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ABSTRACT

Large Language Models (LLMs) for formal theorem proving have shown signif-
icant promise, yet they often lack generalizability and are fragile to even minor
transformations of problem statements. To address this limitation, we introduce
a novel data augmentation pipeline designed to enhance model robustness from
two perspectives: symmetry and difficulty. From the symmetry perspective, we
propose two complementary methods: EvolAST, an Abstract Syntax Tree (AST)
based approach that targets syntactic symmetry to generate semantically equivalent
problem variants, and EvolDomain, which leverages LLMs to address seman-
tic symmetry by translating theorems across mathematical domains. From the
difficulty perspective, we propose EvolDifficulty, which uses carefully designed
evolution-based instructions to guide LLMs in generating new theorems with a
wider range of difficulty. We then use the evolved data to train EvolProver, a
7B-parameter non-reasoning theorem prover. EvolProver establishes a new state-
of-the-art (SOTA) on FormalMATH-Lite with a 53.8% pass @32 rate, surpassing
all models of comparable size, including reasoning-based models. It also sets new
SOTA records for non-reasoning models on MiniF2F-Test (69.8% pass@32), Ineq-
Comp-Seed (52.2% pass@32), and Ineq-Comp-Transformed (34.0% pass@32).
Ablation studies further confirm our data augmentation pipeline’s effectiveness
across multiple benchmarks.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated significant potential in mathematical reasoning,
sparking a surge of research into their application for formal theorem proving. Formal languages like
Lean (Moura & Ullrich, 2021), Coq (Barras et al., 1997), and Isabelle (Paulson, 1994) represent math-
ematical proofs as rigorous code implementations. This process demands strict syntactic precision
and logical soundness, with every proof requiring compiler verification. While this guarantees the
absolute reliability of proofs, it also creates a major bottleneck: the extreme scarcity of high-quality
training data. Crafting formal proofs requires deep domain expertise and substantial time, a reality
that fundamentally conflicts with the data-intensive paradigm of LLMs.

To address the scarcity for data, the research community has explored various data synthesis methods.
For instance, DeepSeek-Prover (Xin et al., 2024a) attempts to automatically translate a large number
of informal natural language problems into formal statements, using model scoring and a hypothesis
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Figure 1: An example of problems evolved by EvolDomain, EvolDifficulty, and EvolAST. A seed
formal statement is evolved in parallel by EvolDomain and EvolDifficulty, yielding two new state-
ments. Each of these is then further evolved by EvolAST to generate syntactic variants.

rejection mechanism for screening. Goedel-Prover-V2 (Lin et al., 2025) adopts a scaffolded strategy
to generate mathematical problems of appropriate difficulty to provide models with more effective
learning signals. Meanwhile, STP (Dong & Ma, 2025) constructs two adversarial roles of a conjecturer
and a prover that iteratively improve to jointly generate new problems and proofs.

However, a line of work has shown that models trained with such synthesized data still lack gener-
alizability. For example, Zhao et al. (2025a) noted that minor transformations of a problem, such
as transforming an inequality of the form f(z) > g(x) to f(z) + f(y) > g(z) + g(y). degrade the
performance of LLMs drastically. Furthermore, other studies (Hao et al., 2025; Huang et al., 2025)
have revealed that this fragility is not unique to formal reasoning; informal LLMs are also susceptible
to minor problem transformations. Motivated by this, we propose a novel data augmentation pipeline
to improve model generalizability by addressing it from two perspectives: symmetry and difficulty.

In mathematics, symmetry means exactly invariance under certain transformations. From the symme-
try perspective, the fragility of existing models against minor transformations of problems suggests
they fail to learn the underlying symmetry structure of the mathematical problem. To address this,
we introduce two complementary methods targeting syntactic and semantic symmetry. The first,
EvolAST, addresses syntactic symmetry using Abstract Syntax Tree (AST). It parses a formal
statement into an AST, applies equivalence transformations using a library of axioms and theorems,
and converts the modified tree back into a new statement. This generates semantically identical but
syntactically diverse problems. The core strength of EvolAST is its extensibility, as any mathematical
equivalence can be encoded as a new transformation rule, allowing for systematic enrichment of the
data’s structural diversity.

Our second method, EvolDomain, addresses semantic symmetry, where a theorem can be rein-
terpreted in different domains while preserving its core logic. EvolDomain uses evolution-based
instructions to guide LLMs in translating theorems across mathematical domains, thereby creating
novel and diverse problem statements.

From the difficulty perspective, studies have shown that models trained on data with a narrow
difficulty range often fail to generalize (Jiang et al., 2023; Parashar et al., 2025). To mitigate this,
we propose EvolDifficulty, a method that uses carefully designed instructions to evolve existing
theorems by adjusting their difficulty. This process creates a dataset with a much broader difficulty
spectrum, which discourages models from relying on shortcuts or mere memorization.

Combining EvolAST, EvolDomain, and EvolDifficulty, we create a comprehensive data augmentation
pipeline. Example problems evolved by our pipeline in provided in Figure 1. We apply this pipeline
to augment public datasets such as STP (Dong & Ma, 2025) and Deepseek-Prover-V1 (Xin et al.,
2024a). By training DeepSeek-Prover-V1.5-Base on this augmented data, we produce our model,
EvolProver. EvolProver achieves state-of-the-art (SOTA) performance on multiple benchmarks.
Notably, EvolProver is a non-reasoning (i.e., non-CoT) model, yet it achieves results comparable
to, and sometimes surpassing, those of reasoning models. On FormalMATH-Lite (Yu et al., 2025),
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it sets a new SOTA with a 53.8% pass@32 rate among models of comparable size, including
reasoning models. Furthermore, it establishes new SOTA pass @32 rates for non-reasoning models
of comparable size on several benchmarks: 69.8% on MiniF2F-Test (Zheng et al., 2021), 52.2%
on Ineq-Comp-Seed (Zhao et al., 2025a), and 34.0% on Ineq-Comp-Transformed (Zhao et al.,
2025a). Ablation studies confirm the efficacy of our pipeline, showing that EvolProver outperforms
its counterparts trained on unaugmented or partially augmented data, in some cases by over 10
percentage points.

The main contributions of this work can be summarized as follows:

* We propose a novel data augmentation pipeline that improves model generalizability by
systematically enhancing formalized data directly from both symmetry and difficulty per-
spectives.

* We propose EvolAST, a highly extensible, AST-based method that generates syntactically
diverse yet semantically equivalent problems by leveraging formal axioms and theorems
as transformation rules. Additionally, we introduce EvolDomain and EvolDifficulty, two
LLM-driven methods that enrich training data by translating problems across domains and
evolving their difficulty, respectively.

* We train and release EvolProver, a powerful non-reasoning theorem prover built on our aug-
mented data. EvolProver achieves state-of-the-art performance across multiple benchmarks,
outperforming all comparable models on FormalMATH-Lite and setting new records for
non-reasoning models on others.

2 RELATED WORKS

Formal Provers. Numerous LLM-based formal provers (Ji et al., 2025; Zhang et al., 2025; Shang
et al., 2025) have emerged after the advent of ChatGPT, including reasoning-based models like
DeepSeek-Prover-V2 (Ren et al., 2025), non-reasoning models like STP (Dong & Ma, 2025), and
tree-search models like BFS-Prover-V1 (Xin et al., 2025a) & BFS-Prover-V2 (Xin et al., 2025b).
Our work focuses on advancing the state-of-the-art for non-reasoning models, which offer significant
computational efficiency.

Data Augmentation in Mathematical Reasoning. The critical need for large-scale, high-quality
training data has spurred significant research into automated methods for mathematical problem
generation. Prominent approaches in informal mathematics include MetaMath (Yu et al., 2024),
which bootstraps new data by rewriting existing questions from multiple perspectives like rephrasing
and backward reasoning. Similarly, WizardMath (Luo et al., 2025a) adapts the Evol-Instruct frame-
work (Luo et al., 2025b; Xu et al., 2024) to systematically generate problems of varying complexity.
Another work, PromptCoT (Zhao et al., 2025b), focuses on synthesizing complex problems by
emulating the design process of human experts, grounding the generation in core mathematical
concepts and logical structures. In the context of formal mathematics, STP (Dong & Ma, 2025) uses
a single LLM that alternates between a “conjecturer” and a “prover” in a self-play loop, thereby
synthesizing new formal conjectures and proofs from limited seed data. Ineq-Comp (Zhao et al.,
2025a) starts from simple inequalities and applies small but systematic algebraic transformations,
such as duplicating variables and adding or multiplying inequalities, or performing substitutions
like squaring and taking square roots, to construct families of more structurally complex composite
inequalities. Inspired by both these informal and formal data-augmentation pipelines, we introduce
EvolDomain and EvolDifficulty. These methods also utilize LLMs but specifically focus on the
evolution of formal mathematical statements to enhance their complexity and domain coverage,
thereby increasing the diversity of the training data.

While these approaches expand the range and depth of generated problems, they also expose an
inherent weakness of LLM-based evolution: the inevitable introduction of syntactic or semantic
errors. To mitigate this issue, we propose EvolAST. EvolAST leverages the programmatic features
of the Lean 4 proof assistant to perform rewrites directly at the Abstract Syntax Tree (AST) level.
This approach ensures that all generated formal statements are syntactically correct and semantically
equivalent, effectively increasing data diversity and precision.



Published as a conference paper at ICLR 2026

{ N\ { N\
Existing Verified s N N
Formal Statements Evolved theorem thm (jb : N) (h,: 10

Informal / Formal <b A b<100) (h‘;10*j.b=
L 4 Statements ) | = 99* (0% 10)) (h,:j+5=2*
(b +5)):j-b=18:=by sorry
\. ) ( ~
P Verification - ~
Evolve EvolAST
r \ Utilize Lean 4 Server
. Extracted ASTs fi
Evolution Strategy B to Check Syntax f;:'r:'laac:i:ed statser:::ts

p
EvolDomain

‘ 0 Lean 4 Server Extracted AST
Step1. Deconstruction & Abstraction

Step2. Analogy & Transfer ﬁ Correct Syntax one 2 ‘ f %

Step3. Instantiation & Packaging time accordmg to

L || B _;@e, S5

EvolDifficulty

R o Utilize LLM to Check Predefined Rules
Adjust Logical Structure Cc i cy & L J
HARD f .

Correctness & Difficulty
womaL U o ) theorem thm_aug (jb : N) (h, :
= : 2%(5+b)=5+]) (h,: A
©® Adjust Constraints (| - D ) (h‘ :j*10-b=
mv‘ an— * ):j-b= 18:=by
L J ¢ J J
\ 7 \ 7

Figure 2: The workflow of our data augmentation pipeline comprises three phases: EvolDomain and
EvolDifficulty, Verification, and EvolAST.

Robustness of LLMs in Mathematical Reasoning. Recent work has highlighted that LLMs lack
robustness against small perturbations in mathematical problems, such as variable renaming or adding
noise. For instance, the PutnamGAP benchmark (Hao et al., 2025) tests equivalence-preserving
variants and shows average accuracy declines of 3-10%. Similarly, MATH-P-Hard (Huang et al.,
2025) introduces structural shifts, causing performance drops of 10-25% in models like o1-mini.

While this issue is recognized in informal mathematics, the robustness of LLMs in formal reasoning
systems like Lean 4 and Coq remains largely underexplored. Built from systematically composed
inequalities, the Ineq-Comp benchmark (Zhao et al., 2025a) was developed to address this gap by
measuring a prover’s performance drop between original problems and their perturbed counterparts.

3 METHOD

Our methodology is centered around a multi-stage data augmentation pipeline, as illustrated in
Figure 2. First, we leverage LLMs to expand existing formal statements through two evolution-based
processes: EvolDomain, for cross-domain translation, and EvolDifficulty, for complexity adjustment.
After a rigorous verification stage, we further diversify the data’s syntactic structure using EvolAST,
a deterministic AST-based transformation method. Finally, we train our model, EvolProver, on this
augmented dataset. To control the instability introduced at each stage, we note that the LLM-driven
steps (EvolDomain, EvolDifficulty) behave like exponential magnification (z — exp(x)): since they
are based on LLMs, they may introduce significant and unpredictable changes, and the propagation
of such instability can be likened to an exponential function where a small initial perturbation
x may grow into exp(x). In contrast, EvolAST, as a deterministic, syntax-based transformation,
introduces much smaller instability; its effect is more similar to a linear function, effectively turning
x into 2x. Executing the LLM-based stages first and then applying the syntactic transformation
(x — exp(z) — 2exp(x)) avoids prematurely amplifying noise. Keeping the overall instability at
a moderate level is crucial, because overly unstable problems become hard to prove, which in turn
prevents us from obtaining enough valid training instances to support an effective data augmentation
strategy. This procedure allows us to both enrich the diversity of the data and maintain a sufficient
amount of training data. The following sections detail each component of this pipeline.
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3.1 EVOLDOMAIN AND EVOLDIFFICULTY

Proven formal statements, with their inherent semantic and syntactic correctness, serve as ideal seeds
for data generation. Our work mainly builds upon two open-source datasets, Deepseek-Prover-V1
and STP-Lean, which often lack natural language descriptions. We therefore evolve these formal
statements directly by instructing an LLM to generate new, related theorems. This approach leverages
the logical structure embedded in the formal language itself as a basis for creative generation,
bypassing the need for natural language intermediaries.

EvolDomain. EvolDomain leverages an LLM to translate a formal statement into new mathematical
domains. This process involves three main steps: 1) abstracting the statement’s logical skeleton, 2)
identifying an analogous concept in a target domain, and 3) instantiating a new, concrete proposition
based on this analogy.

Formally, let this process be a function . Given a source statement S{"rmal and a target domain D,
(selected from a predefined list Lp = {D1, D2, ..., Dy}, F guides an LLM to first extract the
statement’s abstract logical skeleton. Based on this skeleton, the model identifies a structurally similar
concept in D,,, and uses it to construct a new proposition. The output is a pair consisting of a natural
language description, P;, and a new formal statement, §f°‘mal. This can be formally represented as:
]:(‘Sflformal7 Dm) — (:Sv\lformal’ E)

To maximize the exploration of logical connections across domains, our prompt further guides the
LLM to simultaneously transfer and instantiate the core logical skeleton into 3 to 5 distinct new
domains. Therefore, the final output of a single function call is a set of pairs spanning multiple
domains, with each pair containing a new formal statement and its corresponding natural language
description. Prompt templates and examples can be found in Appendix A.3.

EvolDifficulty. EvolDifficulty leverages an LLM to adjust a formal statement’s difficulty, thereby
creating a dataset with a broad difficulty spectrum. We denote this process by the function £. The
process, &, is guided by carefully designed evolution strategies. Based on expert consultation,
we designed five core evolution strategies, S = {s1,...,s5}: (1) Adjusting Logical Structure,
(2) Adjusting Mathematical Depth, (3) Adjusting Abstraction, (4) Adjusting Constraints, and (5)
Adjusting Parameters. Given a formal statement S™, the function applies a strategy s;, € S with
an evolution direction 6 € {+1, —1} (for increasing or decreasing difficulty, respectively) to instruct

an LLM to generate a new pair of a new formal statement §f°“““l and its natural language description
P;. This can be formally represented as £(Somal s, §) = (Sfermal | p),

By systematically applying this framework, EvolDifficulty enables fine-grained control over dataset
difficulty, generating problems with a smooth gradient that enriches the dataset’s hierarchical structure.
Prompt templates and examples can be found in Appendix A.4.

Verification. We employ a stringent two-stage verification pipeline to ensure data quality. First,

each generated statement Si®™ is validated for syntactic integrity using the Lean 4 compiler.

Statements that fail are given a single LLM-based repair attempt before being discarded. Second, all
syntactically valid pairs (S{"rmal, P;) undergo semantic evaluation by an LLM-based judge. The judge
assesses three aspects: consistency between the formal and natural language versions, propositional
correctness, and difficulty appropriateness. This dual-filter mechanism, combining deterministic
compilation with semantic judgment, ensures that only syntactically sound and semantically coherent
data populates our final dataset. Prompt templates can be found in Appendix A.5.

3.2 EVOLAST

EvolAST is founded on the principle that formal language statements, as structured code, can be
parsed into Abstract Syntax Tree (AST). This allows us to bypass non-deterministic models and
instead apply a deterministic set of rewriting rules based on established axioms and theorems,
guaranteeing semantic equivalence.

We formalize this process as a function .A. EvolAST implements an extensible set of rewriting
rules (currently 7 rules), R = {ry,...,r7}, where each rule r corresponds to a specific logical
equivalence: (1) Hypothesis Reordering, (2) Commutativity, (3) Associativity, (4) Distributivity, (5)
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De Morgan’s Laws, (6) Operand Swapping for Symmetric Relations, and (7) Dual Relation Conver-
sion. Given an input statement S{"rmal, the function A first parses it into an AST. It then recursively
traverses the tree, applying any applicable rule r;, € R at each node with a predefined probability
p. Finally, the modified AST is recompiled into a new formal statement §f°rmal. The process can be

formally represented as A(S™™al p) = Sformal We provide an example in Appendix A.6.

Since all transformations are based on strict logical equivalences, EvolAST generates syntactically
diverse data while ensuring semantic correctness, thus eliminating the need for further verification.
The framework is highly extensible, as any known mathematical or logical equivalence can be
encoded as a new rewriting rule.

3.3 TRAINING EVOLPROVER

We train our final model, EvolProver, by fine-tuning DeepSeekProver-V1.5-Base (Xin et al., 2024b)
on our augmented dataset. DeepSeekProver-V1.5-Base is currently the strongest model pretrained
purely on large-scale formal theorem-proving data without chain-of-thought supervision, making it
particularly well suited for our synthetic data and our goal of enhancing fast, non-reasoning provers.
The training process consists of two stages: Supervised Fine-Tuning (SFT) and Reinforcement
Learning (RL). Detailed information on dataset curation and training algorithms can be found in
Appendix A.1.

For comparison and ablation studies, we also trained several other models. This includes a baseline
model, EvolProver-Base, which was trained exclusively on the original, unaugmented public data.
We also prepared a series of specialized models for our comprehensive ablation experiments, with
details provided in Appendix A.2.

4 EXPERIMENTS

4.1 BASELINES

Existing formal provers are broadly categorized into three types: non-reasoning, reasoning, and
tree-search models.

Non-reasoning models generate proofs end-to-end without an intermediate thought process. Key
examples include DeepSeek-Prover-V2 (non-CoT) (Ren et al., 2025), Goedel-Prover-SFT (Lin et al.,
2025), and STP (Dong & Ma, 2025).

Reasoning models employ a chain-of-thought process to generate proofs, where the reasoning process
is often significantly longer than the final proof. Key examples are DeepSeek-Prover-V2 (CoT) (Ren
et al., 2025), Moonshot’s Kimi-Prover-Preview (Wang et al., 2025a) and Kimi-Prover (Wang et al.,
2025b), and Goedel-Prover-V2 (Lin et al., 2025). Notably, DeepSeek-Prover-V2 has both a reasoning
and a non-reasoning mode. While generally higher performing, reasoning models demand substantial
computational resources due to their chain-of-thought approach (e.g., more than 6000 tokens per
proof vs. less than 700 for non-reasoning models). This focus on token efficiency has spurred a recent
wave of interest in fast, non-reasoning models, such as Claude 4’s Non-thinking mode (Anthropic,
2025) and Grok-Code-Fast-1 (xAl, 2025).

Tree-search models represent an intermediate proof state as a node in a search tree and use a model
to assign heuristic scores to guide the search order. Key examples include BFS-Prover (Xin et al.,
2025a), DeepSeek-Prover-V1.5 + RMaxTS (Xin et al., 2024b), and InternL.M2.5-StepProver (Wu
et al., 2024).

For our comparative analysis, we report the performance metrics as published by the original authors
to ensure consistency and avoid discrepancies from our own re-evaluations.

4.2 RESULTS

FormalMATH (Yu et al., 2025) is a broad dataset of formal theorems. We follow standard practice
and evaluate on its 425-problem subset, FormalMATH-Lite, as other problems in the full dataset were
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Table 1: Comparison with SOTA 7B-size models on the FormalMATH-Lite dataset; 1 means increase
in absolute performance over the ablation model EvolProver-Base; Average Token Length means the
average number of output tokens across the benchmark. We do not report average token length for
tree-search models, as this metric is not directly comparable with other model types.

Models Average Token Length Sample Budget FormalMATH
Reasoning Models

DeepSeek-Prover-V2(COT) 4804.6 32 51.76%
Kimina-Prover-Preview 6097.7 32 48.94%
Tree-Search Models

InternLM2.5-StepProver N/A 1 x 3200 7.87%
BFS-Prover N/A 1 x 3200 27.19%
Non-Reasoning Models

DeepSeek-Prover-V1.5-SFT 1159 32 40.40%
DeepSeek-Prover-V1.5-RL 163.4 32 47.98%
Goedel-Prover-SFT 458.4 32 46.70%
STP 186.8 32 48.59%
DeepSeek-Prover-V2-7B-non-CoT 394.5 32 50.35%
EvolProver-Base(Ours) 629.8 32 44.71%
EvolProver(Ours) 653.7 32 53.86% (1 9.15%)

used in training. Problems within FormalMATH-Lite were held out and used exclusively for final
evaluation.

The results are summarized in Table 1. EvolProver achieves a new SOTA of 53.86% among models
of comparable size, surpassing the previous best of 51.76%. Notably, our non-reasoning model
outperforms top reasoning models like DeepSeek-Prover-V2 and Kimi-Prover-Preview. Furthermore,
EvolProver outperforms its baseline, EvolProver-Base, by 9.15 percentage points, demonstrating the
significant impact of our data augmentation pipeline.

MiniF2F (Zheng et al., 2021) is a standard benchmark comprising 488 problems from mathematics
competitions. Following common practice, we report results on its 244-problem test set, MiniF2F-
Test. The results are presented in Figure 3. EvolProver achieves a pass@32 rate of 69.80% on
MiniF2F-Test, establishing a new SOTA performance among non-reasoning models of comparable
size. Notably, this performance is comparable to, and in some cases exceeds, that of reasoning
models, despite using significantly fewer tokens (a nearly 10-fold reduction in token consumption).
Due to the construction of the training data, the content generated by EvolProver, in addition to the
proof, also includes a restatement of the problem, while further analysis is placed in section A.8,
which makes its outputs slightly longer than those of the other non-chain-of-thought models.

Ineq-Comp (Zhao et al., 2025a) is a benchmark designed to evaluate the robustness of formal provers
against minor problem perturbations. It contains 75 seed problems from Olympiad-level inequalities
and 150 corresponding transformed variants. Each seed problem is systematically altered through
simple operations(e.g., algebraic rewrites, variable duplication) to create two transformed variants.
While humans can easily solve these transformed problems, formal provers often struggle with them
even if they can solve the original. A model’s robustness is measured by the ratio of its performance
on transformed problems to its performance on the seed problems, for which a higher ratio indicates
greater robustness.

Our results are presented in Table 2. EvolProver again sets a new SOTA for non-reasoning models on
all three metrics (seed, transformed, and ratio), outperforming the next-best non-reasoning model by
a significant margin. Its performance is also comparable to that of top reasoning models. Notably,
our data augmentation pipeline leads to a substantial boost in robustness: EvolProver’s robustness
ratio is 30.74 percentage points higher than that of EvolProver-Base, demonstrating the effectiveness
of our approach.

5 ANALYSIS

Evolution Strategy. EvolDifficulty and EvolDomain employ a general LLM to directly evolve
formalized mathematical theorems. This approach addresses the inherent complexity of mathematical
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Figure 3: Comparison with SOTA models on the MiniF2F-Test dataset. Pass Rate means pass@32

success rate. Average token length is the average number of tokens generated by models across the

benchmark. We categorize models as Non-CoT(non reasoning) and CoT(reasoning)

Table 2: Comparison with SOTA 7B-size models on the Ineq-Comp Benchmark; Pass means pass @32
rate for reasoning models and non-reasoning models, and means 1 x 3200 pass rate for tree-search
models.T means increase in absolute performance over the ablation model EvolProver-Base.

Models Pass on Seed  Pass on Transformed Pass Ratio
Reasoning Models

DeepSeek-Prover-V2 (COT) 66.23% 44.53% 67.23%
Kimina-Prover-Preview 50.06% 27.58% 55.09%
Tree-Search Models

DeepSeek-Prover-V1.5 (RL + RMaxTS) 42.66% 14.83 % 34.76 %
InternLM2.5-StepProver 25.59% 3.44 % 16.6 %
Non-Reasoning Models

DeepSeek-Prover-V1.5 (RL) 34.40% 6.68% 19.42%
Goedel-Prover-SFT 43.46% 14.54% 33.47%
DeepSeek-Prover-V2-7B-non-CoT 56.00% 27.33% 48.90%
EvolProver-Base (Ours) 43.26 % 14.89 % 34.43%
EvolProver (Ours) 52.20% (1 8.94%) 34.02% (1 19.13%) 65.17 % (+ 30.74%)

formalization(Lu et al., 2025; Li et al., 2025), a task traditionally reliant on specialized models trained
to convert natural language problems into formal expressions. However, the direct application of
general-purpose LLMs for this purpose remains relatively unexplored, leaving their comparative
advantages and limitations as an open question.

To validate our strategy of directly evolving formal statements, we compare it against a common
alternative: evolving Natural Language (NL) problems first and then formalizing them. We designed
a controlled experiment with four branches:

* EvolDomain & EvolDifficulty (Ours): Directly evolves new formal statements from
existing ones.

* Formalization-Formalizer: Evolves NL problems, then formalizes them using a specialized
model (Kimina-Formalizer-7B).

* Formalization-LLM-zero-shot: Evolves NL problems, then formalizes them using a
general-purpose LLM (Gemini-2.5-Pro) in a zero-shot setting.

* Formalization-LLM-few-shot: The same as above, but in a few-shot setting.

Starting with 400 seed problems, we generated an equal number of candidates using each method
and passed them through our stringent verification pipeline. The number of successfully verified
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Comparison of Evolution Methods
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Figure 4: Comparison of the number of candidates passing verification for four evolution methods.
Our EvolDomain & EvolDifficulty performs best.

statements for each method is shown in Figure 4. Our direct evolution approach significantly
outperforms all NL-based methods, confirming its superiority. The final candidate count can exceed
400 as each seed may yield multiple valid variants. Additionally, we directly evaluated the semantic
quality of 1,634 data with EvolDomain and EvolDifficulty using DeepSeek-V3.1. Among them, 496
statements failed verification, corresponding to a semantic failure rate of 30.35%.

Domain Diversity. Here, we analyze how our framework improves domain diversity and how this
enhancement translates to performance gains. Figure 5 illustrates the effect of EvolDomain on a
sample of 200 seed problems. The initial distribution is heavily skewed, with domains like Algebra
dominating while others like Calculus are absent. After applying EvolDomain, the dataset becomes
significantly more balanced: the share of over-represented domains is reduced, and previously
missing categories are introduced. The domains for both sets were classified by DeepSeek-V3 and
human-verified.

This improved diversity directly leads to better model performance across various domains, as detailed
in Table 3. Comparing EvolProver against the EvolProver-Base baseline, our full model achieves
gains across most categories. Critically, it makes a breakthrough in Calculus, solving 3 problems
where the baseline solved 0. These results confirm that our strategy not only enriches domain diversity
but also enhances the model’s overall mathematical capabilities.

Similarity. Additionally, we investigate whether the evolution process leads to the training data
containing more samples similar to the test sets. To this end, we conduct an analysis on the MiniF2F-
Test, FormalMATH-Lite, and Ineq-Comp test sets. We use each test sample as a query and employ
the state-of-the-art embedding model Qwen3-Embedding-8B to retrieve its top-1 most similar sample

Domain Distribution Domain Distribution

I Algebra: 57.5% B Algebra: 20.1%
Number Theory: 23.0% Number Theory: 16.8%
Discrete Mathematics: 10.0% Sequences Series : 15.4%
Calculus: 3.5% Discrete Mathematics: 14.3%
Sequences Series : 3.0% Geometry: 7.2%
Geometry: 2.0% Calculus: 6.8%
Precalculus: 1.0% Differentiation: 5.2%
Differentiation: 0.0% Multivariable Calculus: 4.9%
Multivariable Calculus: 0.0% B Others: 3.1%
Integral: 0.0% Precalculus: 2.3%
Applied Mathematics: 0.0% Integral: 2.1%

B Others: 0.0% Applied Mathematics: 1.8%

Before Evolution - Domain Distribution After Evolution - Domain Distribution

Figure 5: Comparison of Mathematical Domain Distribution Before and After EvolDomain.
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Table 3: Number of proved problems on FormalMATH-Lite benchmark in different domains under
32 generation trials. EvolProver improves upon EvolProver-Base across most domains.

Domain EvolProver-Base EvolProver Total
Algebra 121 141 (+20) 235
Applied Mathematics 28 33 (+5) 46
Number Theory 16 23 (+7) 45
Precalculus 14 15 (+1) 23
Geometry 7 8 (+1) 17
Discrete Mathematics 2 5(+3) 25
Calculus 0 3(+3)
Multivariable Calculus 2 2(=)

Others 0 0(-) 23

Table 4: Ablation experiment results on the FormalMATH-Lite benchmark, the MiniF2F-Test
benchmark, and the Ineq-Comp benchmark. All results are pass@32 rate. Superscripts denote
the training data used: superscript’ for Public dataset only; superscript™! for Public dataset +
EvolDomain & EvolDifficulty augmentation; superscript®*!*? for Full augmentation including Public
dataset, EvolDomain & EvolDifficulty, and EvolAST. EvolProver-Ablation-SFT and Evoler-SFT are
trained through a sole SFT stage. EvolProver-Base, EvolProver-Ablation-RL and EvolProver are
trained through an SFT stage and an RL stage.

Ineq-Comp Ineq-Comp Ineq-Comp

Models FormalMATH MiniF2F (Seed) (Transformed) (Ratio)
EvolProver-Base’ 44.71% 52.05% 43.26% 14.89% 34.43%
EvolProver-Ablation-SFT %! 50.35% 65.16% 49.79% 29.19% 58.62%
EvolProver-SFT ™+1+2 51.53% 66.39% 49.82% 30.35% 60.19%
EvolProver-Ablation-RL %+! 51.98% 68.22% 50.36% 33.05% 65.62%
EvolProver '+2 53.96 % 69.80% 52.20% 34.02% 65.17 %

from our final training data. These paired theorems are then evaluated by DeepSeek-V3.1 for human-
like similarity assessment. We instruct the model to score each pair on a scale from 1 to 10, where
1 denotes “completely dissimilar” and 10 denotes “‘semantically identical.” The evaluation results
show that the average similarity score of these pairs is about 3.48, indicating that even among the
most syntactically and semantically similar samples between the training and test sets, the overall
similarity remains quite limited. Further details are provided in Appendix A.7.

Ablation Experiments. To further validate the effectiveness of our proposed methods, we conduct
a series of comprehensive ablation studies. The results are presented in Table 4. These experiments
isolate the impact of each component and demonstrate that they provide consistent benefits across
multiple benchmarks and at various training stages. In addition, we analyze the mathematical
domains of the problems in the FormalMATH-Lite benchmark based on these ablation experiments.
Experimental details are provided in Appendix A.2.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduced a highly-extensible data augmentation pipeline with three methods:
EvolDomain, EvolDifficulty, and EvolAST, designed to improve model generalizability from semantic
and syntactic perspectives. Our resulting model, EvolProver, achieves new SOTA results on several
key benchmarks, notably surpassing all comparable models on FormalMATH-Lite. For future work,
we plan to enhance EvolProver’s reasoning capabilities by incorporating synthetically generated
Chain-of-Thought data into its training.
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A APPENDIX

A.1 DETAILS OF TRAINING EVOLPROVER

Data Curation. Our data curation process follows a multi-stage funnel. We begin with a seed pool
of approximately 3.3 million verified formal statements aggregated from four sources: DeepSeek-
Prover-V1, STP-lean, MiniF2F-Valid, and FormalMATH-AIl (excluding the FormalMATH-Lite
subset).

From this pool, we sample 70k statements for evolution. These initial 70k samples are carefully
curated from our four sources. Three of the datasets—DeepSeek-Prover-V1, FormalMATH-AII (ex-
cluding FormalMATH-Lite), and MiniF2F-Valid—are high-quality but relatively small, collectively
containing just over 30,000 theorems, and we include all theorems from these valuable sources in
our synthesis pool. The fourth source, STP-lean, is a much larger synthetic dataset with 3.26 million
theorems; to prevent this synthetic data from dominating the more curated sources and to avoid
excessive computational costs, we first filter out theorems originating from mathlib and then perform
a weighted sampling over the remainder to select an additional 30,000+ examples, guided by the
importance weights provided by the STP-lean authors. The number of sampled examples is chosen to
be comparable to the total size of the other real-world datasets combined, yielding a high-quality and
diverse seed set of 70k theorems in a cost-effective manner, balancing valuable real-world problems
with a broader set of synthetic examples. These are processed by our EvolDomain and EvolDifficulty
methods using Gemini-2.5-Pro and DeepSeek-R1, which then undergo a verification process to yield
57.4k high-quality (statement, description) pairs. This verification first involves a syntax check using
the Lean 4 compiler; if the compiler finds a syntax error, we use DeepSeek-V3 (DeepSeek-Al, 2025)
to repair it, after which DeepSeek-V3 performs a final semantic check. Next, we apply EvolAST
to this set for syntactic diversification, expanding it to approximately 96.7k entries (as a single
statement can generate multiple AST variants). Finally, we generate proofs for each statement.
Using DeepSeek-Prover-V2-671B and Goedel-Prover-V2-8B as expert models, we generate 50 proof
candidates per statement and retain only those that pass Lean 4 compiler verification. After removing
duplicates, this process results in a final training dataset of 39.2k unique (statement, proof) pairs.
Thus, our 39.2k training data are synthesized from this carefully curated 70k-theorem seed set. To
prevent data leakage, we ensure that the initial states of all theorem statements in our data are different
from those in the tested benchmarks.

Token Cost. Our data construction can be divided into four stages: EvolDomain & EvolDifficulty,
Verification process, EvolAST, and Proof synthesis. We counted the token cost for each stage as
follows:

Stage Token Consumption
Problem synthesis (EvolDomain & EvolDifficulty) 893M
Verification process 506M
EvolAST 0
Proof synthesis 11B

Supervised Fine Tuning. We fine-tune the DeepSeek-Prover-V1.5-Base model using full-parameter
supervised fine-tuning (SFT). Our training data includes approximately 3.3M theorems with proofs
from public datasets and 39.2K theorems with proofs from the augmented datasets. The model is
trained for one epoch with the AdamW optimizer. We set the initial learning rate to 1.0 x 1075 and
decay it using a cosine scheduler with a 5% warmup ratio. All sequences are truncated to a maximum
length of 4096 tokens, and we use a global batch size of 32.

Reinforcement Learning. Following the Supervised Fine-Tuning (SFT) stage, we further enhance
the model’s performance by applying Reinforcement Learning (RL) to the SFT checkpoint. For RL
training, For RL training, we use augmented data (39.2K) and additionally incorporate FormalM ATH-
All (excluding FormalMATH-Lite) and MiniF2F-Valid into our training data. We employ a standard
binary reward: for each problem, the model receives a reward of 1 if the generated Lean proof is
correct, and 0 otherwise. This RL fine-tuning process produces the final EvolProver.
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Table 5: Domain-wise performance of EvolProver variants.

Domain EvolProver-Base EvolProver-Ablation-SFT EvolProver-SFT EvolProver-Ablation-RL EvolProver
Algebra 121 133 134 133 141
Applied Mathematics 28 30 32 32 33
Number Theory 16 21 23 23 23
Precalculus 14 15 15 15 15
Geometry 7 8 8 8 8
Discrete Mathematics 2 3 3 5 5
Calculus 0 2 2 3 3
Multivariable Calculus 2 2 2 2 2
Others 0 0 0 0 0

RL Training Details To improve training efficacy, we curate the RL training dataset by filtering
problems based on the pass@1 success rate of the SFT checkpoint. We include only problems where
0 < pass@1 < 1/2. This selection strategy ensures that the training set is challenging yet solvable
for our model. The filtered dataset contains 2,718 problems. We initialize both the actor and critic
models with the weights from the SFT checkpoint and train them using Proximal Policy Optimization
(PPO). The training runs for 10 epochs with a batch size of 256, a constant actor learning rate of
1.0 x 1079, a constant critic learning rate of 1.0 x 1072, a clip ratio of 0.2, and a KL divergence loss
coefficient of 0.001.

A.2 ABLATION EXPERIMENTS

A.2.1 ABLATION MODEL TRAINING

To precisely evaluate the contribution of each component, we trained a series of ablation models
under controlled conditions. All training hyperparameters were kept identical across corresponding
stages. The models are:

* EvolProver-Base: Our baseline, trained on the original, unaugmented public dataset through
both SFT and RL stages.

* EvolProver-Ablation-SFT: Trained on data augmented only by EvolDomain and EvolDiffi-
culty, and only undergoes the SFT stage.

* EvolProver-Ablation-RL: Same data as above (EvolDomain and EvolDifficulty only), but
undergoes the full SFT and RL training process. This model directly isolates the impact of
EvolAST when compared to the final EvolProver.

* EvolProver-SFT: The checkpoint of our final model after being trained on the fully aug-
mented dataset (including EvolAST) for the SFT stage only.

We did not create an “EvolAST-only” model, as EvolAST operates on the output of EvolDomain and
EvolDifficulty, making such an experiment logically infeasible.

A.2.2 ABLATION EXPERIMENT RESULTS

The results of our ablation experiments, presented in Table 4, lead to two key conclusions. First,
data augmentation provides a substantial boost, with even the partially augmented models (Ablation-
SFT/RL) drastically outperforming the EvolProver-Base model across all benchmarks, often by
more than 10%. Second, the EvolAST method consistently yields further improvements across all
benchmarks. In the SFT stage, EvolProver-SFT (with EvolAST) surpasses EvolProver-Ablation-SFT
(without EvolAST). Similarly, in the RL stage, the final EvolProver outperforms EvolProver-Ablation-
RL. This demonstrates the value of the EvolAST method in both training phases.

To better understand how each augmentation component affects performance across mathematical
domains, we conduct a fine-grained analysis and report the results in Table 5. This breakdown allows
us to examine the domain-specific behaviors of different model variants and how they interact with
data scale and difficulty. The detailed analysis is as follows:

* For EvolProver-Ablation-SFT, which retains only EvolDomain and EvolDifficulty, perfor-
mance improves over EvolProver-Base in almost all domains. The relative gains differ
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across domains and correlate with data scale. In long-tail domains with relatively sparse
training data, the main improvements are associated with EvolDomain: by performing cross-
domain semantic evolution, it transfers structural patterns from high-resource domains and
effectively increases coverage in low-resource domains. In high-resource domains where
the base model already captures the main solution patterns, EvolDifficulty contributes more
prominently: by broadening the difficulty distribution of training problems, it encourages
the model to handle a wider range of problem difficulty. Overall, these results indicate that
EvolDomain primarily mitigates data scarcity in low-resource domains, while EvolDifficulty
mainly enhances robustness to varying difficulty levels in high-resource domains, and the
two components play complementary roles across different data scales.

* EvolProver-SFT is obtained by further incorporating EvolAST on top of EvolProver-
Ablation-SFT. Relative to Ablation-SFT, which uses only EvolDomain and EvolDifficulty,
EvolProver-SFT yields small but consistent additional gains in domains with a larger pro-
portion of symbolic reasoning, such as algebra, number theory, and applied mathematics
(for example, Algebra improves from 133 to 134, Applied Mathematics from 30 to 32, and
Number Theory from 21 to 23), while performance in other domains remains essentially
unchanged. This pattern suggests that EvolAST does not primarily introduce new semantic
content. Instead, by generating multiple equivalent structured representations for the same
reasoning process, EvVolAST strengthens the model’s ability to handle different surface
forms with the same underlying meaning, leading to additional generalization benefits in
high-resource domains that already have substantial sample size and semantic diversity.

* EvolProver-Ablation-RL is produced by applying reinforcement learning on top of
EvolProver-Ablation-SFT, using data generated by EvolDomain and EvolDifficulty. Com-
pared with EvolProver-SFT, performance in high-resource domains (such as Algebra, Ap-
plied Mathematics, and Number Theory) remains largely stable, whereas additional gains
appear in sparser, more difficult, or larger-search-space domains (for example, Discrete
Mathematics increases from 3 to 5 and Calculus from 2 to 3). These observations indicate
that, under a data distribution shaped by cross-domain coverage and difficulty evolution,
reinforcement learning can make fuller use of the evolved samples through exploratory
optimization, particularly in domains where search and exploration are more challenging.

* The final EvolProver model performs reinforcement learning on the full dataset that includes
all three augmentations: EvolAST, EvolDomain, and EvolDifficulty. Relative to EvolProver-
Ablation-RL, EvolProver achieves further improvements in high-resource domains such as
Algebra (from 133 to 141) and Applied Mathematics (from 32 to 33), while preserving the
gains already observed in Discrete Mathematics (5) and Calculus (3). Taken together, these
results support the view that the three augmentation components act along complementary
axes—domain coverage, difficulty distribution, and structural diversity—and that combining
them within both supervised fine-tuning and reinforcement learning leads to more robust
and broadly improved domain-wise performance.
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A.3 DETAILS FOR EVOLDOMAIN
A.3.1 PROMPT TEMPLATE

Formal problems can precisely extract the universal logical skeleton of a mathematical problem(Cao
et al., 2025; 2026; Zheng et al., 2025). Our strategy leverages this by transferring that structure to
new domains to systematically create rigorous new problems. Our preset domains cover a range of
topics from high school competition problems to undergraduate-level subjects. The prompt template
format of EvolDomain is as follow:

Prompt Template for EvolDimain

Your task is to start with a given Lean 4 formalized problem and follow the strategy below to
formulate a new problem in a different mathematical domain.

### Transformation Strategy

Step 1. Deconstruction & Abstraction

Identify the original statement’s abstract logical skeleton by isolating its core components.
This involves recognizing the underlying mathematical objects, the essential operations being
performed, and the fundamental relationship being asserted.

Step 2. Analogy & Transfer

Find a parallel structure in a new mathematical domain by identifying an analogous
sequence of objects in the list below.

[“Algebra”, “Number Theory”, “Integral”, “Precalculus”, “Differentiation”, “Multivariable
Calculus”, “Sequences Series”, “Applied Mathematics”, “Discrete Mathematics”, “Geome-
try”, “Calculus”, “Other”’]

Then, translate the original operations and relations into concepts that are natural within this
new context.

Step 3. Instantiation & Packaging

Formulate a new, concrete problem by applying the transferred structure and opera-
tions to the analogous objects. Package this new proposition into a clear natural language
description and a rigorous formal statement.

Evolved variants should follow the following requirements:

1. Each variant should be mathematically rigorous and meaningful

2. Each variant should be syntax correct and a valid Lean 4 statement

3. Each variant should differ from the original mathematical domain

4. Each variant should follow the same output format as “### Example Variant Format”

### Example Variant Format:
"~ *NL Description

Prove that ...

** ~Formal Statement

... := by sorry

" Domain

Target Domain in the list

Please provide 3-5 variants following the strategies and requirements above, based on original
statement.
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### Original Formal Statement
""" leand
{Original Formal Statement}

### Evolution Results (3-5 variants in other mathematical domains)

A.3.2 CASE STUDY

We select an example of EvolDomain from the evolved dataset. The original Lean 4 statement is as
follows:

Original Lean 4 Statement (Number Theory)

theorem lean_workbook_12011 (m,n:Z) (h_1 : 2xm + n =0) : m"3 # n"3 - 15 := by
< sorry

The evolved Lean 4 statement and its corresponding natural language description are as follows:

Evolved Statement and its corresponding Natural Language Question (Geometry)

Evolved Formal Statement:

: EuclideanSpace R (Fin 2)) (h : (2 - (Q - P))

theorem affine_points_analogy P Q R
2 #dist PR " 2 - 15 := by sorry

— +(R-Q =0) :distP Q"

Natural Language Question:

Consider three points P, Q, and "R in a plane. If the vector from “Q° to "R~
< added to twice the vector from “P° to “Q  results in the zero vector, prove
< that the squared distance from “P° to “Q is not equal to the squared

< distance from “P° to "R minus 15.

Evolved Statement and its corresponding Natural Language Question (Integral)

Evolved Formal Statement:

theorem integral_variant_1

(fg: R—>R)

(hf : ContinuousOn f (Set.Icc 0 1))
(hg : ContinuousOn g (Set.Icc 0 1))
(h_f_nonneg : V x € Set.Icc 0 1, f x > 0)
(h_f_not_zero : 3 x € Set.Icc @ 1, f x # 0)

(h_1 : Vx € Set.Icc @1, 2 x fx +gx=20) :

J xin (0)..1, (f x)"'3 # [ x in (0)..1, (g x)"3 - 15 := by sorry

Natural Language Question:

Prove that for any two real-valued continuous functions, “f° and “g~, defined on
< the interval “[0, 1]°, if ~f° is non-negative and not identically zero, and if
o T2 % f(x) + g(x) =0 for all “x> in “[0, 11", then the integral of ~f(x)"3"
< over “[0, 1]° is not equal to the integral of “g(x)"3~ over “[0, 1]  minus 15.

A.4 DETAILS FOR EVOLDIFFICULTY

To generate problems of varying difficulty, we define a set of evolution strategies through deliber-
ation and screening by a team of mathematics experts. These strategies fall into two categories:
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upward (to increase difficulty) and downward (to decrease difficulty), each with specific methods for
implementation.

A.4.1 UPWARDEVOLUTION

The prompt tempalte for upward evolution is as follows:

Prompt Template for EvolDifficulty (Increase Difficulty)

Your task is to evolve a given formal statement into several, more complex formal statements,
according to the provided strategies and requirements. For each new formal statement, you
must provide its corresponding natural language meaning.

### Difficulty Enhancement Strategy

Your objective is to {strategy} for the original statement.

First, understand the core concept and structure of the original formal statement.
Identify its key logical components, such as variables, propositions, logical operators,
quantifiers, conditions, and the overall scope. Then, you can select from a range of strategies,
including but not limited to the following, to enhance difficulty:

{Specific Methods}

### Evolution Requirements

Evolved variants should follow the following requirements:

1. Each variant must represent a genuine enhancement of its proof’s logic and difficulty, not
just an increase in superficial complexity.

2. Each variant should be mathematically rigorous and meaningful

3. Each variant should be syntax correct and a valid Lean 4 statement

4. Each variant should be different from the original statement and other variants

5. Each variant should follow the same output format as “### Example Variant Format”.

### Example Variant Format:
***NL Description

Prove that ...

" * “Formal Statement

... := by sorry

Please provide 3-5 variants following the strategies and requirements.
### Original Formal Statement

" " "lean4
{Original Formal Statement}

### Evolution Results (3-5 variants with increasing difficulty)

The strategies and specific methods are as follows:

Strategies and Specific Methods (Increase Difficulty)

1. Complicate the Logical Structure

(1) Construct a new problem that increases the nesting depth and layers of the original
problem’s propositional logic.

(2) Construct a new problem by introducing a logical system with complex dependencies
between its components.

(3) Construct a new problem whose internal structure is obscured by multiple layers of
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non-obvious equivalent transformations.

2. Increase the Mathematical Depth

(1) Construct a new problem that relies on a deeper theoretical framework.

(2) Construct a new problem that requires a longer, but logically similar, chain of reasoning
to solve.

(3) Construct a new problem that positions the original problem as a critical sub-problem or
lemma within its proof.

3. Elevate Abstraction and Generalization

(1) Construct a new problem by elevating and generalizing a specific instance or special case
from the original problem into a universal proposition that must be proven.

(2) Construct a new problem that adds stricter conditions, requiring reasoning and verification
under them.

(3) Construct a new problem whose proof requires the fusion of concepts or tools from
different knowledge domains.

4. Intensify Constraints and Precision

(1) Construct a new problem that increases complexity by establishing critical boundaries or
singularities within the problem’s domain.

(2) Construct a new problem that adds specific, strong constraints, requiring the discovery of
an optimal solution or an extremal state.

(3) Construct a new problem with heightened rigor requirements, making it necessary to
provide a strict argument for the existence, uniqueness, or enumeration of the solution(s).

5. Add Parametric and Analytical Complexity

(1) Construct a new problem that broadens the hypothesis space and increases analytical
complexity by introducing or adjusting explicit parameters.

(2) Construct a new problem whose internal structure spans both discrete and continuous
forms, requiring a transformation between them (e.g., the limit relationship between a sum
and an integral) to be solved.

A.4.2 DOWNWARDEVOLUTION

The prompt template for downward evolution is as follows:

Prompt Template for EvolDifficulty (Decrease Difficulty)

Your task is to evolve a given formal statement into several, simpler formal statements,
according to the provided strategies and requirements. For each new formal statement, you
must provide its corresponding natural language meaning.

### Difficulty Reduction Strategy

Your objective is to {strategy} for the original statement.

First, understand the core concept and structure of the original formal statement.
Identify its key logical components, such as variables, propositions, logical operators,
quantifiers, conditions, and the overall scope. Then, you can select from a range of strategies,
including but not limited to the following, to reduce difficulty:

{Specific Methods}

### Evolution Requirements

Evolved variants should follow the following requirements:

1. Each variant must represent a genuine simplification of its proof’s logic and structure, not
just a cosmetic rephrasing.

2. Each variant should be mathematically rigorous and meanigful

3. Each variant should be syntax correct and a valid Lean 4 statement
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4. Each variant should be different from the original statement and other variants
5. Each variant should follow the same output format as “### Example Variant Format”.

### Example Variant Format:
***NL Description

Prove that ...

* " “Formal Statement

... := by sorry

Please provide 3-5 variants following the strategies and requirements.
### Original Formal Statement

" " "lean4
{Original Formal Statement}

### Evolution Results (3-5 variants with decreasing difficulty)

The strategies and specific methods are as follows:

Strategies and Specific Methods (Decrease Difficulty)

1. Simplify the Logical Structure

(1) Construct a new problem that decreases the nesting depth and layers of the proposition’s
logic.

(2) Construct a new problem containing a logical system with weaker or no dependencies
between its components.

(3) Construct a new problem whose internal structure is transparent, solvable through direct
logical relations rather than non-obvious transformations.

2. Reduce the Mathematical Depth

(1) Construct a new problem that relies on a more elementary theoretical framework.

(2) Construct a new problem that only requires completing the initial steps or the final
conclusion of the original problem’s longer reasoning chain.

(3) Construct a new problem by isolating a key lemma or an intermediate step from the
original problem’s proof and setting it as the sole objective.

3. Reduce Abstraction and Specialize

(1) Construct a new problem by taking a general or abstract proposition and creating a
specific, concrete instance of it to be solved or verified.

(2) Construct a new problem that replaces abstract symbols and variables with concrete
numerical values or tangible examples to lower the barrier to understanding.

(3) Construct a new problem by reformulating it so that it can be solved using concepts and
tools from a single, self-contained knowledge domain, avoiding interdisciplinary fusion.

4. Loosen Constraints and Precision

(1) Construct a new problem by restricting its domain to regular cases, excluding critical
boundaries or singularities.

(2) Construct a new problem that requires finding any feasible solution rather than an optimal
or extremal one.

(3) Construct a new problem that asks for a single concrete example of a solution, rather than
a rigorous proof of its existence, uniqueness, or enumeration.

5. Reduce Parametric and Analytical Complexity
(1) Construct a new problem that reduces the dimension of analysis by reducing the
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number of variables required to address the problem or by simplifying a complex functional
relationship between parameters to a linear one.

A.4.3 CASE STUDY

We select two examples of EvolDifficulty from evolved dataset. The original Lean 4 statement for
upward evolution is as follows:

Original Lean 4 Statement for Upward Evolution

theorem lean_workbook_37427 (n:N) : 133 | 11°(n+2) + 12°(2*n+1) := by sorry

The evolved Lean 4 statement and its corresponding natural language description are as follows:

Evolved Statement and its corresponding Natural Language Question (Increase Difficulty)

Evolved Formal Statement:

theorem variant_1 (n:N) : 133 | Nat.gcd (117 (n+2) + 12°(2*n+1)) (11°((n+1)+2) +
— 12°(2*x(n+1)+1)) := by sorry

Natural Language Question:

Prove that for any natural number n, the greatest common divisor of 11°(n+2) +
— 12°(2*n+1) and 117 ((nt1)+2) + 12" (2x(n+1)+1) is divisible by 133.

Evolved Statement and its corresponding Natural Language Question (Increase Difficulty)

Evolved Formal Statement:

def u_seq : N— 7Z

| @ => 133

| 1 => 3059

| k + 2 =>155 % u_seq (k + 1) - 1584 * u_seq k
theorem variant_2 n:N : 133 | u_seq n := by sorry

Natural Language Question:

Let an integer sequence u be defined by u_@ = 133, u_1 = 3059, and the recurrence
— relation u_{n+2} = 155 * u_{n+1} - 1584 * u_n for all n > @. Prove that every
— term u_n of the sequence is divisible by 133.

The original Lean 4 statement for downward evolution is as follows:

Original Lean 4 Statement for Downward Evolution

theorem lean_workbook_21498 (a b : R) (ha : @ <a) (hb : @<b) : (a+b) " 2/2
— + (a+b) /4> a=*Real.sqrt b + b * Real.sqrt a := by sorry
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The evolved Lean 4 statement and its corresponding natural language description are as follows:

Evolved Statement and its corresponding Natural Language Question (Decrease Difficulty)

Evolved Formal Statement:

theorem variant_1 (a,b:R) (ha : @ < a) (hb : 0 < b) : (Real.sgrt a + Real.sqgrt
— b) "2 < 2% (a+b) :=by sorry

Natural Language Question:

Prove that for any non-negative real numbers “a” and “b”, the square of the sum of
— their square roots is less than or equal to twice their sum.

Evolved Statement and its corresponding Natural Language Question (Decrease Difficulty)

Evolved Formal Statement:

theorem variant_2 (a,b:R) (ha : @ <a) (hb : @ <b) : (a+b) /2 > Real.sgrt (a
— * b) := by sorry

Natural Language Question:

Prove that Arithmetic Mean-Geometric Mean (AM-GM) inequality for two positive

< real numbers “a> and “b”, which states that their arithmetic mean is greater
— than or equal to their geometric mean.

A.5 DETAILS FOR VERIFICATION

The prompt template to judge consistency between natural language problem and formal statement is
as follows:

Prompt Template to Judge Consistency

You will be provided with a Natural Language Description and a Formal Statement. Please
judge if they are consistent, and provide specific analysis:

Natural Language Description:
"~ *Problem

{Natural Language Description}
Formal Statement:

T " leand

{Formal Statement}

For your response, please follow this example format:
**Consistency Analysis:**

*° Tanalysis

Your detailed analysis

**Judge Result:**

T judge

Consistent or Inconsistent

Now, please provide your formal answer:
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The prompt template to judge mathematical correctness of formal statements and natural language
problem is as follows:

Prompt Template to Judge Correctness

You will be provided with a Natural Language Description and a Formal Statement. Please
judge if the mathematical statement is correct, and provide specific analysis:

Natural Language Description:
* "~ Problem
{original nl}

Formal Statement:
""" leand
{correct formal statement}

Please analyze the mathematical correctness by considering:

1. Whether the problem is provable (can be proven or disproven)
2. Whether the problem statement is well-formed and meaningful
3. Whether there are any logical contradictions or inconsistencies

For your response, please follow this example format:
**Mathematical Correctness Analysis:**

T Tanalysis

Your detailed analysis

**Judge Result:**

T Tjudge

Correct or Incorrect

Now, please provide your formal answer:

The prompt template for filtering out low-difficulty problems is as follows:

Prompt Template for Filtering Out Low-difficulty Problems

You will be provided with a Natural Language Description and a Formal Statement. Your
task is to classify the difficulty of problem in Lean 4:

Natural Language Description:
** *Problem
{Natural Language Description}

Formal Statement:
* " leand
{Formal Statement}

Please analyze the problem and determine if it is Low-difficulty. Here are the criteria for a
Low-difficulty problem:

1. Simple calculations

2. Simple algebraic manipulations

3. Solving single variable linear equations (by just a 1-step calculation)

4. Inequalities proved by an easy sum-of-squares technique
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Conversely, the following types of problems should NOT be classified as Low-difficulty:

1. Inequality proving with the square root (might be more complex)

2. More complex inequalities, limits, and integrals

3. Problems dealing with integers (more related to number theory)

4. Problems involving higher order roots, complex numbers, matrices, polynomials, group,
finite-sum, or functional equations (since these might shed lights on other hard problems)

For your response, please follow this example format:
**Difficulty Analysis:**

T ° Tanalysis

Your detailed analysis

**Judge Result:**

- Is Low-difficulty:

T judge

Yes or No

Now, please provide your formal answer:

Prompt template for fixing compilation errors in a formal statement is as follows:

Prompt Template for Correcting Formal Statement

Your task is to fix the code based on the errors and provide a corrected version. Please also
provide a detailed analysis of the changes you made. You will be provided with an incorrect
Lean4 code snippet and a list of corresponding errors.

Incorrect Lean4 Code:
T T leand

incorrect lean4 code
Error List:

T T Terrors

errors

Please modify the incorrect Lean 4 code according to the following requirements:

1.The corrected statement must be syntactically valid and well-typed according to Lean4
rules.

2.The correction should maintain the original mathematical meaning that the user was likely
trying to express in the statement.

3.The corrected Lean 4 code must end with ’:= by sorry’.

For your response, please follow this example format:
**Modification Analysis**

" Tanalysis

Your detailed analysis

**Corrected Lean4 Code™**

" leand

Your corrected Lean4 code

Now, please provide your formal answer:
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A.6 CASE STUuDY FOR EVOLAST

EvolAST is an approach that integrates code features(Tian et al., 2025; Yan et al., 2023; Luo et al.,
2026) with mathematical reasoning, making it highly suitable for formal reasoning tasks in Lean4
code generation. We select an example of EvolAST from evolved dataset. The original Lean 4
statement is as follows:

Original Lean 4 Statement

theorem evolved_thm (z,y:R) (h_@ : x x y = 4) (h_1 : x >y) (h_2 : x"3 - y"3 =
« 3555) : x"2 + y"2 = 233 := by sorry

The evolved Lean 4 statement is as follows:

Evolved Formal Statement:

theorem evolved_thm_auged (x,y:R) (h_1 : y < x) (h_2 : 3555 = x"3 - y"3) (h_0 : 4
« =y *Xx): 233 =y"2+ x"2 := by sorry

A.7 DETAILS OF SIMILARITY EVALUATION

We report here the full prompt template used for the LLM-based similarity assessment.

Prompt Template for Similarity Evaluation

Your task is to evaluate whether the two given formal math statements are similar, not
just looking similar or involving overlapping mathematical concepts. Please analyze both
statements carefully, focusing on:

1. The overall structure of the statements (e.g., setup, sequence of steps, logical flow)

2. The specific mathematical operations or reasoning paths required,

3. The wording and presentation style,

4. Whether one statement appears to be a trivial rephrasing or numerical variant of the other.

Provide a similarity score from 1 to 10, where:
1 = completely different statements,
10 = semantically identical statements.

Here are provided statements:

Statement1:

{statementl }

Statement?2:

{statement2 }

Format your response as:

<reason>Reason for your score</reason>
<score>Your score(1-10)</score>

A.8 ANALYSIS OF OUTPUT LENGTH

Compared to other non-reasoning models, EvolProver exhibits a higher average token consumption,
primarily due to the design of its instruction-tuning stage. In this stage, the model is trained to
repeat the problem statement (including both the formal statement and its corresponding natural
language semantic annotation) before generating the proof. In contrast, some other non-COT models,
such as DeepSeek-Prover-V1.5 and Goedel-Prover-SFT, are trained to directly produce the proof.
Consequently, a non-reasoning segment (the repeated problem statement) is included in EvolProver’s
outputs and is counted in its token usage.
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Benchmark Average Token Length
FormalMATH-lite 407.3
Minif2f 440.8

Table 6: Average proof-only token length of EvolProver after removing the problem restatement.

Model Average Token Length Tactic Steps
EvolProver-Base 113.75 9
EvolProver 129.05 10

Table 7: Average token length and tactic steps of EvolProver and EvolProver-Base on the subset of
commonly solved problems.

To quantify this effect, we additionally compute the token length for the proof-only portion of
EvolProver after removing the problem restatement. The results are shown in Table 6.

We believe that the token length of the output containing only the proof is on the same scale as that of
other non-COT models. Additionally, we measured the output length and the number of executed
tactic steps on the subset of problems solved by both EvolProver and its baseline. We consider tactic
steps to be a good representation of the verified proof length to some extent. The results are shown in
Table 7.

As we can see, EvolProver has slightly higher values in both Average Token Length and tactic steps
compared to EvolProver-Base. We carefully examined their proofs and selected a representative
example for comparison:

Representative Lean 4 proofs of EvolProver-Base and EvolProver

-- Proof of EvolProver-Base
theorem example_base {x : } (hx : x @) (h:1/9+1/18=1/x) :

X =6 := by
field_simp at h
linarith

-- Proof of EvolProver
theorem example_evolved {x : } (hx : x @) (h : 1T /9 +1/18=1/x) :

X =6 := by
have h : x = 6 := by
have h : 1/ x=1/9+ 1/ 18 := by linarith
have h : 1 / x =1/ 6 := by norm_num at h
have h : x = 6 := by
have h : x @ := hx
field_simp at h
nlinarith
exact h
exact h

We found that the response from EvolProver-Base is more intuitive, with a direct approach and lower
readability, while EvolProver’s response is more reasoning-based, habitually showing the conditions
and providing a clear proof. However, this results in a longer output.

A.9 USE OF LARGE LANGUAGE MODELS

We utilized Large Language Models (LLMs) solely to refine the language and improve the clarity of
this manuscript.
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