.67 ±0.88 71.13 ±1.22

✓ ✓ ✓ ✓ 82.06 ±0.69 71.54 ±1.04
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JC of 83.79% ± 0.50. These results underline that the Union method effectively integrates
multiple predictions, with complete ROI capture thanks to a comprehensive mask.

Self-Teaching Method (Zou et al., 2021) uses the weaker version of a pseudo mask
to guide its own refinement towards a stronger version. While the Self-Teaching yields
slightly lower scores than the Union, it demonstrates competitive performance, especially in
challenging cases where weak pseudo masks iteratively refine to deliver accurate predictions.

Cross-View Teaching Method (Ngo et al., 2024) involves cross-guidance, where a
weak pseudo mask supervises predictions of stronger augmented images from the opposite
model. This approach achieves performance comparable to the Self-Teaching. However, the
added complexity of Cross-View Teaching does not consistently outperform the Union.

3.4.2. Analysis on component effectiveness

Our method incorporates several key components: a CPS module, a Dual Mask Ensemble
(DME) module, and a feature discrepancy strategy. Table 4 investigates the individual
contributions of these components on the ISIC2018 dataset with 4% supervised samples.

Applying cross-pseudo supervision loss (Lcps) improves Dice and JC metrics by over 2%
and 1.7%, showing its effectiveness despite some correlation between sub-net views. Lever-
aging the DME module (LDME) further boosts Dice by 2% and Jaccard by 4%. Finally,
adding feature discrepancy loss (LFDL) increases both metrics by 0.4%, enabling sub-nets
to learn from orthogonal views and outperforming state-of-the-art methods.

3.4.3. Analysis on feature loss selection

Method L U Dice (%) JC (%) PRE (%) ACC (%)

CCVC 4% 96% 81.61 ±1.42 71.01 ±1.97 85.49 ±0.66 92.72 ±0.74

FDL 82.06 ±0.69 71.54 ±1.04 84.81 ±1.55 92.83 ±0.40

CCVC 8% 92% 83.67 ±0.59 72.66 ±0.80 84.80 ±1.21 93.33 ±0.06

FDL 84.00 ±0.31 73.06 ±0.52 86.58 ±0.52 93.44 ±0.24

Table 5: Feature loss design comparison on the ISIC-2018

We compared our method with the most relevant approach on feature correlation be-
tween two networks - CCVC (Wang et al., 2023). In contrast, FDL leverages modified
Manhattan distance-based to enforce the difference between two feature representations. In
Table 5, our loss design achieved a clear improvement compared to CCVC in most metrics.
A deeper analysis of FDL is provided in Appendix A, Table 6 and Table 7 specifically.

4. Conclusion

In this work, we present a semi-supervised method based on a co-training framework for
skin lesion segmentation. We have introduced the Dual Mask Ensemble module to enhance
the model’s ability to learn meaningful information from unlabeled data. Additionally, we
demonstrate that our proposed feature discrepancy loss boosts model performance by en-
couraging distinct feature extraction, which avoids the collapse and diversifies the represen-
tation space of models, thus reducing the confirmation bias problem. Extensive experiments
on benchmark datasets validate the robustness of the proposed approach.
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Appendix A. Analysis on Feature Discrepancy Loss

(a) WA Unlabeled Samples (b) Labeled Samples

Table 6: Sample-wise Feature Correlation Using Cosine Similarity betweem both branches
in dual-network, where WA denotes the weak augmentation.

Impact of Feature Discrepancy Loss To check whether the two parallel models utilize
complementary or less-correlated features, we visualized the correlation between features of
each sample among branches using cosine similarity. Following the Table 6, the diagonal
elements being close to zero indicate that the feature representations from the two branches
exhibit low similarity, suggesting that they capture distinct aspects of the data. Moreover,
the observed differences between the labeled and unlabeled samples, where the labeled sam-
ples show slightly stronger decorrelation, support the idea that the feature discrepancy loss
indeed encourages diverse feature learning. This addresses the concern about merely hav-
ing shifted versions of similar feature vectors — if that were happening, we would expect
more consistent and higher correlation patterns across the matrices. Instead, the observed
variation and consistently low cosine similarity demonstrate that the models learn comple-
mentary and non-redundant features.

Comparison to discrepancy loss of CCVC: Table 7 provides valuable insight into
the distinct behavior of our proposed discrepancy loss compared to the CCVC discrepancy
loss. The diagonal cosine similarity values being close to zero reflect the degree of feature
discrepancy between the two branches of the network. In the first figure ((a) - CCVC),
the consistently strong negative correlations along the diagonal indicate a more rigid and
potentially less adaptive discrepancy mechanism. In contrast, our method (second figure
(b)) shows a more nuanced and flexible distribution of similarity values — this suggests
that our approach captures a richer diversity in feature representations, likely leading to
more robust and generalizable model performance. This highlights the advantage of our
discrepancy loss in fostering complementary and well-differentiated feature learning between
the branches.
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Semi-Supervised Skin Lesion Segmentation under DME & FD Co-Training

(a) Feature Correlations (CCVC)

(b) Feature Correlations (Ours)

Table 7: Visualization of feature correlation of each sample. Left,Middle,Right represent
for the early, middle and late iteration.

Appendix B. Rare skin lesion types

Figure 5: The visualization of different types of skin on ISIC dataset

As seen in the provided figure 5, the first row shows the original images with various
challenges — including hair artifacts, small and large lesions, black frames, color calibra-
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tion marks, blood vessels, water bubbles, and overall complex or ’hard’ cases. The second
row illustrates the ground truth segmentations, while the third row shows our model’s pre-
dictions. Despite these difficult conditions, our approach consistently captures the lesion
areas with high fidelity, maintaining accurate boundaries and minimizing false positives and
negatives. Notably, even in cases with heavy occlusion (like hair) and small or irregularly
shaped lesions, our method remains resilient, demonstrating its generalization ability across
diverse and challenging data distributions. This highlights the robustness and effectiveness
of our approach in real-world clinical scenarios.

Appendix C. Cross-Domain Performance Evaluation

Figure 6: The visualization of prediction with cross-domain between ISIC2018 and
HAM10000. The top, second, and bottom rows indicate the images, groundtruth
images, and predictions of models, respectively.

We perform cross-domain evaluation by training on one dataset and evaluating on the
other. Specifically, we use the best-performing model weights from each dataset (ISIC2018
and HAM10000) and test them on the other dataset. The visual Figure 6 shows that while
the segmentation performance generally transfers well, there are noticeable differences in
mask quality, particularly in shape and boundary accuracy, indicating domain shifts be-
tween the datasets. This cross-domain evaluation highlights the model’s robustness and its
limitations when adapting to unseen data distributions.
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