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ABSTRACT

In conventional object detection frameworks, a backbone body inherited from im-
age recognition models extracts deep latent features and then a neck module fuses
these latent features to capture information at different scales. As the resolution in
object detection is much larger than in image recognition, the computational cost
of the backbone often dominates the total inference cost. This heavy-backbone
design paradigm is mostly due to the historical legacy when transferring image
recognition models to object detection rather than an end-to-end optimized design
for object detection. In this work, we show that such paradigm indeed leads to
sub-optimal object detection models. To this end, we propose a novel heavy-neck
paradigm, GiraffeDet, a giraffe-like network for efficient object detection. The Gi-
raffeDet uses an extremely lightweight backbone and a very deep and large neck
module which encourages dense information exchange among different spatial
scales as well as different levels of latent semantics simultaneously. This design
paradigm allows detectors to process the high-level semantic information and low-
level spatial information at the same priority even in the early stage of the network,
making it more effective in detection tasks. Numerical evaluations on multiple
popular object detection benchmarks show that GiraffeDet consistently outper-
forms previous SOTA models across a wide spectrum of resource constraints. The
source code is available at https://github.com/jyqi/GiraffeDet.

1 INTRODUCTION

In the past few years, remarkable progress in deep learning based object detection methods has
been witnessed. Despite object detection networks getting more powerful by different designing on
architecture, training strategy and so on, the meta-goal that detecting all objects with large-scale
variation has not been changed. For example, the scale of the smallest and largest 10% of object
instances in COCO dataset is 0.024 and 0.472 respectively (Singh & Davis, 2018), which scaling in
almost 20 times. This presents an extreme challenge to handle such a large-scale variation by using
recent approaches. To this end, we aim to tackle this problem by designing a scale robust approach.

To alleviate the problem arising from large-scale variations, an intuitive way is to use multi-scale
pyramid strategy for both training and testing. The work of (Singh & Davis, 2018) trains and tests
detectors on the same scales of an image pyramid, and selectively back-propagates the gradients of
object instances of different sizes as a function of the image scale. Although this approach improves
the detection performance of most existing CNN-based methods, it is not very practical, as the image
pyramid methods process every scale image, which could be computationally expensive. Moreover,
the scale of objects between classification and detection datasets remains another challenge in do-
main shift when using pre-trained classification backbones.

Alternatively, the feature pyramid network is proposed to approximate image pyramids with lower
computational costs. Recent methods still rely on superior backbone designing, but insufficient
information exchange between high-level features and low-level features. For example, some work
enhances the entire feature hierarchy with accurate localization signals in lower layers by bottom-up
path augmentation, however this bottom-up path design might lack exchange between high-level
semantic information and low-level spatial information. According to the above challenges, two
questions in this task are raised as follows:
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• Is the backbone of the image classification task indispensable in a detection model?
• What types of multi-scale representations are effective for detection tasks?

These two questions motivate us to design a new framework with two sub-tasks two i.e., efficient
feature down-sampling and sufficient multi-scale fusion. First, conventional backbones for scale-
sensitive features generation are computationally expensive and exist domain-shift problem. An al-
ternative lightweight backbone can solve these problems. Second, it is crucial for a detector to learn
sufficient fused information between high-level semantic and low-level spatial features. According
to the above motivations, we design a giraffe-like network, named as GiraffeDet, with the follow-
ing insights: (1) An alternative lightweight backbone can extract multi-scale feature transformation
without any additional computation costs. (2) A sufficient cross-scale connection, Queen-Fusion,
like the Queen Piece pathway in chess, to deal with different levels and layers of feature fusion. (3)
According to the designed lightweight backbone and flexible FPN, we propose a GiraffeDet family
for each FLOPs level. Notably, the experimental results suggest that our GiraffeDet family achieves
higher accuracy and better efficiency in each FLOPs level.

In summary, the key contributions of our work as follows:
• To the best of our knowledge, we present the first lightweight alternative backbone and flexible
FPN combined as a detector. The proposed GiraffeDet family consists of Lightweight S2D-chain
and Generalized-FPN, which demonstrates the state-of-the-art performance.
• We design the lightweight space-to-depth chain (S2D-chain) instead of the conventional CNN-
based backbone, and controlled experiments demonstrate that FPN is more crucial than conventional
backbones in the object detection mode.
• In our proposed Generalized-FPN (GFPN), a novel queen-fusion is proposed as our cross-scale
connection style that fuses both level features in previous and current layers, and log2n skip-layer
link provides more effective information transmission that can scale into deeper networks.

Based on the light backbone and heavy neck paradigm, the GiraffeDet family models perform well in
a wide range of FLOPs-performance trade-offs. In particular, with the multi-scale testing technique,
GiraffeDet-D29 achieves 54.1% mAP on the COCO dataset and outperforms other SOTA methods.

2 RELATED WORK

It is crucial for the object detector to recognize and localize objects by learning scale-sensitive fea-
tures. Traditional solutions for the large-scale variation problem mainly based on improved convo-
lutional neural networks. CNN-based object detectors are mainly categorized by two-stage detectors
and one-stage detectors. Two-stage detectors (Ren et al., 2015; Dai et al., 2016; He et al., 2017; Cai
& Vasconcelos, 2018; Pang et al., 2019) predict region proposals and then refine them by a sub-
network, and one-stage detectors (Liu et al., 2016; Lin et al., 2017b; Redmon et al., 2016; Redmon
& Farhadi, 2017; Tan et al., 2019; Tian et al., 2019; Zhu et al., 2019; Zhang et al., 2020; 2019; Ge
et al., 2021) directly detecting bounding-boxes without the proposal generation step. In this work,
we mainly conduct experiments based on one-stage detector methods.

Recently, the main research line is utilizing pyramid strategy, including image pyramid and feature
pyramid. The image pyramid strategy is used for detecting instances by scaling images. For ex-
ample, SNIPER (Singh et al., 2018) propose a fast multi-scale training method, which samples the
foreground regions around ground-truth object and background regions for different scale training.
Unlike image pyramid methods, feature pyramid methods Lin et al. (2017a); Liu et al. (2018); Chen
et al. (2019a); Tan et al. (2020); Sun et al. (2021) fuse pyramidal representations that cross different
scales and different semantic information layers. For instance, PANet (Liu et al., 2018) enhances
the feature hierarchies on top of feature pyramid network by additional bottom-up path augmenta-
tion. Our work focuses on feature pyramid strategy and proposes a sufficient high-level semantic
and low-level spatial information fusion method.

Some researchers start working on designing new architectures to solve the large-scale variation
problem instead of “backbone-neck-head” architecture in detection tasks. The work of Sun et al.
(2019b) proposed the FishNet as an encoder-decoder architecture with skip connections to fuse
multi-scale features. SpineNet (Du et al., 2020) designed as a backbone with scale-permuted inter-
mediate features and cross-scale connections that is learned on an object detection task by Neural
Architecture Search. Our work is inspired by these methods and proposes a lightweight space-to-
depth backbone instead of a CNN-based backbone. However, our GiraffeDet still designed as the

2



Published as a conference paper at ICLR 2022

S2D Block

Conv 3x3 

S2D-chiain

……

Generalized-FPN

P3

P4

P5

P6

P7

log2n-link

Box Predict Network

Class Predict Network

Giraffe HeadGiraffe NeckGiraffe Body

Conv
1 x 1

S2D Block

S2D Block

S2D Block

S2D Block

Conv
1 x 1

Conv
1 x 1

Conv
1 x 1

Conv
1 x 1

x2

Figure 1: Overview of the GiraffeDet which has three parts: 1) Body contains image preprocessing
and lightweight S2D-chain;, 2) Heavy neck refines and fuses high-level semantic and low-level
spatial features; 3) Head predicts the bounding box and class label of exist objects.

“backbone-neck-head” architecture. Because this typical architecture is widely used and proved
effective in detection tasks.

3 THE GIRAFFEDET

Although extensive research has been carried out to investigate efficient object detection, large-scale
variation still remains a challenge. To achieve the goal of sufficient multi-scale information exchange
efficiently, we proposed the GiraffeDet for efficient object detection, and the “giraffe” consists of
lightweight space-to-depth chain, generalized-FPN and prediction networks. The overall framework
is shown in Figure 1, which largly follows the one-stage detectors paradigm.

3.1 LIGHTWEIGHT SPACE-TO-DEPTH CHAIN

Most feature pyramid networks apply conventional CNN-based networks as the backbone to extract
multi-scale feature maps and even learn information exchange. However, recent backbones became
much heavier with the development of CNN, it is computationally expensive to utilize them. More-
over, most recent applied backbones are mainly pre-trained on classification dataset, e.g., ResNet50
pre-trained on ImageNet, and we argue these pre-trained backbones are inappropriate in detection
task and remains the domain-shift issue. Alternatively, FPN more emphasis on high-level semantic
and low-level spatial information exchange. Therefore, we assume that FPN is more crucial than
conventional backbones in the object detection model.

Space-to-Depth
(S2D)

Figure 2: Illustration of the space-to-depth
transformation. The S2D operation moves the
activation from the spatial dimension to the
channel dimension

Inspired by (Shi et al., 2016; Sajjadi et al., 2018),
we propose Space-to-Depth Chain (S2D Chain)
as our lightweight backbone, which includes two
3x3 convolution networks and stacked S2D blocks.
Concretely, 3x3 convolutions are used for ini-
tial down-sampling and introduce more non-linear
transformations. Each S2D block consists of a S2D
layer and a 1x1 convolution. S2D layer moves spa-
tial dimension information to depth dimension by
uniformly sampling and reorganizing features with
a fixed gap, so as to down-sample features with-
out additional parameters. Then 1x1 convolutions
are used to offer a channel-wise pooling to gener-
ate fixed-dimension feature maps. More details are
shown in Appendix A.1.

To verify our assumption, we conduct controlled experiments on different backbone and neck com-
putation ratios in multiple object detection of the same FLOPs in Section 4. The results show that
neck is more crucial than conventional backbones in object detection task.
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 (a) FPN (b) PANet (c) BiFPN (d) GFPN

Figure 3: Feature pyramid network evolution design from level 3 to level 7 (P3 - P7). (a) FPN (Lin
et al., 2017a) introduces a top-down pathway to fuse multi-scale features; (b) PANet (Liu et al.,
2018) adds an additional bottom-up pathway on top of FPN; (c) BiFPN (Tan et al., 2020) introduces
a bidirectional cross-scale pathway; (d) our GFPN contains both queen-fusion style pathway and
skip-layer connection. The dashed box refers to the layer in each FPN design.

3.2 GENERALIZED-FPN

In feature pyramid network, multi-scale feature fusion aims to aggregate different resolution features
that are extracted from the backbone. Figure 3 shows the evolution of feature pyramid network
design. Conventional FPN (Lin et al., 2017a) introduces a top-down pathway to fuse multi-scale
features from level 3 to 7. Considering the limitation of one-way information flow, PANet(Liu
et al., 2018) adds an extra bottom-up path aggregation network, but with more computational cost.
Besides, BiFPN (Tan et al., 2020) removes nodes that only have one input edge, and add extra edge
from the original input on the same level. However, we observe that previous methods focus only
on feature fusion, but lack the inner block connection. Therefore, we design a novel pathway fusion
including skip-layer and cross-scale connections, as shown in Figure 3(d).

Skip-layer Connection. Compared to other connection methods, skip connections have short dis-
tances among feature layers during back-propagation. In order to reduce gradient vanish in such
a heavy “giraffe” neck, we propose two feature link methods: dense-link and log2n-link in our
proposed GFPN, as shown in Figure 4.

(a) Dense-link (b) log2n-link

Figure 4: Two link mode of skip-layer connection: (a) dense-link: the concatenation of all preceding
layers (b) log2n-link: the concatenation of at most log2l + 1 layers.

• dense-link: Inspired by DenseNet (Huang et al., 2017), for each scale feature P l
k in level k,

Consequently, the lth layer receives the feature-maps of all preceding layers:

P l
k = Conv(Concat(P 0

k , . . . , P
l−1
k )), (1)

where Concat() refers to the concatenation of the feature-maps produced in all preceding layers,
and Conv() represents a 3x3 convolution.

• log2n-link: Specifically, in each level k, the lth layer receives the feature-maps from at most
log2l + 1 number of preceding layers, and these input layers are exponentially apart from depth i
with base 2, as denoted:

P l
k = Conv(Concat(P l−2n

k , . . . , P l−21

k , P l−20

k )), (2)

where l− 2n ≥ 0, Concat() and Conv() also represent concatenation and 3x3 convolution respec-
tively. Compare to dense-link at depth l, the time complexity of log2n-link only cost O(l · log2l),
instead of O(l2). Moreover, log2n-link only increase the short distances among layers during back-
propagation from 1 to 1+log2l. Hence, log2n-link can scale to deeper networks.
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Figure 5: Illustration of cross-scale connection between PANet and our Queen-fusion in GFPN. S
and C represent summation and concatenation fusion style, and

′
Pk denotes node in next layer.

Cross-scale Connection. Based on our assumption, our designed sufficient information exchange
should contains not only skip-layer connection, but also cross-scale connection, to overcome large-
scale variation. Previous works in connecting features between adjacent layers only consider same
level feature (Liu et al., 2018) or previous level feature (Tan et al., 2020). Therefore, we propose
a new cross-scale fusion named as Queen-fusion, that considering both same level and neighbor
level features as shown in Figure 3(d), like playing the queen piece in chess. As an example shown
in Figure 5(b), the concatenation of Queen-fusion in P5 consists previous layer P4 down-sampling,
previous layer P6 up-sampling, previous layer P5 and current layer P4. In this work, we apply bilin-
ear interpolation and max-pooling as our up-sampling and down-sampling functions respectively.

Therefore, in the extreme large-scale variation scenario, it requires that the model has sufficient
high-level and low-level information exchange. Based on the mechanism of our skip-layer and
cross-scale connections, the proposed generalized-FPN can be expanded as long as possible, just
like the “giraffe neck”. With such a “heavy neck” and a lightweight backbone, our GiraffeDet can
balance higher accuracy and better efficiency trade-off.

3.3 GIRAFFEDET FAMILY

According to our proposed S2D-chain and Generalized-FPN, we can develop a family of different
GiraffeDet scaling models that can overcome a wide range of resource constraints. Previous work
scale up its detector in the inefficient way, as changing bigger backbone networks like ResNeXt (Xie
et al., 2017), or stacking FPN blocks e.g., NAS-FPN (Ghiasi et al., 2019). Specially, EfficientDet
(Tan et al., 2020) start using compound coefficient φ to jointly scale up all dimensions of backbone.
Different from EfficientDet, we only focus on the scaling of GFPN layers instead of the whole
framework including lightweight backbone. Specifically, we apply two coefficients φd and φw to
flexibly scale GFPN depth and width.

Table 1: The scaling config for
GiraffeDet family − φd is the
hyper−parameter that denotes the
depth (# of layers) of GFPN. The
width (# of channels) of GFPN can be
calculated based on φw by Equation
3.

Generalized-FPN
φd φw

Giraffe-D7 7 0.7
Giraffe-D11 11 0.85
Giraffe-D14 14 0.95
Giraffe-D16 16 1.0
Giraffe-D25 25 1.15
Giraffe-D29 29 1.2

Based on our GFPN and eS2D chain, we have developed
a GiraffeDet family. Most previous work scale up a base-
line detector by changing bigger backbone networks, since
their model mainly focus on a single or limited scaling di-
mensions. As we assume backbone is not critical for object
detection task, the GiffeDet family only focus on the scal-
ing of generalized-FPN. Two multipliers are proposed to
control the depth (# of layers) and width (# of channels) for
GFPN:

Dgfpn = φd, Wgfpn = 256 ∗ φw, (3)

Following above setting and equation. 3, we have devel-
oped six architectures of GiraffeDet, as shown in Table 1.
GiraffeDet-D7,D11,D14,D16 have the same level FLOPs
with ResNet-series based model and we compare perfor-
mance of GiraffeDet family with SOTA models in the next
section. Note that the layer of GFPN is different with other
FPN design as shown in Figure 3. In our proposed GFPN,
each layer represents one depth, while the layer of PANet
and BiFPN contains two depth.
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4 EXPERIMENTS

In this section, we first introduce the implementation details and present our experimental result
on the COCO dataset (Lin et al., 2014). Then compare our proposed GiraffeDet family with other
state-of-the-art methods, and an in-depth analysis is provided to better understand our framework.

4.1 DATASET AND IMPLEMENTATION DETAILS

COCO dataset. We evaluate GiraffeDet on COCO 2017 detection dataset with 80 object categories.
It includes 115k images for training (train), 5k images for validation (val) and 20k images with no
public ground-truth for testing (test − dev). The training of all methods is conducted on the 115k
training images. We report results on the validation dataset for ablation study and results of the test-
dev dataset from the evaluation server for state-of-the-art comparison and DCN related comparison.

For fair comparison, all results are produced under mmdetection (Chen et al., 2019b) and the stan-
dard COCO-style evaluation protocol. GFocalV2 (Li et al., 2021) and ATSS (Zhang et al., 2020)
are applied as head and anchor assigner, respectively. Following the the work of (He et al., 2019),
all models are trained from scratch to reduce the influence of pre-train backbones on ImageNet. The
shorter side of input images is resized to 800 and the maximum size is restricted within 1333. To
enhance the stability of scratch training, we adopt multi-scale training for all models, including:
2x imagenet-pretrained (p-2x) learning schedule (24 epochs, decays at 16 and 22 epochs) only in
R2-101-DCN backbone experiments, and 3x scratch (s-3x) learning schedule (36 epochs, decays at
28 and 33 epochs) in ablation study, and 6x scratch (s-6x) learning schedule (72 epochs, decays at
65 and 71 epochs) in state-of-the-art comparison. More implementation details in Appendix B.

4.2 QUANTITATIVE EVALUATION ON COCO DATASET

We compare GiraffeDet with state-of-the-art approaches in Table. 2. Unless otherwise stated, single-
model and single-scale setting with no test-time augmentation is applied. We report accuracy for
both test-dev (20k images with no public ground-truth) and val with 5k validation images. We group
models together if they have similar FLOPs and compare their accuracy in each group. Notably,
model performance depends on both network architecture and training settings. We refer most
models from their paper. But for a fair comparison, we also reproduce some of RetinaNet (Lin
et al., 2017b), FCOS (Tian et al., 2019), HRNet (Sun et al., 2019a), GFLV2 (Li et al., 2021) with 6x
training from scratch, which denoted as †.
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Figure 6: mAP on all scale of object instances (pix-
els) in five different models under R50 FLOPs level
and 6x scratch training, including HRNet (Sun et al.,
2019a), GFocalV2 (Li et al., 2021), RetinaNet (Lin
et al., 2017b), FCOS (Tian et al., 2019) and our pro-
posed GiraffeDet.

Large-scale Variance. According to the per-
formance of Figure 6, we can observe that our
proposed GiraffeDet achieves the best perfor-
mance in each pixel scale range, which indi-
cates that the light backbone and heavy-neck
paradigm, as well as our proposed GFPN, can
effectively solve a large-scale variance prob-
lem. Also, under the skip-layer and cross-
scale connections, high-level semantic infor-
mation and low-level spatial information can be
sufficiently exchanged. Many object instances
are smaller than 1% of the image area in the
COCO dataset, making detectors difficult to de-
tect. Even though extremely small instance are
difficult to detect, our method still outperforms
5.7% mAP than RetinaNet in the pixel range
0-32, which outperforms the same mAP in the
middle pixel range 80-144. Notably, in the
scale of pixel range 192-256, the proposed Gi-
raffeDet outperforms the most than other meth-
ods, which proves that our design can learn
scale-sensitive features effectively.
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Table 2: GiraffeDet performance on COCO - Results for single-model single-scale. test-dev is the COCO
test set and val is the validation set. † means that the results are reproduced by 6x scratch training, others are
referred from their paper. We group models together if they have similar FLOPs, and compare their accuracy
in each group. MStest: multiscale testing, R: ResNet, X: ResNext, and W: low-level features map width in
HRNet (# of channels). The head and anchor assigner of GiraffeDet family are GFocalV2 and ATSS.

#FLOPs #FLOPs #FLOPs test-dev val-2017
Model Backbone Neck total APtest APS APM APL APval

Yolov3-darknet53 139.82 32.54 187.73 33.0 18.3 35.4 41.9 33.8
RetinaNet-R50† 76.15 16.6 229.59 40.4 23.1 43.3 52.2 40.2
FCOS-R50† 76.15 16.6 192.39 42.9 26.6 46.5 53.8 42.7
GFLV2-R50 76.15 16.6 199.96 44.3 26.8 47.7 54.1 43.9
GFLV2-R50† 76.15 16.6 199.96 44.8 27.2 48.1 54.4 44.5
HRNetV2p-W18 65.13 16.34 182.06 38.3 23.1 41.5 49.2 38.1
HRNetV2p-W18† 65.13 16.34 182.06 40.6 25.7 43.3 50.6 40.2
GiraffeDet-D7 3.89 76.13 186.71 45.6 28.8 48.7 55.6 44.9
RetinaNet-R101 153.74 16.6 302.62 39.1 21.8 42.7 50.2 38.9
FCOS-R101 153.74 16.6 265.38 41.5 24.4 44.8 51.6 40.8
ATSS-R101 153.74 16.6 269.94 43.6 26.1 47.0 53.6 41.5
PAA-R101 153.74 16.6 269.94 44.8 26.5 48.8 56.3 43.5
GFLV2-R101 153.74 16.6 272.99 46.2 27.8 49.9 57.0 45.9
HRNetV2p-W32 155.8 19.64 276.03 40.5 23.4 42.6 51.0 40.3
HRNetV2p-W32† 155.8 19.64 276.03 44.6 27.9 48.0 56.8 44.1
GiraffeDet-D11 3.89 166.73 275.39 46.9 29.9 51.1 58.4 46.6
RetinaNet-R152 226.84 16.6 375.72 45.1 28.4 48.8 58.2 -
HRNetV2p-W40 229.57 21.52 351.69 42.8 27.0 46.4 54.5 42.7
GiraffeDet-D14 3.89 251.9 361.98 47.7 30.9 51.6 60.3 47.3
FSAF-X101-64x4d 304.68 16.6 421.86 42.9 26.6 46.2 52.7 42.4
libraRCNN-X101-64x4d 304.68 16.6 424.32 43.0 25.3 45.6 54.6 42.7
FreeAnchor-X101-64x4d 304.68 16.6 458.07 44.9 26.5 48.0 56.5 -
FCOS-X101-64x4d 304.68 16.6 420.87 43.2 26.5 46.2 53.3 42.6
ATSS-X101-64x4d 304.68 16.6 425.43 45.6 28.5 48.9 55.6 -
OTA-X101-64x4d 304.68 16.6 453.55 47.0 29.2 50.4 57.9 -
GiraffeDet-D16 3.89 315.69 438.59 48.7 31.7 52.4 61.3 48.3
GiraffeDet-D25 3.89 681.02 785.4 50.5 32.2 54.2 63.5 49.9
GiraffeDet-D29 3.89 865.44 972.97 51.3 33.1 54.9 64.9 51.0
GiraffeDet-D29+MStest 3.89 865.44 972.97 54.1 35.9 56.8 67.2 53.9

Comparison with State-of-the-art Methods. Table 2 shows that our GiraffeDet family achieves
better performance than previous detectors in each same level of FLOPs, which indicates that our
method can detect objects effectively and efficiently. 1) Compared to ResNet-based methods on the
low-level FLOPs scale, we found that, even if the overall performance is obviously not increased
too much, our method has a significant performance in detecting small and large object cases. It
indicates our method performs better in large-scale variation dataset. 2) Compared to ResNext-
based methods in high-level FLOPs scale, we find that GiraffeDet has a higher performance than
in low-level FLOPs slot, which indicates that a good design of FPN can be more crucial than a
heavy backbone. 3) Compared to other methods, the proposed GiraffeDet family also has the SOTA
performance that proves our design achieves higher accuracy and better efficiency in each FLOPs
level. Besides, the NAS-based method consumes a ton of computational resources to cover the
search space in the training process, and therefore we do not consider comparing our method with
them. Finally, with the multi-scale test protocol, our GiraffeDet achieve 54.1% mAP, especially
APS increases 2.8% and APL increases 2.3% much more than 1.9% in APM .

4.3 ABLATION STUDY

The success of our GiraffeDet can be attributed to both framework design and technical improve-
ments in each component. To analyze the effect of each component in GiraffeDet, we construct
ablation studies including: 1) Connection analysis in generalized-FPN; 2) Depth & Width in GFPN;
3) Backbone discussion; 4) GirrafeDet with DCN. More ablation study can be seen in Appendix C.
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Table 3: Ablation study on the Connection analysis. The model of “GFPN w/o skip” neck designed
without any skip-layer connection, “GFPN-dense” neck model utilizes dense-link and “GFPN-
log2n” neck model utilizes log2n-link.

Backbone Neck training FLOPs(G) APval AP50 AP75 APS APM APL

S2D chain stacked FPN s-3x 276.11 38.8 54.3 42.2 23.1 41.9 50.6
S2D chain stacked PANet s-3x 275.32 40.5 56.3 43.9 24.3 43.8 52.1
S2D chain stacked BiFPN s-3x 273.1 41.0 57.1 44.3 24.0 43.6 51.9
S2D chain GFPN w/o skip s-3x 273.51 41.2 57.0 44.3 25.7 43.5 51.9
S2D chain GFPN-dense s-3x 273.43 41.3 57.1 44.4 26.0 43.8 52.2
S2D chain GFPN-log2n s-3x 275.39 41.8 58.1 45.7 26.4 44.9 52.7

Connection Analysis. There are multiple options for constructing pathways between nodes, which
are mainly based on graph theory design and human empirical design. Different connections repre-
sent different exchanges of information on feature maps. We construct ablation study models and
conduct experiments to investigate the effects of our proposed connections. In addition, we stacked
basic FPN, PANet and BiFPN several times for fair comparison on the same FLOPs level and used
the same backbone and prediction head. Results are given in Table 3.

• Skip-layer Connection. According to the results of GFPN-dense and GFPN-log2n neck of Gi-
raffeDet, we observe that log2n connection has achieved the best performance, and dense connec-
tion only performs slightly better than without any skip-layer connection. It indicates that the log2n
connection provides more effective information transmission from early nodes to later, while dense
connection might provides redundant information transmission. Meanwhile, log2n connection can
provides deeper generalized-FPN on the same level of FLOPs. Notably, both generalized-FPN con-
nections obtain higher performance than stacked BiFPN, which can prove that our proposed Gi-
raffeDet can be more efficient.

• Cross-scale Connection. From Table 3, we can see that stacked PANet and stacked BiFPN can
achieve higher accuracy than their basic structure with bidirectional information flow, which indi-
cates the importance of information exchange in FPN structure. Overall, our GiraffeDet model can
achieve better performance, which proves that our Queen-fusion can obtain sufficient high-level and
low-level information exchange from previous nodes. Especially, even without skip-layer connec-
tion, our generalized-FPN can still outperform other methods.

Table 4: Ablation study on Depth & Width analysis. All models apply S2D-chain as their backbone.
“GFPN-log2n” denotes the GFPN neck utilizes log2n-link.

Backbone Neck depth width training FLOPs(G) APval AP50 AP75 APS APM APL

S2D chain stacked FPN 11 307 s-3x 274.67 38.3 55.0 41.2 22.0 42.1 51.5
S2D chain stacked PANet 11 308 s-3x 274.41 40.6 56.9 44.3 24.2 44.1 52.0
S2D chain stacked BiFPN 11 400 s-3x 274.51 40.5 56.8 43.9 24.1 43.6 52.0
S2D chain stacked FPN 19 221 s-3x 276.11 38.8 54.3 42.2 23.1 41.9 50.6
S2D chain stacked PANet 19 221 s-3x 275.32 40.5 56.3 43.9 24.3 43.8 52.1
S2D chain stacked BiFPN 29 221 s-3x 273.1 41.0 57.1 44.3 24.0 43.6 51.9
S2D chain GFPN-log2n 11 221 s-3x 275.39 41.8 58.1 45.7 26.4 44.9 52.7

Effect of Depth & Width. To further fairly comparison with different “Neck”, we conduct two
groups of experiments comparison with stacked basic FPN, PANet and BiFPN on the same FLOPs
level, in order to analysis the effectiveness of depth and width (number of channel) in our proposed
generalized-FPN. Note that as shown in Figure 3, each layer of our GFPN and FPN contains one
depth, while the layer of PANet and BiFPN contains two depth. As shown in Table 4, we observe
that our proposed GFPN outperforms both level of depth and width in all kinds of FPN, which also
indicates that the log2n connection can provide information transmission effectively and the de-
signed Queen-fusion can provide information exchange sufficiently. Moreover, our proposed GFPN
can achieve higher performance in a smaller design, as “11” depth and “221” width, which indicates
that our design can achieve multi-scale detection efficiently.
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Figure 7: Ablation study on different backbones: a) S2D-chain
with GFPN-D11; b) ResNet-18 with GFPN-D10; c) ResNet-34
with GFPN-D8; d) ResNet 18 with stacked BiFPN; e) ResNet-
50 with GFPN-D7; f) DarkNet with GFPN-D4; g) ResNet-101
with GFPN-D2.

Backbone Effects. Figure 7 shows the
performance of different neck depth and
different backbones in the same FLOPs
level. The results show that the com-
bination of S2D-chain and GFPN out-
performs other backbone models, which
can verify our assumption that FPN
is more crucial and conventional back-
bone would not improve performance
as depth increasing. In particular, we
can observe that performance even de-
creases with the growth of the back-
bone model. We consider this might be-
cause the domain-shift problem remains
higher in a large backbone, and it also
proves our assumption.

Table 5: val-2017 results of the deformable convolution network applied in GiraffeDet-D11. ‡ denotes the
GFPN with synchronized batch normalization (Zhang et al., 2018) for multi-GPU training.

Backbone Neck training DCN APval AP50 AP75 APS APM APL

S2D chain GFPN-D11 s-3x 41.8 58.1 45.7 26.4 44.9 52.7
S2D chain GFPN-D11 ‡ s-3x 42.9 59.6 46.9 27.1 46.5 54.1
S2D chain GFPN-D11 ‡ s-3x

√
45.3 62.4 49.6 28.5 49.3 56.9

S2D chain GFPN-D11 s-6x 46.6 64.0 51.1 29.6 50.8 57.9
S2D chain GFPN-D11 ‡ s-6x

√
49.3 66.9 53.8 31.6 53.2 61.7

Table 6: val-2017 results of Res2Net-101-DCN (R2-101-DCN) backbone with multiple GFPN necks. GFPN-
tiny refers to GFPN of depth as 8 and width as 122 (same FLOPs level as FPN).

Backbone Neck Head training APval AP50 AP75 APS APM APL FPS
R2-101-DCN FPN GFLV2 p-2x 49.9 68.2 54.6 31.3 54.0 65.5 11.7
R2-101-DCN GFPN-tiny GFLV2 p-2x 50.2 68.0 54.8 32.4 54.7 65.5 11.2
R2-101-DCN GFPN-D11 GFLV2 p-2x 51.1 69.3 55.5 32.6 56.0 65.7 10.1
R2-101-DCN GFPN-D11 GFLV2 s-6x 52.3 70.2 56.7 33.9 56.8 66.9 10.1

Results with DCN

We then conduct experiments to analyse deformable convolution network (DCN)(Dai et al., 2017)
in our GiraffeDet, which has been widely used for improving detection performance recently. As
shown in Table 5, we observe that DCN can significantly improve the performance of our GiraffeDet.
Especially, according to Table 2, GiraffeDet-D11 with DCN can achieve a better performance than
GiraffeDet-D16. Also under acceptable inference time, we observe that such a shallow GFPN (tiny)
with a strong DCN backbone can improve the performance, and the performance has been largely
increased with the growth of GFPN depth, as shown in Table 6. Note that as the design of GFPN,
Our GiraffeDet is more suitable for scratch training and has significant improvement.

5 CONCLUSION

In this paper, we propose a novel heavy-neck paradigm framework, GiraffeDet, a giraffe-like net-
work, to address the problem of large-scale variation. In particular, GiraffeDet uses a lightweight
spatial-to-depth chain as a backbone, and the proposed generalized-FPN as a heavy neck. The
spatial-to-depth chain is applied to extract multi-scale image features in a lightweight way, and the
generalized-FPN is proposed to learn sufficient high-level semantic information and low-level spatial
information exchange. Extensive results manifested that the proposed GiraffeDet family achieves
higher accuracy and better efficiency, especially detecting small and large object instances.
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A ARCHITECTURE DETAILS

A.1 S2D CHAIN DESIGN
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Figure 8: Architecture of Space-to-depth chain. “Conv”: convolutional neural networks, “SiLU”: sigmoid
Linear Units activation function, “Space-to-depth”: S2D layer, and “Bx” represents the number of S2D block.

Table 7: Structure of Space-To-Depth chain used in our experiments

Operation Layer Number of Size of Stride Value Padding Value Size of FLOPs
Filters Each Filter Output Feature

Input Image - - - - 1280 x 768 x 3 0
Convolution Layer 32 3 x 3 x 3 2 x 2 1 x 1 640 x 384 x 32 0.21G

SiLU Layer - - - - 640 x 384 x 32 0.21G
Convolution Layer 64 3 x 3 x 32 2 x 2 1 x 1 320 x 192 x 64 1.34G

SiLU Layer - - - - 320 x 192 x 64 1.34G
Space-to-Depth - - - - 160 x 96 x 256 1.34G

Convolution Layer 128 1 x 1 x 256 1 x 1 0 x 0 160 x 96 x 128 1.85G
SiLU Layer - - - - 160 x 96 x 128 1.85G

Space-to-Depth - - - - 80 x 48 x 512 1.85G
Convolution Layer 256 1 x 1 x 512 1 x 1 0 x 0 80 x 48 x 256 2.35G

SiLU Layer - - - - 80 x 48 x 256 2.35G
Space-to-Depth - - - - 40 x 24 x 1024 2.35G

Convolution Layer 512 1 x 1 x 1024 1 x 1 0 x 0 40 x 24 x 512 2.85G
SiLU Layer - - - - 40 x 24 x 512 2.85G

Space-to-Depth - - - - 20 x 12 x 2048 2.85G
Convolution Layer 1024 1 x 1 x 2048 1 x 1 0 x 0 20 x 12 x 1024 3.36G

SiLU Layer - - - - 20 x 12 x 1024 3.36G
Space-to-Depth - - - - 10 x 6 x 4096 3.36G

Convolution Layer 2048 1 x 1 x 4096 1 x 1 0 x 0 10 x 6 x 2048 3.86G
SiLU Layer - - - - 10 x 6 x 2048 3.86G
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A.2 GENERALIZED FPN DESIGN

S2D chain
3.89 GFLOPs

Stacked BiFPN
165.57 GFLOPs

…

…

…

S2D chain
3.89 GFLOPs

GFPN-D11
166.73 GFLOPs

S2D chain-BiFPN-D29
 @ 41.0% AP

S2D chain-GFPN-D11
 @ 41.8% AP

Figure 9: Architecture comparison of stacked BiFPN and our proposed GFPN-D11.

B MORE IMPLEMENTATION DETAILS

Table 8: List of hyperparameters used.

Hyperparameter Value
Batch Size per GPU 2
Optimizer SGD
Learning Rate 0.02
Step Decrease Ratio 0.1
Momentum 0.9
Weight Decay 1.0 x 10−4

Input Image Size [1333, 800]
Multi-Scale Range (Ablation Study) [0.8, 1.0]
Multi-Scale Range (SOTA) [0.6, 1.2]
GFPN Input Channels [128, 256, 512, 1024, 2048]
GFPN Output Channels [256, 256, 256, 256, 256]
Training Epochs (Ablation Study) 36 epochs from scratch (decays at 28 and 33 epochs)
Training Epochs (SOTA) 72 epochs from scratch (decays at 65 and 71 epochs)
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C MORE ABLATION STUDIES

C.1 FEATURE FUSION METHODS
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Figure 10: Ablation study on Fusion-style analysis consists three models: 1) “Concatenation” model: Gi-
raffeDet utilizes concatenation fusion style; 2) “Summation” model: GiraffeDet utilizes summation fusion
style; 3) “Summation smilar-FLOPs” model: same FLOPs level with “Concatenation” model.

Figure 10 shows the performance of using summation-based feature fusion and concatenation-based
feature fusion style. We can observe that the concatenation-based fusion style of features can achieve
better performance in the same FLOPs level. Although summation-based feature fusion has fewer
FLOPs than concatenation-based style, performance is significantly lower. We think it is not worth
sacrificing mAP to have fewer FLOPs. Notably, the performance of the “Summation” model is
growing slightly after GFLOPs over 300, which indicates the concatenation-based feature fusion
style can be more accurate and efficient again.

C.2 INFERENCE TIME
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Figure 11: Inference time comparison between “ResNet + FPN” model and “S2D-chain + GFPN” model on
the same FLOPs level. Orange line denotes “S2D-chain + GFPN” and purple line denotes “ResNet + FPN”.

Table 9: Comparison on inference time between “ResNet + FPN” model and “S2D-chain + GFPN” model on
the same FLOPs level.

Backbone Neck Head training FLOPs(G) APtest AP50 AP75 APS APM APL FPS
ResNet-50 FPN GFLV2 p-2x 199.96 44.3 62.3 48.5 26.8 47.7 54.1 20.5
S2D chain GFPN-d7 GFLV2 s-6x 183.67 45.6 62.7 49.8 28.8 48.7 57.6 19.9

ResNet-101 FPN GFLV2 p-2x 272.99 46.2 64.3 50.5 27.8 49.9 57.0 15.1
S2D chain GFPN-d11 GFLV2 s-6x 275.39 46.9 64.3 51.5 29.9 51.1 58.4 14.0
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We conduct inference time experiments to compare our GiraffeDet with the basic detection model
(ResNet-FPN-GFocalV2) at the same FLOPs level. From Table 9, we can observe that our Gi-
raffeDet achieves significant improvements with acceptable inference time. We think the reason
might be that most popular GPUs are friendly for ResNet-based backbone inferences and memory
I/O is sensitive to the concatenate-based fusion on GFPN that will affect the inference speed. No-
tably, according to Figure 11, the performance of our GiraffeDet decreases slower than the standard
model with FPS growth.

C.3 STANDARD BACKBONE

Table 10: val-2017 results of standard backbone with stacked BiFPN and proposed GFPN.

Backbone Neck Head training FLOPs(G) APval AP50 AP75 APS APM APL

resnet-18 stacked BiFPN GFLV2 s-3x 275.71 40.8 57.1 44.3 24.0 43.6 51.9
resnet-18 GFPN-d9 GFLV2 s-3x 277.05 41.3 57.7 45.0 25.0 44.2 52.8
resnet-18 GFPN-d11 GFLV2 s-3x 308.64 42.1 59.0 45.8 25.3 45.3 53.5
resnet-18 GFPN-d14 GFLV2 s-3x 366.20 42.9 59.6 46.9 25.8 46.3 54.7

We also conduct experiments on the ResNet-18 backbone. According to Table 10, our proposed
GFPN with a standard backbone can increase with the depth of GFPN growth. Our designed GFPN
also outperforms BiFPN under the same FLOPs level.
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D ADDITIONAL QUALITATIVE RESULTS

RetinaNet FCOS HRNet GFocalV2 GiraffeDet

Figure 12: Qualitative Evaluation of different approaches for object detection on COCO dataset.

To better illustrate the performance of different approaches, we provide qualitative result in Figure
12. Overall, we can observe that all methods can detect object instances from each image. Fur-
thermore, GiraffeDet can detect more instances than other SOTA methods, especially small object
instances, which proves that our designed FPN can be effective in the large-scale variation dataset.
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