
Neural Probabilistic Circuits: An Overview

Weixin Chen*1 Simon Yu∗2 Huajie Shao3 Lui Sha1 Han Zhao1

1Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
2Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA

3Department of Computer Science, College of William and Mary, Williamsburg, Virginia, USA

Abstract

End-to-end deep neural networks have achieved
remarkable success across various domains but are
often criticized for their lack of interpretability.
While post hoc explanation methods attempt to ad-
dress this issue, they often fail to accurately repre-
sent these black-box models, resulting in mislead-
ing or incomplete explanations. To overcome these
challenges, we propose an inherently transparent
model architecture called Neural Probabilistic Cir-
cuits (NPCs), which enables compositional and
interpretable predictions through logical reasoning.
In particular, an NPC consists of two modules: an
attribute recognition model, which predicts proba-
bilities for various attributes, and a task predictor
built on a probabilistic circuit, which enables log-
ical reasoning over recognized attributes to make
class predictions. To train NPCs, we introduce a
three-stage training algorithm comprising attribute
recognition, circuit construction, and joint opti-
mization. Moreover, we theoretically demonstrate
that an NPC’s error is upper-bounded by a linear
combination of the errors from its modules. Empir-
ical results on four benchmark datasets show that
NPCs strike a balance between interpretability and
performance, achieving results competitive even
with those of end-to-end black-box models while
providing enhanced interpretability.

1 INTRODUCTION

End-to-end deep neural networks (DNNs) have demon-
strated remarkable success across various domains. How-
ever, many of them are black-box models containing com-
plex operators, making it hard to interpret and understand
how a decision was made. Although many efforts [Ribeiro

*These authors contributed equally to this work.

et al., 2016, Lundberg and Lee, 2017, Selvaraju et al., 2017]
have been made to explain a model’s decision in a post
hoc manner, Alvarez-Melis and Jaakkola [2018], Laugel
et al. [2019], Rudin [2019] show that these explanations
are oftentimes not reliable as the explanation model might
loosely approximate the underlying model. For example,
the explanation model exhibits similar performance to the
black-box model but relies on entirely different features.
Such discrepancy between the explanation model and the
black-box model could lead to misleading explanations, e.g.,
attributing the decision to irrelevant features or missing
out important features. Misleading explanations are particu-
larly concerning in high-stakes applications such as medical
analysis and legal justice. Rather than introducing post hoc
explanations to explain a black-box model, Rudin [2019]
argues that one should create an interpretable model in the
first place where each component is designed with a distinct
purpose, facilitating an interpretable prediction.

To this end, we propose a novel model architecture called
Neural Probabilistic Circuits (NPCs), which enables com-
positional and interpretable predictions through logical rea-
soning. An NPC comprises two modules: an attribute recog-
nition model and a task predictor. Given an input image,
the neural-network-based attribute recognition model pro-
duces probability vectors for various high-level, human-
understandable attributes (e.g., “color”), with each vector
representing the likelihood of various values for the corre-
sponding attribute. These probability vectors serve as inputs
to the task predictor, which is implemented using a proba-
bilistic circuit. Probabilistic circuits [Poon and Domingos,
2011] are a type of graphical models that learns the joint
distribution over input variables, in our case, attribute vari-
ables and the class variable. During learning, probabilistic
circuits embed within their structures and parameters either
implicit logical rules learned from data or explicit logical
rules predefined by humans. The circuits enable tractable
probabilistic reasoning tasks such as joint, marginal, and
conditional inferences, thereby revealing relations among
the attributes and classes. By leveraging these relations,

Accepted for the 8th Workshop on Tractable Probabilistic Modeling at UAI (TPM 2025).

mailto:<weixinc2@illinois.edu>?Subject=Your TPM 2025 paper
mailto:<hanzhao@illinois.edu>?Subject=Your TPM 2025 paper

NPCs can reason over outputs from the attribute recognition
model to infer the most probable class. Specifically, the pre-
diction score for a given class is the sum of the likelihood
of each combination of attribute values weighted by their
relevance to the class.

Given the compositional nature of NPCs, we propose a
three-stage training algorithm. Specifically, the whole proce-
dure involves the following stages: 1) Attribute recognition:
We begin by training the attribute recognition model within
a multi-task learning framework [Caruana, 1997, Ruder,
2017]. 2) Circuit construction: Next, we construct the cir-
cuit using two distinct approaches: i) Data-driven approach
learns the circuit’s structure and optimizes its parameters
based on data, allowing the underlying logical rules to be
embedded within the circuit. ii) Knowledge-injected ap-
proach manually designs the circuit’s structure and assigns
its parameters to ensure that human-predefined logical rules
are explicitly encoded within the circuit. 3) Joint optimiza-
tion: Finally, the two modules are jointly optimized in an
end-to-end manner to further enhance the overall model’s
performance on downstream tasks.

Theoretically, we demonstrate that, due to the compositional
nature and the use of probabilistic circuits, NPCs exhibit a
compositional error bound—the error of the overall model
is upper-bounded by a linear combination of the errors from
the various modules. Empirically, the results on four image
classification datasets show that NPC strikes an impressive
balance between interpretability and performance on down-
stream tasks, delivering results competitive even with those
of an end-to-end deep neural network.

2 PRELIMINARIES

Probabilistic circuits are a class of graphical models that
is used to express a joint distribution over a set of random
variables Z1:N . A probabilistic circuit fS (henceforth sim-
ply referred to as a circuit) consists of a rooted directed
acyclic graph where leaf nodes are univariate indicators of
categorical variables1 (i.e., I(Zi = zi), zi ∈ Zi, i ∈ [N])
and internal nodes consist of sum nodes and product nodes.
Each sum node computes a weighted sum of its children,
and each product node computes a product of its children.
In an unnormalized circuit, the root node outputs the unnor-
malized joint probability over variables. Any unnormalized
circuit can be transformed into an equivalent, normalized
circuit via weight updating Peharz et al. [2015], Zhao et al.
[2015]. Hence, without loss of generality, we always assume
that fS is normalized; thus, fS(z1:N) = Pr(Z1:N = z1:N).

In circuits, the scope of a node is defined as the set of vari-
ables that have indicators among the node’s descendants,
which can be computed recursively—if v is a leaf node,

1We mainly focus on probabilistic circuits over categorical
random variables. An extension to the continuous ones is standard.

say, an indicator over Zi, then scope(v) = {Zi}; otherwise,
scope(v) = ∪ṽ∈children(v) scope(ṽ). A circuit is smooth iff
each sum node has children with identical scope. A circuit
is decomposable iff each product node has children with
disjoint scopes. If a circuit is smooth and decomposable,
then any marginal probability can be computed by setting
the leaf nodes corresponding to the marginalized variables
to 1. Consequently, inferences are efficient in a circuit as any
joint, marginal, or conditional inference can be computed by
at most two passes in a circuit. For instance, Pr(Z1 = z1 |
Z2:N = z2:N) = Pr(Z1:N=z1:N)

Pr(Z2:N=z2:N) = fS(Z1:N=z1:N)
fS(Z1=∅,Z2:N=z2:N)

where Z1 = ∅ implies I(Z1 = z̃1) = 1,∀z̃1 ∈ Z1; thus,
computing a conditional probability only requires two for-
ward processes in a circuit, each in linear time w.r.t. its
size. We focus on smooth and decomposable circuits. A
discussion on related work is deferred to Appendix A.

3 NEURAL PROBABILISTIC CIRCUITS

3.1 MODEL ARCHITECTURE AND INFERENCE

Figure 1 presents an overview of an NPC, which consists of
an attribute recognition model and a task predictor. The at-
tribute recognition model is a neural network that processes
an input image to identify its high-level visual attributes,
such as color and shape. The task predictor is a (normal-
ized) probabilistic circuit that models the joint distribution
over attributes and classes, embedding either implicit or ex-
plicit logical rules within its structure and parameters during
learning. The circuit enables efficient probabilistic reason-
ing, including joint, marginal, and conditional inferences.
Specifically, given a particular assignment of attributes, the
circuit can infer the probability of a specific class. By lever-
aging these conditional dependencies alongside the prob-
ability distributions of the various attributes (i.e., outputs
from the attribute recognition model), NPC produces the
probabilities of the image belonging to various classes.

Formally, let X ∈ X , Ak ∈ Ak, Y ∈ Y denote the input
variable, the k-th attribute variable, and the class variable.
The variables’ instantiations are represented by x, ak, y,
respectively. In particular, we consider K attributes, i.e.,
A1, . . . , AK (or A1:K in short). Each attribute Ak has qk
possible values, i.e., |Ak| = qk. The attribute recogni-
tion model f(X; θ) is parameterized by θ. Given an in-
put instance x, the model outputs K probability vectors.
The k-th probability vector, denoted as fk(x; θ) ∈ Rqk ,
shows the probabilities of x’s k-th attribute taking differ-
ent values ak, i.e., [fk(x; θ)]ak

= Prθ (Ak = ak | X = x).
The task predictor fS(Y,A1:K ;w) is a probabilistic cir-
cuit with structure S and parameters w, which models
the joint distribution over Y,A1:K . Specifically, when tak-
ing an instance of attributes a1:K and a class label y as
input, the circuit outputs the joint probability Prw(Y =
y,A1:K = a1:K). The circuit also supports efficient

Figure 1: The compositional model architecture of an NPC. The attribute recognition model is a neural network f(X; θ) which takes an
image X as input and outputs K probability vectors {Prθ(Ak | X)}Kk=1. The task predictor is a probabilistic circuit fS(Y,A1:K ;w)
taking an instance of attributes as input and providing the conditional probability Prw(Y | A1:K). By leveraging these relations between
classes and attributes alongside the probability distributions of various attributes, NPC produces the probability vector Prθ,w(Y | X).

conditional queries, e.g., Prw (Y = y | A1:K = a1:K) =
fS(y, a1:K ;w)/fS(∅, a1:K ;w).

Prior to describing how an NPC predicts a class, we make
the following mild assumptions on the selected attributes.

Assumption 1 (Sufficient Attributes). Given the attributes,
the class label is conditionally independent of the input, i.e.,
Y ⊥ X | A1, . . . , AK .

Assumption 2 (Complete Information). Given any input,
all attributes are conditionally mutually independent, i.e.,
A1 ⊥ A2 ⊥ · · · ⊥ AK | X .

Under Assumption 1 and 2, an NPC outputs the probability
of an input x being a class y as follows,

Prθ,w (Y = y | X = x)

=
∑
a1:K

Prw (Y = y | A1:K = a1:K , X = x) · Prθ (A1:K = a1:K | X = x)

=
∑
a1:K

Prw (Y = y | A1:K = a1:K)︸ ︷︷ ︸
task predictor

·
K∏

k=1

Prθ (Ak = ak | X = x)︸ ︷︷ ︸
attribute recognition model

.

The two interior terms are given by the circuit-based task
predictor and the attribute recognition model, respectively.

In summary, we propose a novel model architecture for
image recognition tasks. The architecture is interpretable
by design, thanks to the integration of an attribute bottle-
neck and the probabilistic semantics of probabilistic circuits.
Together, these modules enable predictions which can be
interpreted using the likelihood of different attributes and
the conditional dependencies between attributes and classes.

3.2 THREE-STAGE TRAINING ALGORITHM

Attribute Recognition aims to train the attribute recogni-
tion model f(X; θ) such that each attribute is recognized
well. We adopt a multi-task learning framework [Zhang and
Yang, 2021], where each task is to recognize a particular
attribute. Specifically, we use the cross-entropy loss for each

task and assign weights to the task losses based on the size of
the corresponding attribute space. That is, LAttribute(θ;D) =

− 1
K

∑
k

1
log qk

(
1

|D|
∑

x∈D gTk (x)fk(x; θ)
)

, where
fk(x; θ) ∈ Rqk and gk(x) ∈ Rqk are the output vector and
the label vector corresponding to the k-th attribute.

Circuit Construction attempts to construct a probabilis-
tic circuit fS(Y,A1:K ;w) that models the joint distribution
over Y,A1:K . We propose the following two distinct ap-
proaches for constructing a circuit.

In the data-driven approach, we learn a circuit’s structure
and optimize its parameters. Consider a training dataset
D = {(x, y, a1:K)}. We adopt the LearnSPN Gens and
Domingos [2013] to learn the structure of a circuit from
the data, which recursively identifies independent groups
to create product nodes, clusters data to form sum nodes,
and assigns single variables as leaf nodes. Subsequently,
the optimization of the circuit’s weights can be framed as
a maximum likelihood estimation (MLE) problem, where
we employ the CCCP Zhao et al. [2016b] that iteratively
applies multiplicative weight updates on w to maximize the
likelihood function. Overall, the learned circuit captures the
underlying logical rules present in the observed data.

In the knowledge-injected approach, we manually con-
struct a circuit’s structure and assign its parameters. Do-
main knowledge can be represented as a set of weighted
logical rules, where the weight of each rule reflects the
frequency with which the rule holds true among the ob-
served data. Consider L weighted rules of the form {rl :=
wl ·(I(A1 = al1)∧. . .∧I(AK = alK)∧I(Y = yl))}Ll=1. We
construct a two-layer circuit to encode these rules. Building
upon a set of leaf nodes that represent the indicator vari-
ables of Y,A1:K , a layer of product nodes is built, where
each product node is associated with a rule. Specifically,
the l-th product node connects to the leaf nodes that rep-
resent the conditions in the rule rl. Finally, a single sum
node, which serves as the root node of the circuit, is placed
above the product node layer. This sum node aggregates
the outputs of all product nodes, and the weight for the l-th

Figure 2: An illustration of a constructed two-layer circuit.

edge is assigned as wl. An example of a constructed cir-
cuit is illustrated in Figure 2. Through these two steps, the
human-predefined logical rules are manually encoded into
the circuit’s structure and parameters.

Joint Optimization intends to fine-tune NPCs in an end-
to-end manner to further improve the performance of
the overall model on downstream tasks. Thanks to the
differentiability of circuits, we can optimize the over-
all model w.r.t. the loss function LJoint(θ, w; (x, y)) =
−
∑

(x,y)∈D log Prθ,w(Y = y | X = x). Specifically, we
employ the stochastic gradient descent algorithm to update
θ, while using the projected gradient descent algorithm to
update w to ensure the positivity of the circuit weights.

3.3 THEORETICAL ANALYSIS

Given that the overall model and the attribute recog-
nition model are discriminative while the probabilistic
circuit is generative, we define the following errors to
capture how closely the learned models approximate
the underlying true distributions. 1) Error of the over-
all model: ϵθ,w := EX [dTV(Prθ,w(Y | X),Pr(Y | X))],
which represents the expected total variance distance be-
tween the learned and true conditional distributions of Y
given X . 2) Error of the attribute recognition model:
ϵθ := EX [dTV(Prθ(A1:K | X),Pr(A1:K | X))], which
quantifies the expected total variation distance between
the learned and true conditional distributions of the at-
tributes A1:K given X . Additionally, we define ϵkθ :=
EX [dTV(Prθ(Ak | X),Pr(Ak | X))] as the error for each
individual attribute Ak. 3) Error of the probabilistic cir-
cuit: ϵw := dTV(Prw(Y,A1:K),Pr(Y,A1:K)), which mea-
sures the total variation distance between the learned and
true joint distributions of Y and A1:K .

Theorem 1 (Compositional Error). Under Assumptions 1
and 2, the error of an NPC is bounded by a linear combina-
tion of the errors of the attribute recognition model and the
circuit-based task predictor. In particular, the error of the
attribute recognition model across all attributes is bounded
by the sum of the errors for each attribute, i.e.,

ϵθ,w ⩽ ϵθ + 2ϵw ⩽
K∑

k=1

ϵkθ + 2ϵw.

The proof is deferred to Appendix C. Theorem 1 demon-
strates that the error bound of an NPC is decomposable

Table 1: Classification accuracy of NPCs and four baseline models
on four benchmark datasets over five random seeds. “*” denotes
uninterpretable models. The best results are highlighted in bold,
while the second-best results are underlined.

Model MNIST-Add (%) GTSRB (%) CelebA (%) AwA2 (%)

DNN∗ 99.057± 0.08 99.939± 0.04 36.963± 0.72 93.351± 0.17
CBM 98.606± 0.03 99.810± 0.04 16.552± 0.87 82.286± 0.47
CEM∗ 98.740± 0.10 99.736± 0.06 25.218± 0.30 85.102± 0.27
DCR 94.597± 2.05 87.071± 6.93 7.055± 3.04 44.117± 10.05
NPC(Data) 99.171± 0.11 99.888± 0.08 33.739± 0.90 87.281± 0.39
NPC(Know.) 99.189± 0.08 99.944± 0.04 31.727± 0.51 68.519± 3.54

into contributions from individual modules, which accredits
to its compositional nature and the incorporation of prob-
abilistic circuits. Consequently, reducing the error of any
individual module helps improve the performance of NPC.

4 EXPERIMENTS

Experimental Setup. We evaluate the model performance
on four image classification datasets: MNIST-Add [Man-
haeve et al., 2018], GTSRB [Stallkamp et al., 2012],
CelebA [Liu et al., 2015], and AwA2 [Xian et al., 2018].
In addition to an end-to-end DNN [He et al., 2016], we
select baseline models that employ a concept-based com-
positional architecture, such as CBM [Koh et al., 2020],
CEM [Zarlenga et al., 2022], and DCR [Barbiero et al.,
2023]. More details are provided in Appendix D.
Performance Comparison. Table 1 demonstrates that
NPCs outperform all other concept-based baseline mod-
els. Specifically, NPC(Knowledge) achieves the best perfor-
mance on MNIST-Addition and GTSRB, while NPC(Data)
leads on CelebA and AwA2. Notably, NPCs achieve supe-
rior performance even compared to CEM, an uninterpretable
model that relies on high-dimensional concept embeddings,
highlighting NPC’s effectiveness in leveraging interpretable
concept probabilities for downstream classification tasks.

Remarkably, NPCs are competitive even compared with the
end-to-end DNN, surpassing its classification accuracy on
MNIST-Addition and GTSRB, while leaving small gaps
on more complex datasets like CelebA and AwA2. These
findings demonstrate that NPCs strike a compelling balance
between interpretability and task performance, underscoring
the remarkable potential of interpretable models.

5 CONCLUSION

In this paper, we propose Neural Probabilistic Circuits
(NPCs), a novel architecture that decomposes the decision-
making process into attribute recognition and logical rea-
soning. Our work demonstrates the potential of NPCs to
enhance model interpretability and performance by integrat-
ing semantically meaningful attributes with probabilistic
circuits. A discussion on limitations and future directions is
deferred to Appendix B.

Acknowledgements

We would like to extend our gratitude to Antonio Vergari
for pointing out relevant literature on probabilistic circuits
and knowledge compilation, and for the discussion on the
relationship between NPCs and semantic probabilistic lay-
ers. We would also like to thank Rahim Khan, Tommy Tang,
Alex Tanthiptham, and Trusha Vernekar for their contribu-
tions to the implementations and experiments. Finally, we
thank the reviewers for their valuable suggestions, which
improved the quality of this work.

WC and HZ are partially supported by an NSF IIS grant No.
2504555. HZ would like to thank the support from a Google
Research Scholar Award. SY and LS are supported by the
National Aeronautics and Space Administration (NASA)
under Grant 80NSSC22M0070.

The views and conclusions expressed in this paper are solely
those of the authors and do not necessarily reflect the offi-
cial policies or positions of the supporting companies and
government agencies.

References

Tameem Adel, David Balduzzi, and Ali Ghodsi. Learning
the structure of sum-product networks via an svd-based
algorithm. In UAI, 2015.

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van
den Broeck, and Antonio Vergari. Semantic probabilistic
layers for neuro-symbolic learning. In NeurIPS, 2022.

Kareem Ahmed, Kai-Wei Chang, and Guy Van den Broeck.
A pseudo-semantic loss for autoregressive models with
logical constraints. In NeurIPS, 2023.

David Alvarez-Melis and Tommi S Jaakkola. On the ro-
bustness of interpretability methods. arXiv preprint
arXiv:1806.08049, 2018.

Samy Badreddine, Artur S. d’Avila Garcez, Luciano Ser-
afini, and Michael Spranger. Logic tensor networks. Artif.
Intell., 2022.

Pietro Barbiero, Gabriele Ciravegna, Francesco Giannini,
Mateo Espinosa Zarlenga, Lucie Charlotte Magister, Al-
berto Tonda, Pietro Lio, Frédéric Precioso, Mateja Jam-
nik, and Giuseppe Marra. Interpretable neural-symbolic
concept reasoning. In ICML, 2023.

Samuele Bortolotti, Emanuele Marconato, Tommaso Car-
raro, Paolo Morettin, Emile van Krieken, Antonio Vergari,
Stefano Teso, and Andrea Passerini. A neuro-symbolic
benchmark suite for concept quality and reasoning short-
cuts. In NeurIPS Track on Datasets and Benchmarks,
2024.

Samuele Bortolotti, Emanuele Marconato, Paolo Morettin,
Andrea Passerini, and Stefano Teso. Shortcuts and identi-
fiability in concept-based models from a neuro-symbolic
lens. arXiv preprint arXiv:2502.11245, 2025.

Rich Caruana. Multitask learning. Machine learning, 1997.

Mark Chavira and Adnan Darwiche. Compiling bayesian
networks with local structure. In IJCAI, 2005.

Arthur Choi, Doga Kisa, and Adnan Darwiche. Compiling
probabilistic graphical models using sentential decision
diagrams. In ECSQARU, 2013.

Gabriele Ciravegna, Pietro Barbiero, Francesco Giannini,
Marco Gori, Pietro Liò, Marco Maggini, and Stefano
Melacci. Logic explained networks. Artif. Intell., 2023.

Adnan Darwiche. A compiler for deterministic, decompos-
able negation normal form. In AAAI, 2002.

Adnan Darwiche and Pierre Marquis. A knowledge compi-
lation map. Journal of Artificial Intelligence Research,
17:229–264, 2002.

Aaron Dennis and Dan Ventura. Learning the architecture
of sum-product networks using clustering on variables.
In NeurIPS, 2012.

Robert Gens and Pedro M. Domingos. Discriminative learn-
ing of sum-product networks. In NeurIPS, 2012.

Robert Gens and Pedro M. Domingos. Learning the struc-
ture of sum-product networks. In ICML, 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

Dmitry Kazhdan, Botty Dimanov, Mateja Jamnik, Pietro
Liò, and Adrian Weller. Now you see me (CME): concept-
based model extraction. In CIKM (Workshops), 2020.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen
Mussmann, Emma Pierson, Been Kim, and Percy Liang.
Concept bottleneck models. In ICML, 2020.

Viktoriya Krakovna and Moshe Looks. A minimalistic
approach to sum-product network learning for real appli-
cations. arXiv preprint arXiv:1602.04259, 2016.

Thibault Laugel, Marie-Jeanne Lesot, Christophe Marsala,
and Marcin Detyniecki. Issues with post-hoc coun-
terfactual explanations: a discussion. arXiv preprint
arXiv:1906.04774, 2019.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 1998.

Sang-Woo Lee, Christopher Watkins, and Byoung-Tak
Zhang. Non-parametric bayesian sum-product networks.
In ICML Workshop on Learning Tractable Probabilistic
Models, 2014.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep learning face attributes in the wild. In CVPR, 2015.

Scott M. Lundberg and Su-In Lee. A unified approach to
interpreting model predictions. In NeurIPS, 2017.

Anita Mahinpei, Justin Clark, Isaac Lage, Finale Doshi-
Velez, and Weiwei Pan. Promises and pitfalls of
black-box concept learning models. arXiv preprint
arXiv:2106.13314, 2021.

Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig,
Thomas Demeester, and Luc De Raedt. Deepproblog:
Neural probabilistic logic programming. In NeurIPS,
2018.

Emanuele Marconato, Andrea Passerini, and Stefano Teso.
Glancenets: Interpretable, leak-proof concept-based mod-
els. In NeurIPS, 2022.

Emanuele Marconato, Stefano Teso, Antonio Vergari, and
Andrea Passerini. Not all neuro-symbolic concepts are
created equal: Analysis and mitigation of reasoning short-
cuts. In NeurIPS, 2023.

Nicola Di Mauro, Floriana Esposito, Fabrizio Giuseppe Ven-
tola, and Antonio Vergari. Alternative variable splitting
methods to learn sum-product networks. In AI*IA, 2017.

Alejandro Molina, Antonio Vergari, Nicola Di Mauro, Sri-
raam Natarajan, Floriana Esposito, and Kristian Kersting.
Mixed sum-product networks: A deep architecture for
hybrid domains. In AAAI, 2018.

Tuomas P. Oikarinen, Subhro Das, Lam M. Nguyen, and
Tsui-Wei Weng. Label-free concept bottleneck models.
In ICLR, 2023.

Robert Peharz. Foundations of sum-product networks for
probabilistic modeling. PhD thesis, PhD thesis, Medical
University of Graz, 2015.

Robert Peharz, Robert Gens, and Pedro Domingos. Learning
selective sum-product networks. In ICML, 2014.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and
Pedro M. Domingos. On theoretical properties of sum-
product networks. In AISTATS, 2015.

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro
Molina, Martin Trapp, Xiaoting Shao, Kristian Kersting,
and Zoubin Ghahramani. Random sum-product networks:
A simple and effective approach to probabilistic deep
learning. In UAI, 2019.

Knot Pipatsrisawat and Adnan Darwiche. New compilation
languages based on structured decomposability. In AAAI,
2008.

Hoifung Poon and Pedro M. Domingos. Sum-product net-
works: A new deep architecture. In UAI, 2011.

Tahrima Rahman and Vibhav Gogate. Merging strategies
for sum-product networks: From trees to graphs. In UAI,
2016.

Abdullah Rashwan, Han Zhao, and Pascal Poupart. Online
and distributed bayesian moment matching for parameter
learning in sum-product networks. In AISTATS, 2016.

Abdullah Rashwan, Pascal Poupart, and Zhitang Chen. Dis-
criminative training of sum-product networks by extended
baum-welch. In PGM, 2018.

Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin.
"why should I trust you?": Explaining the predictions of
any classifier. In KDD, 2016.

David M. Rodríguez, Manuel P. Cuéllar, and Diego Pedro
Morales. Concept logic trees: enabling user interaction
for transparent image classification and human-in-the-
loop learning. Appl. Intell., 2024.

Amirmohammad Rooshenas and Daniel Lowd. Learning
sum-product networks with direct and indirect variable
interactions. In ICML, 2014.

S Ruder. An overview of multi-task learning in deep neural
networks. arXiv preprint arXiv:1706.05098, 2017.

Cynthia Rudin. Stop explaining black box machine learning
models for high stakes decisions and use interpretable
models instead. Nat. Mach. Intell., 2019.

Raquel Sánchez-Cauce, Iago París, and Francisco Javier
Díez. Sum-product networks: A survey. IEEE Trans.
Pattern Anal. Mach. Intell., 2022.

Anirban Sarkar, Deepak Vijaykeerthy, Anindya Sarkar, and
Vineeth N. Balasubramanian. A framework for learning
ante-hoc explainable models via concepts. In CVPR,
2022.

Yoshihide Sawada and Keigo Nakamura. Concept bottle-
neck model with additional unsupervised concepts. IEEE
Access, 2022.

Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek
Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Ba-
tra. Grad-cam: Visual explanations from deep networks
via gradient-based localization. In ICCV, 2017.

Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl
Stelzner, Robert Peharz, Thomas Liebig, and Kristian
Kersting. Conditional sum-product networks: Modular
probabilistic circuits via gate functions. Int. J. Approx.
Reason., 2022.

Andy Shih, Dorsa Sadigh, and Stefano Ermon. Hyper-
spns: Compact and expressive probabilistic circuits. In
NeurIPS, 2021.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and
Christian Igel. Man vs. computer: Benchmarking ma-
chine learning algorithms for traffic sign recognition. Neu-
ral Networks, 2012.

Martin Trapp, Robert Peharz, Marcin Skowron, Tamas Madl,
Franz Pernkopf, and Robert Trappl. Structure inference
in sum-product networks using infinite sum-product trees.
In NeurIPS Workshop on Practical Bayesian Nonpara-
metrics, 2016.

Martin Trapp, Robert Peharz, Hong Ge, Franz Pernkopf, and
Zoubin Ghahramani. Bayesian learning of sum-product
networks. In NeurIPS, 2019.

Emile van Krieken, Pasquale Minervini, Edoardo M. Ponti,
and Antonio Vergari. On the independence assumption
in neurosymbolic learning. In ICML, 2024.

Fabrizio Ventola, Karl Stelzner, Alejandro Molina, and Kris-
tian Kersting. Residual sum-product networks. In Inter-
national Conference on Probabilistic Graphical Models.
PMLR, 2020.

Antonio Vergari, Nicola Di Mauro, and Floriana Esposito.
Simplifying, regularizing and strengthening sum-product
network structure learning. In ECML PKDD, 2015.

Riting Xia, Yan Zhang, Xueyan Liu, and Bo Yang. A sur-
vey of sum-product networks structural learning. Neural
Networks, 2023.

Yongqin Xian, Christoph H Lampert, Bernt Schiele, and
Zeynep Akata. Zero-shot learning—a comprehensive
evaluation of the good, the bad and the ugly. TPAMI,
2018.

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and
Guy Van den Broeck. A semantic loss function for deep
learning with symbolic knowledge. In ICML, 2018.

Chih-Kuan Yeh, Been Kim, Sercan Ömer Arik, Chun-
Liang Li, Tomas Pfister, and Pradeep Ravikumar. On
completeness-aware concept-based explanations in deep
neural networks. In NeurIPS, 2020.

Mert Yüksekgönül, Maggie Wang, and James Zou. Post-hoc
concept bottleneck models. In ICLR, 2023.

Mateo Espinosa Zarlenga, Pietro Barbiero, Gabriele
Ciravegna, Giuseppe Marra, Francesco Giannini,
Michelangelo Diligenti, Zohreh Shams, Frédéric Pre-
cioso, Stefano Melacci, Adrian Weller, Pietro Lió, and
Mateja Jamnik. Concept embedding models: Beyond the
accuracy-explainability trade-off. In NeurIPS, 2022.

Yu Zhang and Qiang Yang. A survey on multi-task learning.
IEEE Transactions on Knowledge and Data Engineering,
2021.

Han Zhao, Mazen Melibari, and Pascal Poupart. On the
relationship between sum-product networks and bayesian
networks. In ICML, 2015.

Han Zhao, Tameem Adel, Geoffrey J. Gordon, and Brandon
Amos. Collapsed variational inference for sum-product
networks. In ICML, 2016a.

Han Zhao, Pascal Poupart, and Geoffrey J. Gordon. A uni-
fied approach for learning the parameters of sum-product
networks. In NeurIPS, 2016b.

Neural Probabilistic Circuits: An Overview
(Supplementary Material)

Weixin Chen†1 Simon Yu∗2 Huajie Shao3 Lui Sha1 Han Zhao1

1Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
2Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA

3Department of Computer Science, College of William and Mary, Williamsburg, Virginia, USA

A RELATED WORK

In this section, we discuss several areas of research relevant to our proposed method.

Concept Bottleneck Models and Variants Concept bottleneck models (CBMs) and their variants are a class of machine
learning models that organize their decision-making process around high-level, human-understandable concepts, offering
enhanced transparency. First introduced by Koh et al. [2020], CBMs decompose a black-box DNN into two modules:
a concept recognition model, responsible for predicting various human-specified concepts, and a task predictor, which
performs classifications on the predicted concepts.

Subsequent research has focused on improving these two modules. Zarlenga et al. [2022], Yeh et al. [2020], Kazhdan
et al. [2020] extend the concept recognition model by representing concepts as high-dimensional embeddings rather
than simple probabilities. Additionally, Mahinpei et al. [2021], Sawada and Nakamura [2022], Sarkar et al. [2022],
Marconato et al. [2022] introduce unsupervised neurons into the bottleneck to enhance the model’s learning capacity. While
improving the performance on downstream tasks, these extensions compromise interpretability, as the dimensions within
concept embeddings and the unsupervised neurons lack explicit semantic meanings. In contrast, utilizing predicted concept
probabilities gives better interpretability. On the other hand, there have been recent efforts to improve the interpretability of
the task predictor. Instead of using a linear layer as the task predictor, several approaches [Barbiero et al., 2023, Ciravegna
et al., 2023, Rodríguez et al., 2024] design new architectures to embed logical rules and enable classifications via reasoning.
For instance, Barbiero et al. [2023] propose a deep concept reasoner, while Rodríguez et al. [2024] introduce a soft decision
tree as the task predictor. These approaches optimize their parameters using observed data, thus extracting the underlying
logical rules inherent within the data. In comparison, architectures that directly encode human-predefined logical rules
through their structure and parameters offer means to explicitly represent domain knowledge.

Probabilistic Circuits Probabilistic circuits [Sánchez-Cauce et al., 2022] are rooted directed acyclic graphs designed
to represent the joint distribution of a set of variables. The circuits comprise three types of nodes: 1) leaf nodes, which
correspond to input variables; 2) sum nodes, which compute weighted sums of their child nodes; and 3) product nodes, which
compute products of their child nodes. When satisfying the properties of decomposability and smoothness, a probabilistic
circuit becomes a tractable probabilistic model, ensuring efficient inferences over various distributions [Poon and Domingos,
2011]. Specifically, joint, marginal, and conditional probabilities of input variables can be computed in at most two passes
(from leaf nodes to the root node), with computational complexity linear in the size of the circuit. Consequently, probabilistic
circuits combine the expressiveness of traditional graphical models with the scalability of modern deep learning frameworks.

Structure learning for probabilistic circuits aims to design structures that effectively balance expressiveness and computational
efficiency. Xia et al. [2023] categorize existing structure learning methods into four types: 1) handcrafted structure learning,
where structures are manually designed for specific datasets [Gens and Domingos, 2012, Poon and Domingos, 2011]; 2)

*These authors contributed equally to this work.
†These authors contributed equally to this work.

Accepted for the 8th Workshop on Tractable Probabilistic Modeling at UAI (TPM 2025).

mailto:<weixinc2@illinois.edu>?Subject=Your TPM 2025 paper
mailto:<hanzhao@illinois.edu>?Subject=Your TPM 2025 paper

data-based structure learning, which uses heuristic [Adel et al., 2015, Dennis and Ventura, 2012, Gens and Domingos, 2013,
Krakovna and Looks, 2016, Molina et al., 2018, Rahman and Gogate, 2016, Rooshenas and Lowd, 2014, Vergari et al., 2015]
or non-heuristic algorithms [Peharz et al., 2014, Lee et al., 2014, Trapp et al., 2016, Peharz et al., 2019] to learn structures
from data; 3) random structure learning, where structures are randomly generated as a flexible starting point [Peharz et al.,
2019, Rashwan et al., 2016, Trapp et al., 2019]; and 4) ensemble structure learning, which combines multiple structures to
improve generalization to high-dimensional data [Ventola et al., 2020]. In this paper, we utilize the first and second types of
structure learning approaches to embed explicit and implicit logical rules, respectively.

Parameter learning for probabilistic circuits involves finding optimal parameters for a given structure, enabling the circuits
to accurately capture the underlying probability distributions within the observed data. Parameter learning can be broadly
categorized into two types: generative and discriminative. Generative parameter learning [Poon and Domingos, 2011, Peharz,
2015, Rashwan et al., 2016, Zhao et al., 2016a,b], the most common paradigm, aims to maximize the joint probabilities
of all variables. The generative approach is particularly suited for tasks such as density estimation, generative modeling,
and probabilistic reasoning. In contrast, discriminative parameter learning [Gens and Domingos, 2012, Adel et al., 2015,
Rashwan et al., 2018] focuses on maximizing the conditional probabilities of a class variable given other variables, making
it ideal for classification and regression tasks. In this paper, we adopt CCCP [Zhao et al., 2016b], a generative parameter
learning approach, as it admits multiplicative parameter updates that provide a monotonic increase in the log-likelihood and
lead to faster and more stable convergence.

On the other hand, some works develop probabilistic circuits parameterized by neural networks. For instance, Ahmed
et al. [2022] use an amortized neural network to output the weights in circuits. To address the overfitting problem of large
probabilistic circuits, Shih et al. [2021] exploit the generalization ability of a small-scale neural network and employ it to
generate the parameters of a large circuit. Shao et al. [2022] aims to learn a probabilistic circuit to model the conditional
distribution of target variables given input variables. In their approach, a neural network, conditioned on the input variables, is
utilized to generate the circuit’s parameters. This integration of neural networks enhances the expressiveness of probabilistic
circuits and has been used in neuro-symbolic integration [Ahmed et al., 2022, Manhaeve et al., 2018]. In this paper, the
circuit’s integration with the attribute recognition model can be seen as parameterizing the input distributions of the circuit,
instead of the weights of the circuit. The final predictions are a result of utilizing the outputs of a circuit through the law of
total probability.

Neuro-Symbolic Learning Neuro-symbolic learning integrates neural networks with symbolic representations, combining
data-driven learning with symbolic reasoning to leverage the strengths of both. Variants of CBMs that embed inherent
rules within the task predictor serve as an exemplifying application of neuro-symbolic learning. Beyond CBMs, this
neuro-symbolic paradigm can be implemented in various other forms. One line of research focuses on designing rule-
based objective functions. For instance, Badreddine et al. [2022] propose objectives that maximize the satisfiability of
predefined symbolic rules over a neural network’s outputs. Similarly, Xu et al. [2018], Ahmed et al. [2023] define objectives
that maximize the probabilities of generating outputs aligned with symbolic rules. These objectives can also function as
regularization terms alongside standard classification losses, encouraging a neural network to adhere to specific rules by
optimizing its parameters accordingly. However, these works cannot ensure that the predictions are always consistent with
the rules at inference time. Another line of research emphasizes the design of model architectures. For example, Manhaeve
et al. [2018] propose a probabilistic-logic reasoning layer on top of the neural predicates. Different from our work, they
assume a uniform label distribution and train the overall model in an end-to-end fashion, which may lead to reasoning
shortcuts [Marconato et al., 2023, Bortolotti et al., 2024, 2025]. Ahmed et al. [2022] introduce a semantic probabilistic layer,
a predictive layer designed for structured-output predictions, which can be seamlessly integrated into neural networks to
ensure predictions align with certain symbolic constraints.

Knowledge Compilation In the field of knowledge compilation [Darwiche and Marquis, 2002], previous studies have
made efforts to compile PGMs [Choi et al., 2013, Chavira and Darwiche, 2005] or logical formulas [Chavira and Darwiche,
2005, Darwiche, 2002, Pipatsrisawat and Darwiche, 2008] into computationally efficient structures that support various
inference tasks. In this paper, the proposed knowledge-injected parameter learning approach adopts a simple compilation
strategy that compiles a set of weighted AND rules into a two-layer probabilistic circuit. Specifically, each product node
corresponds to an individual AND rule, while the sum node encodes the weights associated with these rules.

B LIMITATIONS AND DISCUSSIONS

In this section, we discuss the limitations of NPCs from multiple perspectives, highlighting potential future directions for
improvement.

Model Architecture Compared to end-to-end DNNs, NPCs offer superior interpretability by decomposing a model
into semantically meaningful modules, enabling humans to combine module outputs to understand the final decisions.
Nevertheless, the attribute recognition model itself remains a black box, and its opaque inner workings make it difficult to
ensure that its outputs truly represent the probabilities for the various attributes. For instance, the model might learn spurious
correlations and incorrectly map background features, instead of actual attributes, to outputs. Future work may focus on
increasing the transparency within the attribute recognition model, thereby enhancing its interpretability.

Structure of Probabilistic Circuits In NPCs, the task predictor, implemented using a probabilistic circuit, is either
learned using LearnSPN [Gens and Domingos, 2013] or manually constructed based on human-predefined rules. The circuit
generated by LearnSPN, however, may contain an excessive number of nodes and edges, resulting in a slower inference.
Alternative methods [Vergari et al., 2015, Mauro et al., 2017] may be explored to create more compact circuits for added
inference efficiency. On the other hand, manually constructed circuits employ simpler structures with only two layers. While
it may improve efficiency, such simplicity may limit the circuit’s expressiveness, potentially degrading its performance on
complex datasets like AwA2. Future work may focus on improved balancing between circuit expressiveness and structural
complexity.

Assumption of Complete Information The assumption of complete information in this paper assumes that attributes are
conditionally independent given the input. However, recent studies suggest that this assumption limits model expressive-
ness [van Krieken et al., 2024] and potentially introduces spurious correlations, also known as reasoning shortcuts [Marconato
et al., 2023, Bortolotti et al., 2024]. Investigating whether this issue arises in NPCs and identifying ways to address it would
be a valuable direction for future research.

Attribute Annotations The training of NPCs relies on the complete attribute annotations. In practice, however, such
annotations are often unavailable for large-scale datasets since it would be time-consuming and labor-intensive to collect
them. Yüksekgönül et al. [2023], Oikarinen et al. [2023] mitigate the need for attribute annotations by transferring concepts
from other datasets or by using multimodal models to extract concepts from natural language descriptions. Therefore, it is
plausible to extend NPCs to an annotation-free setting by adopting similar techniques.

Reducing Trade-Offs between Interpretability and Task Performance In this paper, we show that, with the integration
of attribute recognition and probabilistic circuit, NPC produces interpretable predictions for downstream tasks while
achieving superior performance. Looking ahead, we believe that, by incorporating more fine-grained and diverse attributes
that are semantically meaningful, along with a structure that reasons over these attributes using logical rules with increased
complexity, we shall devise compositional model designs that further reduce the trade-offs between interpretability and
performance of downstream tasks.

C PROOF FOR COMPOSITIONAL ERROR

In this section, we present a detailed proof for Theorem 1. Throughout the proof, expressions with parameters such as
Prθ, Prw, and Prθ,w refer to probabilities learned by the models, while those without parameters represent ground-truth
probabilities.

ϵθ,w = EX

[
1

2

∑
y

∣∣∣∣Prθ,w
(Y = y | X)− Pr(Y = y | X)

∣∣∣∣
]

⩽ EX [
1

2

∑
y

∑
a1:K

|
∏
k

Pr
θ
(Ak = ak | X) · Pr

w
(Y = y | A1:K = a1:K)−

∏
k

Pr(Ak = ak | X) · Pr
w
(Y = y | A1:K = a1:K)

+
∏
k

Pr(Ak = ak | X) · Pr
w
(Y = y | A1:K = a1:K)−

∏
k

Pr(Ak = ak | X) · Pr(Y = y | A1:K = a1:K)|]

⩽ EX

[
1

2

∑
y

∑
a1:K

∣∣∣∣∣∏
k

Pr
θ
(Ak = ak | X)−

∏
k

Pr(Ak = ak | X)

∣∣∣∣∣ · Prw (Y = y | A1:K = a1:K)

]
(1)

+ EX

[
1

2

∑
y

∑
a1:K

∏
k

Pr(Ak = ak | X) ·
∣∣∣Pr
w
(Y = y | A1:K = a1:K)− Pr(Y = y | A1:K = a1:K)

∣∣∣] . (2)

Thus, the upper bound of ϵθ,w is decomposed into two terms.

We derive the upper bound for the first term, i.e., Eq(1), as follows,

Eq(1) = EX

[
1

2

∑
a1:K

∣∣∣∣∣∏
k

Pr
θ
(Ak = ak | X)−

∏
k

Pr(Ak = ak | X)

∣∣∣∣∣
]
= EX

[
dTV

(
Pr
θ
(A1:K | X),Pr(A1:K | X)

)]
= ϵθ

⩽ EX

[
1

2

∑
k

∑
ak

∣∣∣∣Prθ (Ak = ak | X)− Pr(Ak = ak | X)

∣∣∣∣
]
=

∑
k

EX

[
dTV

(
Pr
θ
(Ak = ak | X),Pr(Ak = ak | X)

)]
=

∑
k

ϵkθ .

We derive the upper bound for the second term, i.e., Eq(2), as follows,

Eq(2) =
1

2

∑
x

∑
y

∑
a1:K

Pr(X = x,A1:K = a1:K) ·
∣∣∣Pr
w
(Y = y | A1:K = a1:K)− Pr(Y = y | A1:K = a1:K)

∣∣∣
=

1

2

∑
y

∑
a1:K

Pr(A1:K = a1:K) ·
∣∣∣Pr
w
(Y = y | A1:K = a1:K)− Pr(Y = y | A1:K = a1:K)

∣∣∣
=

1

2

∑
y

∑
a1:K

|Pr(A1:K = a1:K) · Pr
w
(Y = y | A1:K = a1:K)− Pr

w
(A1:K = a1:K) · Pr

w
(Y = y | A1:K = a1:K)

+ Pr
w
(A1:K = a1:K) · Pr

w
(Y = y | A1:K = a1:K)− Pr(A1:K = a1:K) · Pr(Y = y | A1:K = a1:K)|

⩽
1

2

∑
y

∑
a1:K

Pr
w
(Y = y | A1:K = a1:K) ·

∣∣∣Pr(A1:K = a1:K)− Pr
w
(A1:K = a1:K)

∣∣∣
+

1

2

∑
y

∑
a1:K

∣∣∣Pr
w
(Y = y,A1:K = a1:K)− Pr(Y = y,A1:K = a1:K)

∣∣∣
=

1

2

∑
a1:K

∣∣∣Pr(A1:K = a1:K)− Pr
w
(A1:K = a1:K)

∣∣∣+ dTV

(
Pr
w
(Y,A1:K),Pr(Y,A1:K)

)
=

1

2

∑
a1:K

∣∣∣∣∣∑
y

Pr(Y = y,A1:K = a1:K)−
∑
y

Pr
w
(Y = y,A1:K = a1:K)

∣∣∣∣∣+ dTV

(
Pr
w
(Y,A1:K),Pr(Y,A1:K)

)
⩽

1

2

∑
a1:K

∑
y

∣∣∣Pr(Y = y,A1:K = a1:K)− Pr
w
(Y = y,A1:K = a1:K)

∣∣∣+ dTV

(
Pr
w
(Y,A1:K),Pr(Y,A1:K)

)
= 2dTV

(
Pr
w
(Y,A1:K),Pr(Y,A1:K)

)
= 2ϵw.

Combining results from Eq(1) and Eq(2), we have ϵθ,w ⩽ ϵθ + 2ϵw ⩽
∑

k ϵ
k
θ + 2ϵw.

Table 2: Model properties. “Interpretability” indicates whether the outputs produced by a concept/attribute recognition model
are interpretable and whether humans can interpret the final decisions using these outputs. “Data-Driven Rules” denotes
whether a model can incorporate logical rules learned from data. “Human-Predefined Rules” specifies whether a model can
integrate logical rules predefined by humans. “Theoretical Guarantee” indicates whether a model provides a theoretical
guarantee on the relationship between the performance of the overall model and that of its individual components.

Model Interpretability Data-Driven Human-Predefined Theoretical
Rules Rules Guarantee

CBM [Koh et al., 2020] ✓ ✗ ✗ ✗
CEM [Zarlenga et al., 2022] ✗ ✗ ✗ ✗
DCR [Barbiero et al., 2023] ✓ ✓ ✗ ✗
NPC (ours) ✓ ✓ ✓ ✓

D EXPERIMENTAL SETUP

In this section, we provide additional details regarding the experimental setup.

Datasets We evaluate the model performance on a variety of benchmark datasets. 1) MNIST-Addition: We derive this
dataset from the original MNIST dataset [LeCun et al., 1998] by following the general preprocessing steps and procedures
detailed in [Manhaeve et al., 2018]. Each MNIST-Addition sample consists of two images randomly selected from the
original MNIST. The digits in these images, ranging from 0 to 9, represent two attributes, with their sum serving as the
class label. A total of 35,000 samples are created for MNIST-Addition. 2) GTSRB: GTSRB [Stallkamp et al., 2012] is a
dataset comprising 39,209 images of German traffic signs, with class labels indicating the type of signs. Additionally, we
annotate each sample with four attributes: “color”, “shape”, “symbol”, and “text”. 3) CelebA: CelebA [Liu et al., 2015]
consists of 202,599 celebrity face images annotated with 40 binary concepts. Here, we select the 8 most balanced binary
concepts1 and group them into 5 attributes: “mouth”, “face”, “cosmetic”, “hair”, and “appearance”. Following Zarlenga et al.
[2022], each unique combination of concept values is treated as a group. To balance the dataset and increase its complexity,
we rank these groups by the number of images they contain and pair them strategically: the group with the most images is
merged with the one with the fewest, the second most with the second fewest, and so on. The above strategy results in 127
total classes. 4) AwA2: AwA2 [Xian et al., 2018] contains 37,322 images of 50 types of animals, each annotated with 85
binary concepts. Certain concepts, such as those describing non-visual properties (e.g., “fast”, “domestic”) or indistinctive
features (e.g., “chewteeth”), or those representing background information (e.g., “desert” and “forest”), are excluded. After
the exclusion, 29 concepts remain, which are then grouped into 4 attributes: “color”, “surface”, “body”, and “limb”. For all
datasets, we split the samples into training, validation, and testing sets by a ratio of 8:1:1.

Baselines We select CBM [Koh et al., 2020] and several representative variants as baselines. Specifically, we choose
CEM [Zarlenga et al., 2022], a method that uses high-dimensional concept embeddings as the bottleneck instead of concept
probabilities, and DCR [Barbiero et al., 2023], which introduces a deep concept reasoner as the task predictor rather than
relying on a simple linear layer. Additionally, we train an end-to-end DNN [He et al., 2016] as an additional baseline.
It is important to note that CEM and the end-to-end DNN are not interpretable, as their components are not explicitly
understandable by humans, even though they may achieve competitive performance on downstream tasks. A comparison of
model properties is summarized in Table 2.

Evaluation Metrics We adopt the standard classification accuracy as the evaluation metric for the overall model.

Model Architectures To ensure a fair comparison with the various baselines, we consistently adopt ResNet-34 [He et al.,
2016] as the backbone for all methods. Specifically, in CBM [Koh et al., 2020], the concept recognition model is based
on ResNet-34, where the final layer outputs concept probabilities. The task predictor is implemented as a linear layer
that takes these concept probabilities as input and outputs predicted class scores. For CEM [Zarlenga et al., 2022], the
first module is implemented using ResNet-34, with its final layer being the embedding layer defined in [Zarlenga et al.,
2022]. This embedding layer produces both concept embeddings and concept probabilities. The subsequent task predictor
uses only the concept embeddings as input to produce the predicted class scores. In DCR [Barbiero et al., 2023], the first
module is identical to that of CEM, while the task predictor is the proposed deep concept reasoner (DCR). This reasoner

1Certain concepts are excluded due to political or ethical concerns.

takes concept probabilities as input and outputs predicted class scores, during which it leverages concept embeddings to
formulate logical rules. For NPC, the attribute recognition model is implemented using a multi-task learning framework.
Specifically, ResNet-34, without its original final layer, serves as the feature extractor to capture common features across
multiple attributes. For each attribute, a series of two linear layers acts as a dedicated task head, outputting a probability
vector corresponding to the attribute.

Human-Predefined Logical Rules Human experience can be used to formulate specific logical rules for downstream tasks,
representing valuable domain knowledge that can be integrated into models to enhance their reliability. Here, we demonstrate
a two-step procedure for constructing logical rules based on a given set of observed samples D = {(x, y, a1:K)}. 1) For
each observed sample (x, y, a1:K), we establish a corresponding logical rule of the form I(A1 = a1) ∧ . . . ∧ I(AK =
aK) ∧ I(Y = y). 2) The occurrences of the logical rules derived from all observed samples are then normalized to form a
weight for each rule, ensuring that the rules reflect the distribution of the observed data. Table 3 and Table 4 illustrate the
rules constructed using training samples from the MNIST-Addition and GTSRB datasets. In addition to the standardized
procedure introduced above, humans can also leverage their expertise to incorporate more diverse and task-specific rules
beyond this form.

Table 3: Logical rules constructed using training samples from MNIST-Addition and GTSRB datasets (Part 1).
Dataset Logical Rules
MNIST-Addition I(Number-First = a1) ∧ I(Number-Second = a2) ∧ I(Class = a1 +

a2), a1, a2 ∈ [0, 9]

GTSRB

I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Text) ∧ I(Text =
20) ∧ I(Class = regulatory–maximum-speed-limit-20)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Text) ∧ I(Text =
30) ∧ I(Class = regulatory–maximum-speed-limit-30)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Text) ∧ I(Text =
50) ∧ I(Class = regulatory–maximum-speed-limit-50)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Text) ∧ I(Text =
60) ∧ I(Class = regulatory–maximum-speed-limit-60)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Text) ∧ I(Text =
70) ∧ I(Class = regulatory–maximum-speed-limit-70)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Text) ∧ I(Text =
80) ∧ I(Class = regulatory–maximum-speed-limit-80)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Text) ∧ I(Text =
100) ∧ I(Class = regulatory–maximum-speed-limit-100)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Text) ∧ I(Text =
120) ∧ I(Class = regulatory–maximum-speed-limit-120)
I(Color = White)∧ I(Shape = Circle)∧ I(Symbol = Text)∧ I(Text =
80) ∧ I(Class = regulatory–end-of-maximum-speed-limit-80)
I(Color = Red)∧I(Shape = Circle)∧I(Symbol = Cat-Two)∧I(Text =
Undefined) ∧ I(Class = regulatory–no-overtaking)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol =
Car-Truck) ∧ I(Text = Undefined) ∧ I(Class =
regulatory–no-overtaking-by-heavy-goods-vehicles)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Arrow-Up) ∧
I(Text = Undefined) ∧ I(Class = warning–crossroads)
I(Color = White)∧ I(Shape = Diamond)∧ I(Symbol = Undefined)∧
I(Text = Undefined) ∧ I(Class = regulatory–priority-road)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Undefined) ∧
I(Text = Undefined) ∧ I(Class = regulatory–yield)
I(Color = Red)∧ I(Shape = Octagon)∧ I(Symbol = Text)∧ I(Text =
Stop) ∧ I(Class = regulatory–stop)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Undefined) ∧
I(Text = Undefined) ∧ I(Class = regulatory–road-closed-to-vehicles)
I(Color = Red)∧ I(Shape = Circle)∧ I(Symbol = Truck)∧ I(Text =
Undefined) ∧ I(Class = regulatory–no-heavy-goods-vehicles)
I(Color = Red) ∧ I(Shape = Circle) ∧ I(Symbol = Slash) ∧ I(Text =
Undefined) ∧ I(Class = regulatory–no-entry)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol =
Exclamation-Mark) ∧ I(Text = Undefined) ∧ I(Class =
warning–other-danger)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Arrow-Left) ∧
I(Text = Undefined) ∧ I(Class = warning–curve-left)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Arrow-Right) ∧
I(Text = Undefined) ∧ I(Class = warning–curve-right)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol =
Arrow-Consecutive-Turns) ∧ I(Text = Undefined) ∧ I(Class =
warning–double-curve-first-left)
I(Color = Red)∧I(Shape = Triangle)∧I(Symbol = Bump)∧I(Text =
Undefined) ∧ I(Class = warning–uneven-road)
I(Color = Red)∧ I(Shape = Triangle)∧ I(Symbol = Car)∧ I(Text =
Undefined) ∧ I(Class = warning–slippery-road-surface)

Table 4: Logical rules constructed using training samples from MNIST-Addition and GTSRB datasets (Part 2).
Dataset Logical Rules

GTSRB

I(Color = Red)∧I(Shape = Triangle)∧I(Symbol = Road-Narrows)∧
I(Text = Undefined) ∧ I(Class = warning–road-narrows-right)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Roadworks) ∧
I(Text = Undefined) ∧ I(Class = warning–roadworks)
I(Color = Red)∧ I(Shape = Triangle)∧ I(Symbol = Traffic-Signal)∧
I(Text = Undefined) ∧ I(Class = warning–traffic-signals)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Person) ∧
I(Text = Undefined) ∧ I(Class = warning–pedestrians-crossing)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Person-Two) ∧
I(Text = Undefined) ∧ I(Class = warning–children)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Bicycle) ∧
I(Text = Undefined) ∧ I(Class = warning–bicycles-crossing)
I(Color = Red) ∧ I(Shape = Triangle) ∧ I(Symbol = Ice-or-Snow) ∧
I(Text = Undefined) ∧ I(Class = warning–ice-or-snow)
I(Color = Red)∧I(Shape = Triangle)∧I(Symbol = Deer)∧I(Text =
Undefined) ∧ I(Class = warning–wild-animals)
I(Color = White) ∧ I(Shape = Circle) ∧ I(Symbol = Undefined) ∧
I(Text = Undefined) ∧ I(Class = regulatory–end-of-prohibition)
I(Color = Blue) ∧ I(Shape = Circle) ∧ I(Symbol = Arrow-Right) ∧
I(Text = Undefined) ∧ I(Class = regulatory–turn-right-ahead)
I(Color = Blue) ∧ I(Shape = Circle) ∧ I(Symbol = Arrow-Left) ∧
I(Text = Undefined) ∧ I(Class = regulatory–turn-left-ahead)
I(Color = Blue) ∧ I(Shape = Circle) ∧ I(Symbol = Arrow-Up) ∧
I(Text = Undefined) ∧ I(Class = regulatory–go-straight)
I(Color = Blue) ∧ I(Shape = Circle) ∧ I(Symbol =
Arrow-Up-and-Right) ∧ I(Text = Undefined) ∧ I(Class =
regulatory–go-straight-or-turn-right)
I(Color = Blue) ∧ I(Shape = Circle) ∧ I(Symbol =
Arrow-Up-and-Left) ∧ I(Text = Undefined) ∧ I(Class =
regulatory–go-straight-or-turn-left)
I(Color = Blue) ∧ I(Shape = Circle) ∧ I(Symbol =
Arrow-Down-Right) ∧ I(Text = Undefined) ∧ I(Class =
regulatory–keep-right)
I(Color = Blue) ∧ I(Shape = Circle) ∧ I(Symbol =
Arrow-Down-Left) ∧ I(Text = Undefined) ∧ I(Class =
regulatory–keep-left)
I(Color = Blue) ∧ I(Shape = Circle) ∧ I(Symbol =
Arrow-Roundabout) ∧ I(Text = Undefined) ∧ I(Class =
regulatory–roundabout)
I(Color = White) ∧ I(Shape = Circle) ∧ I(Symbol = Car-Two) ∧
I(Text = Undefined) ∧ I(Class = regulatory–end-of-no-overtaking)
I(Color = White) ∧ I(Shape = Circle) ∧ I(Symbol =
Car-Truck) ∧ I(Text = Undefined) ∧ I(Class =
regulatory–end-of-no-overtaking-by-heavy-goods-vehicles)

	Introduction
	Preliminaries
	Neural Probabilistic Circuits
	Model Architecture and Inference
	Three-Stage Training Algorithm
	Theoretical Analysis

	Experiments
	Conclusion
	Related Work
	Limitations and Discussions
	Proof for Compositional Error
	Experimental Setup

