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Abstract

The NP-hard maximum value preordering problem is both a joint relaxation and a hybrid
of the clique partition problem (a clustering problem) and the partial ordering problem.
Toward approximate solutions and lower bounds, we introduce a linear-time 4-approximation
algorithm that constructs a maximum dicut of a subgraph and define local search heuristics.
Toward upper bounds, we tighten a linear program relaxation by the class of odd closed
walk inequalities that define facets, as we show, of the preorder polytope. We contribute
implementations2 of the algorithms, apply these to the task of jointly clustering and partially
ordering the accounts of published social networks, and compare the output and efficiency
qualitatively and quantitatively.

1 Introduction

We set out to find a binary relation on the set of accounts of a social network. Here, the notion that one
account follows, likes or reacts to another account need neither be symmetric nor asymmetric. In particular,
i following j does not need to imply that j follows i, nor does it necessarily imply that j does not follow
i. Clustering does not capture the asymmetric subsets of the relation on the social network because the
equivalence relation that characterizes the clustering is symmetric. Similarly, partial ordering does not
capture the symmetric subset of the relation because partial orders are antisymmetric. Like in clustering
and partial ordering, we work with the assumption3 that the relation on the social network is transitive, i.e.,
if i follows j and j follows k then i follows k. Unlike in clustering and partial ordering, we do not assume
symmetry or antisymmetry. To model our assumption, we apply the preordering problem:
Definition 1.1. Wakabayashi (1998) Given a finite set V and a (value) cij ∈ R for every pair ij of distinct
i, j ∈ V , the (maximum value) preordering problem consists in finding a preorder ≲ on V so as to maximize
the sum of the (values) cij of those pairs ij ∈ V 2 with i ̸= j for which i ≲ j.

If a preorder is symmetric, it is an equivalence relation and therefore characterizes a clustering. If a preorder
is antisymmetric, it is a partial order. In fact, the preordering problem is a joint relaxation of the clique
partition problem (a clustering problem) and the partial ordering problem. Moreover, every preorder defines,
and is characterized by, a clustering and a partial order: A clustering is defined by the symmetric subset
of the preorder (an equivalence relation). A strict partial order on the set of clusters is well-defined by the
asymmetric subset of the preorder. (An example is depicted in Figure 1.) Thus, the preordering problem is
also a hybrid of a clustering problem and a partial ordering problem.

In this article, we define algorithms for the preordering problem. To obtain approximate solutions and
lower bounds, we introduce a linear-time 4-approximation algorithm and local search heuristics. To obtain
upper bounds, we consider a linear program (LP) relaxation that we tighten by the class of odd closed walk
inequalities that define facets, as we show, of the preorder polytope. We contribute implementations2 of

2Source code available at: (link removed and code provided as supplement for double-blind review)
3This assumption simplifies and possibly contradicts reality, and we quantify the deviation empirically.
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Figure 1: Depicted on the left is a Twitter ego-network from Leskovec & Mcauley (2012). Depicted on the
right is a preorder on the accounts of this network consisting of a clustering (gray circles) and a partial order
on the set of clusters (black edges). This preorder is an optimal solution to the instance of the preordering
problem (Theorem 1.1) defined such that cij = 1 if the pair ij exists in the network, and cij = −1 otherwise.

the algorithms we discuss, apply these to social networks from Fink et al. (2023) and Leskovec & Mcauley
(2012) with up to 107 edges and compare the output and efficiency qualitatively and quantitatively.

2 Related work

The preordering problem is formulated by Wakabayashi (1998) who establishes NP-hardness even for values
in O(|V |6) and discusses the complexity of many specializations. Her hardness result for the general problem
is strengthened by Weller et al. (2012) who prove NP-hardness even for values in {−1, 1}. A local search
algorithm that greedily decides whether or not to relate pairs is introduced by Böcker et al. (2009). We
reproduce this algorithm in Section 4.2. The geometry of the preorder polytope is discussed briefly by
Gurgel (1992).

Closely related to preordering but studied independently in the literature is the transitivity editing problem
Jacob et al. (2008); Böcker et al. (2009); Weller et al. (2012). Given a digraph, the objective is to find a
minimum set of arcs to be added or removed so as to make the digraph transitive. This problem is equivalent
to the preordering problem with values cij = 1 if ij is an arc in the digraph, and cij = −1 otherwise. Even
this restriction to values in {−1, 1} is NP-hard Weller et al. (2012). The transitivity editing problem is
studied predominantly from the perspective of fixed-parameter tractability; efficient algorithms for the case
where the total number of arcs to be added or removed is bounded are developed by Böcker et al. (2009);
Weller et al. (2012).

Preordering is related to correlation clustering Emanuel & Fiat (2003); Bansal et al. (2004); Demaine et al.
(2006), more specifically, to maximum value weighted correlation clustering for complete graphs, which is
also known as clique partitioning Grötschel & Wakabayashi (1989), where values cij are associated with
unordered pairs {i, j}, and the task is to find an equivalence relation ∼ on V so as to maximize the sum
of the values of those pairs {i, j} for which i ∼ j. This problem is more specific than preordering in that
equivalence relations are precisely the symmetric preorders. The complexity and hardness of approximation
of correlation clustering have been studied extensively (Swamy, 2004; Charikar et al., 2005; Chawla et al.,
2015; Veldt, 2022; Cohen-Addad et al., 2022; Klein et al., 2023). In particular, it is known that clique
partitioning cannot be approximated to within n1−ϵ unless P=NP for n the number of elements and any
ϵ > 0 (Bachrach et al., 2013; Zuckerman, 2007). Much work has been devoted also to the study of the clique
partitioning polytope Grötschel & Wakabayashi (1990b;a); Deza et al. (1991; 1992); Chopra & Rao (1995);
Bandelt et al. (1999); Oosten et al. (2001); Sørensen (2002); Letchford & Sørensen (2025). Correlation
clustering has many applications, including community detection in social networks (Brandes et al., 2008;
Veldt et al., 2018) and image analysis (Yarkony et al., 2012; Beier et al., 2015; Aflalo et al., 2023; Abbas
& Swoboda, 2023). Variants that emphasize local errors are studied by Puleo & Milenkovic (2016); Kalhan
et al. (2019); Ahmadian et al. (2020).

Preordering is related also to partial ordering (Müller, 1996) where the task is to find a partial order ≤ on
V so as to maximize the sum of the values of those pairs ij for which i ≤ j. Partial ordering is more specific
than preordering in that partial orders are precisely the antisymmetric preorders. The polyhedral geometry
of partial orders is studied by Müller (1996). Also this problem has received less attention so far than
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Figure 2: Depicted on the left is an instance of the preordering problem with |V | = 5. The value cij is
written next to the arc from i to j, and arcs that are not depicted have a value of 0. Depicted in the middle
is an optimal solution to the preordering problem. The value of this solution is P (c) = 14. The upper bound
is B(c) = 17 and thus, the transitivity index is T (c) = 14

17 . Depicted on the right is the same preorder as a
partial order on clusters (equivalence classes). Here and in all subsequent figures, partial orders are depicted
by their unique transitive reduction. E.g., the arc (2, 4) is not shown because it is implied by the arcs (2, 3)
and (3, 4).

even more constrained problems, like the linear ordering problem (Grötschel et al., 1984; Martí & Reinelt,
2011; Ceberio et al., 2015), the closely related rank aggregation problem (Ailon et al., 2008; Schalekamp &
Zuylen, 2009) and the feedback arc set problem on tournament graphs (Karpinski & Schudy, 2010). The
geometry of several order polytopes is studied by Doignon & Fiorini (2001); Doignon & Rexhep (2016). The
understanding of the computational complexity of finding a maximum value order for various types of orders
is improved by Hudry (2008; 2012) who shows that some problems remain NP-hard for restricted value
functions.

A joint relaxation of correlation clustering and linear ordering is the bucket ordering problem, sometimes
called the weak ordering problem, that asks for both a clustering and a linear order on the clusters (Gurgel
& Wakabayashi, 1997; Fiorini, 2003; Fiorini & Fishburn, 2004; Fiorini, 2006). This problem has been applied
to the tasks of dating archeological sites (Gionis et al., 2006), finding consensus among voters Aledo et al.
(2018; 2021) and constructing user recommendations (Jurewicz et al., 2023).

3 Preordering problem

Throughout this article, consider some finite, non-empty set V , e.g. the accounts of a social network. For
simplicity and conciseness, let Vn denote the set of all n-tuples of pairwise distinct elements of V . Refer to
the elements of V and V2 as nodes and arcs, respectively.

We cast the preordering problem (Theorem 1.1) with respect to V and values c : V2 → R as an integer linear
program (ILP):

max
∑

ij∈V2

cijxij (1)

subject to xij ∈ {0, 1} ∀ ij ∈ V2 (2)
xij + xjk − xik ≤ 1 ∀ ijk ∈ V3 (3)

An example is depicted in Figure 2. Let P (c) denote the objective value of an optimal solution. For
convenience, define xii = 1 and cii = 0 for all i ∈ V . Note that the map from x to ≲x := {ij ∈ V 2 | xij = 1}
is a bijection from the feasible solutions of the ILP (1)–(3) to the set of preorders on V . Indeed, the objective
value of a feasible solution x to the ILP (1)–(3) is equal to the value of ≲x according to Theorem 1.1. See
Appendix A.1 for further details.
Theorem 3.1 (Weller et al. (2012)). The preordering problem is NP-hard even for c : V2 → {−1, 1}.

In the context of clustering, it is well-known that clique partitions are precisely the complements of unions
of cuts. The following lemma states analogously that preorders are precisely the complements of unions of
directed cuts (dicuts):
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Lemma 3.2. An arc subset A ⊆ V 2 is a preorder if and only if V 2 \ A is the union of dicuts, i.e., V 2 \ A =⋃
S∈S δ(S) for some S ⊆ 2V where δ(S) = {ij ∈ V2 | i ∈ S, j /∈ S} denotes the dicut in V2 defined by S.

Proof. If. Let V 2 \ A =
⋃

S∈S δ(S) for some S ⊆ 2V . Suppose A is not a preorder, i.e., there exist i, j, k ∈ V
such that ij, jk ∈ A but ik /∈ A. By definition of A, there exists S ∈ S such that ij, jk /∈ δ(S) and ik ∈ δ(S).
By definition of directed cuts, ik ∈ δ(S) implies i ∈ S and k /∈ S. With this, ij /∈ δ(S) implies j ∈ S while
jk /∈ δ(S) implies j /∈ S, a contradiction.

Only if. Let A ⊆ V 2 be a preorder. For i ∈ V , define Si := {j ∈ V | ij ∈ A} and let S = {Si ⊆ V | i ∈ V }.
We show that V 2 \ A =

⋃
S∈S δ(S) holds. Firstly, suppose ij ∈

⋃
S∈S δ(S), i.e., there exists k ∈ V such that

ij ∈ δ(Sk). By definition this implies ki ∈ A and kj /∈ A. As A is a preorder it follows that ij /∈ A. Secondly,
suppose ij ∈ A. For any k ∈ V it holds that i ∈ Sk iff ki ∈ A iff kj ∈ A iff j ∈ Sk. Therefore ij /∈ δ(Sk) for
all k ∈ V and in particular ij /∈

⋃
S∈S δ(S), which proves the claim.

Next, we introduce a notion to quantify the transitivity of a value function c. Clearly, the sum of all positive
values is an upper bound to the preordering problem. Let

T (c) = P (c)
B(c) with B(c) =

∑
ij∈V2 : cij>0

cij (4)

denote the proportion of the optimal value to the upper bound. We call it the transitivity index. It quantifies
how transitive the values c are. If there exists a transitive relation that contains all pairs with positive value
and no pair with negative value, then P (c) = B(c), hence T (c) = 1. If no such relation exists, then T (c) < 1.
As the empty relation is transitive, P (c) ≥ 0, and thus, T (c) ∈ [0, 1] for all c : V2 → R.

4 Algorithms

In this section, we describe algorithms for solving the preordering problem and for efficiently computing
upper bounds. The input size of an instance of the preordering problem is |V2| ∈ O(|V |2). Nevertheless, we
may state the time complexity of an algorithm as a function of |V |.

4.1 Linear-time 4-approximation via max-dicut

We exploit a connection between directed cuts and preorders to obtain a 4-approximation algorithm for
the preordering problem. For a directed graph (digraph) D = (V, E) and a node subset S ⊆ V , the
directed cut (dicut) defined by S is the edge subset δ(S) = {ij ∈ E | i ∈ S, j /∈ S}. Notice that any dicut is
transitive because it does not contain any consecutive edges. Given edge weights w : E → R≥0, the maximum
directed cut problem (max-dicut) consists in finding a dicut of maximum weight. Max-dicut admits a simple
randomized 4-approximation: By assigning each node with probability 1

2 to S, the probability that any given
edge ij ∈ E is contained in the cut is 1

4 (namely if i ∈ S and j ∈ S, each with probability 1
2 ). Therefore, the

expected value of such a randomly chosen dicut is 1
4

∑
ij∈E wij where

∑
ij∈E wij is a trivial upper bound to

the max-dicut problem. This algorithm can be de-randomized (Halperin & Zwick, 2001; Bar-Noy & Lampis,
2012) as detailed in Appendix A.2 to obtain Algorithm 1 that runs in time O(|V |2).
Theorem 4.1. There exists a 4-approximation algorithm for the preordering problem with time complexity
O(|V |2).

Proof. For any instance of the preordering problem given by V and c : V2 → R, let D = (V, E) with
E = {ij ∈ V2 | cij > 0} and edge weights wij = cij for all ij ∈ E be the digraph that consists of all arcs
with positive value. Algorithm 1 finds a dicut δ(S) with value

∑
ij∈δ(S) wij ≥ 1

4
∑

ij∈E wij . As δ(S) does
not contain any two consecutive edges, x ∈ {0, 1}V2 with xij = 1 if and only if ij ∈ δ(S) is feasible for the
instance of the preordering problem. Also,∑

ij∈V2

cijxij =
∑

ij∈δ(S)

wij ≥ 1
4

∑
ij∈E

wij = 1
4B(c) ,

4
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Figure 3: Depicted is an instance of the preordering problem with |V | = 3. Solid and dashed arcs indicate
values of +1 and −1, respectively. Here, P (c) = 1, B(c) = 3 and T (c) = 1

3 .

i.e., x is a 4-approximate solution. The computations described above and Algorithm 1 are executed in time
O(|V |2).

Remark 4.2. An immediate consequence of the proof of Theorem 4.1 is that T (c) ≥ 1
4 holds for all c : V2 → R.

By the example in Figure 3, there exists a c : V2 → R with T (c) = 1
3 . We do not know whether there exist

c : V2 → R with T (c) < 1
3 .

Remark 4.3. Every dicut is also a partial order and, thus, the partial ordering problem also admits a 4-
approximation.

4.2 Greedy arc fixation (Böcker et al., 2009)

Böcker et al. (2009) propose an algorithm that fixes arc labels greedily, one arc at a time. The decision
which arc to fix and to what label is based on the induced cost of these decisions: Excluding an arc ij from
the preorder (i.e., setting xij = 0) implies that for every k ∈ V \ {i, j} at most one of the arcs ik, kj can
be included in the preorder. If both these arcs have a positive value, at least the smaller of the two values
is “lost” by excluding ij from the preorder. In total, the induced cost for excluding ij from the preorder is
computed as

ice(ij) = max(0, cij) +
∑

k∈V \{i,j}

max{0, min{cik, cki}} .

Similarly, the induced cost of inserting an arc ij into the preorder (i.e., setting xij = 1) is given by

ici(ij) = max(0, −cij) +
∑

k∈V \{i,j}

(max{0, min{cki, −ckj}} + max{0, min{cjk, −cki}}) .

The greedy algorithm by Böcker et al. (2009) starts with all arcs being unlabeled and iteratively selects an
unlabeled arc ij for which max{ice(ij), ici(ij)} is maximal. It labels xij = 0 if ice(ij) ≥ ici(ij), and xij = 1

Algorithm 1: Greedy max-dicut approximation

Input: Digraph D = (V, E), weights w : E → R≥0
S := ∅, S̄ := ∅
gi :=

∑
j∈V :ij∈E

wij −
∑

j∈V :ji∈E
wji ∀i ∈ V

while S ∪ S̄ ̸= V
i ∈ argmax

j∈V \(S∪S̄)
|gi|

if gi ≥ 0
S := S ∪ {i}
gj := gj − wij ∀ j ∈ V : ij ∈ E
gj := gj − wji ∀ j ∈ V : ji ∈ E

else
S̄ := S̄ ∪ {i}
gj := gj + wij ∀ j ∈ V : ij ∈ E
gj := gj + wji ∀ j ∈ V : ji ∈ E

return δ(S)
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Figure 4: For the instance of the preordering problem depicted above the optimal objective value is 4. The
greedy arc fixation algorithm may, in this order, fix 01, 10, 12, 02, 03, 13 to 1 and then fix the remaining
arcs to 0 yielding a solution with objective value 0. We note that this solution is obtained if the algorithm
breaks ties unfavorably. However, there exist more complex instances where the algorithm still fails to come
within a factor of 4 of the optimal objective value (cf. Appendix A.3).

otherwise. After labeling a arc ij, its value cij is set to +∞ if xij = 1 and −∞ otherwise. This ensures
convergence to a feasible solution. We term this algorithm greedy arc fixation. We note that Böcker et al.
(2009) suggest to include a lower bound on the disagreement on the instance excluding the nodes i and j in
the computation of the induced costs ice and ici. We do not use such additional bounds as these have led to
worse solutions and longer computation times in our experiments.

In total, the greedy arc fixation algorithm consists of |V2| iterations. By maintaining a priority queue sorted
by the induced costs, an arc with maximal induced cost can be queried in time O(log |V |). After fixing an
arc ij, only the induced costs of the arcs incident to i and j change. For a single arc, this change can be
computed in constant time. And the changed induced cost can be updated in the priority queue in time
O(log(|V |)). This results in a time of O(|V | log |V |) per iteration and in a total runtime of O(|V |3 log |V |).

While the greedy arc fixation algorithm performs well in practice (see Section 5), it does not guarantee any
approximation factor. This is shown by the example in Figure 4 that illustrates that the solution computed
by the greedy arc fixation algorithm can be off by an arbitrary factor.

4.3 Greedy arc insertion

Next, we define a greedy algorithm for the preordering problem that starts from any feasible solution (e.g. the
identity relation) and greedily inserts pairs into the relation without violating transitivity. While conceptually
similar to greedy additive edge contraction (Keuper et al., 2015) and agglomerative clustering (Bailoni et al.,
2022), specific combinatorial challenges arise from the preordering problem: Firstly, there are up to O(|V |2)
edge insertions in preordering, in contrast to at most O(|V |) edge contractions in clustering (because the
number of clusters decreases by one in every iteration). Secondly, in each iteration, O(|V |2) arcs need to be
considered to potentially be added to the relation. Adding any one arc can result in O(|V |2) additional arcs
that need to be added to satisfy transitivity. A naïve implementation of this algorithm would require O(|V |4)
operations per iteration. Below, we describe a more efficient implementation: Suppose x : V2 → {0, 1} is a
feasible solution to the preordering problem, and let ij ∈ V2. By setting xij = 1, all arcs kℓ with xki = xjℓ = 1
need to be set to 1 as well in order to satisfy transitivity. The amount by which the total value changes can
thus be calculated as

gij =
∑

k,ℓ∈V

ckℓ (1 − xkℓ) xki xjℓ (5)

where ckℓ (1 − xkℓ) ensures that only values of arcs that are currently labeled 0 are considered. We call
this value the gain from setting ij to 1. By representing x, c, and g as matrices, the gain matrix g can be
calculated by two matrix multiplications

g = x⊤(c ⊙ (1 − x))x⊤ (6)

where ⊙ denotes element-wise multiplication. With this, each iteration can be performed with only O(|V |3)
operations. Furthermore, the matrix multiplication can be carried out in parallel on a GPU. In our imple-
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mentation of this algorithm, we do not utilize GPU parallelization but instead use a sequential method that
exploits the sparsity of the 01-matrix x.

4.4 Greedy moving

The greedy arc insertion algorithm never removes an arc from a feasible solution. Removing an arc from a
preorder can result in a relation that is not a preorder and thus not a feasible solution. Removing a dicut
from a preorder results in another preorder (by Theorem 3.2) and thus maintains feasibility. However, finding
a dicut of minimum cost (in order to maximize the objective of the solution obtained by removing the cut)
is well-known to be NP-hard (Karp, 1972). Below, we define O(|V |2) operations that may remove arcs from
the preorder such that the difference in value resulting from each operation can be calculated efficiency.

• Move up (down): Remove a node i ∈ V from its current equivalence class and place it immediate
above (below) the equivalence class in the partial order. That is, set xji = 0 (xij = 0) for all
j ∈ V \ {i} with xij = xji = 1.

• Move equivalence class: Move a node i ∈ V from its current equivalence class to the equivalence
class of node j ∈ V \ {i}. That is, set xik = xjk, xki = xki for all k ∈ V \ {i}.

• Remove arcs from transitive reduction: Remove an arc from the transitive reduction of the partial
order of equivalence classes. That is, for an arc ij ∈ V2 such that xik = 0 ∨ xkj = 0 for all
k ∈ V \ {i, j}, set xi′j′ = 0 for all i′ ∈ V with xii′ = xi′i = 0 and all j′ ∈ V with xjj′ = xj′j = 1.

We implement an algorithm, termed greedy moving, that in each iteration performs an optimal one of the
moves described above, or an arc insertion according to section 4.3. The operation that increases the objective
value maximally can be found in O(|V |3), similarly to section 4.3.

4.5 Linear programming

In order to obtain an upper bound on the optimal value of the preordering problem and thus an upper bound
on the transitivity index T from (4), we consider the LP relaxation fo the ILP (1)–(3) obtained by replacing
(2) with

xij ∈ [0, 1] ∀ ij ∈ V2 . (7)

This bound can be strengthened by adding linear inequalities to the formulation that are satisfied by all
binary solutions and cut off fractional solutions. Particularly powerful are inequalities that induce facets of
the preorder polytope, i.e., the convex hull of the feasible solutions to the preordering problem. Polytopes
of several closely related problems have been studied extensively, as discussed in Section 2. Müller (1996)
introduce the class of odd closed walk inequalities for the partial order polytope. We adapt these to the
preorder polytope as follows.
Definition 4.4. Let k ≥ 3 odd and v : {0, . . . , k − 1} → V . The odd closed walk inequality with respect to
v is defined below where the additions i + 1 and i + 2 are modulo k.

k−1∑
i=0

(
xvivi+1 − xvivi+2

)
≤ k − 1

2 (8)

Müller (1996) proves validity of the odd closed walk inequalities for the partial order polytope by showing
that they are obtained by adding certain triangle inequalities (3) and box inequalities 0 ≤ xij for several
ij ∈ V2 and rounding down the right-hand side. As triangle and box inequalities are valid also for the
preorder polytope, the odd closed walk inequalities are valid for the preorder polytope as well. Moreover:
Lemma 4.5. Every inequality that induces a facet of the partial order polytope and is valid for the preorder
polytope also induces a facet of the preorder polytope.

7
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Proof. As every partial order is a preorder, the partial order polytope is contained in the preorder polytope.
Thus, for any inequality that is valid for both polytopes, the dimension of the induced face of the preorder
polytope is greater than or equal to the dimension of the induced face of the partial order polytope. Since
the partial order polytope is full-dimensional (Müller, 1996, Theorem 3.1), so is the preorder polytope, and,
in particular, they have the same dimension. Together, any inequality that induces a facet of the partial
order polytope, i.e., a face of co-dimension 1, and is valid for the preorder polytope, induces a face of the
preorder polytope of co-dimension at most 1, and, therefore, defines a facet.

Theorem 4.6. Let k ≥ 3 odd and let v : {0, . . . , k − 1} → V injective (i.e., v defines a simple cycle). Then
the odd closed walk inequality (8) defines a facet of the preorder polytope.

Proof. Müller (1996) shows that if the odd closed walk is a cycle (i.e., every node is visited at most once)
then the corresponding odd closed walk inequality defines a facet of the partial order polytope (Müller, 1996,
Theorem 4.2). Together with Theorem 4.5 the theorem follows.

While the number of odd closed walk inequalities is exponential in |V |, the separation problem can be solved
in polynomial time (Müller, 1996). This implies that also the LP (1), (3), (8), (7) can be solved in polynomial
time (Grötschel et al., 1981).

5 Experiments

We apply the algorithms defined in Section 4 to instances of the preordering problem from social networks.
We solve LPs and ILPs with Gurobi Optimization, LLC (2024) in such a way that triangle inequalities (3)
and odd closed walk inequalities (8) are not enumerated in advance but are only added to the system if
they become violated throughout the execution of the solver. All experiments are performed on an Intel
Core i9-12900KF Gen12 × 24 and an NVIDIA GeForce RTX 4080 Super. We abbreviate the algorithms as
follows:

• ILP: Gurobi applied to the system (1)–(3)
• LP: Gurobi applied to the system (1), (3), (7)
• OCW: Gurobi applied to the system (1), (3), (7), (8)
• GDC: Greedy max-dicut approximation (Section 4.1)
• GAF: Greedy arc fixation (Section 4.2)
• GAI: Greedy arc insertion (Section 4.3)
• GM: Greedy moving (Section 4.4)
• X+Y: Algorithm Y initialized with the output of X

5.1 Ego networks

In this section we consider ego networks of Twitter and Google+ (Leskovec & Mcauley, 2012). The ego
network corresponding to a given account consists of one node for each account that the given account
follows. Directed edges between accounts i and j indicate that i follows j. The Twitter dataset consists of
973 ego networks with up to 247 nodes and 17930 edges. The Google+ dataset consists of 132 ego networks
with up to 4938 nodes and 1614977 edges. We define instances of the preordering problem for each social
network with values cij = 1 if the edge ij is in the network and cij = −1 otherwise, for all ij ∈ V2. With
these values, B(c) = |E|.

5.1.1 Comparison of preordering, clustering and partial ordering

We compare solutions to the preordering problem with those obtained by solving a clustering and a partial
ordering problem. Additionally, and for a comparison, we compute preorders by first computing a clustering
and then computing a partial order on the obtained clusters. This successive approach is in contrast to the
joint clustering and partial ordering using the preordering problem. In order to compute solutions to the
clustering and partial ordering problem, we add additional inequalities to the system (1)–(3): For clustering,
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Figure 5: Shown above are objective values normalized by the number of edges (left) and runtimes (right)
for those 435 Twitter instances for which the preorder (≲), partial order (≤), and clustering (∼) problems
are solved to optimality within a time limit of 500 s. Here, (∼, ≤) denotes successive clustering and partial
ordering.

we add symmetry constraints xij = xji for all ij ∈ V2. For partial ordering we add antisymmetry constraints
xij + xji ≤ 1 for all ij ∈ V2.

Results for six ego networks are shown in Figure 6 and compared quantitatively in Table 1. The first network,
for instance, has |E| = 54 edges and admits a preorder of value 52. This preorder disagrees with two of
the edges. Its transitivity index is T (c) = 52

54 ≈ 0.963. The optimal clustering and partial ordering disagree
with 14 and 20 edges, respectively. Not every social network has such a high transitivity index. The fourth
network, for example, has a transitivity index of T (c) = 27

51 ≈ 0.529, and the objective values of the optimal
solutions to the clustering (20) and partial ordering (26) problems are not much smaller than the value of
the optimal preorder (27).

Objective values and runtimes for the 434 out of 973 instances that have been solved within a time limit of
500 s are visualized in Figure 5. The objective values are highest for the preordering problem and lowest for
the clustering problem. The values obtained by the successive approach are significantly smaller than those
obtained by solving the preordering problem directly. This can be understood as an advantage of solving
a joint clustering and partial ordering problem over solving these problems successively. On average, the
runtime of the clustering problem is the lowest, while that of the partial ordering problem is the highest. The
runtime of successive clustering and partial ordering is only marginally greater than that of just clustering
because the instance of the partial ordering problem on clusters is much smaller than the instance of the
partial ordering problem on individual accounts.

Table 1: Exemplary results for the ego networks with IDs 734493, 15053535, 104324908, 126067398,
215824411, and 101560853443212199687. Reported are the number of nodes (|V |) and edges (|E|), the
optimal values of the preordering (≲), clustering (∼) and partial ordering (≤) problems, and the transitivity
index T .

Platform |V | |E| ≲ ∼ ≤ T

Twitter 9 54 52 40 34 0.963
Twitter 18 26 23 12 19 0.885
Twitter 13 77 62 34 51 0.805
Twitter 14 51 27 20 26 0.529
Twitter 10 40 35 24 28 0.875
Google+ 19 107 92 24 87 0.885
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Figure 6: Depicted above on the left are the ego networks from Table 1. Next to these networks, from left to
right, are an optimal preorder, optimal clustering and optimal partial order. Disagreements with the social
network are highlighted by red arcs. It can be observed that the preorder has less disagreement compared
to the clustering and partial order. For the network at the top, for instance, the preorder has only two
disagreeing arcs while the clustering has 14 disagreeing arcs and the partial order has 20 disagreeing arcs.
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Figure 7: Shown on the left is the fraction of the LP gap that is closed by including odd closed walk
inequalities. On average, 30.4% of the gap is closed. This evaluation is restricted to those 313 instances from
the Twitter dataset for which the optimal solution is computed within a 500 s time limit and the canonical
LP bound is not tight. Shown on the right are the differences between the lower bounds computed by the
heuristic algorithms and the LP bound on all 973 instances. The median differences are 0.1081, 0.0544,
0.0386, 0.0379, 0.0349, 0.0318 for the six algorithms, respectively.

5.1.2 Optimal solutions and bounds

Within the time limit of 500 s, the ILP algorithm finds optimal solutions to the instances of the preordering
problem for 499 out of 973 Twitter ego networks. For these instances, the average transitivity index T is
0.580. For 186 of these instances, the LP bound according to Section 4.5 is tight. For the 313 instances for
which the LP bound is not tight, the gap between the LP bound and the optimal solution is reduced by
30.4% on average by the odd closed walk inequalities; cf. Figure 7 (left).

We compute feasible solutions that are not guaranteed to be optimal with the heuristic algorithms GDC,
GDC+GAI, GDC+GM, GAF, GAF+GAI, GAF+GM. The values of these feasible solutions are lower
bounds on the transitivity index. Complementary to this, LP computes upper bounds on the transitivity
index. Differences between these lower and upper bounds are shown in Figure 7 (right). On average,
GAF+GM comes closest to the LP bound with a mean difference of 0.0318. Still, for example, on 121
instances, the solution computed by GDC+GAI is strictly better than that of GAF+GM.

On those 474 instances for which the ILP could not be solved to optimality, the median gap after the time
limit of 500 s is reached is 0.146. In contrast to this, the median gap between the best lower bound and
the upper bound computed with OCW is 0.068. While it is NP-hard to compute the transitivity index
exactly, this result shows that it can be estimated closely in polynomial time for these instances. Moreover,
this shows that the discussed heuristic algorithms together with the bounds obtained by OCW can result
in much better solutions than those found by a canonical ILP solver within the time limit.

5.1.3 Efficiency of heursitic algorithms

We analyze the empirical runtime of the heuristic algorithms on the much larger Google+ ego networks. The
largest network contains |V | = 4,938 nodes, which results in an instance of the preordering problem of size
|V2| = 24,378,906. The runtimes are shown in Figure 8. The fastest algorithm is GDC. This is expected as
its runtime is linear in the input size (cf. Section 4.1). Even for the largest instance, it terminates in less
than one second. The GDC+GAI algorithm, which runs GDC first and then GAI, also terminates within
the time limit for all instances. In practice, GAI is much faster than GF and GAF because it may insert
multiple arcs per iteration leading to fewer iterations overall. While the algorithm GAF+GM, on average,
computes slightly better solutions than GDC+GAI, algorithm GDC+GAI is significantly faster on large
instances. The average lower bound on the transitivity index computed by GDC+GAI is 0.61, i.e., the
Google+ ego networks exhibit a slightly higher transitivity compared to the Twitter ego networks.
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Figure 8: Runtimes of six heuristic algorithms as a function of input size |V2|. Results are shown for runs
terminating within 100s.

5.2 Twitter interaction network of the 117th US Congress

In this section we perform a qualitative analysis on a Twitter network of members of the 117th Congress of
the United States. This network has been published by Fink et al. (2023) who have measured for each pair
of Twitter accounts of Members of Congress the likelihood of one account reacting to a contribution of the
other account. The thusly obtained digraph consists of 475 nodes and 13,289 directed edges with non-zero
likelihood. In contrast to the ego networks from the previous section, this network is not anonymized. This
allows us to qualitatively interpret the results. We construct an instance of the preordering problem by
defining arc values c to be the reaction likelihood minus 0.01 (a subjective choice). With this, the arc values
reward arcs from i to j to be part of the preorder if i reacts on more than 0.01 of the contributions of j and
penalizes it otherwise.

For this instance of the preordering problem, the optimal solution value is P (c) = 11.875 and an optimal
solution is depicted in Figure 9. It is found by our ILP algorithm in 4.9 s. The upper bound is B(c) = 15.017,
which results in a transitivity index T (c) = 0.791. In visualization of the preorder in Figure 9, nodes are
arranged in layers and all arcs are directed from left to right. The further a node is to the left, the more
the corresponding account reacts to others. The further a node is to the right, the more reactions the
corresponding account gets from others. One can see that accounts react more to accounts from members
of the same political party. There are two layers with particularly many nodes. This is expected as dicuts
are transitive (cf. Section 4.1). However, there are many nodes not contained in the two large layers (i.e.,
the optimal solution is not close to a dicut). This is an indication that the interactions exhibit non-trivial
transitivity. The node with the most incoming arcs (i.e., the account that gets the most reactions) is that of
Kevin McCarthy (labeled with a in Figure 9), the Republican minority leader in the House of Representatives
of the 117th US Congress. There is a cluster of three accounts that is isolated from the rest (labeled with
b in Figure 9). These accounts belong to Tom Carper, Chris Coons and Lisa Blunt Rochester, who are the
three Members of Congress from Delaware. The node labeled with c in Figure 9 corresponds to the account
of Bernie Sanders, who is a party independent member and thus expected to have fewer incoming arcs.

If we require the preorder to be symmetric (i.e., an equivalence relation/clustering), the optimal value is
5.256. This value being much smaller than P (c) = 11.875 suggests that preorders are a better fit to this
network than equivalence relations.

6 Conclusion

The NP-hard preordering problem is both a joint relaxation and a hybrid of the clique partitioning problem,
from which the symmetry constraint is dropped, and the partial ordering problem, from which the antisym-
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a

b

c

Figure 9: Preorder of Twitter accounts of members of the 117th US Congress. Each node corresponds to a
cluster of accounts and the size of the node is proportional to the size of the cluster (most clusters contain
just a single account.). The color of the node corresponds to the party membership (Democrats: blue,
Republicans: red, Other: gray), where clusters with mixed membership have a mixed color. The depicted
edges are those of the transitive reduction of the partial order on the clusterings. The layout is computed
using the dot algorithm implemented in Graphviz (Ellson et al., 2004).
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metry constraint is dropped. A 4-approximation, computable in linear time, is given by the maximum dicut
of the subgraph of all arcs with a positive value. Complementary to a local search algorithm by Böcker
et al. (2009) that we call greedy arc fixation, heuristics that we call greedy arc insertion and greedy moving
are defined analogously to algorithms known for clustering. The ILP formulation (1)–(3) of the preordering
problem is tightened by odd closed walk inequalities that define facets of the preordering polytope.

In an application of the preordering problem and the algorithms described above to the task of jointly
clustering and ordering the accounts of the social networks published by Fink et al. (2023) and Leskovec &
Mcauley (2012), we observe qualitatively that preorders output by the algorithms differ from equivalence
relations found by clustering, partial orders found by partial ordering, and preorders found by successive
clustering and partial ordering. In addition, we observe quantitatively that high-quality solutions are found
in practice by greedy arc fixation despite it not providing any approximation guarantee. Alternatively, by
first constructing a 4-approximation in the form of a dicut and then performing a local search by greedy arc
insertion initialized with the dicut also finds high-quality solutions. Comparing upper and lower bounds, we
observe that a substantial fraction of the LP gap is closed by adding odd closed walk inequalities.

Broader Impact Statement

This paper presents work whose goal is to advance the field of machine learning. The algorithms we introduce
can be applied to social networks, including networks of individuals. They output relations that are transitive.
The assumption that a social network is transitive simplifies and possibly contradicts reality. Working with
this assumption is potentially controversial. In particular, the algorithms we define can be applied to identify
the part of a relation on a social network that is not transitive. This can potentially serve as a basis for
influencing a social network to become more or less transitive, which can have ethical implications.
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A Appendix

A.1 Discussion of reflexivity

The feasible solutions to the ILP formulation (1)–(3) of the preordering problem are precisely the character-
istic vectors of the reflexive reductions of the preorders on V . There are two main reasons for our preference
of this formulation over a version that would use the characteristic vectors of the preorders directly.

Firstly, we are interested in approximating solutions to the preordering problem. The quality of an approx-
imation algorithm is usually defined as the maximum multiplicative error this algorithm commits over all
instances of the problem. By assigning values also to the reflexive pairs and requiring a solution A ⊆ V 2

to be reflexive and transitive, the total value of every solution includes all values of transitive pairs. In
particular, changing the values of the reflexive pairs merely shifts the values of all solutions by the same
amount. Shifting the values of all solutions by a constant amount does not change the set of optimal so-
lutions. However, it affects the ratio of values of solutions and thus how well one solution approximates
another solution. Restricting our attention to the reflexive reductions of preorders is further justified by a
lemma proven by Wakabayashi (1998) stating that the decision version of the problem is NP-complete for
the reflexive version if and only if it is NP-complete for the irreflexive version.

Secondly, the convex hull of the characteristic vectors of transitive and reflexive relations is a polytope
contained in a |V2|-dimensional subspace of RV 2 (namely the subspace defined by the equalities xii = 1 for
i ∈ V ). By restricting the polytope to the space RV2 (i.e., the convex hull of the feasible solutions to the
ILP (1)–(3)), this complication is avoided.

A.2 Derandomization of the max-dicut algorithm

It is well known that the randomized 4-approximation algorithm for max-dicut can be derandomized
(Halperin & Zwick, 2001; Bar-Noy & Lampis, 2012). For completeness, we reproduce the derandomiza-
tion due to Theorem 3 of Bar-Noy & Lampis (2012) below. Additionally, we show that this algorithm can
be implemented to run in O(|V |2).

Let G = (V, E) be a directed graph with edge weights w : E → R≥0. In the following, let S, S̄ ⊆ V with
S ∩ S̄ = ∅. They define the partial dicut {ij ∈ E | i ∈ S, j ∈ S̄}. We denote the expected value of the dicut
that is obtained by randomly assigning elements in V \ (S ∪ S̄) to either S or S̄ by ESS̄ . It holds that

ESS̄ =
∑

ij∈E:
i∈S,j∈S̄

wij +
∑

ij∈E:i∈S,
j∈V \(S∪S̄)

wij

2

+
∑

ij∈E:j∈S̄,
i∈V \(S∪S̄)

wij

2 +
∑

ij∈E:
i,j∈V \(S∪S̄)

wij

4 .

For k ∈ V \(S∪S̄), let gk denote the change in the expected value after assigning k to S. A simple calculation
yields

gk =ES∪{k}S̄ − ESS̄ =
∑
j∈S̄:
kj∈E

wkj

2 −
∑
i∈S:
ik∈E

wik

2

+
∑

j∈V \(S∪{k}∪S̄):
kj∈E

wkj

4 −
∑

i∈V \(S∪{k}∪S̄):
ik∈E

wik

4

and

ESS̄∪{k} − ESS̄ = −gk .

If gk is non-negative, assigning k to S does not decrease the expected value; otherwise, assigning k to S̄ does
not decrease the expected value.
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When assigning all elements randomly, the expected value is E∅∅ =
∑

ij∈E
wij

4 . By iteratively assigning
elements k ∈ V \ (S ∪ S̄) to S or S̄ based on the sign of gk, a dicut is obtained with value at least E∅∅ and,
therefore, a 4-approximation to the max-dicut problem.

Algorithm 1 implements this algorithm with two additional improvements: Firstly, in each iteration, the
element k ∈ V \ (S ∪ S̄) for which |gk| is greatest is selected. This maximizes the expected value after
assigning k. Secondly, the values gk for k ∈ V \ (S ∪ S̄) are not computed from scratch in each iteration.
Instead, they are computed once for S = S̄ = ∅, and after each iteration, these values are updated. With
this, each iteration runs in time O(|V |) instead of O(|V |2) that would be required to compute all g values
according to the formula above.

A.3 Example instance

In this section we describe an instance of the preordering problem where the greedy arc fixation algorithm
(cf. Section 4.2) does not achieve a 4-approximation. In contrast to Figure 4, on this instance no ties occur
throughout the execution of the algorithm and thus no unfavorable tie-breaking. The arc values of such an
instance are given by the matrix below.

0 −9976 −20009 −10060 −20099 10033
−9908 0 10025 −19965 9996 6
10049 −10048 0 10018 −19971 −20025

−19943 −9914 −10076 0 −19984 10014
9950 −91 −19988 10021 0 −19934

−20025 10086 9947 −10032 −10035 0


This matrix was generated by uniformly sampling values from {−2, −1, 0, 1, 2} in order to obtain a difficult
instance and then scaling these values by 10000 and adding uniformly sampled noise from {−100, . . . , 100}
in order to obtain unique values. The optimal preorder has an objective value of 50130. The preorder
found by the greedy arc fixation algorithm has an objective value 10280, yielding an approximation ratio
of 4.88 > 4. The greedy arc fixation algorithm performs the following sequence of fixations: x{5,4} = 0,
x{0,4} = 0, x{0,1} = 0, x{5,2} = 0, x{3,1} = 0, x{5,1} = 0, x{0,2} = 0, x{3,4} = 0, x{3,2} = 0, x{5,0} = 0,
x{5,3} = 0, x{2,1} = 0, x{2,5} = 1, x{4,2} = 0, x{1,3} = 1, x{3,0} = 0, x{1,5} = 1, x{4,1} = 0, x{1,0} = 1,
x{2,4} = 0, x{4,5} = 1, x{0,3} = 0, x{2,0} = 1, x{0,5} = 1, x{1,2} = 1, x{4,3} = 1, x{2,3} = 1, x{3,5} = 1,
x{1,4} = 1, x{4,0} = 1. Each fixation is the unique best fixation and no ties occur.
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