

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TERRAFM: A SCALABLE FOUNDATION MODEL FOR UNIFIED MULTISENSOR EARTH OBSERVATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Modern earth observation (EO) increasingly leverages deep learning to harness the scale and diversity of satellite imagery across sensors and regions. While recent foundation models have demonstrated promising generalization across EO tasks, many remain limited by the scale, geographical coverage, and spectral diversity of their training data, factors critical for learning globally transferable representations. In this work, we introduce **TerraFM**, a scalable self-supervised learning model that leverages globally distributed Sentinel-1 and Sentinel-2 imagery, combined with large spatial tiles and land-cover aware sampling to enrich spatial and semantic coverage. By treating sensing modalities as natural augmentations in our self-supervised approach, we unify radar and optical inputs via modality-specific patch embeddings and adaptive cross-attention fusion. Our training strategy integrates local-global contrastive learning and introduces a dual-centering mechanism that incorporates class-frequency-aware regularization to address long-tailed distributions in land cover. TerraFM achieves strong generalization on both classification and segmentation tasks, outperforming prior models on GEO-Bench and Copernicus-Bench. Our code and pretrained models will be publicly released.

1 INTRODUCTION

EO provides systematic measurements of the surface of earth, supporting a wide spectrum of critical applications such as land use monitoring (Wang et al., 2023), crop evaluation (Prodhan et al., 2021; Kussul et al., 2017), urban development (Yu & Fang, 2023), and disaster response (Huot et al., 2022; Sarkar et al., 2023; Rahnemoonfar et al., 2021). These capabilities are enabled by a growing fleet of EO satellites, most notably the Sentinel missions, which deliver multi-modal, multi-temporal data at a global scale (Torres et al., 2012; Drusch et al., 2012). The rise of deep learning, particularly deep neural networks (DNNs), has fundamentally reshaped the way EO data is processed and interpreted (Wang et al., 2025; Szwarcman et al., 2024; Tseng et al., 2025). Modern DNNs enable automated extraction of spatial and semantic patterns from raw imagery, driving downstream tasks such as scene classification, object detection, and semantic segmentation (Astruc et al., 2024; Waldmann et al., 2025; Kuckreja et al., 2024; Tseng et al., 2025; Fuller et al., 2023). These models offer a scalable alternative to traditional hand-engineered pipelines by learning generalizable representations directly from data (Guo et al., 2024a). As EO data continue to expand in scale, diversity, and complexity, DNNs have become foundation for building high-capacity models capable of generalizing across geographies, modalities, and tasks (Szwarcman et al., 2024; Astruc et al., 2024; Waldmann et al., 2025).

Remote sensing data is inherently multimodal, comprising diverse sensor types such as optical, SAR, and multispectral imagery. Traditional EO pipelines often focus on single-modality inputs, typically high-resolution optical imagery, limiting the model’s ability to generalize across varying sensing conditions. In contrast, multimodal and multispectral data sources, such as Sentinel-1 SAR and Sentinel-2 Level-1C/Level-2A optical bands, capture complementary structural and spectral information, enabling richer scene understanding (Han et al., 2024; Fuller et al., 2023). Foundation models that embrace this diversity have demonstrated superior transferability across tasks and geographies (Tseng et al., 2025; Guo et al., 2024a). However, variation in ground sampling distance (GSD) across EO data makes tile size a critical factor; smaller tiles capture local detail but risk overfitting to texture, while larger tiles provide broader semantic context but require scale-robust architectures (Reed et al., 2023). Recent works like AnySat (Astruc et al., 2024) and msGFM

(Han et al., 2024) have shown that scale-invariant modeling and mixed-resolution pretraining lead to more robust and generalizable representations. Crucially, large-scale sampling across geographies and resolutions enables EO foundation models to learn invariant features across sensors and global conditions.

As EO foundation models scale to accommodate diverse sensor inputs and resolutions, two dominant pretraining paradigms have emerged: masked autoencoders (MAE) and contrastive learning. Although MAEs focus on reconstructing the spatial structure, their reliance on RGB-centric ViTs limits their adaptability to multispectral or SAR inputs with varying spectral dimensions (Li et al., 2024; Szwarcman et al., 2024). In contrast, contrastive approaches such as DINO (Caron et al., 2021; Oquab et al., 2023) and its adaptations to remote sensing (Tseng et al., 2025; Fuller et al., 2023; Waldmann et al., 2025) offer modality-agnostic training by aligning global and local views through student-teacher distillation. However, the expansive spatial coverage of EO datasets introduces new challenges: large portions of satellite imagery are semantically sparse or uninformative, and naïve sampling can lead to representation bias. This requires intelligent sampling that prioritizes semantically diverse regions, guided by land cover priors, for balanced and efficient representation learning.

To address these limitations in standard ViTs, particularly their RGB-centric design, lack of modality awareness, and unimodal self-supervision, we introduce **TerraFM**, a unified foundation model tailored for remote sensing. First, we propose a *Modality-Specific Patch Embedding* module, which replaces the shared projection in standard ViTs with modality-aware embeddings adapted to multispectral and SAR data. This enables flexible handling of sensor-specific spectral profiles while preserving spatial structure. To enhance scale-invariance and cross-view consistency, we adopt multi-crop learning within a self-supervised teacher-student framework (Caron et al., 2021), promoting robust representation learning through global-local alignment. Further, we interpret different aligned modalities (S1-SAR, S2-L1C, S2-L2A) as complementary views of the same scene and introduce a *Cross-Attention Fusion* module that dynamically aggregates modality-specific tokens using learnable spatial queries. This allows the model to selectively emphasize sensor contributions at each spatial location. **While modality-specific embeddings and co-located modalities have appeared in prior work (Fuller et al., 2023; Tseng et al., 2025; Bachmann et al., 2022), our contribution lies in unifying them within a single DINO-style multi-crop backbone that treats S1, S2-L1C, and S2-L2A as complementary co-registered views, enabling stronger cross-modal coupling and richer alignment than separate-encoder designs.** Moreover, prior multimodal MAE models use cross-attention for decoder-side reconstruction (Guo et al., 2024b), TerraFM performs fusion on the encoder side and treats the fused output as an additional augmented view within a single shared backbone. Finally, to mitigate long-tailed land cover distribution issues prevalent in EO data, we introduce a *Dual Centering* mechanism into the distillation process. This leverages WorldCover (Zanaga et al., 2022) derived class statistics to compute a frequency-aware center, improving balance across dominant and rare semantic categories without requiring supervised objectives. These challenges highlight the need for a unified multimodal framework that scales effectively across sensors and resolutions. Our approach, TerraFM, directly addresses these issues as shown in Fig. 1, achieves superior performance compared to recent EO foundation models. Our key contributions are:

Contributions: (1) A *modality-specific patch embedding* mechanism is introduced to generalize ViTs across heterogeneous remote sensing modalities with varying spectral dimensions. (2) We treat

Figure 1: Performance comparison across GEOBench classification tasks using supervised fine-tuning and kNN evaluation. Five recent EO foundation models: AnySat (Astruc et al., 2024), DOFA (Xiong et al., 2024), Galileo (Tseng et al., 2025), Pritivi-2.0 (Szwarcman et al., 2024), and Satlas (Bastani et al., 2023) are compared against our TerraFM, which consistently outperforms them across modalities and evaluation settings, demonstrating strong generalization.

DINO-style multi-crop backbone that treats S1, S2-L1C, and S2-L2A as complementary co-registered views, enabling stronger cross-modal coupling and richer alignment than separate-encoder designs. Moreover, prior multimodal MAE models use cross-attention for decoder-side reconstruction (Guo et al., 2024b), TerraFM performs fusion on the encoder side and treats the fused output as an additional augmented view within a single shared backbone. Finally, to mitigate long-tailed land cover distribution issues prevalent in EO data, we introduce a *Dual Centering* mechanism into the distillation process. This leverages WorldCover (Zanaga et al., 2022) derived class statistics to compute a frequency-aware center, improving balance across dominant and rare semantic categories without requiring supervised objectives. These challenges highlight the need for a unified multimodal framework that scales effectively across sensors and resolutions. Our approach, TerraFM, directly addresses these issues as shown in Fig. 1, achieves superior performance compared to recent EO foundation models. Our key contributions are:

108 Table 1: Comparison of recent remote sensing foundation models across modalities, scale (**number**
 109 **of pretraining samples**), and benchmarks. **TerraFM** uniquely blends large tile size, WorldCover-
 110 informed metadata, and global-scale training (18.7M samples) with evaluation on both **GEO-Bench**
 111 and **Copernicus-Bench**.

112 113 Model	114 Modalities	115 Scale	116 Resolution	117 TileSize	118 Metadata	119 Benchmarks	120 Pixels (-T)
SatMAE++	S2, RGB	~1.2 M	10–60 m	224, 96	No	6 DS	0.12
Galileo	S1, S2, NDVI, ESA WC etc	~3–10.9 M	10 m	96 (flex)	Yes	GEO + 5 DS	1.58
CROMA	S1, S2	~1 M	10 m	96, 120	No	7 DS	0.98
SoftCon	S1, S2	~0.78 M	10 m	224	Yes	4 GEO + 7 DS	0.76
AnySat	Aerial, S1/S2, MODIS, etc.	11.1 M	0.2–250 m	10–240	No	11 DS	0.17
Prithvi-2	S2, HLS	4.2 M	30 m	224	Yes	GEO + 9 SME	5.06
DOFA	S1, S2, EnMAP, etc.	~8 M	1–30 m	512, 128	Yes	GEO + 2 DS	6.74
Panopticon	S1, S2, WV2/3, NAIP	~2.6 M	0.3–100 m	96, 224	Yes	GEO + 10 DS	2.34
MMEarth	S1, S2, DEM, etc.	~7.2 M	0.3–100 m	128	Yes	5 GEO	0.51
msGFM	RGB, S2, SAR, DSM	~2 M	0.1–30 m	192	No	5 DS	0.44
Copernicus-FM	S1-S5P, DEM	18.7 M	10 m–1 km	Mixed	Yes	Cop-Bench	5.12
TerraFM (Ours)	S1, S2 L1C/L2A	18.7 M	10–60 m	534	Yes	GEO + Cop-Bench	23.32

121
 122
 123 sensor modalities as natural augmentations and introduce a *cross-attention fusion* block that unifies
 124 multi-modal inputs within a shared encoder. (3) To address long-tailed LULC distributions, a *dual-
 125 centering* strategy is incorporated to regularize representation learning using class-frequency-aware
 126 statistics. (4) Extensive experiments on *GEO-Bench* and *Copernicus-Bench* demonstrate leading
 127 performance across multiple downstream tasks using globally distributed data.

129 2 RELATED WORK

131
 132 **Self-supervised Pretraining:** MAEs (He et al., 2022) have become a popular choice for self-
 133 supervised pretraining in remote sensing by reconstructing masked image regions using ViT (Dosos-
 134 vitskiy et al., 2021). Variants like Scale-MAE (Reed et al., 2023) and MC-MAE (Gao et al., 2022)
 135 enhance robustness across spatial scales via scale-aware encodings and convolutional tokenizers.
 136 However, MAEs struggle to scale to multisensor EO data, as their RGB-centric tokenization and
 137 reconstruction objectives limit generalization to multispectral and SAR modalities with diverse channel
 138 structures (Xie et al., 2023; Li et al., 2024). Unlike MAEs, self-supervised contrastive learning
 139 focuses on learning discriminative representations by comparing semantically similar and dissimilar
 140 views.

141 Remote sensing approaches Tang et al. (2023); Fuller et al. (2023); Waldmann et al. (2025) leverage
 142 spatial and spectral augmentations to create diverse yet consistent views. CROMA (Fuller et al., 2023)
 143 combines contrastive and masked autoencoding losses, while Cross-Scale MAE (Tang et al., 2023)
 144 blends generative and contrastive objectives for multi-scale learning. Student-teacher frameworks like
 145 DINO (Caron et al., 2021; Oquab et al., 2023) scale contrastive learning via EMA-updated teachers
 146 and global-local view alignment with centering to prevent collapse. These strategies are well-suited
 147 for EO, where multimodal imagery can act as natural augmentations, enabling scalable, label-free
 148 training and broad generalization.

149 **Remote Sensing FMs:** Recent advances in remote sensing foundation models (FMs) have scaled
 150 self-supervised learning across architecture types, modalities, training sizes, tile resolutions, and
 151 metadata usage (Table 1). Multimodal integration is central to recent FMs like Guo et al. (2024a);
 152 Wang et al. (2025); Waldmann et al. (2025); Astruc et al. (2024); Tseng et al. (2025); Han et al.
 153 (2024). SkySense (Guo et al., 2024a) applies contrastive learning to temporal-multimodal data
 154 but requires large-scale compute. CopernicusFM (Wang et al., 2025) fuses Sentinel modalities via
 155 metadata-aware networks but faces scaling issues with heterogeneous inputs. Panopticon (Waldmann
 156 et al., 2025) and AnySat (Astruc et al., 2024) align cross-modal views through contrastive training,
 157 while Galileo (Tseng et al., 2025) uses shared embeddings for SAR and multispectral fusion. Fus-
 158 MAE (Chan-To-Hing & Veeravalli, 2024) adopts attention-based fusion without contrastive loss,
 159 limiting generalization.

160 Prithvi-2 (Szwarcman et al., 2024) is restricted to single-modal optical data with temporal-spatial
 161 modeling. DOFA (Xiong et al., 2024), msGFM (Han et al., 2024), and AnySat (Astruc et al.,
 162 2024) address resolution variability using mixed tile sizes or scale-adaptive designs. Our 534px
 163 tiles capture broader spatial context than prior RSFMs. While CopernicusFM (Wang et al., 2025)

Figure 2: Overall architecture of **TerraFM**. It unifies student-teacher contrastive framework with modality augmentation with cross-attention fusion, and a new dual centering regularization. **TerraFM** is founded on ViT backbone and is trained on 18.7M globally distributed samples for pre-training and utilizes large-tile inputs for encoding broader spatial context. For illustration, RGB channels from S2-L2A and S2-L1C are selected, and S1 is visualized using a false-color RGB composite.

and DOFA (Xiong et al., 2024) incorporate metadata, we leverage land cover (LULC) priors for semantically informed learning. Both CopernicusFM and our model are trained on 18.7M samples, but ours uses over 23T pixels during pretraining, scaling the 5.1T used by Copernicus-Pretrain (Wang et al., 2025) over 4x. This growing body of work makes clear that the next step is moving beyond single-modality or scale-limited pipelines toward unified, globally robust EO foundation models.

3 TERRAFM: A SCALABLE MULTISENSOR FOUNDATIONAL MODEL

Unlike prior remote sensing foundation models, our approach integrates a student-teacher contrastive learning framework with dual centering (to balance long-tailed classes), modality-as-augmentation (to learn cross-modal invariances), and cross-attention fusion (to aggregate multi-sensor context), as illustrated in Figure 2. Built on a ViT backbone and trained on 18.7M globally distributed samples using 534×534 tiles, **TerraFM** captures broader spatial context and generalizes effectively across sensing modalities and geographies, achieving strong results on diverse downstream benchmarks.

3.1 ARCHITECTURE

We use globally distributed remote sensing imagery organized over a spatial grid, partitioning the earth’s surface into fixed-size tiles (Francis & Czerkawski, 2024). Each spatial unit, denoted as s , represents one such grid cell. For each sample, we observe a set of co-registered EO modalities:

$$\mathcal{M} = \{S1, S2-L1C, S2-L2A\},$$

where **S1** corresponds to Sentinel-1 SAR, and **S2-L1C** and **S2-L2A** represent two processing levels of Sentinel-2 optical imagery: Level-1C (top-of-atmosphere reflectance) and Level-2A (bottom-of-atmosphere surface reflectance), respectively. Each modality $m \in \mathcal{M}$ provides a multi-channel image $\mathbf{x}^m \in \mathbb{R}^{H \times W \times C_m}$, where H and W denote spatial dimensions, and C_m is the number of spectral channels for modality m . For example, Sentinel-1 contains two channels (VV and VH polarizations), therefore $C_{S1} = 2$, while Sentinel-2 modalities contain up to 13 spectral bands depending on level and resolution. These modalities are treated as complementary views of the same location, acting as natural augmentations, which support our training strategy and encourage learning modality-invariant representations. To provide semantic grounding, each sample s is assigned a high-level land use and land cover (LULC) category $y^{(s)} \in \{1, \dots, Y\}$, derived from the ESA WorldCover product. These categories reflect coarse semantic classes at a global scale and are used to compute class-frequency-aware statistics for balanced representation learning.

216 **Vision Transformer Model:** ViTs adapt the transformer architecture to visual data by treating an
 217 image as a sequence of patch tokens instead of a dense pixel grid. A typical ViT consists of two
 218 main components: a patch embedding module and a transformer encoder. Given an input image
 219 $\mathbf{x} \in \mathbb{R}^{H \times W \times C}$, the **patch embedding** layer f_θ divides the image into N non-overlapping patches of
 220 size $P \times P$, and projects each patch into a d dimensional embedding:

$$\{z_i\}_{i=1}^N = f_\theta(\mathbf{x}), \quad z_i \in \mathbb{R}^d.$$

223 This projection is typically implemented using a convolutional layer with kernel size and stride equal
 224 to the patch size P , parameterized by weights $\mathbf{W}_\theta \in \mathbb{R}^{d \times C \times P \times P}$. To encode spatial information,
 225 the transformer encoder augments each patch token z_i with a positional vector. A learnable class
 226 token z_{cls} is added to the sequence, which yields the full input:

$$\mathbf{Z} = [z_{\text{cls}}; \{z_i + \text{pos}_i\}_{i=1}^N].$$

228 The token sequence \mathbf{Z} is processed by a stack of L transformer layers, denoted Enc_ϕ . For classification
 229 tasks, only the final class token z_{cls} is forwarded to a prediction head.

230 **Modality-Specific Patch Embedding:** Standard patch embedding layers in ViTs are typically
 231 implemented using a shared convolutional projection across all inputs, making it unsuitable for
 232 multi-modal remote sensing data. To better handle this heterogeneity, we adopt a modality-specific
 233 patch embedding strategy. For each modality $m \in \mathcal{M}$, we define an embedding function f_{θ_m} that
 234 maps the input image $\mathbf{x}^{(m)} \in \mathbb{R}^{H \times W \times C_m}$ to a sequence of patch tokens $\bar{\mathbf{Z}}^{(m)} \in \mathbb{R}^{N \times D}$, where C_m
 235 is the number of channels and N is the number of patches. Each f_{θ_m} is parameterized independently
 236 to account for modality-specific dynamics. We associate each modality with a learnable embedding
 237 vector $\epsilon^{(m)} \in \mathbb{R}^D$. This vector is added to every token from that modality via broadcasting:

$$\tilde{\mathbf{Z}}^{(m)} = \bar{\mathbf{Z}} + \mathbf{1}_N \cdot (\epsilon^{(m)})^\top,$$

239 where $\mathbf{1}_N \in \mathbb{R}^{N \times 1}$ is a vector of ones. This allows the model to distinguish between modalities while
 240 preserving local spatial and spectral features. Finally, to enable shared processing in the Transformer
 241 encoder, the enriched tokens $\tilde{\mathbf{Z}}^{(m)}$ are linearly projected into a common latent space of dimension d
 242 using a shared projection $\psi : \mathbb{R}^D \rightarrow \mathbb{R}^d$:

$$\mathbf{Z}^{(m)} = \psi(\tilde{\mathbf{Z}}^{(m)}) \in \mathbb{R}^{N \times d}.$$

245 This operation aligns all modality-specific token sequences in a unified representation space, allowing
 246 the encoder to process them jointly.

247 **Modality Augmentation and Cross-Attention Fusion:** Remote sensing observations of a single
 248 location are often captured using multiple sensors, each providing a unique spectral or radiometric
 249 perspective. Instead of treating these modalities as independent inputs, we interpret them as com-
 250plementary views of the same scene. This allows us to use modality diversity as a form of natural
 251 augmentation, enabling the model to learn sensor-invariant representations. In our setup, each spatial
 252 sample s from the Major-TOM dataset (Francis & Czerkawski, 2024) is observed via a fixed set
 253 of modalities. During pretraining, we independently assign modalities to the student and teacher
 254 networks via stochastic selection (threshold = 0.5), ensuring cross-modal supervision. E.g., the
 255 teacher may observe a global crop from Sentinel-1, while the student receives local views from
 256 Sentinel-2 L2A. This modality augmentation strategy encourages the model to align features across
 257 sensors, improving robustness to sensor-specific artifacts. We consider two cases based on the number
 258 of selected modalities:

259 **1) Single-Modality Views:** If only one modality is selected, the input is passed through the corre-
 260 sponding modality-specific patch embedding layer followed by the shared transformer encoder. This
 261 follows the standard ViT pipeline but uses modality-aware embeddings to handle spectral channel
 262 differences. **2) Multi-Modality Fusion via Cross-Attention:** When multiple modalities $M \subseteq \mathcal{M}$
 263 are selected, we activate a modality fusion module based on cross-attention. For each selected
 264 modality $m \in M$, we obtain a patch token sequence $\bar{\mathbf{Z}}^{(m)} \in \mathbb{R}^{N \times D}$, where N is the number of
 265 spatial positions. These are stacked into a tensor $\mathbf{Z}_{\text{all}} \in \mathbb{R}^{N \times M \times D}$, aligning spatial positions across
 266 modalities.

267 For each position $n = 1, \dots, N$, we define shared learnable queries $\mathbf{q} \in \mathbb{R}^{N_q \times D}$, which attend to
 268 modality-specific keys $\mathbf{K}_n \in \mathbb{R}^{M \times D}$ and values $\mathbf{V}_n \in \mathbb{R}^{M \times D}$, where, \mathbf{K}_n , and \mathbf{V}_n are obtained via
 269 [separate learned linear projections of modality-specific tokens](#), yielding N_q intermediate outputs:

$$\mathbf{z}'_n = \text{MultiHeadAttention}(\mathbf{q}, \mathbf{K}_n, \mathbf{V}_n) \in \mathbb{R}^{N_q \times D}.$$

270 To aggregate them, we compute a learned weighted mean using softmax-normalized attention scores:
 271

$$272 \quad \mathbf{w} = \text{Softmax}(\mathbf{z}'_n \cdot \mathbf{p}_r), \quad \mathbf{z}'_n = \sum_{j=1}^{N_q} w_j \mathbf{z}'_n[j],$$

$$273$$

$$274$$

275 where $\mathbf{p}_r \in \mathbb{R}^{D \times 1}$ is a learnable projection for scoring the query outputs. This results in a fused
 276 token $\mathbf{z}'_n \in \mathbb{R}^D$. The final sequence $\mathbf{Z}_{\text{fused}} \in \mathbb{R}^{N \times D}$ is then passed to the shared encoder Enc_ϕ .
 277 This cross-attention fusion allows the model to dynamically weigh the modality contributions at each
 278 spatial location, capturing diverse information while maintaining spatial coherence. **For clarity, the**
 279 **learnable queries are shared across all spatial locations, and the fusion yields one token per location,**
 280 **preserving the ViT backbone’s original sequence length.**

281

282 3.2 PRETRAINING

283

284 Our pretraining strategy builds on the DINO framework, which performs self-supervised learning.
 285 It operates using a teacher-student setup, where both networks share the same ViT backbone and a
 286 lightweight three-layer projection head. Let g_{θ_s} and g_{θ_t} denote the student and teacher networks,
 287 respectively. While the student is trained using gradient-based optimization, the teacher is updated
 288 using EMA of the student’s weights:

$$289 \quad \theta_t \leftarrow \lambda_e \theta_t + (1 - \lambda_e) \theta_s, \quad \lambda_e = 1 - (1 - \lambda_0) \frac{1 + \cos(\pi e/E)}{2}, \quad (1)$$

$$290$$

291 where e is the current epoch, E is the total number of training epochs, and $\lambda_0 \in [0.996, 1)$ is the
 292 initial momentum coefficient. The cosine schedule gradually increases λ_e , stabilizing the teacher
 293 updates as training progresses. This EMA mechanism allows the teacher to serve as a temporally
 294 smoothed ensemble of past student states, yielding more stable and consistent targets.

295 **Multi-Crop Learning:** To enable scale-invariant and cross-view representation learning, we adopt a
 296 multi-crop strategy as used in DINO (Caron et al., 2021). For each input sample, we generate two
 297 high-resolution global crops $\{\mathbf{x}_g^{(1)}, \mathbf{x}_g^{(2)}\} \subset \mathcal{X}_g$ and J low-resolution local crops $\{\mathbf{x}_\ell^{(j)}\}_{j=1}^J \subset \mathcal{X}_\ell$.
 298 The teacher network processes only the global crops, while the student receives both global and local
 299 views. Each network produces a K -dim output which is temperature-scaled and normalized via the
 300 softmax function:

$$302 \quad Q_s^{(i)}(\mathbf{x}) = \frac{\exp(g_{\theta_s}(\mathbf{x})^{(i)}/\tau_s)}{\sum_{k=1}^K \exp(g_{\theta_s}(\mathbf{x})^{(k)}/\tau_s)}, \quad Q_t^{(i)}(\mathbf{x}) = \frac{\exp((g_{\theta_t}(\mathbf{x})^{(i)} - c^{(i)})/\tau_t)}{\sum_{k=1}^K \exp((g_{\theta_t}(\mathbf{x})^{(k)} - c^{(k)})/\tau_t)},$$

$$303$$

$$304$$

305 where τ_s and τ_t are temperature parameters that control output sharpness, and $c \in \mathbb{R}^K$ is a centering
 306 term representing the running mean of teacher logits, used to stabilize training and avoid representation
 307 collapse. The centering term is updated using an exponential moving average over the teacher outputs:

$$308 \quad c \leftarrow \beta c + (1 - \beta) \cdot \frac{1}{B} \sum_{i=1}^B g_{\theta_t}(\mathbf{x}_i),$$

$$309$$

$$310$$

311 where $\beta \in [0.9, 0.999]$ controls the momentum, and B is the batch size. The overall loss encourages
 312 consistency between teacher and student predictions across all distinct view pairs:

$$313 \quad \sum_{\mathbf{x} \in \mathcal{X}_g} \sum_{\mathbf{x}' \in \mathcal{X}; \mathbf{x}' \neq \mathbf{x}} \mathcal{L}_{\text{CE}}(Q_t(\mathbf{x}), Q_s(\mathbf{x}')),$$

$$314$$

$$315$$

316 where $\mathcal{X} = \mathcal{X}_g \cup \mathcal{X}_\ell$, and $\mathcal{L}_{\text{CE}}(\cdot, \cdot)$ denotes the cross-entropy loss. This loss formulation requires the
 317 student to produce consistent representations in all views.

318

319 **Dual Centering for Long-Tailed Distributions:**

320

321 Remote sensing datasets often exhibit long-tailed distributions of LULC classes, with frequent
 322 categories such as Forest dominating, while classes like Urban or Bare Land remain underrepresented
 323 as shown in Figure 3. This imbalance persists even after subsampling and poses challenges for
 324 representation learning. Standard self-supervised approaches like DINO (Caron et al., 2021) apply a
 325 single global centering term to stabilize training and avoid representation collapse, but they do not

account for semantic imbalance in the data. To address this, we propose a dual-centering scheme that combines global statistics with class-frequency-aware regularization. In addition to the standard global center vector c , we introduce a secondary center $c_h \in \mathbb{R}^K$, computed from a subset of samples belonging to high-frequency LULC classes, such as tree cover, grassland, and open seas, based on dataset-level statistics. Given a batch of teacher logits $g_{\theta_t}(\mathbf{x})$, the adjusted logits for training are computed as:

$$\hat{g}(\mathbf{x}) = g_{\theta_t}(\mathbf{x}) - \alpha \cdot c - (1 - \alpha) \cdot c_h,$$

where $\alpha \in [0, 1]$ balances the contribution of the global and frequency-aware centers. The vector c_h is updated via exponential moving average using only frequent-class samples within each batch. This dual-centering mechanism serves two key purposes: **(i)** it preserves the stability benefits of global centering as in DINO, and **(ii)** it introduces a soft rebalancing bias that counteracts the overrepresentation of dominant classes in the feature space. In ablations (Table 5), this adjustment leads to more balanced representation learning and improved downstream performance, particularly for underrepresented LULC categories.

4 PRETRAINING DATA SAMPLING

We utilize Major-TOM dataset (Francis & Czernawski, 2024) as our primary EO source for pertaining. It contains 2.24 million globally distributed grid cells, each spanning approximately $10.68 \text{ km} \times 10.68 \text{ km}$ ($\approx 114 \text{ km}^2$), and provides tri-modal, co-registered imagery from Sentinel-2 Level-1C, Sentinel-2 Level-2A, and Sentinel-1 RTC. Major-TOM stands out as one of the few publicly available datasets offering dense multi-modal coverage at a global scale. **Each cell independently selects a random 4-month window before cloud screening, which helps limit systematic seasonal and regional bias.** However, over one-third of its samples lie outside a 10 km terrestrial buffer, often within the Open Oceans class (Zanaga et al., 2022), limiting their relevance for land-centric tasks. Motivated by insights from Roscher et al. (2024), which emphasize the importance of semantically rich samples, and Wang et al. (2024d), which highlight the utility of structural priors, we applied a principled filtering strategy. Specifically, we removed 98% of ocean-classified tiles (retaining 2% to preserve marine representation) and sampled the terrestrial subset using global distributional priors across land cover (Zanaga et al., 2022), climate zones (Beck et al., 2018), and ESRI world regions (Esri et al., 2025). **Global distributional priors refer specifically to the majority land-cover label for each grid cell, which we retain only to compute class-frequency statistics for the dual-centering regularizer; this metadata is not provided as model input or used as supervision.** This approach emphasizes meaningful land regions with ecological variety. Figure 3 shows the global coverage of the tile and Figure Ap4 in the Appendix covers the map. For pretraining, we curated a filtered subset of over 1.5 million grid cells with consistent coverage across all three modalities (S1, S2-L1C, and S2-L2A). Each $10.68 \text{ km} \times 10.68 \text{ km}$ grid cell was divided into four non-overlapping tiles of 534×534 pixels, resulting in more than 6 million tiles per modality. In total, this yielded 18.7 million modality-specific training tiles. During training, modalities were stochastically sampled and treated as natural augmentations to promote sensor-invariant representation learning. To mitigate spatial sampling bias and support semantically-aware learning, we enriched each grid cell with metadata from the ESRI World Regions dataset (Esri et al., 2025).

5 EXPERIMENTS AND RESULTS

5.1 PRETRAINING IMPLEMENTATION DETAILS

We pre-train TerraFM using 534×534 tiles as inputs. Following the DINO-style cropping strategy (Caron et al., 2021), each tile is randomly cropped at two scales: (i) *global crops*, sampled with ratios in $[0.25, 1.0]$ of the tile size and resized to 224×224 , and (ii) *local crops*, sampled with

Figure 3: Land-use/land-cover (LULC) breakdown across the training tiles. A number of semantically important classes (e.g., builtup, mangroves, ice) remain underrepresented due to skewed data distribution.

378
 379 Table 2: We evaluate image classification using k-nearest neighbors (kNN) and report Top-1 accuracy
 380 for all single-label tasks. For the multilabel BigEarthNet benchmark, we report the F1 score. Results
 381 other than Copernicus-FM and TerraFM are directly taken from Tseng et al. (2025). **Bold** indicates
 382 the best result, and underlining denotes the second-best.

Model	Backbone	m-EuroSat		m-BigEarthNet		m-So2Sat		m-Brick-Kiln	
		100%	1%	100%	1%	100%	1%	100%	1%
SatMAE (Cong et al., 2022)	ViT-Base	84.1	34.8	50.6	29.0	36.0	23.1	86.1	73.5
SatMAE++ (Noman et al., 2024)	ViT-Large	82.7	48.5	50.8	31.6	34.7	23.4	89.6	76.7
CROMA (Fuller et al., 2023)	ViT-Base	85.6	51.3	58.8	44.7	48.8	33.8	92.6	<u>85.1</u>
SoftCon (Wang et al., 2024b)	ViT-Small	89.8	27.2	64.7	43.3	51.1	31.4	89.2	77.8
DOFA (Xiong et al., 2024)	ViT-Base	82.8	49.6	49.4	29.9	41.4	29.4	88.3	78.3
Satlas (Bastami et al., 2023)	Swin-Tiny	81.7	35.8	51.9	29.6	36.6	27.1	88.2	73.0
MMEarth (Nedungadi et al., 2024)	CNN-atto	81.7	30.0	58.3	39.6	39.8	25.1	89.4	79.7
DeCUR (Wang et al., 2024a)	ViT-Small	89.0	46.6	63.8	<u>49.6</u>	45.8	30.9	83.7	74.2
AnySat (Astruc et al., 2024)	ViT-Base	82.2	47.1	54.9	33.7	39.8	29.0	85.3	72.0
Galileo (Tseng et al., 2025)	ViT-Base	93.0	56.6	59.0	36.5	54.8	43.2	90.7	78.0
Prithvi-2.0 (Szwarcman et al., 2024)	ViT-Large	80.2	48.0	49.4	28.8	29.5	26.1	87.9	80.6
Copernicus-FM (Wang et al., 2025)	ViT-Base	76.0	47.4	53.8	33.3	38.4	23.3	<u>93.0</u>	83.2
TerraFM (Ours)	ViT-Base	<u>94.2</u>	<u>59.3</u>	<u>68.7</u>	49.4	<u>55.1</u>	<u>41.6</u>	94.5	85.6
	ViT-Large	95.1	62.1	69.4	50.6	55.9	41.1	<u>93.0</u>	82.2

394
 395 Table 3: Performance comparison on GEO-Bench for both classification (Top-1 Accuracy), seg-
 396 mentation (mIoU), and F1 score (for m-BigEarthNet). TerraFM achieves state-of-the-art results
 397 across multiple datasets, outperforming previous FMs. **Bold** indicates the best result, and underlining
 398 denotes the second-best.

Method	Backbone	Classification				Segmentation	
		m-EuroSat	m-BigEarthNet	m-So2Sat	m-Brick-Kiln	m-Cashew-Plant	m-SA-Crop-Type
SatMAE	ViT-Large	96.6	68.3	57.2	98.4	30.8	24.8
SatMAE++	ViT-Large	96.5	67.9	56.0	98.6	29.6	25.7
CROMA	ViT-Large	96.6	71.9	60.6	98.7	31.8	32.0
SoftCon	ViT-Base	97.5	70.3	61.7	98.7	29.6	30.8
DOFA	ViT-Large	96.9	68.0	58.7	98.6	27.7	25.4
Satlas	Swin-Base	97.5	<u>72.8</u>	61.9	98.4	25.1	23.4
MMEarth	CNN-atto	95.7	70.0	57.2	<u>98.9</u>	24.2	22.2
DeCUR	ViT-Small	97.9	70.9	61.7	<u>98.7</u>	26.2	21.5
Prithvi 2.0	ViT-Large	96.5	69.0	54.6	98.6	26.7	22.9
AnySat	ViT-Base	95.9	70.3	51.8	98.6	26.1	27.1
Galileo	ViT-Base	97.7	70.7	63.3	98.7	33.0	30.1
TerraFM	ViT-Base	98.1	72.6	<u>64.9</u>	98.7	<u>34.1</u>	32.8
	ViT-Large	98.6	73.1	66.6	99.0	37.0	34.6

411 ratios in $[0.05, 0.25]$ and resized to 96×96 . All inputs are then tokenized with a 16×16 patch
 412 resolution. The training dataset comprises around 1.53 million multi-modal samples, from which we
 413 define a virtual epoch of 300K samples to ensure frequent parameter updates. TerraFM-B is trained
 414 for 150 epochs and TerraFM-L for 200 epochs, each with a linear warmup over the first 30 epochs.
 415 Models are trained on 64 GPUs, TerraFM-B training takes 92 hours with a batch size of 1024, while
 416 TerraFM-L uses a batch size of 2048 and trains for 183 hours. The learning rate is linearly scaled
 417 with batch size, initialized as $lr = 0.0001 \times \text{batch_size}/256$. Following DINO-style pretraining, we
 418 disable batch normalization in the projection head and freeze the last layer of the student for the first
 419 3 epochs to stabilize early training. The output dimensionality is set to $K = 65,536$, with the teacher
 420 temperature linearly increasing from 0.04 to 0.06 over the first 50 epochs. The teacher momentum
 421 follows a cosine schedule starting from 0.996. A drop path rate of 0.1 is applied for regularization.
 422 For modality fusion, we set $N_q = 5$ and $\alpha = 0.8$ during pretraining.

5.2 EVALUATING DOWNSTREAM TASKS

423 **Benchmarks:** We evaluate our model on two comprehensive remote sensing benchmarks: **GEO-**
 424 **Bench** (Lacoste et al., 2023) and **Copernicus-Bench** (Wang et al., 2024a), both of which include
 425 diverse downstream tasks spanning multiple domains and modalities. The benchmark datasets are
 426 described in Appendix A, and for evaluation protocols (linear probing, UperNet probing, k-NN, and
 427 fine-tuning), we refer the reader to Appendix C.1.

428 **Discussion:** We report KNN classification accuracy on four standard GEO-Bench classification tasks
 429 to evaluate the quality of learned representations in a training-free setting. As shown in Table 2,
 430 TerraFM achieves the highest performance across three datasets, outperforming both modality-

432 specific and multimodal foundation models. Notably, our model achieves 95.1% on m-EuroSAT and
 433 94.5% on m-Brick-Kiln, highlighting the effectiveness of the learned representations on standard
 434 scene classification tasks. On other challenging tasks such as m-So2Sat and m-BigEarthNet, our
 435 model achieves leading performance (55.9% and 69.4%, respectively), outperforming Galileo (Tseng
 436 et al., 2025), despite So2Sat having fewer channels than used during pretraining, highlighting the
 437 model’s robustness to missing modality information. Compared to CROMA (Fuller et al., 2023) and
 438 DeCUR (Wang et al., 2024a), our gains suggest that contrastive alignment combined with cross-modal
 439 fusion enhances class separability. The results across tasks of varying difficulty indicate that our
 440 model learns robust and transferable representations that generalize well across different scenarios.
 441

442 Further GEO-Bench results with fine-tuning and linear probing are reported in Table 3, for clas-
 443 sification (with fine-tuning), TerraFM achieves the improvement on m-BigEarthNet (73.1%) and
 444 m-EuroSat (98.6%), and the best-performing model on m-So2Sat (66.6%). For segmentation (with lin-
 445 ear probing), our TerraFM-L notably outperforms existing models on m-SA-Crop-Type (**34.6%** mIoU)
 446 and m-Cashew-Plant (**37.0%** mIoU). TerraFM-B surpasses larger counterparts such as ViT-Large used
 447 in SatMAE++(Noman et al., 2024) and DOFA(Xiong et al., 2024). On the Copernicus-Bench (Wang
 448 et al., 2025) (Table 4), TerraFM delivers state-of-the-art results across most tasks and modalities. It
 449 achieves 67.9 mIoU on Cloud-S2, 87.8 OA on EuroSAT-S1, and 99.1 OA on EuroSAT-S2, surpass-
 450 ing all prior models. On BigEarthNet-S2 and DFC2020-S1, TerraFM attains 84.4 mAP and 55.4
 451 mIoU, respectively, marking clear gains over existing FMs. While SoftCon (Wang et al., 2024b) is
 452 slightly higher on BigEarthNet-S1 (78.7 vs. 76.9), TerraFM consistently outperforms Copernicus-FM
 453 (Wang et al., 2025) despite sharing the same ViT-B/16 backbone. These results highlight TerraFM’s
 454 scalability and strong generalization across diverse EO benchmarks.
 455

456 Table 4: Comparison of TerraFM with supervised and self-supervised methods on Copernicus-
 457 Bench. Metrics: OA (Overall Accuracy for classification), mAP (mean Average Precision for
 458 multi-label classification), mIoU (mean Intersection over Union for segmentation). Baselines include
 459 SoftCon (Wang et al., 2024b), CROMA (Fuller et al., 2023), DOFA (Xiong et al., 2024), and
 460 Copernicus-FM (Wang et al., 2025). **Bold** indicates the best result, and underlining denotes the
 461 second-best.

Method	Backbone	Classification				Segmentation			
		EuroSAT-S1	EuroSAT-S2	BigEarthNet-S1	BigEarthNet-S2	LCZ-S2	Cloud-S2	DFC2020-S1	DFC2020-S2
Supervised	ViT-B/16	81.5	97.6	70.6	80.1	85.3	59.4	50.8	<u>66.2</u>
Random	ViT-B/16	75.4	92.5	63.8	71.6	77.4	60.4	45.4	62.3
SoftCon	ViT-B/14	83.6	96.7	78.7	<u>83.6</u>	83.6	<u>66.9</u>	52.8	64.1
CROMA	ViT-B/8	83.9	97.0	70.8	76.4	84.1	65.0	52.7	66.5
DOFA	ViT-B/16	81.7	97.2	70.5	75.5	83.0	65.0	49.7	61.8
Copernicus-FM	ViT-B/16	<u>87.2</u>	<u>97.9</u>	<u>77.9</u>	79.0	<u>84.4</u>	66.7	52.4	64.5
TerraFM	ViT-B/16	87.8	99.1	76.9	84.4	87.0	67.9	55.4	63.8

462 5.3 ABLATIONS AND ANALYSIS

463 **Impact of Components:** Table 5 highlights the incremental benefits of each component in our
 464 framework. We train TerraFM-B for 150 epochs on a 200k-sample subset from our full training
 465 dataset. To measure the performance on segmentation task, we use upernet probing and linear
 466 probing on the m-Cashew-Plantation dataset from GeoBench. Adding modality as augmentation
 467 improves performance on m-EuroSat by +4.5% and m-BigEarthNet by +3.01%. Incorporating
 468 fusion yields a large gain on m-Cashew-Plantation segmentation by +3.23% with UPerNet probing
 469 and +1.4% with linear probing, while dual centering provides further improvements: +0.32% on
 470 m-BigEarthNet, +1.9% on m-EuroSat, and +2.18% on m-Cashew-Plantation. Note that in Table 5,
 471 the dual-centering ablation disables only our additional centering term; the standard DINO global
 472 centering remains active in all configurations to maintain the stability of the student-teacher training
 473 dynamics.

474 **Dual-centering Motivation and Visualization:** Here, we discuss the impact of Dual-centering
 475 on class-wise prediction behavior and representation diversity. Figure 4 shows that models with
 476 Dual-centering exhibit higher softmax entropy across most classes, indicating more calibrated
 477 predictions, particularly benefiting rare classes like "Mangroves". Figure 5 reveals that Dual Centering
 478 significantly increases prototype diversity, i.e., the number of distinct top-5 features activated,
 479 especially for tail classes. This suggests that the model avoids collapsing onto frequent-class
 480

Figure 4: Mean entropy per LULC class from 5k training samples, with logits ($K = 65, 536$) reduced via Gaussian projection. The baseline (no dual-centering) shows lower entropy and overconfident predictions skewed to frequent classes. Dual-centering increases entropy, yielding more balanced predictions, especially for rare classes like Mangroves and Herbaceous-Wetland.

Figure 5: Prototype diversity is measured as the number of unique top-5 prototypes across 5k training samples. Dual-centering improves diversity for tail classes like Mangroves, Herbaceous-Wetland, and Built-up, indicating richer representations. The baseline reuses fewer prototypes, reflecting over-reliance on dominant frequent-class features.

SS	MAug	Fus	DC	BEN	ES	CP [†]	CP [‡]
✓	—	—	—	54.62	83.20	50.58	19.4
✓	✓	—	—	57.63 (+3.01)	87.70 (+4.50)	59.17 (+8.59)	24.8 (+5.4)
✓	✓	✓	—	57.74 (+0.11)	88.50 (+0.80)	62.40 (+3.23)	26.2 (+1.4)
✓	✓	✓	✓	58.06 (+0.32)	90.40 (+1.90)	64.58 (+2.18)	27.6 (+1.4)

Table 5: Ablation of components: SS = Self-supervised contrastive learning, MAug = Modality Augmentation, Fus = Fusion, DC = Dual Centering. BEN = m-BigEarthNet, ES = m-EuroSat, CP = m-Cashew-Plant. [†] denote results using UPerNet probing while [‡] indicate linear probing. Gains in parentheses denote improvements over previous row.

prototypes and learns more diverse, semantically rich representations. These results motivate Dual-centering as an effective strategy for reducing class imbalance effects in representation learning.

MACs-Performance Trade-Off: We analyze the compute-accuracy trade-off using Multi-accumulate operations (MACs) to measure inference cost. As shown in Fig. 6, TerraFM achieves the highest m-EuroSat accuracy at substantially lower MACs, validating the efficiency of our fusion design and pretraining strategy. Notably, models with higher MACs do not guarantee better performance, underscoring the need for compact yet expressive architectures in scalable EO settings.

For further results and other supporting information, we refer readers to the Appendix.

6 CONCLUSION

In this work, we introduced TerraFM, a unified and scalable foundation model (FM) specifically designed for multisensor EO. Given the unique nature of EO data, our approach pays special treatment to sensor heterogeneity, scale-invariance, and class-frequency imbalance which is critical for building generalizable EO FMs. Our pretraining approach leverages contrastive learning to obtain geographically and spectrally aware representations from large-scale Sentinel-1 and 2 data. Specifically, we integrate modality-specific patch embeddings, adaptive cross-attention fusion, and a dual-centering contrastive learning objective to enrich the representations on heterogeneous RS data. Our extensive evaluations on GEO-Bench and Copernicus-Bench demonstrate that TerraFM consistently outperforms SOTA self-supervised ViT models across both classification and segmentation tasks.

Figure 6: Comparison of model efficiency and accuracy on m-EuroSat. We plot the MACs against k-NN classification accuracy for various vision backbones. TerraFM models achieve the highest accuracy while maintaining moderate computational cost.

REFERENCES

Guillaume Astruc, Nicolas Gonthier, Clement Mallet, and Loic Landrieu. Anysat: An earth observation model for any resolutions, scales, and modalities. *arXiv preprint arXiv:2412.14123*, 2024.

Cesar Aybar, Lesly Bautista, David Montero, Julio Contreras, Daryl Ayala, Fernando Prudencio, Jhomira Loja, Luis Ysuhuaylas, Fernando Herrera, Karen Gonzales, et al. CloudSEN12+: The largest dataset of expert-labeled pixels for cloud and cloud shadow detection in Sentinel-2. *Data in Brief*, 56:110852, 2024.

Roman Bachmann, David Mizrahi, Andrei Atanov, and Amir Zamir. MultiMAE: Multi-modal multi-task masked autoencoders. 2022.

Favyen Bastani, Piper Wolters, Ritwik Gupta, Joe Ferdinando, and Aniruddha Kembhavi. Sat-laspretrain: A large-scale dataset for remote sensing image understanding, 2023. URL <https://arxiv.org/abs/2211.15660>.

Hylke E Beck, Niklaus E Zimmermann, Tim R McVicar, Noemi Vergopolan, Alexis Berg, and Eric F Wood. Present and future köppen-geiger climate classification maps at 1-km resolution. *Scientific data*, 5(1):1–12, 2018.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 9650–9660, 2021.

Hugo Chan-To-Hing and Bharadwaj Veeravalli. Fus-mae: A cross-attention-based data fusion approach for masked autoencoders in remote sensing. In *IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium*, pp. 6953–6958. IEEE, 2024.

Kai Norman Clasen, Leonard Hackel, Tom Burgert, Gencer Sumbul, Begüm Demir, and Volker Markl. reBEN: Refined BigEarthNet dataset for remote sensing image analysis. *arXiv preprint arXiv:2407.03653*, 2024.

Yezhen Cong, Samar Khanna, Chenlin Meng, Patrick Liu, Erik Rozi, Yutong He, Marshall Burke, David B. Lobell, and Stefano Ermon. SatMAE: Pre-training transformers for temporal and multi-spectral satellite imagery. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL <https://openreview.net/forum?id=WBhqpF6KYH>.

Rodrigo Caye Daudt, Bertrand Le Saux, Alexandre Boulch, and Yann Gousseau. Urban change detection for multispectral earth observation using convolutional neural networks, 2018. URL <https://arxiv.org/abs/1810.08468>.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations*, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

Matthias Drusch, Umberto Del Bello, Sébastien Carlier, Olivier Colin, Veronica Fernandez, Ferran Gascon, Bianca Hoersch, Claudia Isola, Paolo Laberinti, Philippe Martimort, et al. Sentinel-2: Esa’s optical high-resolution mission for gmes operational services. *Remote sensing of Environment*, 120:25–36, 2012.

Esri, Global Mapping International, and U.S. Central Intelligence Agency. World Regions. <https://www.arcgis.com/home/item.html?id=84dbc97915244e35808e87a881133d09>, 2025. Layer package representing boundaries for 25 commonly recognized world regions. Updated April 29, 2025. Accessed April 30, 2025.

Radiant Earth Foundation. Crop type classification dataset for western cape, south africa, 2021.

594 Alistair Francis and Mikolaj Czerkawski. Major tom: Expandable datasets for earth observation. In
 595 *IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium*, pp. 2935–
 596 2940. IEEE, 2024.

597

598 Anthony Fuller, Koreen Millard, and James Green. Croma: Remote sensing representations with
 599 contrastive radar-optical masked autoencoders. *Advances in Neural Information Processing
 600 Systems*, 36:5506–5538, 2023.

601 Peng Gao, Teli Ma, Hongsheng Li, Ziyi Lin, Jifeng Dai, and Yu Qiao. MCMAE: Masked con-
 602 volution meets masked autoencoders. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
 603 and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL
 604 <https://openreview.net/forum?id=qm5LpHyyOUO>.

605

606 Omid Ghorbanzadeh, Yonghao Xu, Hengwei Zhao, Junjue Wang, Yanfei Zhong, Dong Zhao, Qi Zang,
 607 Shuang Wang, Fahong Zhang, Yilei Shi, Xiao Xiang Zhu, Lin Bai, Weile Li, Weihang Peng, and
 608 Pedram Ghamisi. The outcome of the 2022 landslide4sense competition: Advanced landslide
 609 detection from multisource satellite imagery. *IEEE Journal of Selected Topics in Applied Earth
 610 Observations and Remote Sensing*, 15:9927–9942, 2022. doi: 10.1109/JSTARS.2022.3220845.

611

612 Xin Guo, Jiangwei Lao, Bo Dang, Yingying Zhang, Lei Yu, Lixiang Ru, Liheng Zhong, Ziyuan
 613 Huang, Kang Wu, Dingxiang Hu, et al. Skysense: A multi-modal remote sensing foundation model
 614 towards universal interpretation for earth observation imagery. In *Proceedings of the IEEE/CVF
 Conference on Computer Vision and Pattern Recognition*, pp. 27672–27683, 2024a.

615

616 Yuxin Guo, Siyang Sun, Shuailei Ma, Kecheng Zheng, Xiaoyi Bao, Shijie Ma, Wei Zou, and Yun
 617 Zheng. Crossmae: Cross-modality masked autoencoders for region-aware audio-visual pre-training.
 618 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 619 pp. 26721–26731, June 2024b.

620

621 Boran Han, Shuai Zhang, Xingjian Shi, and Markus Reichstein. Bridging remote sensors with
 622 multisensor geospatial foundation models. In *Proceedings of the IEEE/CVF Conference on
 Computer Vision and Pattern Recognition*, pp. 27852–27862, 2024.

623

624 Michael Schmitt; Lloyd Hughes; Pedram Ghamisi; Naoto Yokoya; Ronny Hänsch. 2020 IEEE GRSS
 625 data fusion contest, 2019. URL <https://dx.doi.org/10.21227/rha7-m332>.

626

627 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked
 628 autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer
 629 vision and pattern recognition*, pp. 16000–16009, 2022.

630

631 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset
 632 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected
 633 Topics in Applied Earth Observations and Remote Sensing*, 2019.

634

635 Fantine Huot, R Lily Hu, Nita Goyal, Tharun Sankar, Matthias Ihme, and Yi-Fan Chen. Next day
 636 wildfire spread: A machine learning dataset to predict wildfire spreading from remote-sensing data.
 637 *IEEE Transactions on Geoscience and Remote Sensing*, 60:1–13, 2022.

638

639 Jeremy Irvin, Hao Sheng, Neel Ramachandran, Sonja Johnson-Yu, Sharon Zhou, Kyle Story,
 640 Rose Rustowicz, Cooper Elsworth, Kemen Austin, and Andrew Y Ng. Forestnet: Classify-
 641 ing drivers of deforestation in indonesia using deep learning on satellite imagery. *arXiv preprint
 642 arXiv:2011.05479*, 2020.

643

644 Kartik Kuckreja, Muhammad Sohail Danish, Muzammal Naseer, Abhijit Das, Salman Khan, and
 645 Fahad Shahbaz Khan. Geochat: Grounded large vision-language model for remote sensing.
 646 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 647 27831–27840, 2024.

648

649 Nataliia Kussul, Mykola Lavreniuk, Sergii Skakun, and Andrii Shelestov. Deep learning classification
 650 of land cover and crop types using remote sensing data. *IEEE Geoscience and Remote Sensing
 651 Letters*, 14(5):778–782, 2017.

648 Alexandre Lacoste, Nils Lehmann, Pau Rodriguez, Evan Sherwin, Hannah Kerner, Björn Lütjens,
 649 Jeremy Irvin, David Dao, Hamed Alemohammad, Alexandre Drouin, et al. Geo-bench: Toward
 650 foundation models for earth monitoring. *Advances in Neural Information Processing Systems*, 36:
 651 51080–51093, 2023.

652 Issam Laradji, Pau Rodriguez, Freddie Kalaitzis, David Vazquez, Ross Young, Ed Davey, and
 653 Alexandre Lacoste. Counting cows: Tracking illegal cattle ranching from high-resolution satellite
 654 imagery. *arXiv preprint arXiv:2011.07369*, 2020.

655 Jihyeon Lee, Nina R. Brooks, Fahim Tajwar, Marshall Burke, Stefano Ermon, David B. Lobell,
 656 Debashish Biswas, and Stephen P. Luby. Scalable deep learning to identify brick kilns and aid
 657 regulatory capacity. *Proceedings of the National Academy of Sciences*, 118(17), 2021. ISSN
 658 0027-8424. doi: 10.1073/pnas.2018863118. URL <https://www.pnas.org/content/118/17/e2018863118>.

660 Xuyang Li, Danfeng Hong, and Jocelyn Chanussot. S2mae: A spatial-spectral pretraining foundation
 661 model for spectral remote sensing data. In *Proceedings of the IEEE/CVF Conference on Computer
 662 Vision and Pattern Recognition*, pp. 24088–24097, 2024.

663 Oscar Mañas, Alexandre Lacoste, Xavier Giro-i Nieto, David Vazquez, and Pau Rodriguez. Sea-
 664 sonal contrast: Unsupervised pre-training from uncurated remote sensing data. *arXiv preprint
 665 arXiv:2103.16607*, 2021.

666 Kevin Mayer, Benjamin Rausch, Marie-Louise Arlt, Gunther Gust, Zhecheng Wang, Dirk Neumann,
 667 and Ram Rajagopal. 3d-pv-locator: Large-scale detection of rooftop-mounted photovoltaic
 668 systems in 3d. *Applied Energy*, 310:118469, 2022. ISSN 0306-2619. doi: <https://doi.org/10.1016/j.apenergy.2021.118469>. URL <https://www.sciencedirect.com/science/article/pii/S0306261921016937>.

669 Vishal Nedungadi, Ankit Kariryaa, Stefan Oehmcke, Serge Belongie, Christian Igel, and Nico Lang.
 670 Mmearth: Exploring multi-modal pretext tasks for geospatial representation learning. In *European
 671 Conference on Computer Vision*, pp. 164–182. Springer, 2024.

672 Mubashir Noman, Muzammal Naseer, Hisham Cholakkal, Rao Muhammad Anwar, Salman Khan,
 673 and Fahad Shahbaz Khan. Rethinking transformers pre-training for multi-spectral satellite imagery.
 674 In *CVPR*, 2024.

675 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 676 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaeldin El-Nouby, et al. Dinov2: Learning
 677 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

678 Foyez Ahmed Prodhan, Jiahua Zhang, Fengmei Yao, Lamei Shi, Til Prasad Pangali Sharma, Da Zhang,
 679 Dan Cao, Minxuan Zheng, Naveed Ahmed, and Hasiba Pervin Mohana. Deep learning for
 680 monitoring agricultural drought in south asia using remote sensing data. *Remote sensing*, 13(9):
 681 1715, 2021.

682 Maryam Rahnemoonfar, Tashnim Chowdhury, Argho Sarkar, Debraj Varshney, Masoud Yari, and
 683 Robin Roberson Murphy. Floodnet: A high resolution aerial imagery dataset for post flood scene
 684 understanding. *IEEE Access*, 9:89644–89654, 2021.

685 Colorado J Reed, Ritwik Gupta, Shufan Li, Sarah Brockman, Christopher Funk, Brian Clipp, Kurt
 686 Keutzer, Salvatore Candido, Matt Uyttendaele, and Trevor Darrell. Scale-mae: A scale-aware
 687 masked autoencoder for multiscale geospatial representation learning. In *Proceedings of the
 688 IEEE/CVF International Conference on Computer Vision*, pp. 4088–4099, 2023.

689 Ribana Roscher, Marc Russwurm, Caroline Gevaert, Michael Kampffmeyer, Jefersson A Dos Santos,
 690 Maria Vakalopoulou, Ronny Hänsch, Stine Hansen, Keiller Nogueira, Jonathan Prexl, et al. Better,
 691 not just more: Data-centric machine learning for earth observation. *IEEE Geoscience and Remote
 692 Sensing Magazine*, 2024.

693 Argho Sarkar, Tashnim Chowdhury, Robin Roberson Murphy, Aryya Gangopadhyay, and Maryam
 694 Rahnemoonfar. Sam-vqa: Supervised attention-based visual question answering model for post-
 695 disaster damage assessment on remote sensing imagery. *IEEE Transactions on Geoscience and
 696 Remote Sensing*, 61:1–16, 2023.

702 Michael Schmitt, Lloyd Haydn Hughes, Chunping Qiu, and Xiao Xiang Zhu. Sen12ms – a curated
 703 dataset of georeferenced multi-spectral sentinel-1/2 imagery for deep learning and data fusion,
 704 2019.

705 Gencer Sumbul, Marcela Charfuelan, Begüm Demir, and Volker Markl. Bigearthnet: A large-
 706 scale benchmark archive for remote sensing image understanding. In *IGARSS 2019-2019 IEEE*
 707 *International Geoscience and Remote Sensing Symposium*, pp. 5901–5904. IEEE, 2019.

708 Daniela Szwarcman, Sujit Roy, Paolo Fraccaro, Þorsteinn Elí Gíslason, Benedikt Blumenstiel, Rinki
 709 Ghosal, Pedro Henrique de Oliveira, Joao Lucas de Sousa Almeida, Rocco Sedona, Yanghui
 710 Kang, et al. Prithvi-eo-2.0: A versatile multi-temporal foundation model for earth observation
 711 applications. *arXiv preprint arXiv:2412.02732*, 2024.

712 Maofeng Tang, Andrei Cozma, Konstantinos Georgiou, and Hairong Qi. Cross-scale mae: A tale of
 713 multiscale exploitation in remote sensing. *Advances in Neural Information Processing Systems*,
 714 36:20054–20066, 2023.

715 Ramon Torres, Paul Snoeij, Dirk Geudtner, David Bibby, Malcolm Davidson, Evert Attema, Pierre
 716 Potin, Björn Rommen, Nicolas Flouri, Mike Brown, et al. Gmes sentinel-1 mission. *Remote*
 717 *sensing of environment*, 120:9–24, 2012.

718 Gabriel Tseng, Anthony Fuller, Marlena Reil, Henry Herzog, Patrick Beukema, Favyen Bastani,
 719 James R Green, Evan Shelhamer, Hannah Kerner, and David Rolnick. Galileo: Learning global &
 720 local features of many remote sensing modalities. In *Forty-second International Conference on*
 721 *Machine Learning*, 2025.

722 Leonard Waldmann, Ando Shah, Yi Wang, Nils Lehmann, Adam J Stewart, Zhitong Xiong, Xiao Xiang
 723 Zhu, Stefan Bauer, and John Chuang. Panopticon: Advancing any-sensor foundation models
 724 for earth observation. *arXiv preprint arXiv:2503.10845*, 2025.

725 Yanzhao Wang, Yonghua Sun, Xuyue Cao, Yihan Wang, Wangkuan Zhang, and Xinglu Cheng. A
 726 review of regional and global scale land use/land cover (lulc) mapping products generated from
 727 satellite remote sensing. *ISPRS Journal of Photogrammetry and Remote Sensing*, 206:311–334,
 728 2023.

729 Yi Wang, Nassim Ait Ali Braham, Zhitong Xiong, Chenying Liu, Conrad M Albrecht, and Xiao Xiang
 730 Zhu. Ssl4eo-s12: A large-scale multi-modal, multi-temporal dataset for self-supervised learning in
 731 earth observation. *arXiv preprint arXiv:2211.07044*, 2022.

732 Yi Wang, Conrad M Albrecht, Nassim Ait Ali Braham, Chenying Liu, Zhitong Xiong, and Xiao Xiang
 733 Zhu. Decoupling common and unique representations for multimodal self-supervised learning. In
 734 *European Conference on Computer Vision*, pp. 286–303. Springer, 2024a.

735 Yi Wang, Conrad M Albrecht, and Xiao Xiang Zhu. Multi-label guided soft contrastive learning for
 736 efficient earth observation pretraining, 2024b.

737 Yi Wang, Hugo Hernández Hernández, Conrad M Albrecht, and Xiao Xiang Zhu. Feature guided
 738 masked autoencoder for self-supervised learning in remote sensing. *IEEE Journal of Selected*
 739 *Topics in Applied Earth Observations and Remote Sensing*, 2024c.

740 Yi Wang, Zhitong Xiong, Chenying Liu, Adam J Stewart, Thomas Dujardin, Nikolaos Ioannis
 741 Bountos, Angelos Zavras, Franziska Gerken, Ioannis Papoutsis, Laura Leal-Taixé, et al. Towards a
 742 unified copernicus foundation model for earth vision. *arXiv preprint arXiv:2503.11849*, 2025.

743 Zhecheng Wang, Rajanie Prabha, Tianyuan Huang, Jiajun Wu, and Ram Rajagopal. Skyscript: A
 744 large and semantically diverse vision-language dataset for remote sensing. In *Proceedings of the*
 745 *AAAI Conference on Artificial Intelligence*, volume 38, pp. 5805–5813, 2024d.

746 Ben G Weinstein, Sergio Marconi, Stephanie Bohlman, Alina Zare, Aditya Singh, Sarah J Graves,
 747 and Ethan White. Neon crowns: a remote sensing derived dataset of 100 million individual tree
 748 crowns. *BioRxiv*, 2020.

756 Gui-Song Xia, Jingwen Hu, Fan Hu, Baoguang Shi, Xiang Bai, Yanfei Zhong, Liangpei Zhang, and
757 Xiaoqiang Lu. Aid: A benchmark data set for performance evaluation of aerial scene classification.
758 *IEEE Transactions on Geoscience and Remote Sensing*, 55(7):3965–3981, 2017.

759

760 Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual parsing for
761 scene understanding. In *European Conference on Computer Vision*. Springer, 2018.

762

763 Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Yixuan Wei, Qi Dai, and Han Hu. On data scaling
764 in masked image modeling. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
765 *Pattern Recognition*, pp. 10365–10374, 2023.

766

767 Zhitong Xiong, Yi Wang, Fahong Zhang, Adam J Stewart, Joëlle Hanna, Damian Borth, Ioannis
768 Papoutsis, Bertrand Le Saux, Gustau Camps-Valls, and Xiao Xiang Zhu. Neural plasticity-inspired
769 foundation model for observing the earth crossing modalities. *arXiv e-prints*, pp. arXiv–2403,
770 2024.

771

772 Danlin Yu and Chuanglin Fang. Urban remote sensing with spatial big data: A review and renewed
773 perspective of urban studies in recent decades. *Remote Sensing*, 15(5):1307, 2023.

774

775 Jin Z., Lin C., Weigl C., Obarowski J., and Hale D. Smallholder cashew plantations in benin, 2021.

776

777 Daniele Zanaga, Ruben Van De Kerchove, Dirk Daems, Wanda De Keersmaecker, Carsten Brock-
778 mann, Grit Kirches, Jan Wevers, Oliver Cartus, Maurizio Santoro, Steffen Fritz, et al. Esa
779 worldcover 10 m 2021 v200. 2022.

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

APPENDIX

This supplementary material presents additional experiments, analyses, and visualizations that complement the main paper. It includes benchmarks information (A), detailed descriptions & experiments for our multimodal fusion strategies (B), implementation details (C.1) and evaluations on scaling trends with data size (C.2), high resolution benchmarks (C.3), & change detection (C.4), Further more we also provide additional analysis and qualitative figures (D.1). We also report GPU-hour comparisons with comparable methods (D.2), landslide detection (D.3) and visualize the land cover distribution of our dataset using global maps (D.4).

A BENCHMARKS

We evaluate TerraFM on two comprehensive remote sensing benchmarks, **GEO-Bench** and **Copernicus-Bench**, which together cover a wide range of tasks, modalities, and resolutions. **1) GEO-Bench** (Lacoste et al., 2023) standardizes evaluation across 12 curated tasks, including 6 classification and 6 segmentation challenges. These datasets are selected for open access and license compliance, and have been harmonized with consistent evaluation settings. While GEO-Bench supports various sensor types (e.g., Landsat-8, Sentinel-2, and hyperspectral sensors), for consistency with our model’s pretraining, we restrict the main evaluation to Sentinel-2-based tasks. Specifically, we report results on *m-EuroSAT* (Helber et al., 2019), *m-BigEarthNet* (Sumbul et al., 2019), *m-So2Sat* (Zhu et al., 2019), *m-Brick-Kiln* (Lee et al., 2021) (classification) and *m-Cashew-Plantation* (Z. et al., 2021), *m-SA-Crop-Type* (Foundation, 2021) (segmentation). Additional results on the remaining GEO-Bench datasets, including high-resolution tasks, are provided in Appendix C.3. **2) Copernicus-Bench** (Wang et al., 2025) provides 15 downstream tasks aligned with the full Sentinel mission family (Sentinel-1 to Sentinel-5P), and categorizes tasks into three levels: low-level (e.g., cloud detection), mid-level (e.g., land cover segmentation), and high-level (e.g., flood detection or yield prediction). While Copernicus-Bench leverages all Sentinel missions, in this work, we restrict evaluation to tasks using only Sentinel-1 and Sentinel-2 imagery. We evaluate on the following subset: *Cloud-S2* (Aybar et al., 2024), *EuroSAT-S1* (Wang et al., 2024c), *EuroSAT-S2* (Helber et al., 2019), *BigEarthNet-S1* (Clasen et al., 2024), *BigEarthNet-S2* (Clasen et al., 2024), *DFC2020-S1* (Hänsch, 2019), *DFC2020-S2* (Hänsch, 2019), *LCZ-S2* (Zhu et al., 2019).

B MULTI-MODAL FUSION STRATEGIES:

We investigate various strategies for multi-modal fusion and report results in Table Ap1 on two benchmark datasets: m-BigEarthNet and m-EuroSat. As a baseline, we evaluate standard DINO training using only Sentinel-2 L2A input (*DINO (S2-L2A)*), which learns unimodal representations. To enable explicit modality-aware learning, we apply a *Multi-Student-Teacher* approach where each modality has its own student and teacher networks, along with an alignment loss between student outputs to enforce cross-modal consistency. This yields consistent gains across both datasets. We also test a more expressive fusion approach, *CrossAttn* ($Q = 196$) *Global*, where 196 learned queries (standard for 224x224 image inputs) attend globally to multi-modal tokens immediately after patch embedding. However, this method does not perform well, likely due to excessive parameterization and lack of inductive bias for spatial alignment. Figure Ap1 visually summarizes key fusion strategies evaluated in Table Ap1, including (a) Multi-Student-Teacher, (b) unimodal DINO, and (c) CrossAttn ($Q = 196$) *Global*, highlighting their architectural differences and fusion mechanisms. Our proposed approach, *TerraFM-B* ($Q = 1$), treats a modality as an augmentation and performs fusion using a single learned spatial query per location. This lightweight attention mechanism yields the best performance among non-ensemble methods. To further analyze architectural choices, we test a variant, *TerraFM-B (ViT PatchEmb)*, where the convolutional patch embedding is replaced by a ViT-S backbone purely for token extraction. While competitive, this setup slightly drops the performance due to increased model complexity and potential overfitting. Finally, our full model, *TerraFM-B* ($Q = 5$), employs multiple learned spatial queries to achieve richer fusion between modalities. It achieves the best overall performance, validating the scalability and effectiveness of our fusion design.

	m-BigEarthNet	m-EuroSat
DINO (S2-L2A)	54.6	83.2
Multi-Student-Teacher	55.8	87.8
CrossAttn (Q = 196) Global	52.0	77.1
TerraFM-B (Q = 1)	57.2	89.2
TerraFM-B (ViT PatchEmb)	56.9	87.2
TerraFM-B (Q = 5)	58.1	90.4

Table Ap1: Ablation study on multi-modal fusion strategies using k-NN evaluation. TerraFM-B with multiple spatial queries (Q = 5) achieves the best performance.

Figure Ap1: Architectural overview of different fusion strategies: (a) Multi-Student-Teacher with alignment loss, (b) unimodal DINO baseline, and (c) CrossAttn (Q = 196) with global learned queries.

C EVALUATION

C.1 EVALUATION IMPLEMENTATION DETAILS

Linear Probing Evaluation: To evaluate the quality of learned representations, we follow a linear probing protocol of DINOv2(Oquab et al., 2023) that follows with a lightweight grid search over three key hyperparameters: (i) the learning rate, (ii) the number of transformer layers from which features are extracted, and (iii) whether to use only the [CLS] token or to concatenate it with the average-pooled patch tokens. We train the linear classifier using stochastic gradient descent (SGD) for 50 epochs. The training data is augmented using random resized cropping. Specifically, we sweep the learning rate over the set $\{1, 3, 4, 5\} \times 10^{\{-4, -3, -2, -1\}}$. Importantly, this search is computationally efficient: features from the frozen backbone are computed once per image using a single forward pass and reused across all configurations, since each linear head only requires a simple forward pass. For each configuration, we evaluate the classifier on the validation set and report the test accuracy achieved by the best validation configuration. **UPerNet Probing Evaluation:** For UperNet (Xiao et al., 2018) Probing evaluation, we freeze the pretrained backbone and attach UPerNet decoder head. Specifically, we use a Feature2Pyramid module as the neck, followed by a UPerNet decoder and an auxiliary FCNHead. We train only the segmentation heads using the AdamW optimizer for 50 epochs without learning rate warm-up. We conduct a grid search over base learning rates $\{10^{-1}, 10^{-2}, 10^{-3}, 10^{-4}, 10^{-5}, 10^{-6}\}$. and batch size set $\{16, 32, 64\}$. **k-NN Evaluation:** To assess the quality of the learned representations without any finetuning, we apply non-parametric classification using a k -nearest neighbors (k-NN) classifier on the frozen features. In addition to sweeping over $k \in \{3, 5, 7, 10, 15, 20, 30, 50, 100\}$ using validation set performance, we follow the same layer selection strategy as linear probing i.e evaluating features from the last 4 transformer layers. This protocol does not require additional training or data augmentation, making it a lightweight and reliable indicator of raw feature quality in pretrained models. **Finetuning Evaluation:** For full-model finetuning, we unfreeze the backbone and jointly optimize it with the task-specific head. We perform a grid search over learning rates in the evaluation set and batch

918
919 Table Ap2: Scaling behavior of TerraFM models with increasing model size and pretraining data
920 across four GEO-Bench classification tasks.

	Dataset	Model	20%	100%	Gain
921 922 923 924 925	EuroSat	TerraFM-S	91.7	92.0	0.3
		TerraFM-B	92.0	94.2	2.2
		TerraFM-L	92.1	95.1	3.0
926 927 928	BigEarthNet	TerraFM-S	62.6	65.3	2.7
		TerraFM-B	63.2	68.7	5.5
		TerraFM-L	62.6	69.4	6.8
929 930 931	So2sat	TerraFM-S	50.5	52.3	1.8
		TerraFM-B	49.7	55.1	5.4
		TerraFM-L	49.1	55.9	6.8
932 933 934	Brick-Kiln	TerraFM-S	90.5	91.4	0.9
		TerraFM-B	91.4	94.5	3.1
		TerraFM-L	91.0	93.0	2.0

935
936
937 sizes. To stabilize training, we apply a reduced learning rate for the backbone, set to half of the main
938 learning rate used for the head parameters. Once the best configuration is selected based on validation
939 performance, we evaluate the finetuned model on the test set.

941 C.2 SCALING TRENDS WITH DATASET SIZE:

943
944 We report scaling results on four GEO-Bench classification tasks when increasing model size and the
945 pretraining dataset from 20% to 100% (Table Ap2). While all model sizes improve with additional
946 data, the effect is more pronounced for the Base and Large variants. For example, TerraFM-L achieves
947 a 6.8 point gain on BigEarthNet and So2Sat, compared to only 2.7 and 1.8 for TerraFM-S. On EuroSat
948 and Brick-Kiln, where performance is already near saturation, the gains are smaller but still positive.
949 These results confirm that larger models are more data-efficient and benefit disproportionately from
950 increased pretraining scale, aligning with scaling laws observed in recent foundation model studies.

952 C.3 EVALUATION ON HIGH-RESOLUTION BENCHMARKS.

953
954 To further assess generalization, we extend TerraFM’s evaluation to include low-to-high resolution
955 GEO-Bench tasks as well as the widely used AID (Xia et al., 2017) dataset (Table Ap3). Despite
956 being pretrained solely on Sentinel-1 and Sentinel-2, TerraFM achieves consistent improvements over
957 Galileo across diverse sensors and resolutions. Notably, TerraFM transfers effectively to m-forestnet,
958 which uses 15m Landsat-8 inputs compared to TerraFM’s 10m Sentinel-2 pretraining resolution,
959 yielding a +7.7 point gain from baseline. On fine-scale RGB datasets such as m-pv4ger (0.1m) and
960 m-chesapeake-landcover (1m), TerraFM also shows strong gains (+1.5 and +36.8 mIoU, respectively).
961 These results highlight TerraFM’s robustness across modalities and scales ranging from 0.1–15 m,
962 complementing the evaluations in the main paper.

963 Table Ap3: Comparison on low-to high resolution benchmarks.

965 966 967 968 969 970 971	Dataset	Task	Sensor	Resolution	Galileo	TerraFM
m-forestnet (Irvin et al., 2020)	Classification	Landsat 8	15m	49.4	57.1	
m-pv4ger (Mayer et al., 2022)	Classification	RGB	0.1m	96.7	98.2	
AID (Xia et al., 2017)	Classification	RGB	—	78.2	93.8	
m-pv4ger-seg (Mayer et al., 2022)	Segmentation	RGB	0.1m	55.8	85.6	
m-chesapeake-landcover (Schmitt et al., 2019)	Segmentation	RGB	1.0m	14.6	51.4	
m-nz-cattle (Laradji et al., 2020)	Segmentation	RGB	0.1m	49.7	68.5	
m-NeonTree (Weinstein et al., 2020)	Segmentation	RGB	0.1m	51.1	54.0	

972 C.4 EVALUATION ON CHANGE DETECTION.
973

974 We evaluate TerraFM on the OSCD (Daudt et al., 2018) change detection dataset to assess the effect
975 of sensor-invariance on temporal tasks (Table Ap4). Despite being trained without explicit tempo-
976 ral supervision, TerraFM-B with U-Net probing achieves 52.2 mIoU, substantially outperforming
977 SSL4EO-S12 (Wang et al., 2022) (35.1), SEN12MS (Schmitt et al., 2019) (30.6), and SeCo (Mañas
978 et al., 2021) (28.3). This suggests that TerraFM not only learns robust cross-sensor invariances but
979 also implicitly learns time-invariant representations. However, due to the nature of DINO loss, which
980 aligns global semantics, the model may still preserve object-level distinctions, resulting in improved
981 performance on OSCD.

982
983 Table Ap4: Performance comparison on the change detection.
984

Method	SeCo	SEN12MS	SSL4EO-S12	TerraFM-B
F1 Score (%)	28.33	30.62	35.08	52.20

990 D ADDITIONAL ANALYSIS
991

992 D.1 QUALITATIVE RESULTS:

993 Fig. Ap2 illustrates qualitative results for the cloud and cloud shadow segmentation task from
994 Copernicus-Bench. TerraFM accurately outlines both cloud and shadow regions, effectively distin-
995 guishing visually similar patterns while maintaining spatial coherence across varied scenes.
996

1016 Figure Ap2: Qualitative results for cloud and cloud shadow segmentation. Each triplet shows the
1017 input image (left), the ground truth mask (middle), and the TerraFM prediction (right).
1018
10191020 D.2 GPU HOUR COMPARISON:
1021

1022 Compared to Prithvi-2.0, which trains ViT-L (300M) model using up to 80 GPUs for 400 epochs,
1023 consuming approximately 21,000 GPU-hours (Szwarcman et al., 2024), our TerraFM (300M) achieves
1024 comparable scale using significantly fewer resources. Specifically, TerraFM is trained for 200 epochs
1025 on 64 GPUs, amounting to approximately 12,000 GPU-hours.

1026
1027

D.3 LANDSLIDE DETECTION

1028 We evaluate landslide segmentation on the Landslide4Sense (L4S) (Ghorbanzadeh et al., 2022)
 1029 benchmark, which provides segmentation labels for landslide and non-landslide regions across
 1030 diverse mountainous areas using multi-source satellite data, including Sentinel-2 bands, DEM, and
 1031 slope information. Our method, TerraFM, achieves strong performance with a mean IoU of 70.8 and
 1032 a landslide IoU of 43.1, outperforming the Prithvi-EO-2.0 baseline (Table Ap5). Both TerraFM and
 1033 Prithvi-EO-2.0 are trained using focal loss with a batch size of 16, Adam optimizer with a learning
 1034 rate of 1×10^{-4} . Figure Ap3 shows qualitative results from TerraFM, illustrating predicted landslide
 1035 masks alongside the ground truth. **To assess variability, we repeated the Landslide4Sense experiment**
 1036 **with three random seeds and observed stable results: TerraFM-B achieved 70.8 ± 0.7 mIoU and**
 1037 **43.1 ± 0.9 landslide IoU.**

	mIoU	IoU Landslide
Prithvi-EO-2.0 (300M)	65.0	31.5
TerraFM (120M)	70.8	43.1

Table Ap5: Landslide detection performance on the Landslide4Sense test set. Despite being significantly smaller (120M parameters vs. 300M for Prithvi-EO-2.0), TerraFM achieves higher overall segmentation performance, especially for landslide regions.

1038
1039
1040
10411042
1043

1044

1045

1046

D.4 LAND COVER DISTRIBUTION:

1047

1048 Fig. Ap5 illustrates the global spatial coverage of our pretraining data. The selected samples span
 1049 diverse ecosystems, capturing a balanced mix of urban, vegetation, sea, and arid regions. The insets
 1050 demonstrate fine-grained land cover variability, ensuring semantic richness across training tiles.
 1051 This diverse geographic grounding plays a crucial role in enabling the generalization capabilities of
 1052 TerraFM across regions and tasks.

1053

1054

1055

1056

1057

D.5 PSEUDOCODE OF CROSS-ATTENTION FUSION

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

We summarize the cross-attention fusion mechanism used in TerraFM. The fusion module employs a small, fixed set of shared learnable queries (we use $N_q = 5$) that are applied uniformly across all spatial positions. For a 224×224 crop with a 16×16 patch size, each modality produces $N = 196$ spatial tokens. At each spatial location n , the modality-specific tokens at that position (M tokens in total) serve as input to keys and values computation, while the shared queries attend over these modality tokens to produce N_q intermediate outputs. These per-location outputs are then aggregated into a single fused token, yielding a fused sequence of length N (plus the class token) for the ViT encoder. Thus, the fusion block preserves the backbone’s original sequence length and performs modality mixing independently at each spatial location, with spatial interactions handled by subsequent transformer layers. Below, we provide a concise PyTorch-style pseudocode implementation of this per-location fusion mechanism.

```

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093     def cross_attention_fusion(Z_all, q, W_q, W_k, W_v, p_r, mha):
1094
1095         # Z_all : [N, M, D]      tokens at N spatial positions, M modalities
1096         # q      : [N_q, D]      shared learnable queries (reused for all
1097         #           positions)
1098         # p_r   : [D, 1]       projection for scoring aggregated query outputs
1099         N, M, D = Z_all.shape
1100         N_q = q.shape[0]
1101
1102         # Project shared queries once (reused across all spatial positions)
1103         Q = W_q(q)  # [N_q, D]
1104
1105         fused_tokens = []
1106         for n in range(N):
1107             # Tokens from all modalities at spatial position n
1108             x_n = Z_all[n]          # [M, D]
1109
1110             # Linear projections to keys and values
1111             K_n = W_k(x_n)         # [M, D]
1112             V_n = W_v(x_n)         # [M, D]
1113
1114             # Cross-attention over modalities at position n
1115             # (Q attends to K_n, V_n; returns N_q outputs)
1116             z_prime_n, _ = mha(Q, K_n, V_n)  # [N_q, D]
1117
1118             # Learned weighted mean over N_q query outputs
1119             scores = (z_prime_n @ p_r).squeeze(-1)  # [N_q]
1120             w = scores.softmax(dim=0)                # [N_q]
1121             z_fused_n = (w[:, None] * z_prime_n).sum(dim=0)  # [D]
1122
1123             fused_tokens.append(z_fused_n)
1124
1125         # Final fused sequence fed to the shared encoder Enc_phi
1126         Z_fused = torch.stack(fused_tokens, dim=0)  # [N, D]
1127         return Z_fused
1128
1129
1130
1131
1132
1133

```

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180

Figure Ap3: Qualitative results for landslide segmentation. Each triplet shows the input image (left), the ground truth mask (middle), and the TerraFM prediction (right).

1183
1184
1185
1186
1187

Figure Ap4: Global spatial distribution of the Major-TOM (Francis & Czerkawski, 2024) training subset. Each square shows a $1^\circ \times 1^\circ$ cell, colored by the number of $10.68 \text{ km} \times 10.68 \text{ km}$ tiles it contains.

Figure Ap5: Global distribution of sampled training tiles by dominant land cover class, based on ESA WorldCover labels. Insets show detailed tile-level diversity, highlighting coverage across built-up, vegetation, and water classes.