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Abstract
Many dynamic decision problems, such as robotic
control, involve a series of tasks, many of which
are unknown at training time. Typical approaches
for these problems, such as multi-task and meta-
reinforcement learning, do not generalize well
when the tasks are diverse. On the other hand,
approaches that aim to tackle task diversity, such
as using task embedding as policy context and
task clustering, typically lack performance guar-
antees and require a large number of training
tasks. To address these challenges, we propose
a novel approach for learning a policy committee
that includes at least one near-optimal policy with
high probability for tasks encountered during ex-
ecution. While we show that this problem is in
general inapproximable, we present two practical
algorithmic solutions. The first yields provable
approximation and task sample complexity guar-
antees when tasks are low-dimensional (the best
we can do due to inapproximability), whereas the
second is a general and practical gradient-based
approach. In addition, we provide a provable
sample complexity bound for few-shot learning.
Our experiments on MuJoCo and Meta-World
show that the proposed approach outperforms
state-of-the-art multi-task, meta-, and task clus-
tering baselines in training, generalization, and
few-shot learning, often by a large margin. Our
code is available at https://github.com/
CERL-WUSTL/PACMAN/.

1. Introduction
Reinforcement learning (RL) has achieved remarkable suc-
cess in a variety of domains, from robotic control (Lilli-
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crap, 2015) to game playing (Xu et al., 2018). However,
many real-world applications involve highly diverse sets
of tasks, making it impractical to rely on a single, fixed
policy. In these settings, both the reward structures and
the transition dynamics can vary significantly across tasks.
Existing approaches, such as multi-task RL (MTRL) and
meta-reinforcement learning (meta-RL), struggle to general-
ize effectively for diverse and previously unseen tasks.

Multi-task RL methods typically train a single policy or a
shared representation across tasks (Vithayathil Varghese &
Mahmoud, 2020). However, they often face negative trans-
fer, where optimizing for one task degrades performance
on others (Zhang et al., 2022). On the other hand, meta-
RL approaches, such as Model-Agnostic Meta-Learning
(MAML) (Finn et al., 2017b) and PEARL (Rakelly et al.,
2019), aim to enable fast adaptation to new tasks but rely
heavily on fine-tuning at test time, which can be computa-
tionally expensive and ineffective in environments with high
variability in both rewards and transitions, like Meta-World
benchmark tasks (Yu et al., 2020b).

Several lines of work attempt to address the problem of
diverse tasks and negative transfer. The first is to learn poli-
cies through MTRL or meta-RL that explicitly take task
representation as input (Lan et al., 2024; Grigsby et al.,
2024; Sodhani et al., 2021; Zintgraf et al., 2020). However,
such approaches rely on shared parameters, which limit the
model’s flexibility. When tasks are highly diverse, using a
single neural network— even with a multi-head architec-
ture— may not generalize effectively. Moreover, the greater
the task variation, the more data is typically required to train
policies that can effectively condition on task embeddings,
and the model will often generalize poorly when the number
of training tasks is small.

Several alternative methods have thus emerged that propose
clustering tasks and training distinct policies for each clus-
ter (Ackermann et al., 2021; Ivanov & Ben-Porat, 2024).
The associated algorithmic approaches commonly leverage
EM-style methods that interleave RL and task clustering. In
practice, however, they also require a large number of train-
ing tasks to be effective and consequently perform poorly
when the number of training tasks is small. In addition, if
the number of clusters is too small, some clusters may still
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Figure 1. Performance on a single task across committee members
compared to a MTRL policy.

contain too diverse a set of tasks, with concomitant negative
transfer remaining a significant issue.

We propose PACMAN, a novel framework and algorithmic
approach for learning policy committees that enables (a)
sample efficient generalization (Theorem 3.7), (b) few-shot
adaptation guarantees that are independent of the dimension
of the state or action space (Theorem 3.8), and (c) signif-
icant improvements in performance compared to 11 state-
of-the-art baselines on both MTRL and few-shot adaptation
metrics (Section 4). The key idea behind PACMAN is to lever-
age a parametric task representation which allows clustering
tasks in the parameter space first, followed by reinforcement
learning for each cluster. The benefit of our approach is
illustrated in Figure 1: even though the single-policy base-
line uses a mixture-of-experts approach (Hendawy et al.,
2024), its performance is poor since tasks require fundamen-
tally distinct skills. In contrast, learning a policy committee
allows learning custom policies for distinct classes of tasks.

A crucial insight in our approach is to define the objective
of clustering as obtaining high coverage of the (unknown)
task distribution, as opposed to insisting on a full coverage—
that is, achieving near-optimal performance on a randomly
drawn task with high probability. This enables us to devise
efficient algorithms with provable performance guarantees
and polynomial task sample complexity, as well as obtain
few-shot adaptation guarantees that depends only on the
number of clusters, but not on the size of state and action
space. Moreover, while many MTRL and meta-RL prob-
lems of interest are non-parametric, we show that we can
leverage high-level natural language task descriptions to ob-
tain highly effective embeddings of tasks, akin to Sodhani
et al. (2021), and Hendawy et al. (2024), but without requir-
ing subtask decomposition. Consequently, our approach can
be effectively applied to a broad class of non-parametric
MTRL and meta-RL domains as well.

In summary, we make the following contributions:

• Theoretically Grounded Framework for Learning Pol-
icy Committees: We present the first approach for learn-
ing policy committees in MTRL and meta-RL domains
that offers provable performance guarantees, in addition
to practical algorithms. In particular, we provide sample
efficient generalization (Theorem 3.7) and few-shot adap-
tation guarantees that are independent of the size of the
state or action space (Theorem 3.8).

• Simple and Effective Policy Committees: PACMAN is
design to handle high task diversity while using a small
number of policies to achieve high efficacy. Additionally,
our approach leverages LLM-based task embeddings for
non-parametric tasks, which provides a highly general
and scalable solution for a broad array of environments.

• Empirical Validation: We demonstrate the efficacy of
PACMAN through extensive experiments on challenging
multi-task benchmarks, including MuJoCo and Meta-
World. Our policy committee framework consistently
outperforms state-of-the-art multi-task RL, meta-RL, and
task clustering baselines in both zero-shot (MTRL) and
few-shot (meta-RL) settings, achieving better generaliza-
tion and faster adaptation across diverse tasks.

Related Work: Our work is closely related to three key
areas within the broader reinforcement learning literature:
multi-task RL, meta-RL, and personalized RL.

Multi-Task RL (MTRL): The broad goal of MTRL ap-
proaches is to leverage inter-task relationships to learn poli-
cies that are effective across multiple tasks (Yang et al.,
2020; Sodhani et al., 2021; Sun et al., 2022). An important
challenge in MTRL is task interference. One class of ap-
proaches aims to mitigate this issue through gradient align-
ment techniques (Hessel et al., 2019; Yu et al., 2020a). An
alternative series of approaches addresses this issue from a
representation learning perspective, enabling the learning of
policies that explicitly condition on task embeddings (Hen-
dawy et al., 2024; Lan et al., 2024; Sodhani et al., 2021).

However, most MTRL methods still face challenges when
tasks are diverse, particularly when it comes to generalizing
to previously unseen tasks.

Meta-RL: The goal of meta-RL is an ability to quickly adapt
to unseen tasks—what we refer to as few-shot learning.
Meta-RL methods can be categorized broadly into two cat-
egories: (i) gradient-based and (ii) context-based (where
context may include task-specific features). Gradient-based
approaches focus on learning a shared initialization of a
model across tasks that is explicitly trained to facilitate
few-shot learning (Finn et al., 2017b; Stadie et al., 2018;
Mendonca et al., 2019; Zintgraf et al., 2019). However,
they perform poorly in zero-shot generalization, and tend to
require a large number of adaptation steps. Context-based
methods learn a context representation and use it as a policy
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input (Bing et al., 2023; Gupta et al., 2018; Duan et al.,
2017; Lee et al., 2020a;b; 2023; Rakelly et al., 2019). How-
ever, these approaches often exhibit mode-seeking behavior
and struggle to generalize, particularly when the number of
training tasks is small. While some recent approaches, such
as Bing et al. (2023), attempt to improve performance by
using natural language task embedding, they still require a
large number of training tasks to succeed.

Personalized RL: Ackermann et al. (2021) and Ivanov &
Ben-Porat (2024) proposed addressing task diversity by
clustering RL tasks and training a distinct policy for each
cluster. Both use EM-style approaches to jointly cluster
the tasks and learn a set of cluster-specific policies. Our
key contribution is to leverage an explicit parametric task
representation, and reformulate the objective as a flexible
coverage problem for an unknown distribution of tasks. This
enables us to achieve task sample efficiency both in theory
and practice. In particular, we empirically show that our
PACMAN method significantly outperforms the state-of-the-
art personalized RL approach.

Reward-Free RL: Another related line of research is reward-
free RL where the agent’s goal is to first explore the MDP
without a pre-specified reward function and then plan near-
optimal policies for a set of given reward functions (Agarwal
et al., 2023; Cheng et al., 2022; Jin et al., 2020). However,
results in this space make strong assumptions, such as as-
suming that the action space is finite or linear dynamics.
Our results, on the other hand, make no assumptions on the
dynamics and do not depend on the size or dimension of the
state or action space.

2. Model
We consider the following general model of multi-task
MDPs (MT-MDP). Suppose we have a dynamic environ-
ment E = (S,A, h, γ, ρ) where S is a state space, A an
action space, h the decision horizon, γ the discount factor,
and ρ the initial state distribution. Let a task τ = (T , r) in
which T is the transition model where T (s, a) is a proba-
bility distribution over next state s′ as a function of current
state-action pair (s, a) and r(s, a) the reward function. A
Markov decision process (MDP) is thus a composition of
the dynamic environment and task, (E , τ).

Let Γ be a distribution over tasks τ . We define a MT-
MDP M as the tuple (E ,Γ), as in typical meta-RL mod-
els (Beck et al., 2023; Wang et al., 2024). Additionally, we
define a finite-sample variant of MT-MDP, FS-MT-MDP, as
Mn = (E , τ1, . . . , τn), where τi ∼ Γ. An FS-MT-MDP
thus corresponds to multi-task RL (Zhang & Yang, 2021).

At the high level, our goal is to learn a committee of policies
Π such that for most tasks, there exists at least one policy

π ∈ Π that is effective.1 Next, we formalize this problem.

Let V π
τ be the value of a policy π for a given task τ , i.e.,

V π
τ = E

[
h∑

t=0

γtrτ (st, at)|at = π(st)

]
,

where the expectation is with respect to Tτ and ρ. Let P
be a (possibly restricted, e.g., parametric) space of policies
that we take to be exogenously specified. We define V ∗

τ =
maxπ∈P V

π
τ as the optimal value for a task τ , that is, the

value of an optimal policy for τ .

Define V Π
τ = maxπ∈Π V

π
τ , that is, we let the value of a

committee Π to a task τ be the value of the best policy in
the committee for this task. There are a number of reasons
why this evaluation of a committee is reasonable. As an
example, if a policy implements responses to prompts for
conversational agents and Π is small, we can present multi-
ple responses if there is significant semantic disagreement
among them, and let the user choose the most appropriate.
In control settings, we can rely on domain experts who can
use additional semantic information associated with each
π ∈ Π and the tasks, such as the descriptions of tasks π
was effective for at training time, and similar descriptions
to test-time tasks, to choose a policy. Moreover, as we show
in Section 3.4, this framework leads naturally to effective
few-shot adaptation, which requires neither user nor expert
input to determine the best policy.

One way to define the value of a policy committee Π with
respect to a given MT-MDP and FS-MT-MDP is, respec-
tively, as V Π

M = Eτ∼Γ

[
V Π
τ

]
and V Π

Mn
= 1

n

∑n
i=1 V

Π
τi .

The key problem with these learning goals is that when the
set of tasks is highly diverse, different tasks can confound
learning efficacy for one another. For example, suppose
that we have five tasks corresponding to target velocities of
10, 12, 20, 22, 100, and the task succeeds if a policy imple-
ments its target velocity sufficiently closely (say, within 1).
If we either train a single policy for all tasks, or divide them
into two clusters, the outlier target velocity of 100 will con-
found training for the others. More generally, if any policy
is trained on a set of tasks that require different skills (e.g., a
cluster of tasks that includes outliers), the conflicting reward
signals will cause negative transfer and poor performance.

We address this limitation by defining the goal of policy
committee learning differently. First, we formalize what it
means for a committee Π to have a good policy for most of
the tasks.

Definition 2.1. A policy committee Π is an (ϵ, 1− δ)-cover
for a task distribution Γ if V Π

τ ≥ V ∗
τ − ϵ with probability

at least 1− δ with respect to Γ. Π is an (ϵ, 1− δ)-cover for

1Note that this also admits policies that can further depend on
task embeddings, with this dependence being different in different
clusters.
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a set of tasks {τ1, . . . , τn} if V Π
τ ≥ V ∗

τ − ϵ for at least a
fraction 1− δ of tasks.

Clearly, an (ϵ, 1 − δ) cover need not exist for an arbitrary
committee Π (if the committee is too small to cover enough
tasks sufficiently well). There are, however, three knobs that
we can adjust: K, ϵ, and δ. Next, we fix ϵ as exogenous,
treating it effectively as a domain-specific hyperparameter,
and suppose that K is a pre-specified bound on the maxi-
mum size of the committee.
Problem 1. Fix the maximum committee size K and ϵ. Our
goal is to find Π which is a (ϵ, 1− δ)-cover for the smallest
δ ∈ [0, 1].

As a corollary to Theorem 2.6 in Skalse & Abate (2023),
we now present sufficient conditions under which a policy
committee can yield higher expected rewards than a single
policy. The precise definition of these conditions is provided
in Appendix A.
Corollary 2.2 (Theorem 2.6, (Skalse & Abate, 2023)). Sup-
pose K > 1. Unless two tasks τ1, τ2 have only their reward
functions r1 and r2 differ by potential shaping, positive
linear scaling, and S1-redistribution, we have V Π

τ1 ≥ V π
τ1 ,

V Π
τ2 ≥ V

π
τ2 , and V Π

τ1 +V
Π
τ2 > V π

τ1 +V
π
τ2 for any single policy

π.

Next, we present algorithmic approaches for this problem.
Subsequently, Section 3.4, as well as our experimental re-
sults, vindicate our choice of this objective.

3. Algorithms for Learning a Policy
Committee

In this section, we present algorithmic approaches for train
committee members to solve Problems 1. We consider
the special case of the problem in which the tasks have a
structure representation. Specifically, we assume that each
task can be represented using a parametric model ψθ(s, a),
where the parameters θ ∈ Rd comprise both of the param-
eters of the transition distribution T and reward function
r. Often, parametric task representation is given or direct;
in cases when tasks are non-parametric, such as the Meta-
World (Yu et al., 2020b), we can often use approaches for
task embedding, such as LLM-based task representations
(see Section 3.6). Consequently, we identify tasks τ with
their representation parameters θ throughout, and overload
Γ to mean the distribution over task parameters, i.e., θ ∼ Γ.

3.1. A High-Level Algorithmic Framework

Even conventional RL presents a practical challenge in com-
plex problems, as learning is typically time consuming and
requires extensive hyperparameter tuning. Consequently, a
crucial consideration in algorithm design is to minimize the
number of RL runs we need to obtain a policy committee.

To this end, we propose the following high-level algorithmic
framework in which we only needK independent (and, thus,
entirely parallelizable) RL runs. This framework involves
three steps:

1. SAMPLE n tasks i.i.d. from Γ, obtaining
T = {θ1, . . . , θn} (parameters of associated tasks
{τ1, . . . , τn}). In MTRL settings, T is given.

2. CLUSTER the task set T into K subsets, each with an
associated representative θk, and

3. TRAIN committee member ck ∈ Π for each cluster k
represented by θk.

As we shall see presently (and demonstrate experimentally
in both Subsection 4.3 and Appendix H.2), conventional
clustering approaches are not ideally suited for our problem.
We thus propose several alternative approaches which yield
theoretical guarantees on the quality of Π, in the special
case that each committee member represents one policy.

Empirically, we show that the proposed framework outper-
forms state of the art even when tasks also have distinct
transition distributions.

3.2. Clustering

The key aspect of our algorithmic design is clustering. We
are motivated by a connection between the clustering step
(step (2) of the framework above) and efficacy of optimal
policies learned for each cluster (step (3) of the framework),
as a variant of simulation lemma (Lobel & Parr, 2024),
whose formal implications are discussed in the next section.
By leveraging a strong representation space, we can avoid
the overhead of evaluating and clustering tasks on-policy
and achieve high efficacy with minimal computational cost.
Thus, we focus on the following problem instead:

Definition 3.1. A set of representatives C = {θ1, . . . , θK}
is an (ϵ, 1− δ)-parameter-cover for a task distribution Γ if
minθ′∈C ∥θ− θ′∥∞ ≤ ϵ with probability at least 1− δ with
respect to θ ∼ Γ.

Problem 2. Fix K and ϵ. Our goal is to find C with |C| ≤
K which is a (ϵ, 1 − δ)-parameter-cover for the smallest
δ ∈ [0, 1].

Notably, while conventional clustering techniques, such as
k-means, can be viewed as proxies for these objectives,
there are clear differences insofar as the typical goal is
to minimize sum of shortest distances of all vectors from
cluster representatives, whereas our goal, essentially, is to
“cover” as many vectors as we can. In Appendix H.2, we
provide a histogram of individual task returns to illustrate
the different impact the two clustering methods make.

We show next that our problem is strongly inapproximable,
even if we restrict attention to K = 1.
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Definition 3.2 (MAX-1-COVER). Let T = {θ1, . . . , θn} ⊆
Rd. Find θ ∈ Rd which maximizes the size of S ⊆ T with
maxθ′∈S ∥θ − θ′∥∞ ≤ ϵ.
Theorem 3.3. For any constant t > 0, MAX-1-COVER
does not admit an n1−t -approximation unless P = NP.

We prove this in Appendix B via an approximation-
preserving reduction from the Maximum Clique prob-
lem (Engebretsen & Holmerin, 2000). Despite this strong
negative result, we next design two effective algorithmic
approaches. The first method runs in polynomial time with
a constant d, and provides a constant-factor approximation.
The second is a general gradient-based approach.

Greedy Elimination Algorithm (GEA) Before we dis-
cuss our main algorithmic approaches, we begin with GEA,
which provides a useful building block, but not theoretical
guarantees. Consider a set T of task parameter vectors, fix
K, and suppose we wish to identify an (ϵ, 1− δ)-parameter-
cover with the smallest δ (Problem 2), but restrict attention
to θ ∈ T in constructing such a cover. This problem is
an instance of a MAX-K-COVER problem (where subsets
correspond to sets covered by each θ ∈ T ), and can be
approximated using a greedy algorithm which iteratively
adds one θ ∈ T to C that maximizes the most uncovered
vectors in T . Its fixed-δ variant, on the other hand, is a set
cover problem if δ = 0, and a similar greedy algorithm
approximates the minimum-K cover C for any δ. However,
neither of these algorithms achieves a reasonable approxi-
mation guarantee (as we can anticipate from Theorem 3.3),
although our experiments show that greedy elimination is
nevertheless an effective heuristic. But, as we show next, we
can do better if we allow cluster covers θ to be unrestricted.

Greedy Intersection Algorithm (GIA) We now present
our algorithm which yields provable approximation guaran-
tees when task dimension is low. The key intuition behind
GIA is that for any θ, a ϵ-hybercube centered at θ char-
acterizes all possible θ′ that can cover θ in the sense of
Definition 3.1. Thus, if any pair of ϵ-hypercubes centered at
θ and θ′ intersects, any point at the intersection covers both.
To illustrate, consider the following simple example:

[x1] x1 − ϵ x1 + ϵ
[x1, x2] x2 − ϵ x2 + ϵ
[x1, x2, x3] x3 − ϵ x3 + ϵ
[x3, x4] x4 − ϵ x4 + ϵ

Each cross represents a parameter we aim to cover, while
each line segment indicates the possible locations of the
ϵ-close representative for that parameter. By selecting a
point within the overlapping region of these intervals, we
can effectively cover their parameters simultaneously.

The proposed GIA algorithm generalizes this intuition as

follows. The first stage of the algorithm is to create an
intersection tree for each dimension independently. For
s-th dimension, we sort the datapoints’ s-th coordinates
in ascending order. We refer to the sorted coordinates as
x1 < x2 · · · < xn, and create a list for each point xi to
remember how many other points can be covered together
with it with initialization being [xi] itself.

Starting from the second smallest datapoint x2, we check if
x2− ϵ ≤ x1+ ϵ, i.e. if x2 ≤ x1+2ϵ. Since x2− ϵ > x1− ϵ
due to our sorting, any point inside [x2−ϵ, x1+ϵ] can cover
both x1, x2. Therefore if this interval is valid, we add x1
to the list [x2] to indicate the existence of a simultaneous
coverage for x1, x2. In general, for xi, we check if xi ≤
xj+2ϵwith a descending j = i−1 to 1 or until the condition
no longer holds. If the inequality is satisfied, we add xj to
xi’s list. Then since we have ordered the set, for every index
j′ less than j, xi > xj + 2ϵ > xj′ + 2ϵ. The coverage for
all the x in xi’s list would be the interval [xi − ϵ, xj + ϵ],
where j is the smallest index in xi’s list. There are 1 + 2 +
· · ·+ n− 1 = O(n2) comparisons in total. We form a set
of these lists, and call it As for the s-th dimension. The
figure above illustrates how the algorithm works to find out
A1 = {[x1], [x1, x2], [x1, x2, x3], [x4, x5]}.

The second stage is to find a hypercube covering the most
points, consisting of an axis from each dimension. By the ge-
ometry of the Euclidean space, two points θ1, θ2 are within
ϵ in ℓ∞-distance iff they appear inside one’s list together
for each dimension. Therefore, in order to find the maxi-
mum coverage with one hypercube such that its center is
within ℓ∞-distance to the most points, we wonder which
combination of lists, l1 . . . ld each from the sets A1 . . .Ad

produces an intersection of the maximum cardinality. In our
example, we can conclude that [x1, x2, x3], [x4, x5] need to
be covered separately by two points between the blue or red
vertical lines.

The full algorithm is provided in Appendix C. Next, we
show that GIA yields provable coverage guarantees. We
defer the proof to Appendix D. For these results we use
GIA(K) to refer to the solution (set C = {θ1, . . . , θK})
returned by GIA.

Theorem 3.4. Suppose T contains n ≥ 9 log(5/α)
2β2 i.i.d. sam-

ples from Γ. Let 1− δ∗(K, ϵ) be the optimal coverage of a
ϵ-parameter-cover of Γ under fixed K, ϵ. Then with proba-
bility at least 1−α, GIA(K) is a (ϵ, (1− 1

e )(1−δ
∗(K, ϵ)−

Kβ))-parameter-cover of Γ.

The key limitation of GIA is that it is exponential in d, and
thus requires the dimension to be constant. This is a reason-
able assumption in some settings, such as low-dimensional
control. However, in many other settings, both n and d can
be large. Our next algorithm addresses this issue.

Gradient-Based Coverage Consider Problem 2. For a
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finite set T , we can formalize this as the following optimiza-
tion problem:

max
{θ1,...,θK}

∑
θ∈T

1( min
k∈[K]

∥θk − θ∥∞ ≤ ϵ), (1)

where 1(·) is 1 if the condition is true and 0 otherwise.
However, objective (1) is non-convex and discontinuous. To
address this, we propose the following differentiable proxy:

min
{θ1,...,θK};
w∈RnK

∑
i

ReLU

({
K∑

k=1

σ(wik)∥θk − θi∥∞

}
− ϵ

)
,

(2)

where w is the assignment matrix mapping each θi to θk
with unbounded weights and σ(·) is a softmax function to
normalize the assignment. Next, we demonstrate that this is
a principled proxy by showing that when full coverage of T
is possible, solutions of (1) and (2) coincide. The proof is
in Appendix E.

Theorem 3.5. Fix K and suppose ∃θ ∈ {θ1, . . . , θK} such
that ∥θ−θi∥ ≤ ϵ for all i. Then the sets of optimal solutions
to (1) and (2) are equivalent.

Thus, we can use gradient-based methods with objective
in (2) to approximate solutions to Problem 2. Because the
objective is still non-convex, we can improve performance
by initializing with the solution obtained using GEA or
GIA when d is low.

3.3. Theoretical Analysis for MTRL

We now put things together by showing that we have a sam-
ple efficient approach for learning a policy committee Π
which achieves a (ϵ, 1− δ)-cover for Γ. For this result, we
focus on the special case where each committee member
is one fixed policy and assume that each task has a shared
dynamics, and a parametric reward function rθ(s, a) where
θ identifies a task-specific reward. While this is a theoretical
limitation, we note that our subsequent clustering and train-
ing algorithms do not in themselves require this assumption,
and our experimental results demonstrate that the overall
approach is effective generally.

Let π∗
i denote the optimal policy for task τi. We use V

π∗
j

i to
denote the value of task τi using a policy that is optimal for
task τj .

Lemma 3.6. Suppose that rθ(s, a) is L-Lipschitz in L∞
norm, that is, for all θ, θ′, sups,a |rθ(s, a) − rθ′(s, a)| ≤
L∥θ − θ′∥∞. Then, for any two tasks τi and τj with re-

spective θi and θj that satisfy ∥θi − θj∥∞ ≤ ϵ, V
π∗
j

i ≥
V

π∗
i

i − 2L 1−γh+1

1−γ ϵ if γ < 1 and V
π∗
j

i ≥ V
π∗
i

i − 2Lhϵ if
γ = 1.

See Appendix F for proof. Lipschitz continuity is a mild
assumption; for example, it is satisfied by ReLU neural
networks.

Next, we combine Theorem 3.4 and Lemma 3.6 to conclude
that we can compute a policy committee Π which provides
provable coverage guarantees for a task distribution Γ with
polynomial sample complexity.

Theorem 3.7. Suppose T contains n ≥ 9 log(5/α)
2β2 i.i.d. sam-

ples from Γ and rθ(s, a) is L-Lipschitz in L∞. Let
1 − δ∗(K, ϵ) be the optimal coverage of a ϵ-parameter-
cover of Γ under fixed K, ϵ, and suppose that for any task
τ we can find a policy π with V π ≥ V ∗

τ − η. Then we
can compute a committee Π which is a (2L 1−γh+1

1−γ ϵ +

η, (1 − 1
e )(1 − δ

∗(K, ϵ) − Kβ)) for Γ when γ < 1 and
(2Lhϵ+ η, (1− 1

e )(1− δ
∗(K, ϵ)−Kβ)) for Γ when γ = 1

with probability at least 1− α.

3.4. Few-Shot Adaptation

A particularly useful consequence of learning a policy com-
mittee Π that is a (ϵ, 1− δ)-cover is that we can leverage it
in meta-learning for few-shot adaptation. The algorithmic
idea is straightforward: evaluate each of K policies in Π
by computing a sample average sum of rewards over N
randomly initialized episodes, and choose the best policy
π ∈ Π in terms of empirical average reward.

In particular, suppose that γ = 1. We now show that this
translates into a few-shot sample complexity on a previously
unseen task τ that is linear in K (the size of the committee).
Details of the proof are in Appendix G.

Theorem 3.8. Suppose Π is a (ϵ, 1 − δ)-cover for Γ and
let τ ∼ Γ. Under some mild conditions, if we run p ≥
32h(H+1)2 log(4/α)

(β−2H)2 episodes for each policy π ∈ Π, where
H is a constant, the policy π that maximizes the empirical
return yields V π

τ ≥ V ∗
τ − ϵ − β with probability at least

1− δ − α, where V ∗
τ is the optimal reward for τ .

3.5. Training

The output of the CLUSTERING step above is a set of repre-
sentative task parameters C = {θ1, . . . , θK}. The simplest
way to use these to obtain a policy committee Π is to train a
policy πk optimized for each θk ∈ C. However, this ignores
the set of tasks that comprise each cluster k associated with
a representative θk (i.e., the set of tasks closest to θk). As
demonstrated empirically in the multi-task RL literature, us-
ing multiple tasks to learn a shared representation facilitates
generalization (effectively enabling the model to learn fea-
tures that are beneficial to all tasks in the cluster) (Sodhani
et al., 2021; Sun et al., 2022; Yang et al., 2020).

To address this, we propose an alternative which trains a
policy πk to maximize the sum of rewards of the tasks in
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cluster k. Notably, our approach can use any RL algorithm
to learn a policy associated with a cluster of tasks; in the
experiments below, we use the most effective MTRL or
meta-RL baseline for this purpose.

Furthermore, we emphasize that the additional overhead in-
troduced by our method (due to clustering) is small, with the
computational complexity in practice being predominantly
determined by the RL problem. To illustrate, our Meta-
World experiments show that training a single policy for 1
million steps necessitates approximately 40 hours using an
A40 GPU. Conversely, the clustering process completes in
roughly 1 second within a Google Colab notebook, and ob-
taining task embeddings takes approximately 2 minutes on
an A40 GPU. Importantly, in cases where efficient RL learn-
ing is achievable (Brafman & Tennenholtz, 2002; Kearns
& Singh, 2002) and the dimension d remains constant, our
approach additionally boasts polynomial algorithmic com-
plexity.

3.6. Dealing with Non-Parametric Tasks

Our approach assumes that tasks are parametric, so that we
can reason (particularly in the clustering step) about param-
eter similarity. Many practical multi-task settings, however,
are non-parametric, so that our algorithmic framework can-
not be applied directly. In such cases, our approach can
make use of any available method for extracting a paramet-
ric representation of an arbitrary task τ . For example, it is
often the case that tasks can be either described in natural
language. We propose to leverage this property and use text
embedding (e.g., from pretrained LLMs) as the parametric
representation of otherwise non-parametric tasks, where this
is feasible. Our hypothesis is that this embedding captures
the most relevant semantic aspects of many tasks in practice,
a hypothesis that our results below validate in the context of
the Meta-World benchmark. This is analogous to what was
done by Bing et al. (2023), with the main difference being
that our task descriptions are with respect to higher-level
goals, whereas Bing et al. (2023) describe tasks in terms of
associated plans. We provide the full list of task descriptions
for the Meta-World environment in Appendix I.

4. Experiments
We study the effectiveness of our approach—PACMAN—
in two environments, MuJoCo (Todorov et al., 2012) and
Meta-World (Yu et al., 2020b). In the former, the tasks
are low-dimensional and parametric, and we only vary the
reward functions, whereas the latter has non-parametric
robotic manipulation tasks with varying reward and transi-
tion dynamics.

MuJoCo We selected two commonly used MuJoCo envi-
ronments. The first is HalfCheetahVel where the agent has

to run at different velocities, and rewards are based on the
distance to a target velocity. The second is HumanoidDir
where the agent has to move along the preferred direction,
and the reward is the distance to the target direction. In both,
we generate diverse rewards by randomly generating target
velocity and direction, respectively, and use 100 tasks for
training and another 100 for testing (in both zero-shot and
few-shot settings), with parameters generated from a Gaus-
sian mixture model with 5 Gaussians. In few-shot cases,
we draw a single task for fine-tuning, and average the result
over 10 tasks. For clustering, we use K = 3, ϵ = .6, and
use the gradient-based approach initialized with the result
of the Greedy Intersection algorithm. For few-shot learning,
we fine-tune all methods for 100 epochs.

Meta-World We focus on the set of robotic manipulation
tasks in MT50, of which we use 30 for training and 20 for
testing. This makes the learning problem significantly more
challenging than typical in prior MTRL and meta-RL work,
where training sets are much larger compared to test sets (5
tests and 40 trains in the traditional MT45 setting). We lever-
age an LLM to generate a parameterization (Section 3.6)
of the task. Specifically, text descriptions (see Appendix I)
are fed to “Phi-3 Mini-128k Instruct” (Microsoft, 2024) and
we compute the channel-wise mean over the features of
penultimate layer as a 50 dimensional parameterization for
each task. We use K = 3 and ϵ = .7.

Additionally, we highlight that we use success rate instead
of returns as our evaluation metric in Meta-World, as it has
been the standard metric across different papers.

4.1. Baselines and Evaluation

We compare our approaches to 11 state-of-the-art baselines.
Five of these are designed for MTRL: 1) CMTA (Lan et al.,
2024), 2) MOORE (Hendawy et al., 2024), 3) CARE (Sod-
hani et al., 2021), 4) soft modularization (Soft) (Yang et al.,
2020), and 5) Multi task SAC (Yu et al., 2020a). Five more
are meta-RL algorithms: 1) MAML (Finn et al., 2017a), 2)
RL2 (Duan et al., 2017), 3) PEARL (Rakelly et al., 2019), 4)
VariBAD (Zintgraf et al., 2020), and 5) AMAGO (Grigsby
et al., 2024). Finally, we also compare to the state-of-the-art
approach using expectation–maximization (EM) to learn a
policy committee (EM) (Ivanov & Ben-Porat, 2024).

Our evaluation involves three settings: training, test, and
few-shot. The training evaluation corresponds to standard
MTRL. The test evaluation uses a test set to evaluate all
approaches with no fine-tuning. Finally, our few-shot test
evaluation allows a short round of fine-tuning on the test
data. For PACMAN we select the best-performing policy for
training and test, and use the proposed few-shot approach
to learn the best policy through empirical policy evaluation
for the few-shot test setting (see Section 3.4). In all figures,
error bounds are 1 sample standard deviation.
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Figure 2. HalfCheetahVel train (left) and test (right) comparisons.

4.2. Results

MuJoCo In the MuJoCo environment, we focus on person-
alization, varying only reward functions and focusing on
the ability to generalize to a diverse set of rewards. Conse-
quently, our baselines here include meta-RL approaches
(RL2, VariBAD, AMAGO) and EM (personalized RL,
which requires the dynamics to be shared across tasks, there-
fore not applicable for Meta-World), and PACMAN uses
VariBAD as the within-cluster RL method.

Figure 2 presents the MuJoCo results for the training and test
evaluations in HalfCheetahVel. We can see that PACMAN
consistently outperforms the baselines in both evaluations,
with VariBAD the only competitive baseline. The advantage
of PACMAN is also pronounced in HumanoidDir, whose
results are deferred to Appendix H.

Table 1. Few-shot learning effectiveness (MuJoCo).
Halfcheetah Humanoid

RL2 -314.37 ± 1.15 946.17 ± 0.73
VariBAD -137.99 ± 1.14 1706.38 ± 0.75

EM -325.29 ± 1.84 947.06 ± 0.84
Amago -279.13 ± 0.67 1533.45 ± 0.49

PACMAN -54.03 ± 1.34 2086.50 ± 0.89

The few-shot comparison is provided in Table 1, where the
advantage of PACMAN is especially notable. In Halfchee-
tahVel, the improvement over the best baseline is by a factor
of more than 2.5, while in HumanoidDir it is over 22%.

Meta-World Next, we turn to the complex multi-task Meta-
World environment. In this environment, our approach uses
MOORE for within-cluster training. Figure 3 presents the
results for training and test evaluations, where we compare
to the MTRL baselines (all meta-RL baselines are signifi-
cantly worse on these metrics, likely because the goals of
these algorithms are primarily efficacy in few-shot settings).

We observe that PACMAN significantly outperforms all base-
lines in both train and test cases (e.g., ∼25% improvement
over the best baseline after 500K steps).

The results for few-shot learning are provided in Table 2.
Performance is a moving average success rate for the last

Figure 3. MetaWorld train (left) and test (right) comparisons.

Table 2. Few-Shot Learning Results.
Method 6K Updates 12K Updates
MAML 0.0025 ± 0.006 0.01 ± 0.03
PEARL 0.03 ± 0.03 0.27 ± 0.07

RL2 0.007 ± 0.01 0.02 ± 0.02
VariBAD 0.025 ± 0.06 0.027 ± 0.07
AMAGO 0.08 ± 0.09 .093 ± 0.09

Soft 0.27 ± 0.07 0.26 ± 0.08
MTTE 0.37 ± 0.08 0.40 ± 0.10
CARE 0.39 ± 0.05 0.40 ± 0.06
CMTA 0.45 ± 0.07 0.34 ± 0.08

MOORE 0.41 ± 0.08 0.44 ± 0.11
PACMAN 0.53 ± 0.02 0.60 ± 0.02

2000 evaluation episodes over 3 seeds. Here, the advantage
of PACMAN over all baselines is particularly notable. First,
somewhat surprisingly, the meta-RL baselines, with the
exception of PEARL, underperform MTRL baselines in
this setting. This is because our evaluation is significantly
more challenging, with only 30 training tasks but with 20
diverse test tasks, and the adaptation phase has a very short
(6-12K updates) time horizon for few-shot training, than
typical in prior work. In contrast, MTRL methods fare
reasonably well. The proposed PACMAN approach, however,
significantly outperforms all the baselines. For example,
only 12K updates suffice to reliably identify the best policy
(comparing with zero-shot results in Table 2), with the result
outperforming the best baseline by >36%.

4.3. Further Empirical Investigation of Our Algorithm

We investigate our algorithmic contribution in two ways.
First, we compare our method with three common
clustering methods in Meta-World’s zero-shot setting:
KMeans++ (Arthur & Vassilvitskii, 2006), DBScan (Khan
et al., 2014), GMM (Bishop, 2006), as well as with random
clustering.

Method 125K Steps 250K Steps
KMeans++ 0.22± 0.06 0.30± 0.07
DBScan 0.19± 0.04 0.28± 0.06
GMM 0.29± 0.07 0.33± 0.08
Random 0.22± 0.04 0.25± 0.04
PACMAN (Ours) 0.36 ± 0.07 0.48 ± 0.09

Table 3. Performance Comparison for different clustering methods
at 125K and 250K Steps.

Notably, PACMAN exhibits ∼ 45% performance improve-
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ment over the next best clustering method for K = 3. We
have also conducted the same ablations over the MuJoCo set-
ting, where the advantage of our method is also significant;
see Table 4 in Appendix H.2 for more details. In addition,
Figure 5 in Appendix H.2 compares a histogram of rewards
for PACMAN and KMeans++ in the MuJoCo Halfcheetah
environment, showing a consistent distributional improve-
ment (not merely in expectation), excepting a small number
of outliers.

Additionally, we consider the impact of varying budget
K. We observe that efficacy of PACMAN is non-monotonic
in K. The reason is that once K is sufficiently large to
cover the entire set of training tasks, increasing it further
reduces the number of training tasks in individual clusters
and thereby hurts generalization, both within clusters and
to previously unseen tasks. Finally, we also consider the
impact of changing the hyperparameter ϵ, and observe that
the results are relatively robust to small changes in ϵ.

Overall, our method stands out by introducing only a single
hyperparameter, ϵ, which proves easy to tune. This simplic-
ity is a significant advantage, especially when contrasted
with the myriad of hyperparameters often encountered in
typical deep RL methods. A practical approach to setting
ϵ is to first compute the distances between all task embed-
dings and subsequently fine-tune it to ensure it remains
small while still providing adequate coverage. Notably, our
ablation studies further indicate that the performance of our
method is far less sensitive to ϵ compared to the typical
hyperparameter sensitivity observed in RL. See Appendix H
for further details on these ablations.

5. Conclusion and Limitations
We developed a general algorithmic framework for learning
policy committees for effective generalization and few-shot
learning in multi-task settings with diverse tasks that may be
unknown at training time. We showed that our approach is
theoretically grounded, and outperforms MTRL, meta-RL,
and personalized RL baselines in both training, and zero-
shot and few-shot test evaluations, often by a large margin.
Nevertheless, our approach exhibits several important limi-
tations. First, it requires tasks to be parametric, and while
we demonstrate how LLMs can be used to effectively obtain
task embeddings in the Meta-World environments, it is not
clear how to do so generally. Second, it includes a scalar
hyperparameter, ϵ, which determines how we evaluate the
quality of task coverage and needs to be adjusted separately
for each environment, although this hyperparameter is easily
tunable in practice.
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A. Proof of Corollary 2.2
Definition A.1. A potential function is a function Φ : S −→ R. Given a discount γ, r1 and r2 differ by potential shaping if
for some potential Φ, we have that r2(s, a, s′) = r1(s, a, s

′) + γ · Φ(s′)− Φ(s).

Definition A.2. Given a transition function T , r1 and r2 differ by S′-redistribution if ES′∼T (s,a)[r2(s, a, s
′)] =

ES′∼T (s,a)[r1(s, a, s
′)].

Definition A.3. r1 and r2 differ by positive linear scaling if r2(s, a, s′) = c · r1(s, a, s′) for some positive constant c.

Proof. Theorem 2.6 from (Skalse & Abate, 2023) says that two tasks τ1, τ2 have the same ordering of policies if and only
if r1 and r2 differ by potential shaping, positive linear scaling, and S′-redistribution. Therefore, if we could find optimal
policies for these two tasks separately; they necessarily differ. And by forming a policy committee of these two optimal
policies, we have V Π

τ1 ≥ V
π
τ1 , V Π

τ2 ≥ V
π
τ2 , and V Π

τ1 + V Π
τ2 > V π

τ1 + V π
τ2 for any policy π.

B. Proof of Theorem 3.3
Definition B.1 (Gap preserving reduction for a maximization problem). Assume Π1 and Π2 are some maximization problems.
A gap-preserving reduction from Π1 to Π2 comes with four parameters (functions) f1, α, f2 and β. Given an instance x of
Π1, the reduction computes in polynomial time an instance y of Π2 such that: OPT (x) ≥ f1(x) =⇒ OPT (y) ≥ f2(y)
and OPT (x) < α|x|f1(x) =⇒ OPT (y) < β|y|f2(y).

Proof. Let G = (V,E) be an undirected graph with 5 vertices and 2 edges as follows:

1

2

3

4

5

We create an instance of Max-coverage for a set of θs in Rn by filling out their coordinate matrix Aij =
0 if i = j

1.5ϵ if i, j are adjacent
2.5ϵ if i, j are not adjacent

:

dim θ1 θ2 θ3 θ4 θ5
1 0 2.5 2.5 2.5 2.5
2 2.5 0 2.5 2.5 2.5
3 2.5 2.5 0 2.5 1.5
4 2.5 2.5 2.5 0 1.5
5 2.5 2.5 1.5 1.5 0

Let θ1 = [0, 2.5, 2.5, 2.5, 2.5], θ2 = [2.5, 0, 2.5, 2.5, 2.5], θ3 = [2.5, 2.5, 0, 2.5, 1.5], θ4 = [2.5, 2.5, 2.5, 0, 2.5], θ5 =
[2.5, 2.5, 1.5, 1.5, 0].

Projected onto the fifth axis, our thetas look like:

x4 − ϵ x4 + ϵ
x3 − ϵ x3 + ϵ

x2 − ϵ x2 + ϵ
x1 − ϵ x1 + ϵ

x5 − ϵ x5 + ϵ

And similarly, onto the third axis:
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x5 − ϵ x5 + ϵ
x4 − ϵ x4 + ϵ
x2 − ϵ x2 + ϵ
x1 − ϵ x1 + ϵ

x3 − ϵ x3 + ϵ

We claim that we have constructed a gap-preserving reduction for any t > 0

OPT (A) = n =⇒ OPT (B) = n

OPT (A) < n1−t =⇒ OPT (B) < n1−t.

To begin with, if the Max-Clique instance consists of a complete graph, then the θs we created have coordinates equal to
1.5ϵ everywhere except i-th coordinate, which is zero. So they can all be covered by one θ̃ = [0.7ϵ, 0.7ϵ, . . . , 0.7ϵ], the
coverage size is n. Therefore, the first implication is true.

Then for the second statement, we argue with the contrapositive: assume that one of the maximum coverage sets is
S = {i1, . . . , ik} and k ≥ n1−t. We have to prove that the maximum clique has size greater than or equal to k ≥ n1−t.

Specifically, we prove that the vertices corresponding to the elements from S form a clique.

If θi, θj are from the set S, then they should be covered on each dimension since the ||θi − θj ||∞ = max |θdi − θdj | ≤ ϵ. So
θi, θj have to be adjacent, because otherwise their corresponding coordinates on the i-th and j-th dimension are more than ϵ
away. For example, we have theta θ33 = 0 and θ55 = 0, so θ35 and θ35 must be 1.5ϵ rather than 2.5ϵ, which indicates that 3, 5
are neighbors in the graph.

Therefore, the points in S correspond to a clique of size k ≥ n1−t in the graph. Thus, if the graph G has a clique of size less
than n1−t, then the maximum coverage set has size less than n1−t.

C. Pseudocode of Greedy Intersection Algorithm
The full pseudocode for the Greedy Intersection Algorithm (GIA) algorithm is provided as Algorithm 1.

D. Proof of Theorem 3.4
Based on the proof of maxmizing monotone submodular functions by (Nemhauser et al., 1978).

Lemma D.1. Suppose 1− δ∗(K) is the optimal (ϵ, 1− δ)-parameter-cover of Γ achievable with fixed K. With probability
at least 1− α , the probability of θ from Γ getting covered by the first i representatives generated by Algorithm 1 is greater
than 1−δ∗(K)−Kβ

K

∑i−1
j=0(1− 1/K)j .

Proof. We will prove the lemma through induction. We begin by defining the coverage region of each of the K committee
member in the optimal parameter-cover as S∗

i . Furthermore, let Π∗ denote the region covered by this optimal parameter-cover.
Thus, Π∗ =

⋃
S∗
i . Next, let Ai denote the region covered by the representative selected on the i-th iteration. And let Ci

denote the set of θs from the dataset T that are covered after i-th iteration.

First of all, we want to show at i = 1, the probability for θ ∼ Γ getting covered is greater than 1−δ∗(K)−Kβ
K

∑0
j=0(1 −

1/K)0 = 1−δ∗(K)−Kβ
K .

By Hoeffding’s theorem, Prθ∼Γ[Eθ∼Γ[1(θ ∈
⋃i−1

j=1Aj)]−
∑

i 1(θi∈
⋃i−1

j=1 Aj)

N ) ≥ β
3 ] ≤ exp(−2Nβ2/9) = α

5 . Hence, with

probability at least 1− α
5 , Prθ∼Γ[θ ∈

⋃i−1
j=1Aj ] = Eθ∼Γ[1(θ ∈

⋃i−1
j=1Aj)] ≤

∑
i 1(θi∈

⋃i−1
j=1 Aj)

N + β
3 = |Ci−1|

N + β
3 .

Now the union bound first gives that Prθ∼Γ[θ ∈ Π∗ ∧ θ /∈
⋃i−1

j=1Aj ] ≥ Prθ∼Γ[θ ∈ Π∗] − Prθ∼Γ[θ ∈
⋃i−1

j=1Aj ] = 1 −
δ∗(K)−Prθ∼Γ[θ ∈

⋃i−1
j=1Aj ].Applying union bound again, we obtain that with probability at least 1−α1,

∑K
i=1 Prθ∼Γ[θ ∈

S∗
i ∧θ /∈

⋃i−1
j=1Aj ] ≥ Prθ∼Γ[θ ∈ Π∗∧θ /∈

⋃i−1
j=1Aj ] ≥ 1− δ∗(K)− ( |Ci−1|

N + β
3 ). Hence, maxi∈[K] Prθ∼Γ[θ ∈ S∗

i ∧θ /∈⋃i−1
j=1Aj ] ≥

1−δ∗(K)−(
|Ci−1|

N + β
3 )

K . Let us call this maximising S∗
i Ŝ.
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Algorithm 1 Greedy Intersection
Input: T = {θi}Ni=1, ϵ > 0, K ≥ 1
Output: Parameter cover C

1: C ← []
2: for round k = 1 to K do
3: for dimension m = 1 to d do
4: Sort T in ascending order based on their m-th coordinates
5: listsm ← []
6: for indiviual i = 2 to N do
7: Si ← [θi]
8: for j = i− 1 to 1 do
9: if θi’s m-th coordinate < θj’s m-th coordinate +2ϵ then

10: Add θj to Si

11: else
12: if listsm[−1] ⊆ Si then
13: listsm[−1]← Si

14: else
15: Add Si to listsm
16: end if
17: break
18: end if
19: end for
20: end for
21: end for
22: S1∗, . . . , Sm∗ ← argmaxS1∈lists1,...,Sm∈listsm

|S1 ∩ · · · ∩ Sm|
23: covered← S1∗ ∩ · · · ∩ Sm∗

24: θ̂k ← average of the covered
25: T ← T − covered
26: C.adds(θ̂k)
27: end for
28: return C

According to our Algorithm 1, Ai covers the most θs from T that were not covered in the previous rounds by
⋃i−1

j=1Aj . In
particular, |Ci| − |Ci−1| is greater or equal to the number of θs from T covered in Ŝ but not

⋃i−1
j=1Aj . Let us denote the

latter as s1, and the former as s2, then s1 − s2 ≤ 0.

Hoeffding’s theorem gives us Prθ∼Γ(Eθ∼Γ[1[θ ∈ Ŝ∧θ /∈
⋃i−1

j=1Aj ]]−s1/N) ≥ β
6 ) ≤ (α5 )

4 and Prθ∼Γ(s2/N−Eθ∼Γ[1[θ ∈
Ai∧θ /∈

⋃i−1
j=1Aj ]] ≥ β

6 ) ≤ (α5 )
4. Hence with probability at least 1−2(α5 )

4, Eθ∼Γ[1[θ ∈ Ŝ∧θ /∈
⋃i−1

j=1Aj ]]−Eθ∼Γ[1[θ ∈
Ai ∧ θ /∈

⋃i−1
j=1Aj ]] = (Eθ∼Γ[1[θ ∈ Ŝ ∧ θ /∈

⋃i−1
j=1Aj ]] − s1/N) + (s1 − s2)/N + (s2/N − Eθ∼Γ[1[θ ∈ Ai ∧ θ /∈⋃i−1

j=1Aj ]] ≤ β
6 + β

6 = β
3 .

Applying the result we obtained at the beginning of the proof, we have with probability at least 1− α
5 − 2(α5 )

4,

Pr
θ∼Γ

[θ ∈ Ai ∧ θ /∈
i−1⋃
j=1

Aj ]

≥ Pr
θ∼Γ

[θ ∈ Ŝ ∧ θ /∈
i−1⋃
j=1

Aj ]−
β

3

≥
1− δ∗(K)− ( |Ci−1|

N + β
3 )

K
− β

3
. (3)
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Since nothing is covered before the first iteration, we can use step (3) with |C0| = 0 to prove the base condition for the

claim. Because K ≥ 1, we have 1−δ∗(K)− β
3

K − β
3 =

1−δ∗(K)− (1+K)β/3
K

K ≥ 1−δ∗(K)−Kβ
K .

The induction hypothesis is that for all i ≤ K − 1, we have Prθ∼Γ[θ ∈
⋃i

j=1Aj ] ≥ 1−δ∗(K)−Kβ
K

∑i
j=0(1− 1/K)j .

By Hoeffding, Prθ∼Γ[|Prθ∼Γ[θ ∈
⋃i−1

j=1Aj ] − |Ci−1|
N | ≥ β/3] ≤ 2 exp(−2Nβ2/9). In other words, with probability at

least 1− 2α
5 , Prθ∼Γ[θ ∈

⋃i−1
j=1Aj ] ≥ |Ci−1|

N − β/3 and |Ci−1|
N ≥ Prθ∼Γ[θ ∈

⋃i−1
j=1Aj ]− β/3.

Then at the step i = K, since for α
5 ∈ (0, 1), (α5 )

4 < α
5 , we have with probability at least 1− 2α

5 −
α
5 − 2(α5 )

4 ≥ 1− 5α
5 =

1− α,

Pr
θ∼Γ

[θ ∈
i⋃

j=1

Aj ]

= Pr
θ∼Γ

[θ ∈
i−1⋃
j=1

Aj ] + Pr
θ∼Γ

[θ ∈ Ai ∧ θ /∈
i−1⋃
j=1

Aj ]

≥|Ci−1|
N

− β

3
+

1− δ∗(K)− ( |Ci−1|
N + β/3)

K
− β

3

=
1− δ∗(K)

K
+ (1− 1/K)

|Ci−1|
N

− (2K + 1)β

3K

≥1− δ∗(K)

K
+ (1− 1/K)( Pr

θ∼Γ
[θ ∈

i−1⋃
j=1

Aj ]− β/3)−
(2K + 1)β

3K

≥1− δ∗(K)

K
+ (1− 1/K)

(1− δ∗(K)−Kβ
K

i−1∑
j=0

(1− 1/K)j
)
− (1− 1/K)β/3− (2K + 1)β

3K

=
1− δ∗(K)

K
− (2K + 1 +K − 1)β

3K
+

1− δ∗(K)−Kβ
K

i∑
j=1

(1− 1/K)j

=
1− δ∗(K)−Kβ

K

i∑
j=0

(1− 1/K)j

Proof of Theorem 3.4. We can directly apply lemma D.1 to i = K. Call the region defined by the cover generated by
Algorithm 1 ΠK =

⋃K
j=1Aj . Using the inequality (1− 1/K)K ≥ 1− 1/e for all K ≥ 0, we have

Pr
θ∼Γ

[θ ∈ ΠK ] ≥1− δ∗(K)−Kβ
K

K∑
j=0

(1− 1/K)j

=
1− δ∗(K)−Kβ

K

1− (1− 1/K)K

1− (1− 1/K)

=(1− δ∗(K)−Kβ)(1− (1− 1/K)K)

≥(1− 1/e)(1− δ∗(K)−Kβ).

E. Proof of Theorem 3.5
Proof. Let us call the optimal solutions set to (1) A1, and the optimal solutions set to (2) A2.
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We first show A1 ⊂ A2. Pick any {θ1, . . . , θK} ∈ A1. Due to the premise, for each i, since mink∈[K] ∥θk − θi∥∞ − ϵ ≤ 0 ,
there exists θk∗ such that ∥θk∗ − θi∥∞ − ϵ ≤ 0. Thus, we can have wik∗ = 1, and wik = 0 for all the other k ̸= k∗. Then
ReLU

({∑
k∈[K] σ(wik)∥θk − θi∥∞

}
− ϵ
)
= ReLU(∥θk∗ − θi∥∞ − ϵ) = 0. By setting w this way, we could achieve

the zero loss for the relaxation problem. Hence {θ1, . . . , θK} ∈ A2.

Now to show A2 ⊂ A1, suppose {θ1, . . . , θK}, w is a optimal solution. Due to the premise, we must have that
ReLU

({∑
k∈[K] σ(wik)∥θk − θi∥∞

}
− ϵ
)
= 0 for each i. Now fix i, since each σ(wik) is nonegative and summing

them over k yields 1, there must be some positive coordinate σ(wik′). Hence for all such k′, ReLU(∥θk′ − θi∥∞ − ϵ) = 0,
i.e., ∥θk′−θi∥∞ ≤ ϵ. Thus, mink∈[K] ∥θk−θi∥∞ ≤ ∥θk′−θi∥∞ ≤ ϵ also holds, and max{θ1,...,θK}

∑
i 1(mink∈[K] ∥θk−

θi∥∞ ≤ ϵ) = n. Consequently, {θ1, . . . , θK} ∈ A1.

F. Proof of Lemma 3.6

V
π∗
i

i =E[
T∑

t=0

γtrθi(st, at) |π∗
i ]

=E[
T∑

t=0

γt(rθi(st, at)− rθj (st, at) + rθj (st, at)) |π∗
i ]

=E[
T∑

t=0

γt(rθi(st, at)− rθj (st, at)) |π∗
i ] + E[

T∑
t=0

γtrθj (st, at) |π∗
i ]

=E[
T∑

t=0

γt(rθi(st, at)− rθj (st, at)) |π∗
i ] + V

π∗
i

j

≤
T∑

t=0

γtL||θi − θj ||∞ + V
π∗
j

j (−V π∗
j

i + V
π∗
j

i )

≤Lγ
T+1 − 1

γ − 1
ϵ+ (V

π∗
j

2 − V π∗
j

i ) + V
π∗
j

i

=L
γT+1 − 1

γ − 1
ϵ+ E[

T∑
t=0

γtrθi(st, at)− rθj (st, at) |π∗
j ] + V

π∗
j

i

≤2Lγ
T+1 − 1

γ − 1
ϵ+ V

π∗
j

i

If the discount factor γ = 1, the argument is as follows:

V
π∗
i

i =E[
T∑

t=0

rθ(st, at) |π∗
i ]

=E[
T∑

t=0

rθ(st, at)− rθj (st, at) + rθ′(st, at) |π∗
i ]

=E[
T∑

t=0

rθ(st, at)− rθj (st, at) |π∗
i ] + E[

T∑
t=0

(rθj (st, at) |π∗
i ]

=E[
T∑

t=0

rθi(st, at)− rθj (st, at) |π∗
i ] + V

π∗
i

j

≤
T∑

t=0

L||θi − θj ||∞ + V
π∗
j

j (−V π∗
j

i + V
π∗
j

i )
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≤TLϵ+ (V
π∗
j

j − V π∗
j

i ) + V
π∗
j

i

=TLϵ+ E[
T∑

t=0

rθi(st, at)− rθj (st, at) |π∗
j ] + V

π∗
j

i

≤2TLϵ+ V
π∗
j

i

G. Proof of Theorem 3.8
We prove this by leveraging the following lemma by Azar et al. (2013).

Definition G.1. The average expected reward for a given policy is measured per time step as

µπ(s) =
1

h
E

[
h∑

t=1

r(st, π(st)) | s0 = s

]
.

And the empirical average return after n episodes is

µ̂π =
1

nh

n∑
i=0

h∑
t=0

r(st, π(st)).

Assumption G.2. There exists a policy π+ ∈ Π, which induces a unichain Markov process on the MDP M , such
that the average reward µπ+ ≥ µπ(s) ∀s ∈ S and any policy π ∈ Π. The span of the bias function is sp(λπ

+

) =

maxs λ
π+

(s)−mins λ
π+

(s) ≤ H for some constantH , where λ the bias is defined as λπ(s)+µπ = E[r(s, π(s))+λπ(s′)],
with s′ being the next state after the interaction (s, π(s)).

Assumption G.3. Suppose that each π ∈ Π induces on the MDPM a single recurrent class with some additional transient
states, i.e., µπ(s) = µπ for all s ∈ S, and sp(λπ) ≤ H for some finite H .

Lemma G.4. (Azar et al., 2013, Lemma 1) Under Assumption G.2 and G.3, |µ̂π − µπ| ≤ 2(H + 1)
√

2 log(2/α)
ph + H

h with
probability at least 1− α.

Proof. Let p = 32h(H+1)2 log(4/α)
(β−2H)2 . Denote the average rewards of the best and second best policy in the committee as

µ+, µ−. If µ+ − µ− > β/h, by ensuring the difference between the estimation and the true average reward is small than

β/2h.We can make sure we have picked the best policy. From Lemma G.4, we know Pr[µ̂− ≤ µ−+2(H+1)
√

2 log(4/α)
ph +

H
h ] = Pr[µ̂− ≤ µ−+β/2h] ≥ 1−α/2.And Pr[µ̂+ ≥ µ+−2(H+1)

√
2 log(4/α)

ph +H
h ] = Pr[µ̂+ ≤ µ+−β/2h] ≥ 1−α/2.

Hence with probability at least 1− α, µ̂+ > µ+ − β/2h ≥ µ− + β/h− β/2h = µ− + β/2h > µ̂−. Thus the empirically
best policy we have picked is also the best in expectation. Now if µ+ − µ− < β/h, no matter which one we pick, we have
the difference bound by β/h. The same holds for all pairs of policies ordered based on their expected values. Either way,
with probability 1− α, we could find the best policy in the committee. Since our committee is a (ϵ, 1− δ) cover, we are
able to pick the policy with suboptimality β + ϵ with probability 1− δ − α.

H. Additional Empirical Results
H.1. Results on Humanoid Direction

We present the learning curves for both the training and zero-shot testing case as Figure H.1. The few shot result has been
listed in Table 1.

H.2. Additional results for empirical investigation of our method

H.2.1. CLUSTERING ABLATIONS

We also obtained different clusters using PACMAN than using Kmeans++ and, as a result, much better performance for
Halfcheetah-Velocity, as shown in the table below:
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Figure 4. Humanoid-Direction Train and Zero Shot

Table 4. Comparison of clustering algorithms in HalfCheetah-Velocity, Zero-Shot.
Method 6 Million Frames 12 Million Frames
KMeans++ −105.91± 3.44 −89.50± 3.10
DBScan −234.05± 9.56 −213.42± 4.09
GMM −239.32± 11.27 −199.86± 9.54
Random −274.13± 16.76 −258.07± 13.62
PACMAN -97.42 ± 3.70 -74.20 ± 6.76

As shown in Table ??, the proposed approach outperforms all baselines.

While the performance of the KMeans++ algorithm appears relatively close to our method due to the significant gap between
it and the other three clustering methods (DBSCAN, GMM, and Random), we emphasize that this result considers one
hundred percent of the population.

The advantage of our algorithm becomes even more apparent when focusing on the welfare of the majority. To illustrate this,
we present a histogram of rewards for individual test tasks during zero-shot testing using policies trained with our algorithm
versus KMeans++ on the Half-Cheetah-Velocity benchmark:

Figure 5. Histogram comparison of two clustering methods for zero-shot individual task rewards in Half-Cheetah (velocity).

The results vividly highlight a significantly greater density of high-performing tasks (red regions on the right) with our
method. This suggests that our approach effectively promotes superior task performance while minimizing underperformance.
In contrast, KMeans++ yields a more uniform but mediocre distribution of task performance. There is an ideological
difference between these two clustering methods.

H.2.2. HYPERPARAMETER ABLATIONS

We consider here additional ablations varying K and ϵ omitted from the main body.

First, we present the results of ablations on K on both Mujoco (Halfcheetah-Velocity) and Meta-World.

Both the ablation results for Meta-World and Mujoco demonstrate a clear advantage of utilizing a policy committee.
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Figure 6. Varying K from 1 to 3 for Halfcheetah-Velocity (left two) and 1 to 4 for Meta-World (right two)

Table 5. Few-shot in Meta-World, varying K.
Method 6K Updates 12K Updates
MOORE 0.42± 0.06 0.43± 0.05
PACMAN (K = 1) 0.32± 0.05 0.31± 0.04
PACMAN (K = 2) 0.50± 0.05 0.50± 0.05
PACMAN (K = 3) 0.61± 0.04 0.62± 0.05
PACMAN (K = 4) 0.32± 0.05 0.35± 0.05

Especially for Meta-World, our method beats the baseline for every K greater than 1. Here, in few-shot settings, even using
K = 2 already results in considerable improvement over the best baseline (MOORE), with K = 3 a significant further
boost. Another thing to note is that increasing K is not always better. The results in both the figure and the table show that
as the number of tasks becomes increasingly partitioned, the generalization ability of each committee member may weaken.
Hence the performance for K = 4 is worse than K = 3.

Finally, we show the effect of the ϵ hyperparameter in the Meta-World zero-shot setting. These results are reported as the
success rate across all tasks for K = 2.

ϵ = .4 ϵ = .7 ϵ = 1
500K Steps 0.05 0.28 0.29
1M Steps 0.05 0.31 0.40

Table 6. Success rate for K = 2.

We present also results for K = 3. The main results in the paper are for ϵ = .6. Results are reported as the success rate over
all tasks for 3 seeds.

ϵ = .5 ϵ = .6 ϵ = .7 ϵ = .8
500K Steps 0.23 ± 0.08 0.54 ± 0.08 0.56 ± 0.09 0.60 ± 0.07
1M Steps 0.25 ± 0.07 0.60 ± 0.10 0.58 ± 0.14 0.58 ± 0.07

Table 7. Success rate for K = 3.

We find that increasing ϵ to cover more tasks can also improve performance (for a similar reason that increasing K may not,
as higher ϵ can ensure that we do not end up with clusters with too few tasks). Of course, for sufficiently high ϵ, only a
single cluster will emerge, so this, too induces an interesting tradeoff.
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I. Meta-World Task Embeddings
First, we manually generated the following task descriptions by referencing the metaworld documentation.

Task Name Objective Environment Details
Reach-v1 Move the robot’s end-effector to a

target position.
The task is set on a flat surface with
random goal positions. The target
position is marked by a small sphere
or point in space.

Push-v1 Push a puck to a specified goal posi-
tion.

The puck starts in a random position
on a flat surface. The goal position
is marked on the surface.

Pick-Place-v1 Pick up a puck and place it at a des-
ignated goal position.

The puck is placed randomly on the
surface. The goal position is marked
by a target area.

Door-Open-v1 Open a door with a revolving joint. The door can be opened by rotating
it around the joint. Door positions
are randomized.

Drawer-Open-v1 Open a drawer by pulling it. The drawer is initially closed and can
slide out on rails.

Drawer-Close-v1 Close an open drawer by pushing it. The drawer starts in an open position.
Button-Press-
Topdown-v1

Press a button from the top. The button is mounted on a panel or
flat surface.

Peg-Insert-Side-
v1

Insert a peg into a hole from the side. The peg and hole are aligned hori-
zontally.

Window-Open-v1 Slide a window open. The window is set within a frame and
can slide horizontally.

Window-Close-
v1

Slide a window closed. The window starts in an open posi-
tion.

Door-Close-v1 Close a door with a revolving joint. The door can be closed by rotating it
around the joint.

Reach-Wall-v1 Bypass a wall and reach a goal posi-
tion.

The goal is positioned behind a wall.

Pick-Place-Wall-
v1

Pick a puck, bypass a wall, and place
it at a goal position.

The puck and goal are positioned
with a wall in between.

Push-Wall-v1 Bypass a wall and push a puck to a
goal position.

The puck and goal are positioned
with a wall in between.

Button-Press-v1 Press a button. The button is mounted on a panel or
surface.

Button-Press-
Topdown-Wall-v1

Bypass a wall and press a button
from the top.

The button is positioned behind a
wall on a panel.

Button-Press-
Wall-v1

Bypass a wall and press a button. The button is positioned behind a
wall.

Peg-Unplug-Side-
v1

Unplug a peg sideways. The peg is inserted horizontally and
needs to be unplugged.

Disassemble-v1 Pick a nut out of a peg. The nut is attached to a peg.
Hammer-v1 Hammer a nail on the wall. The robot must use a hammer to

drive a nail into the wall.
Plate-Slide-v1 Slide a plate from a cabinet. The plate is located within a cabinet.
Plate-Slide-Side-
v1

Slide a plate from a cabinet side-
ways.

The plate is within a cabinet and
must be removed sideways.

Plate-Slide-Back-
v1

Slide a plate into a cabinet. The robot must place the plate back
into a cabinet.
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Plate-Slide-Back-
Side-v1

Slide a plate into a cabinet sideways. The plate is positioned for a sideways
entry into the cabinet.

Handle-Press-v1 Press a handle down. The handle is positioned above the
robot’s end-effector.

Handle-Pull-v1 Pull a handle up. The handle is positioned above the
robot’s end-effector.

Handle-Press-
Side-v1

Press a handle down sideways. The handle is positioned for side-
ways pressing.

Handle-Pull-Side-
v1

Pull a handle up sideways. The handle is positioned for side-
ways pulling.

Stick-Push-v1 Grasp a stick and push a box using
the stick.

The stick and box are positioned ran-
domly.

Stick-Pull-v1 Grasp a stick and pull a box with the
stick.

The stick and box are positioned ran-
domly.

Basketball-v1 Dunk the basketball into the basket. The basketball and basket are posi-
tioned randomly.

Soccer-v1 Kick a soccer ball into the goal. The soccer ball and goal are posi-
tioned randomly.

Faucet-Open-v1 Rotate the faucet counter-clockwise. The faucet is positioned randomly.
Faucet-Close-v1 Rotate the faucet clockwise. The faucet is positioned randomly.
Coffee-Push-v1 Push a mug under a coffee machine. The mug and coffee machine are po-

sitioned randomly.
Coffee-Pull-v1 Pull a mug from a coffee machine. The mug and coffee machine are po-

sitioned randomly.
Coffee-Button-v1 Push a button on the coffee machine. The coffee machine’s button is posi-

tioned randomly.
Sweep-v1 Sweep a puck off the table. The puck is positioned randomly on

the table.
Sweep-Into-v1 Sweep a puck into a hole. The puck is positioned randomly on

the table near a hole.
Pick-Out-Of-
Hole-v1

Pick up a puck from a hole. The puck is positioned within a hole.

Assembly-v1 Pick up a nut and place it onto a peg. The nut and peg are positioned ran-
domly.

Shelf-Place-v1 Pick and place a puck onto a shelf. The puck and shelf are positioned
randomly.

Push-Back-v1 Pull a puck to a goal. The puck and goal are positioned ran-
domly.

Lever-Pull-v1 Pull a lever down 90 degrees. The lever is positioned randomly.
Dial-Turn-v1 Rotate a dial 180 degrees. The dial is positioned randomly.
Bin-Picking-v1 Grasp the puck from one bin and

place it into another bin.
The puck and bins are positioned ran-
domly.

Box-Close-v1 Grasp the cover and close the box
with it.

The box cover is positioned ran-
domly.

Hand-Insert-v1 Insert the gripper into a hole. The hole is positioned randomly.
Door-Lock-v1 Lock the door by rotating the lock

clockwise.
The lock is positioned randomly.

Door-Unlock-v1 Unlock the door by rotating the lock
counter-clockwise.

The lock is positioned randomly.

Our test tasks are the following: assembly, basketball, bin picking, box close, button press topdown, button press topdown-
wall, button press, button press wall, coffee button, coffee pull, coffee push, dial turn, disassemble, door close, door lock,
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door open, door unlock, drawer close, drawer open , and faucet close.

Then for each task, we fed the following prompt to an LLM:

"<Task Name>": "Objective: <Objective description>

Environment Details: <Environment details>"

For example:

"Reach-v1": "Objective: Move the robot’s end-effector to a target position.
Environment Details: The task is set on a flat surface with random goal positions.
The target position is marked by a small sphere or point in space."

Next, we extracted the penultimate layer’s activations of the LLM and computed the channel-wise mean. The result was a
single 50-dimensional vector that represented the task.

J. Meta-World Clustering Analysis and Discussion
Simply put, our method works by having committee members which are innately specialized to specific tasks, as illustrated
below. Here committee member 2 is specialized to door open and committee member 3 is specialized to door close. At
the same time, committee member 2 performs door close poorly and committee member 2 performs door open poorly. A
MTRL policy in trying to perform all tasks doesn’t perform any particular task well. Our method will select committee
member 2 for door open and committee member 3 for door close.

To understand if the parametrization discussed in section 3.4 produces suitable clusters we have applied PCA to PCA to a
clustering of 10 tasks. We note that the window tasks and drawer tasks are close in task space. Additionally, the dynamics
and goals of the push and pick-place tasks are nearly identical. Window close is close to door open as both these tasks have
the agent needing to move to the horizontally to begin the task.

Figure 7. PCA for our parametrization described in 3.4.

When K = 3, the three Meta-World clusters (for one of the random subsamples of 30 tasks) are provided below.

On the high level, the clustering can be described as corresponding to three categories of manipulation tasks. The first
cluster involves pulling and sliding manipulations (e.g., pull a puck, move end-effector, slide a plate to and from the cabinet).
The second cluster includes manipulations that involve pressing and pushing (e.g., rotate the faucet, press a handle down,
insert a peg into a hole, kick a soccer ball, sweep a puck). The third cluster consists of tasks involving indirect or constrained
manipulation and which thus require better precision and control (e.g., bypass a wall, grasp a stick and pull or push a box
with it).
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Cluster 1 Cluster 2 Cluster 3
handle-press-side-v1
peg-unplug-side-v1
pick-out-of-hole-v1
pick-place-v1
plate-slide-back-v1
plate-slide-side-v1
plate-slide-v1
push-back-v1
push-v1
reach-v1
stick-push-v1

faucet-open-v1
hammer-v1
handle-press-side-v1
handle-press-v1
handle-pull-side-v1
peg-insert-side-v1
peg-unplug-side-v1
pick-out-of-hole-v1
pick-place-v1
pick-place-wall-v1
plate-slide-back-side-v1
plate-slide-side-v1
plate-slide-v1
soccer-v1
sweep-v1

hand-insert-v1
handle-pull-v1
lever-pull-v1
peg-insert-side-v1
push-wall-v1
reach-wall-v1
shelf-place-v1
stick-pull-v1
stick-push-v1
sweep-into-v1
window-close-v1
window-open-v1

Table 9. Meta-World Task Clusters
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