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ABSTRACT

Modern earth observation (EO) increasingly leverages deep learning to harness the
scale and diversity of satellite imagery across sensors and regions. While recent
foundation models have demonstrated promising generalization across EO tasks,
many remain limited by the scale, geographical coverage, and spectral diversity of
their training data, factors critical for learning globally transferable representations.
In this work, we introduce TerraFM, a scalable self-supervised learning model that
leverages globally distributed Sentinel-1 and Sentinel-2 imagery, combined with
large spatial tiles and land-cover aware sampling to enrich spatial and semantic
coverage. By treating sensing modalities as natural augmentations in our self-
supervised approach, we unify radar and optical inputs via modality-specific patch
embeddings and adaptive cross-attention fusion. Our training strategy integrates
local-global contrastive learning and introduces a dual-centering mechanism that in-
corporates class-frequency-aware regularization to address long-tailed distributions
in land cover. TerraFM achieves strong generalization on both classification and
segmentation tasks, outperforming prior models on GEO-Bench and Copernicus-
Bench. Our code and pretrained models will be publicly released.

1 INTRODUCTION

EO provides systematic measurements of the surface of earth, supporting a wide spectrum of critical
applications such as land use monitoring (Wang et al.l [2023)), crop evaluation (Prodhan et al.,
2021} [Kussul et al., 2017), urban development (Yu & Fang), [2023)), and disaster response (Huot
et al., 2022} Sarkar et al.l 2023} |Rahnemoonfar et al., 2021). These capabilities are enabled by
a growing fleet of EO satellites, most notably the Sentinel missions, which deliver multi-modal,
multi-temporal data at a global scale (Torres et al., [2012; |Drusch et al.| [2012). The rise of deep
learning, particularly deep neural networks (DNNs), has fundamentally reshaped the way EO data is
processed and interpreted (Wang et al.| 2025 [Szwarcman et al., 2024; Tseng et al.| 2025). Modern
DNNSs enable automated extraction of spatial and semantic patterns from raw imagery, driving
downstream tasks such as scene classification, object detection, and semantic segmentation (Astruc
et al.|[2024;|Waldmann et al., 2025} |Kuckreja et al.,|2024; Tseng et al.| 2025; [Fuller et al.,[2023)). These
models offer a scalable alternative to traditional hand-engineered pipelines by learning generalizable
representations directly from data (Guo et al., 2024a). As EO data continue to expand in scale,
diversity, and complexity, DNNs have become foundation for building high-capacity models capable
of generalizing across geographies, modalities, and tasks (Szwarcman et al.| [2024; |Astruc et al.| [2024;
‘Waldmann et al., [2025).

Remote sensing data is inherently multimodal, comprising diverse sensor types such as optical,
SAR, and multispectral imagery. Traditional EO pipelines often focus on single-modality inputs,
typically high-resolution optical imagery, limiting the model’s ability to generalize across varying
sensing conditions. In contrast, multimodal and multispectral data sources, such as Sentinel-1 SAR
and Sentinel-2 Level-1C/Level-2A optical bands, capture complementary structural and spectral
information, enabling richer scene understanding (Han et al., |2024; [Fuller et al., 2023)). Foundation
models that embrace this diversity have demonstrated superior transferability across tasks and
geographies (Tseng et al.,[2025;|Guo et al.| 2024a). However, variation in ground sampling distance
(GSD) across EO data makes tile size a critical factor; smaller tiles capture local detail but risk
overfitting to texture, while larger tiles provide broader semantic context but require scale-robust
architectures (Reed et al., [2023). Recent works like AnySat (Astruc et al., [2024) and msGFM
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(Han et al.,|2024) have shown that scale-invariant modeling and mixed-resolution pretraining lead to
more robust and generalizable representations. Crucially, large-scale sampling across geographies
and resolutions enables EO foundation models to learn invariant features across sensors and global
conditions.

As EO foundation models scale to accommodate diverse sensor inputs and resolutions, two dominant
pretraining paradigms have emerged: masked autoencoders (MAE) and contrastive learning. Although
MAE:s focus on reconstructing the spatial structure, their reliance on RGB-centric ViTs limits
their adaptability to multispectral or SAR inputs with varying spectral dimensions (Li et al., [2024;
Szwarcman et al.,[2024])). In contrast, contrastive approaches such as DINO (Caron et al.|[2021; Oquab
et al.|[2023) and its adaptations to remote sensing (Tseng et al., 2025} [Fuller et al.; 2023} [Waldmann
et al., 2025)) offer modality-agnostic training by aligning global and local views through student-
teacher distillation. However, the expansive spatial coverage of EO datasets introduces new challenges:
large portions of satellite imagery are semantically sparse or uninformative, and naive sampling
can lead to representation bias. This requires intelligent sampling that prioritizes semantically
diverse regions, guided by land cover priors, for balanced and efficient representation learning.

Performance across GeoBench

To address these limitations in standard ViTs,
particularly their RGB-centric design, lack
of modality awareness, and unimodal self-
supervision, we introduce TerraFM, a unified
foundation model tailored for remote sensing.
First, we propose a Modality-Specific Patch Em-
bedding module, which replaces the shared pro-
jection in standard ViTs with modality-aware
embeddings adapted to multispectral and SAR
data. This enables flexible handling of sensor-
specific spectral profiles while preserving spatial
structure. To enhance scale-invariance and cross-
view consistency, we adopt multi-crop learning
within a self-supervised teacher-student frame-
work (Caron et al.| 2021])), promoting robust rep- T At caNes e
resentation learning through global-local align-

ment. Further, we interpret different aligned
modalities (S1-SAR, S2-L1C, S2-L2A) as com-
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Figure 1: Performance comparison across GEO-
. . Bench classification tasks using supervised fine-
plementary views Of the Same scene and intro- tuning and kNN evaluation. Five recent EO
ducg a Cross-Attention Fustqn modqle that dy- foundation models: AnySat (Astruc et al.,[2024),
namlcally aggregatgs moda}lty 'SP?ClﬁC tokens DOFA (Xiong et al.l2024), Galileo (Tseng et al.,
using learnable spatial queries. This allows the - p75) pithyi2.0 (Szwarcman et al., 2024), and
model to selectively emphasize sensor contribu- Satlas (Bastani et al, 2023) are compared against

tons ﬁat eackl)l sd%a.tlal loc;monl. Wh1ée m(()id?h.ty— our TerraFM, which consistently outperforms them
specific embeddings and co-located modalities . o5 modalities and evaluation settings, demon-
have appeared in prior work (Fuller et al., 2023} strating strong generalization

Tseng et al., [2025; [ Bachmann et al., [2022)), our
contribution lies in unifying them within a single DINO-style multi-crop backbone that treats S1,
S2-L1C, and S2-L2A as complementary co-registered views, enabling stronger cross-modal coupling
and richer alignment than separate-encoder designs. Moreover, prior multimodal MAE models use
cross-attention for decoder-side reconstruction (Guo et al., |2024b), TerraFM performs fusion on the
encoder side and treats the fused output as an additional augmented view within a single shared
backbone. Finally, to mitigate long-tailed land cover distribution issues prevalent in EO data, we
introduce a Dual Centering mechanism into the distillation process. This leverages WorldCover
(Zanaga et al.||2022) derived class statistics to compute a frequency-aware center, improving balance
across dominant and rare semantic categories without requiring supervised objectives. These chal-
lenges highlight the need for a unified multimodal framework that scales effectively across sensors
and resolutions. Our approach, TerraFM, directly addresses these issues as shown in Fig. [I] achieves
superior performance compared to recent EO foundation models. Our key contributions are:

Contributions: (1) A modality-specific patch embedding mechanism is introduced to generalize
ViTs across heterogeneous remote sensing modalities with varying spectral dimensions. (2) We treat
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Table 1: Comparison of recent remote sensing foundation models across modalities, scale (number
of pretraining samples), and benchmarks. TerraFM uniquely blends large tile size, WorldCover-
informed metadata, and global-scale training (18.7M samples) with evaluation on both GEO-Bench
and Copernicus-Bench.

Model Modalities Scale Resolution TileSize Metadata Benchmarks Pixels (~T)
SatMAE++ S2,RGB ~12M 10-60 m 224,96 No 6 DS 0.12
Galileo S1,S2,NDVL,ESAWCetc ~3-109M 10m 96 (flex) Yes GEO +5DS 1.58
CROMA S1,82 ~1M 10 m 96, 120 No 7DS 0.98
SoftCon S1, 82 ~0.78 M 10m 224 Yes 4 GEO +7DS 0.76
AnySat Aerial, S1/S2, MODIS, etc. 1.1 M 0.2-250 m 10-240 No 11 DS 0.17
Prithvi-2 S2, HLS 42M 30m 224 Yes GEO +9 SME 5.06
DOFA S1, S2, EnMAP, etc. ~8M 1-30 m 512,128 Yes GEO +2 DS 6.74
Panopticon S1, S2, WV2/3, NAIP ~2.6M 0.3-100 m 96, 224 Yes GEO + 10 DS 2.34
MMExarth S1, S2, DEM, etc. ~712M 0.3-100 m 128 Yes 5 GEO 0.51
msGFM RGB, S2, SAR, DSM ~2M 0.1-30 m 192 No 5DS 0.44
Copernicus-FM S1-S5P, DEM 18.7M 10 m-1 km Mixed Yes Cop-Bench 5.12
TerraFM (Ours)  S1, S2 L1C/L2A 187 M 10-60 m 534 Yes GEO + Cop-Bench 23.32

sensor modalities as natural augmentations and introduce a cross-attention fusion block that unifies
multi-modal inputs within a shared encoder. (3) To address long-tailed LULC distributions, a dual-
centering strategy is incorporated to regularize representation learning using class-frequency-aware
statistics. (4) Extensive experiments on GEO-Bench and Copernicus-Bench demonstrate leading
performance across multiple downstream tasks using globally distributed data.

2 RELATED WORK

Self-supervised Pretraining: MAEs (He et al., [2022)) have become a popular choice for self-
supervised pretraining in remote sensing by reconstructing masked image regions using ViT (Doso{
vitskiy et al.l 2021)). Variants like Scale-MAE (Reed et al.,[2023)) and MC-MAE (Gao et al., 2022)
enhance robustness across spatial scales via scale-aware encodings and convolutional tokenizers.
However, MAEs struggle to scale to multisensor EO data, as their RGB-centric tokenization and
reconstruction objectives limit generalization to multispectral and SAR modalities with diverse chan-
nel structures (Xie et al.,[2023; |Li et al.,|2024). Unlike MAE:s, self-supervised contrastive learning
focuses on learning discriminative representations by comparing semantically similar and dissimilar
views.

Remote sensing approaches [Tang et al.|(2023); [Fuller et al.| (2023)); [Waldmann et al.|(2025)) leverage
spatial and spectral augmentations to create diverse yet consistent views. CROMA (Fuller et al.|[2023)
combines contrastive and masked autoencoding losses, while Cross-Scale MAE (Tang et al.| [2023)
blends generative and contrastive objectives for multi-scale learning. Student-teacher frameworks like
DINO (Caron et al.,|2021;/Oquab et al.,[2023)) scale contrastive learning via EMA-updated teachers
and global-local view alignment with centering to prevent collapse. These strategies are well-suited
for EO, where multimodal imagery can act as natural augmentations, enabling scalable, label-free
training and broad generalization.

Remote Sensing FMs: Recent advances in remote sensing foundation models (FMs) have scaled
self-supervised learning across architecture types, modalities, training sizes, tile resolutions, and
metadata usage (Table E]) Multimodal integration is central to recent FMs like |Guo et al.| (2024a);
Wang et al.| (2025); Waldmann et al.| (2025)); |Astruc et al.| (2024); Tseng et al.| (2025); Han et al.
(2024). SkySense (Guo et al. 2024a) applies contrastive learning to temporal-multimodal data
but requires large-scale compute. CopernicusFM (Wang et al., [2025) fuses Sentinel modalities via
metadata-aware networks but faces scaling issues with heterogeneous inputs. Panopticon (Waldmann
et al.} 2025)) and AnySat (Astruc et al.,|2024) align cross-modal views through contrastive training,
while Galileo (Tseng et al.,[2025) uses shared embeddings for SAR and multispectral fusion. Fus-
MAE (Chan-To-Hing & Veeravalli, 2024)) adopts attention-based fusion without contrastive loss,
limiting generalization.

Prithvi-2 (Szwarcman et al., [2024) is restricted to single-modal optical data with temporal-spatial
modeling. DOFA (Xiong et al. 2024), msGFM (Han et al., [2024)), and AnySat (Astruc et al.|
2024) address resolution variability using mixed tile sizes or scale-adaptive designs. Our 534px
tiles capture broader spatial context than prior RSFMs. While CopernicusFM (Wang et al., [2025)
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Figure 2: Overall architecture of TerraFM. It unifies student-teacher contrastive framework with
modality augmentation with cross-attention fusion, and a new dual centering regularization. TerraFM
is founded on ViT backbone and is trained on 18.7M globally distributed samples for pre-training
and utilizes large-tile inputs for encoding broader spatial context. For illustration, RGB channels
from S2-L2A and S2-L1C are selected, and S1 is visualized using a false-color RGB composite.

and DOFA (Xiong et al., 2024)) incorporate metadata, we leverage land cover (LULC) priors for
semantically informed learning. Both CopernicusFM and our model are trained on 18.7M samples,
but ours uses over 23T pixels during pretraining, scaling the 5.1T used by Copernicus-Pretrain (Wang
et al., |2025) over 4x. This growing body of work makes clear that the next step is moving beyond
single-modality or scale-limited pipelines toward unified, globally robust EO foundation models.

3 TERRAFM: A SCALABLE MULTISENSOR FOUNDATIONAL MODEL

Unlike prior remote sensing foundation models, our approach integrates a student—teacher contrastive
learning framework with dual centering (to balance long-tailed classes), modality-as-augmentation
(to learn cross-modal invariances), and cross-attention fusion (to aggregate multi-sensor context), as
illustrated in Figure[2] Built on a ViT backbone and trained on 18.7M globally distributed samples
using 534 x534 tiles, TerraFM captures broader spatial context and generalizes effectively across
sensing modalities and geographies, achieving strong results on diverse downstream benchmarks.

3.1 ARCHITECTURE

We use globally distributed remote sensing imagery organized over a spatial grid, partitioning the
earth’s surface into fixed-size tiles (Francis & Czerkawskil [2024). Each spatial unit, denoted as s,
represents one such grid cell. For each sample, we observe a set of co-registered EO modalities:

M = {S1, S2-LIC, S2-L2A},

where S1 corresponds to Sentinel-1 SAR, and S2-L1C and S2-L2A represent two processing levels
of Sentinel-2 optical imagery: Level-1C (top-of-atmosphere reflectance) and Level-2A (bottom-of-
atmosphere surface reflectance), respectively. Each modality m € M provides a multi-channel image
x™ € RIXWXCm where H and W denote spatial dimensions, and C,,, is the number of spectral
channels for modality m. For example, Sentinel-1 contains two channels (VV and VH polarizations),
therefore Cs; = 2, while Sentinel-2 modalities contain up to 13 spectral bands depending on level
and resolution. These modalities are treated as complementary views of the same location, acting
as natural augmentations, which support our training strategy and encourage learning modality-
invariant representations. To provide semantic grounding, each sample s is assigned a high-level
land use and land cover (LULC) category y®) e {1,...,Y}, derived from the ESA WorldCover
product. These categories reflect coarse semantic classes at a global scale and are used to compute
class-frequency-aware statistics for balanced representation learning.
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Vision Transformer Model: ViTs adapt the transformer architecture to visual data by treating an
image as a sequence of patch tokens instead of a dense pixel grid. A typical ViT consists of two
main components: a patch embedding module and a transformer encoder. Given an input image
x € REXWXC the patch embedding layer fy divides the image into N non-overlapping patches of
size P x P, and projects each patch into a d dimensional embedding:

{2z, = folz), z; € RY.
This projection is typically implemented using a convolutional layer with kernel size and stride equal
to the patch size P, parameterized by weights Wy € R4XC*FPXP To encode spatial information,

the transformer encoder augments each patch token z; with a positional vector. A learnable class
token zs is added to the sequence, which yields the full input:

Z = [ zas; {zi+pos; L, ]

The token sequence Z is processed by a stack of L transformer layers, denoted Enc. For classification
tasks, only the final class token z.s is forwarded to a prediction head.

Modality-Specific Patch Embedding: Standard patch embedding layers in ViTs are typically
implemented using a shared convolutional projection across all inputs, making it unsuitable for
multi-modal remote sensing data. To better handle this heterogeneity, we adopt a modality-specific
patch embedding strategy. For each modality m € M, we define an embedding function fy, that
maps the input image (™ € R *WxCm (g a sequence of patch tokens Z("™) € RN*P where C,,
is the number of channels and [V is the number of patches. Each fy, is parameterized independently
to account for modality-specific dynamics. We associate each modality with a learnable embedding

vector (™) € RP. This vector is added to every token from that modality via broadcasting:

Zm —Z 11y - (e(m))T7
where 1y € RV*1 is a vector of ones. This allows the model to distinguish between modalities while
preserving local spatial and spectral features. Finally, to enable shared processing in the Transformer

encoder, the enriched tokens Z (™) are linearly projected into a common latent space of dimension d
using a shared projection ¢ : RP — R

Z(m) _ ¢(Z(m)) c RNXd.

This operation aligns all modality-specific token sequences in a unified representation space, allowing
the encoder to process them jointly.

Modality Augmentation and Cross-Attention Fusion: Remote sensing observations of a single
location are often captured using multiple sensors, each providing a unique spectral or radiometric
perspective. Instead of treating these modalities as independent inputs, we interpret them as com-
plementary views of the same scene. This allows us to use modality diversity as a form of natural
augmentation, enabling the model to learn sensor-invariant representations. In our setup, each spatial
sample s from the Major-TOM dataset (Francis & Czerkawskil [2024)) is observed via a fixed set
of modalities. During pretraining, we independently assign modalities to the student and teacher
networks via stochastic selection (threshold = 0.5), ensuring cross-modal supervision. E.g., the
teacher may observe a global crop from Sentinel-1, while the student receives local views from
Sentinel-2 L2A. This modality augmentation strategy encourages the model to align features across
sensors, improving robustness to sensor-specific artifacts. We consider two cases based on the number
of selected modalities:

1) Single-Modality Views: If only one modality is selected, the input is passed through the corre-
sponding modality-specific patch embedding layer followed by the shared transformer encoder. This
follows the standard ViT pipeline but uses modality-aware embeddings to handle spectral channel
differences. 2) Multi-Modality Fusion via Cross-Attention: When multiple modalities M C M
are selected, we activate a modality fusion module based on cross-attention. For each selected
modality m € M, we obtain a patch token sequence Z(™ € RN*P where N is the number of

spatial positions. These are stacked into a tensor Z,; € RY*M>D aligning spatial positions across
modalities.
For each position n = 1,..., N, we define shared learnable queries ¢ € RV«*" which attend to

RMXD R]MXD

modality-specific keys K,, € and values V,, € , where, K,,, and V,, are obtained via
separate learned linear projections of modality-specific tokens, yielding IV, intermediate outputs:

z!, = MultiHeadAttention(q, K,,V;) € RV«*P,
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To aggregate them, we compute a learned weighted mean using softmax-normalized attention scores:
N‘I

w = Softmax(z/, - p,), 2= ijz;[jh
j=1

where p, € RP*1 is a learnable projection for scoring the query outputs. This results in a fused
token zf{‘sed € RP. The final sequence Zgysed € RN*D is then passed to the shared encoder Ency.
This cross-attention fusion allows the model to dynamically weigh the modality contributions at each
spatial location, capturing diverse information while maintaining spatial coherence. For clarity, the
learnable queries are shared across all spatial locations, and the fusion yields one token per location,
preserving the ViT backbone’s original sequence length.

3.2 PRETRAINING

Our pretraining strategy builds on the DINO framework, which performs self-supervised learning.
It operates using a teacher-student setup, where both networks share the same ViT backbone and a
lightweight three-layer projection head. Let gg_ and gy, denote the student and teacher networks,
respectively. While the student is trained using gradient-based optimization, the teacher is updated
using EMA of the student’s weights:

1+ cos(we/E)
2 3

where e is the current epoch, F is the total number of training epochs, and Ao € [0.996, 1) is the

initial momentum coefficient. The cosine schedule gradually increases )., stabilizing the teacher

updates as training progresses. This EMA mechanism allows the teacher to serve as a temporally
smoothed ensemble of past student states, yielding more stable and consistent targets.

9,5 < )\eﬁt—l—(l—)\e)ﬁs, )\621—(1—/\0) (1)

Multi-Crop Learning: To enable scale-invariant and cross-view representation learning, we adopt a
multi-crop strategy as used in DINO (Caron et al.|2021). For each input sample, we generate two
high-resolution global crops {wgl), scff)} C X, and J low-resolution local crops {:chj ) 1, C X
The teacher network processes only the global crops, while the student receives both global and local
views. Each network produces a K -dim output which is temperature-scaled and normalized via the
softmax function:

() () = exp(ge. (x)") /1) D (p) = exp((go, () — ) /7y)
@) iy exp(ga, (@)W /1) v 1zt exp((ge, (@) ) — ) /7;)’

where 7, and 7; are temperature parameters that control output sharpness, and ¢ € R¥ is a centering
term representing the running mean of teacher logits, used to stabilize training and avoid representation
collapse. The centering term is updated using an exponential moving average over the teacher outputs:

B
e fet (L-B)- 5> go (),
=1

where 5 € [0.9,0.999] controls the momentum, and B is the batch size. The overall loss encourages
consistency between teacher and student predictions across all distinct view pairs:

Z Z Leg (Qi(x), Qs(2)),

TEX ' c Xz’ #x

where X' = X, U Xy, and Lcg(-, -) denotes the cross-entropy loss. This loss formulation requires the
student to produce consistent representations in all views.

Dual Centering for Long-Tailed Distributions:

Remote sensing datasets often exhibit long-tailed distributions of LULC classes, with frequent
categories such as Forest dominating, while classes like Urban or Bare Land remain underrepresented
as shown in Figure [3] This imbalance persists even after subsampling and poses challenges for
representation learning. Standard self-supervised approaches like DINO (Caron et al., |2021) apply a
single global centering term to stabilize training and avoid representation collapse, but they do not
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account for semantic imbalance in the data. To address this, we propose a dual-centering scheme
that combines global statistics with class-frequency-aware regularization. In addition to the standard
global center vector ¢, we introduce a secondary center ¢;, € R¥, computed from a subset of samples
belonging to high-frequency LULC classes, such as tree cover, grassland, and open seas, based on
dataset-level statistics. Given a batch of teacher logits g, (), the adjusted logits for training are
computed as:
g(x) =go,(x) —a-c— (1 —a) -,

where « € [0, 1] balances the contribution of the global and frequency-aware centers. The vector
cp, 1s updated via exponential moving average using only frequent-class samples within each batch.
This dual-centering mechanism serves two key purposes: (i) it preserves the stability benefits of
global centering as in DINO, and (ii) it introduces a soft rebalancing bias that counteracts the
overrepresentation of dominant classes in the feature space. In ablations (Table [5)), this adjustment
leads to more balanced representation learning and improved downstream performance, particularly
for underrepresented LULC categories.

4 PRETRAINING DATA SAMPLING

We utilize Major-TOM dataset (Francis & Czerkawski, 2024) as our primary EO source for pertaining.
It contains 2.24 million globally distributed grid cells, each
spanning approximately 10.68 km x 10.68 km (=114
km?), and provides tri-modal, co-registered imagery from
Sentinel-2 Level-1C, Sentinel-2 Level-2A, and Sentinel-1
RTC. Major-TOM stands out as one of the few publicly
available datasets offering dense multi-modal coverage at
a global scale. Each cell independently selects a random 4-
month window before cloud screening, which helps limit
systematic seasonal and regional bias. However, over one-
third of its samples lie outside a 10 km terrestrial buffer,
often within the Open Oceans class (Zanaga et al., 2022),
limiting their relevance for land-centric tasks. Motivated
by insights from Roscher et al.|(2024), which emphasize
the importance of semantically rich samples, and 'Wang
et al.| (2024d), which highlight the utility of structural pri-
ors, we applied a principled filtering strategy. Specifically,
we removed 98% of ocean-classified tiles (retaining 2% to preserve marine representation) and
sampled the terrestrial subset using global distributional priors across land cover (Zanaga et al.| [2022]),
climate zones (Beck et al.,|2018)), and ESRI world regions (Esri et al., [ 2025)). Global distributional
priors refer specifically to the majority land-cover label for each grid cell, which we retain only to
compute class-frequency statistics for the dual-centering regularizer; this metadata is not provided
as model input or used as supervision. This approach emphasizes meaningful land regions with
ecological variety. Figure[3|shows the global coverage of the tile and Figure [Ap4]in the Appendix
covers the map. For pretraining, we curated a filtered subset of over 1.5 million grid cells with
consistent coverage across all three modalities (S1, S2-L1C, and S2-L2A). Each 10.68 km x 10.68
km grid cell was divided into four non-overlapping tiles of 534 x 534 pixels, resulting in more
than 6 million tiles per modality. In total, this yielded 18.7 million modality-specific training tiles.
During training, modalities were stochastically sampled and treated as natural augmentations to
promote sensor-invariant representation learning. To mitigate spatial sampling bias and support
semantically-aware learning, we enriched each grid cell with metadata from the ESRI World Regions
dataset (Esr1 et al.| [2025)).

o]
[m]
=]
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Figure 3: Land-use/land-cover (LULC)
breakdown across the training tiles.
A number of semantically important
classes (e.g., builtup, mangroves, ice)
remain underrepresented due to skewed
data distribution.

5 EXPERIMENTS AND RESULTS

5.1 PRETRAINING IMPLEMENTATION DETAILS

We pre-train TerraFM using 534 x 534 tiles as inputs. Following the DINO-style cropping strat-
egy (Caron et al., [2021)), each tile is randomly cropped at two scales: (i) global crops, sampled
with ratios in [0.25, 1.0] of the tile size and resized to 224 x 224, and (ii) local crops, sampled with
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Table 2: We evaluate image classification using k-nearest neighbors (kNN) and report Top-1 accuracy
for all single-label tasks. For the multilabel BigEarthNet benchmark, we report the F1 score. Results
other than Copernicus-FM and TerraFM are directly taken from Tseng et al.|(2025). Bold indicates
the best result, and underlining denotes the second-best.

m-EuroSat  m-BigEarthNet m-So2Sat m-Brick-Kiln

Training % Training % Training % Training %
Model Backbone 100% 1%  100% 1% 100% 1% 100% 1%
SatMAE (Cong et al.|[2022) ViT-Base  84.1 348 50.6 29.0 360 231 86.1 735
SatMAE++ (Noman et al.[2024) ViT-Large 827 485 508 31.6 347 234 896 76.7
CROMA (Fuller et al.]|2023) ViT-Base  85.6 513 588 44.7 488 338 926 851
SoftCon (Wang et al.[[2024b) ViT-Small 898 272 64.7 433 51.1 314 892 778
DOFA (Xiong et al.|[2024} ViT-Base 828 49.6 494 29.9 414 294 883 783
Satlas (Bastani et al.|[2023) Swin-Tiny ~ 81.7 358 519 29.6 36.6 27.1 882 730
MMEQarth (Nedungadi et al.|[2024) CNN-atto  81.7 30.0 583 39.6 398 251 894 797
DeCUR (Wang et al.[|2024a) ViT-Small 89.0 466 63.8 49.6 458 309 837 742
AnySat (Astruc et al.[[2024) ViT-Base 822 47.1 549 33.7 39.8 290 853 720
Galileo (Tseng et al.|[2025) ViT-Base 93.0 566 59.0 36.5 548 432 90.7 78.0

Prithvi-2.0 (Szwarcman et al.||2024)  ViT-Large 802 48.0 494 28.8 295 261 879 80.6
Copernicus-FM(Wang et al.|[2025] ViT-Base 76.0 474 538 333 384 233 93.0 832

ViT-Base 942 593 68.7 49.4 55.1 416 945 85.6
ViT-Large 951 62.1 69.4 50.6 559 41.1 930 822

TerraFM (Ours)

Table 3: Performance comparison on GEO-Bench for both classification (Top-1 Accuracy), seg-
mentation (mloU), and F1 score (for m-BigEarthNet). TerraFM achieves state-of-the-art results
across multiple datasets, outperforming previous FMs. Bold indicates the best result, and underlining
denotes the second-best.

Classification Segmentation

Method Backbone  m-EuroSat m-BigEarthNet m-So2Sat m-Brick-Kiln m-Cashew-Plant m-SA-Crop-Type
SatMAE ViT-Large 96.6 68.3 572 98.4 30.8 24.8
SatMAE++  ViT-Large 96.5 67.9 56.0 98.6 29.6 25.7
CROMA ViT-Large 96.6 71.9 60.6 98.7 31.8 32.0
SoftCon ViT-Base 97.5 70.3 61.7 98.7 29.6 30.8
DOFA ViT-Large 96.9 68.0 58.7 98.6 27.7 254
Satlas Swin-Base 97.5 72.8 61.9 98.4 25.1 234
MMEarth CNN-atto 95.7 70.0 57.2 98.9 24.2 222
DeCUR ViT-Small 97.9 70.9 61.7 98.7 26.2 215
Prithvi 2.0 ViT-Large 96.5 69.0 54.6 98.6 26.7 229
AnySat ViT-Base 95.9 70.3 51.8 98.6 26.1 27.1
Galileo ViT-Base 97.7 70.7 63.3 98.7 33.0 30.1
TerraFM V@T—Base 98.1 72.6 64.9 98.7 34.1 328

ViT-Large 98.6 73.1 66.6 99.0 37.0 34.6

ratios in [0.05,0.25] and resized to 96 x 96. All inputs are then tokenized with a 16 x 16 patch
resolution. The training dataset comprises around 1.53 million multi-modal samples, from which we
define a virtual epoch of 300K samples to ensure frequent parameter updates. TerraFM-B is trained
for 150 epochs and TerraFM-L for 200 epochs, each with a linear warmup over the first 30 epochs.
Models are trained on 64 GPUs, TerraFM-B training takes 92 hours with a batch size of 1024, while
TerraFM-L uses a batch size of 2048 and trains for 183 hours. The learning rate is linearly scaled
with batch size, initialized as Ir = 0.0001 x batch_size/256. Following DINO-style pretraining, we
disable batch normalization in the projection head and freeze the last layer of the student for the first
3 epochs to stabilize early training. The output dimensionality is set to K = 65,536, with the teacher
temperature linearly increasing from 0.04 to 0.06 over the first 50 epochs. The teacher momentum
follows a cosine schedule starting from 0.996. A drop path rate of 0.1 is applied for regularization.
For modality fusion, we set N, = 5 and o = 0.8 during pretraining.

5.2 EVALUATING DOWNSTREAM TASKS

Benchmarks: We evaluate our model on two comprehensive remote sensing benchmarks: GEO-
Bench (Lacoste et al., 2023)) and Copernicus-Bench (Wang et al.,[2024a)), both of which include
diverse downstream tasks spanning multiple domains and modalities. The benchmark datasets are
described in Appendix [A] and for evaluation protocols (linear probing, UperNet probing, k-NN, and
fine-tuning), we refer the reader to Appendix

Discussion: We report KNN classification accuracy on four standard GEO-Bench classification tasks
to evaluate the quality of learned representations in a training-free setting. As shown in Table [2}
TerraFM achieves the highest performance across three datasets, outperforming both modality-
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specific and multimodal foundation models. Notably, our model achieves 95.1% on m-EuroSAT and
94.5% on m-Brick-Kiln, highlighting the effectiveness of the learned representations on standard
scene classification tasks. On other challenging tasks such as m-So2Sat and m-BigEarthNet, our
model achieves leading performance (55.9% and 69.4%, respectively), outperforming Galileo (Tseng
et al., [2025)), despite So2Sat having fewer channels than used during pretraining, highlighting the
model’s robustness to missing modality information. Compared to CROMA (Fuller et al., [2023) and
DeCUR (Wang et al.|[2024a), our gains suggest that contrastive alignment combined with cross-modal
fusion enhances class separability. The results across tasks of varying difficulty indicate that our
model learns robust and transferable representations that generalize well across different scenarios.

Further GEO-Bench results with fine-tuning and linear probing are reported in Table [3] for clas-
sification (with fine-tuning), TerraFM achieves the improvement on m-BigEarthNet (73.1%) and
m-EuroSat (98.6%), and the best-performing model on m-So2Sat (66.6%). For segmentation (with lin-
ear probing), our TerraFM-L notably outperforms existing models on m-SA-Crop-Type (34.6% mloU)
and m-Cashew-Plant (37.0% mloU). TerraFM-B surpasses larger counterparts such as ViT-Large used
in SatMAE++(Noman et al.|[2024) and DOFA(Xiong et al.l 2024). On the Copernicus-Bench (Wang
et al.} [2025)) (Table ), TerraFM delivers state-of-the-art results across most tasks and modalities. It
achieves 67.9 mloU on Cloud-S2, 87.8 OA on EuroSAT-S1, and 99.1 OA on EuroSAT-S2, surpass-
ing all prior models. On BigEarthNet-S2 and DFC2020-S1, TerraFM attains 84.4 mAP and 55.4
mloU, respectively, marking clear gains over existing FMs. While SoftCon (Wang et al.,[2024b) is
slightly higher on BigEarthNet-S1 (78.7 vs. 76.9), TerraFM consistently outperforms Copernicus-FM
(Wang et al., [2025) despite sharing the same ViT-B/16 backbone. These results highlight TerraFM’s
scalability and strong generalization across diverse EO benchmarks.

Table 4: Comparison of TerraFM with supervised and self-supervised methods on Copernicus-
Bench. Metrics: OA (Overall Accuracy for classification), mAP (mean Average Precision for
multi-label classification), mloU (mean Intersection over Union for segmentation). Baselines include
SoftCon (Wang et al., [2024b), CROMA (Fuller et al., 2023), DOFA (Xiong et al., [2024), and
Copernicus-FM (Wang et al., 2025). Bold indicates the best result, and underlining denotes the
second-best.

Classification Segmentation
Method Backbone EuroSAT-S1 EuroSAT-S2 BigEarthNet-S1 BigEarthNet-S2 LCZ-S2 Cloud-S2 DFC2020-S1 DFC2020-S2
Supervised ViT-B/16 81.5 97.6 70.6 80.1 853 594 50.8 66.2
Random ViT-B/16 75.4 92.5 63.8 71.6 774 60.4 45.4 62.3
SoftCon ViT-B/14 83.6 96.7 78.7 83.6 83.6 66.9 52.8 64.1
CROMA ViT-B/8 83.9 97.0 70.8 76.4 84.1 65.0 52.7 66.5
DOFA ViT-B/16 81.7 97.2 70.5 75.5 83.0 65.0 49.7 61.8
Copernicus-FM ViT-B/16 87.2 97.9 719 79.0 84.4 66.7 524 64.5
TerraFM ViT-B/16 87.8 99.1 76.9 84.4 87.0 67.9 55.4 63.8

5.3 ABLATIONS AND ANALYSIS

Impact of Components: Table [5| highlights the incremental benefits of each component in our
framework. We train TerraFM-B for 150 epochs on a 200k-sample subset from our full training
dataset. To measure the performance on segmentation task, we use uppernet probing and linear
probing on the m-Cashew-Plantation dataset from GeoBench. Adding modality as augmentation
improves performance on m-EuroSat by +4.5% and m-BigEarthNet by +3.01%. Incorporating
fusion yields a large gain on m-Cashew-Plantation segmentation by +3.23% with UPerNet probing
and +1.4% with linear probing, while dual centering provides further improvements: +0.32% on
m-BigEarthNet, +1.9% on m-EuroSat, and +2.18% on m-Cashew-Plantation. Note that in Table E],
the dual-centering ablation disables only our additional centering term; the standard DINO global
centering remains active in all configurations to maintain the stability of the student—teacher training
dynamics.

Dual-centering Motivation and Visualization: Here, we discuss the impact of Dual-centering
on class-wise prediction behavior and representation diversity. Figure ] shows that models with
Dual-centering exhibit higher softmax entropy across most classes, indicating more calibrated
predictions, particularly benefiting rare classes like "Mangroves". Figure[|reveals that Dual Centering
significantly increases prototype diversity, i.e., the number of distinct top-5 features activated,
especially for tail classes. This suggests that the model avoids collapsing onto frequent-class
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Figure 4: Mean entropy per LULC class from 5k train-
ing sam- ples, with logits (K = 65, 536) reduced via
Gaussian projection. The baseline (no dual-centering)
shows lower entropy and overconfident predictions
skewed to frequent classes. Dual-centering increases
entropy, yielding more balanced predictions, espe-
cially for rare classes like Mangroves and Herbaceous-
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Figure 5: Prototype diversity is measured as the num-
ber of unique top-5 prototypes across Sk training sam-
ples. Dual- centering improves diversity for tail classes
like Mangroves, Herbaceous-Wetland, and Built-up, in-
dicating richer represen- tations. The baseline reuses
fewer prototypes, reflecting over- reliance on dominant
frequent-class features.

Wetland.

SS MAug Fus DC | BEN ES cpf cpt
v - - - 54.62 83.20 50.58 19.4
v v — = | 57.63(+3.01) 87.70 (+4.50) 59.17 (+8.59) 24.8 (+5.4)
v v V= | 5774(+0.11) 8850 (+0.80) 6240 (+3.23) 262 (+1.4)
v v Vv | 58.06(+0.32) 9040 (+1.90) 64.58 (+2.18) 27.6 (+1.4)

Table 5: Ablation of components: SS = Self-
supervised contrastive learning, MAug = Modality
Augmentation, Fus = Fusion, DC = Dual Center-
ing. BEN = m-BigEarthNet, ES = m-EuroSat, CP
= m-Cashew-Plant. { denote results using UPerNet
probing while § indicate linear probing. Gains in
parentheses denote improvements over previous row.

prototypes and learns more diverse, semantically rich representations. These results motivate Dual-
centering as an effective strategy for reducing class imbalance effects in representation learning.

MACs-Performance Trade-Off: We analyze the compute—accuracy trade-off using Multi-

ply—Accumulate operations (MACs) to measure inference

cost. As shown in Fig. [f] TerraFM

achieves the highest m-EuroSat accuracy at substantially lower MACs, validating the efficiency of our

fusion design and pretraining strategy. Notably, models with

higher MACs do not guarantee better

performance, underscoring the need for compact yet expressive architectures in scalable EO settings.

For further results and other supporting information, we
refer readers to the Appendix.

6 CONCLUSION

In this work, we introduced TerraFM, a unified and scalable
foundation model (FM) specifically designed for multisensor
EO. Given the unique nature of EO data, our approach pays
special treatment to sensor heterogeneity, scale-invariance,
and class-frequency imbalance which is critical for building
generalizable EO FMs. Our pretraining approach leverages
contrastive learning to obtain geographically and spectrally
aware representations from large-scale Sentinel-1 and 2 data.
Specifically, we integrate modality-specific patch embed-
dings, adaptive cross-attention fusion, and a dual-centering
contrastive learning objective to enrich the representations
on heterogeneous RS data. Our extensive evaluations on
GEO-Bench and Copernicus-Bench demonstrate that Ter-
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Figure 6: Comparison of model ef-
ficiency and accuracy on m-EuroSat.
We plot the MACs against k-NN clas-
sification accuracy for various vision
backbones. TerraFM models achieve
the highest accuracy while maintain-
ing moderate computational cost.

raFM consistently outperforms SoTA self-supervised ViT models across both classification and

segmentation tasks.
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APPENDIX

This supplementary material presents additional experiments, analyses, and visualizations that
complement the main paper. It includes benchmarks information (A}, detailed descriptions &
experiments for our multimodal fusion strategies (B]), implementation details (C.I)) and evaluations
on scaling trends with data size (C.2), high resolution benchmarks (C.3), & change detection (C.4),
Further more we also provide additional analysis and qualitative figures (D.I)). We also report GPU-
hour comparisons with comparable methods (D.2)), landslide detection (D.3) and visualize the land
cover distribution of our dataset using global maps (D.4).

A BENCHMARKS

We evaluate TerraFM on two comprehensive remote sensing benchmarks, GEO-Bench and
Copernicus-Bench, which together cover a wide range of tasks, modalities, and resolutions. 1)
GEO-Bench (Lacoste et al.l 2023) standardizes evaluation across 12 curated tasks, including 6
classification and 6 segmentation challenges. These datasets are selected for open access and license
compliance, and have been harmonized with consistent evaluation settings. While GEO-Bench
supports various sensor types (e.g., Landsat-8, Sentinel-2, and hyperspectral sensors), for consistency
with our model’s pretraining, we restrict the main evaluation to Sentinel-2-based tasks. Specifically,
we report results on m-EuroSAT (Helber et al.| 2019), m-BigEarthNet (Sumbul et al.| |2019), m-
So2Sat (Zhu et al.l 2019), m-Brick-Kiln (Lee et al.,[2021)) (classification) and m-Cashew-Plantation
(Z. et al} [2021)), m-SA-Crop-Type (Foundation, 2021) (segmentation). Additional results on the
remaining GEO-Bench datasets, including high-resolution tasks, are provided in Appendix 2)
Copernicus-Bench (Wang et al.,[2025) provides 15 downstream tasks aligned with the full Sentinel
mission family (Sentinel-1 to Sentinel-5P), and categorizes tasks into three levels: low-level (e.g.,
cloud detection), mid-level (e.g., land cover segmentation), and high-level (e.g., flood detection or
yield prediction). While Copernicus-Bench leverages all Sentinel missions, in this work, we restrict
evaluation to tasks using only Sentinel-1 and Sentinel-2 imagery. We evaluate on the following subset:
Cloud-S2 (Aybar et al.l 2024)), EuroSAT-S1 (Wang et al.| 2024c|), EuroSAT-S2 (Helber et al.||2019),
BigEarthNet-S1 (Clasen et al.} 2024)), BigEarthNet-S2 (Clasen et al.| |2024)), DFC2020-S1 (Hdnsch,
2019), DFC2020-S2 (Hdnsch| [2019), LCZ-S2 (Zhu et al.}|2019).

B MULTI-MODAL FUSION STRATEGIES:

We investigate various strategies for multi-modal fusion and report results in Table [ApI] on two
benchmark datasets: m-BigEarthNet and m-EuroSat. As a baseline, we evaluate standard DINO
training using only Sentinel-2 L2A input (DINO (S2-L2A)), which learns unimodal representations.
To enable explicit modality-aware learning, we apply a Multi-Student-Teacher approach where each
modality has its own student and teacher networks, along with an alignment loss between student
outputs to enforce cross-modal consistency. This yields consistent gains across both datasets. We
also test a more expressive fusion approach, CrossAttn (Q = 196) Global, where 196 learned queries
(standard for 224x224 image inputs) attend globally to multi-modal tokens immediately after patch
embedding. However, this method does not perform well, likely due to excessive parameterization
and lack of inductive bias for spatial alignment. Figure[ApT]|visually summarizes key fusion strategies
evaluated in Table including (a) Multi-Student-Teacher, (b) unimodal DINO, and (c) CrossAttn
(Q = 196) Global, highlighting their architectural differences and fusion mechanisms. Our proposed
approach, TerraFM-B (Q = 1), treats a modality as an augmentation and performs fusion using
a single learned spatial query per location. This lightweight attention mechanism yields the best
performance among non-ensemble methods. To further analyze architectural choices, we test a
variant, TerraFM-B (ViT PatchEmb), where the convolutional patch embedding is replaced by a ViT-S
backbone purely for token extraction. While competitive, this setup slightly drops the performance
due to increased model complexity and potential overfitting. Finally, our full model, TerraFM-B (Q =
5), employs multiple learned spatial queries to achieve richer fusion between modalities. It achieves
the best overall performance, validating the scalability and effectiveness of our fusion design.
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Table Apl: Ablation study on multi-

m-BigEarthNet m-EuroSat ; . .
modal fusion strategies using k-NN

DINO (S2-L2A) 54.6 83.2 evaluation. TerraFM-B with multi-
Multi-Student-Teacher 55.8 87.8 ple Spatia] queries (Q =5) achieves
CrOSSAttn (Q = 196) Global 520 771 the best performance.
TerraFM-B (Q = 1) 57.2 89.2
TerraFM-B (ViT PatchEmb) 56.9 87.2
TerraFM-B (Q = 5) 58.1 90.4
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Figure Apl: Architectural overview of different fusion strategies: (a) Multi-Student-Teacher with
alignment loss, (b) unimodal DINO baseline, and (c) CrossAttn (Q = 196) with global learned queries.

C EVALUATION

C.1 EVALUATION IMPLEMENTATION DETAILS

Linear Probing Evaluation: To evaluate the quality of learned representations, we follow a linear
probing protocol of DINOv2(Oquab et al.| 2023) that follows with a lightweight grid search over
three key hyperparameters: (i) the learning rate, (ii) the number of transformer layers from which
features are extracted, and (iii) whether to use only the [CLS] token or to concatenate it with the
average-pooled patch tokens. We train the linear classifier using stochastic gradient descent (SGD) for
50 epochs. The training data is augmented using random resized cropping. Specifically, we sweep the
learning rate over the set {1,3,4,5} x 10{=%=3=2=1} Importantly, this search is computationally
efficient: features from the frozen backbone are computed once per image using a single forward
pass and reused across all configurations, since each linear head only requires a simple forward
pass. For each configuration, we evaluate the classifier on the validation set and report the test
accuracy achieved by the best validation configuration. UperNet Probing Evaluation: For UperNet
(Xiao et al., [2018) Probing evaluation, we freeze the pretrained backbone and attach UPerNet
decoder head. Specifically, we use a Feature2Pyramid module as the neck, followed by a
UPerNet decoder and an auxiliary FCNHead. We train only the segmentation heads using the
AdamW optimizer for 50 epochs without learning rate warm-up. We conduct a grid search over
base learning rates {10~!,1072,1073,10~%,107°,1075}. and batch size set {16, 32,64}. k-NN
Evaluation: To assess the quality of the learned representations without any finetuning, we apply
non-parametric classification using a k-nearest neighbors (k-NN) classifier on the frozen features.
In addition to sweeping over k € 3,5,7,10, 15,20, 30,50, 100 using validation set performance,
we follow the same layer selection strategy as linear probing i.e evaluating features from the last 4
transformer layers. This protocol does not require additional training or data augmentation, making
it a lightweight and reliable indicator of raw feature quality in pretrained models. Finetuning
Evaluation: For full-model finetuning, we unfreeze the backbone and jointly optimize it with the
task-specific head. We perform a grid search over learning rates in the evaluation set and batch
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Table Ap2: Scaling behavior of TerraFM models with increasing model size and pretraining data
across four GEO-Bench classification tasks.

Dataset Model 20% 100% Gain

EuroSat TerraFM-S  91.7 92.0 0.3
TerraFM-B  92.0 94.2 2.2
TerraFM-L  92.1  95.1 3.0

BigEarthNet TerraFM-S 62.6  65.3 2.7
TerraFM-B  63.2  68.7 55
TerraFM-L 626 694 6.8

So2sat TerraFM-S  50.5  52.3 1.8
TerraFM-B  49.7  55.1 54
TerraFM-L  49.1 559 6.8

Brick-Kiln TerraFM-S 90.5 914 0.9
TerraFM-B 914  94.5 3.1
TerraFM-L  91.0 93.0 2.0

sizes. To stabilize training, we apply a reduced learning rate for the backbone, set to half of the main
learning rate used for the head parameters. Once the best configuration is selected based on validation
performance, we evaluate the finetuned model on the test set.

C.2 SCALING TRENDS WITH DATASET SIZE:

We report scaling results on four GEO-Bench classification tasks when increasing model size and the
pretraining dataset from 20% to 100% (Table [ApZ). While all model sizes improve with additional
data, the effect is more pronounced for the Base and Large variants. For example, TerraFM-L achieves
a 6.8 point gain on BigEarthNet and So2Sat, compared to only 2.7 and 1.8 for TerraFM-S. On EuroSat
and Brick-Kiln, where performance is already near saturation, the gains are smaller but still positive.
These results confirm that larger models are more data-efficient and benefit disproportionately from
increased pretraining scale, aligning with scaling laws observed in recent foundation model studies.

C.3 EVALUATION ON HIGH-RESOLUTION BENCHMARKS.

To further assess generalization, we extend TerraFM’s evaluation to include low-to-high resolution
GEO-Bench tasks as well as the widely used AID (Xia et al., [2017) dataset (Table . Despite
being pretrained solely on Sentinel-1 and Sentinel-2, TerraFM achieves consistent improvements over
Galileo across diverse sensors and resolutions. Notably, TerraFM transfers effectively to m-forestnet,
which uses 15m Landsat-8 inputs compared to TerraFM’s 10m Sentinel-2 pretraining resolution,
yielding a +7.7 point gain from baseline. On fine-scale RGB datasets such as m-pv4ger (0.1m) and
m-chesapeake-landcover (1m), TerraFM also shows strong gains (+1.5 and +36.8 mlIoU, respectively).
These results highlight TerraFM’s robustness across modalities and scales ranging from 0.1-15 m,
complementing the evaluations in the main paper.

Table Ap3: Comparison on low-to high resolution benchmarks.

Dataset Task Sensor Resolution  Galileo TerraFM
m-forestnet (Irvin et al.|[2020) Classification Landsat 8 15m 494 57.1
m-pv4ger (Mayer et al.|[2022) Classification RGB 0.1m 96.7 98.2
AID (Xia et al.[|2017) Classification RGB — 78.2 93.8
m-pv4ger-seg (Mayer et al.|[2022) Segmentation RGB 0.1m 55.8 85.6
m-chesapeake-landcover (Schmitt et al.|2019)  Segmentation RGB 1.0m 14.6 514
m-nz-cattle (Laradji et al.[|2020) Segmentation RGB 0.1m 49.7 68.5
m-NeonTree (Weinstein et al.{[2020) Segmentation RGB 0.Im 51.1 54.0
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C.4 EVALUATION ON CHANGE DETECTION.

We evaluate TerraFM on the OSCD (Daudt et al.} [2018) change detection dataset to assess the effect
of sensor-invariance on temporal tasks (Table[Ap4)). Despite being trained without explicit tempo-
ral supervision, TerraFM-B with U-Net probing achieves 52.2 mloU, substantially outperforming
SSL4EO-S12 (35.1), SEN12MS (Schmitt et al., 2019) (30.6), and SeCo
2021) (28.3). This suggests that TerraFM not only learns robust cross-sensor invariances but
also implicitly learns time-invariant representations. However, due to the nature of DINO loss, which
aligns global semantics, the model may still preserve object-level distinctions, resulting in improved
performance on OSCD.

Table Ap4: Performance comparison on the change detection.

Method SeCo SENI12MS SSL4EO-S12 TerraFM-B
F1 Score (%) 28.33 30.62 35.08 52.20

D ADDITIONAL ANALYSIS

D.1 QUALITATIVE RESULTS:
Fig. [Ap2] illustrates qualitative results for the cloud and cloud shadow segmentation task from

Copernicus-Bench. TerraFM accurately outlines both cloud and shadow regions, effectively distin-
guishing visually similar patterns while maintaining spatial coherence across varied scenes.

Image Prediction Image Prediction
.

Figure Ap2: Qualitative results for cloud and cloud shadow segmentation. Each triplet shows the
input image (left), the ground truth mask (middle), and the TerraFM prediction (right).

D.2 GPU HOUR COMPARISON:

Compared to Prithvi-2.0, which trains ViT-L (300M) model using up to 80 GPUs for 400 epochs,
consuming approximately 21,000 GPU-hours (Szwarcman et al.,[2024), our TerraFM (300M) achieves
comparable scale using significantly fewer resources. Specifically, TerraFM is trained for 200 epochs
on 64 GPUs, amounting to approximately 12,000 GPU-hours.
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D.3 LANDSLIDE DETECTION

We evaluate landslide segmentation on the Landslide4Sense (L4S) (Ghorbanzadeh et al.l |2022)
benchmark, which provides segmentation labels for landslide and non-landslide regions across
diverse mountainous areas using multi-source satellite data, including Sentinel-2 bands, DEM, and
slope information. Our method, TerraFM, achieves strong performance with a mean IoU of 70.8 and
a landslide IoU of 43.1, outperforming the Prithvi-EO-2.0 baseline (Table [Ap3)). Both TerraFM and
Prithvi-EO-2.0 are trained using focal loss with a batch size of 16, Adam optimizer with a learning
rate of 1 x 10~*. Figure shows qualitative results from TerraFM, illustrating predicted landslide
masks alongside the ground truth. To assess variability, we repeated the Landslide4Sense experiment
with three random seeds and observed stable results: TerraFM-B achieved 70.8 £ 0.7 mIoU and
43.1 £ 0.9 landslide IoU.

mIoU ToU Landslide  Table Ap5: Landslide detection per-
formance on the Landslide4Sense test
Prithvi-EO-2.0 (300M)  65.0 31.5 set. Despite being significantly smaller
TerraFM (120M) 70.8 43.1 (120M parameters vs. 300M for Prithvi-
EO-2.0), TerraFM achieves higher over-
all segmentation performance, espe-
cially for landslide regions.

D.4 LAND COVER DISTRIBUTION:

Fig.[Ap3illustrates the global spatial coverage of our pretraining data. The selected samples span
diverse ecosystems, capturing a balanced mix of urban, vegetation, sea, and arid regions. The insets
demonstrate fine-grained land cover variability, ensuring semantic richness across training tiles.
This diverse geographic grounding plays a crucial role in enabling the generalization capabilities of
TerraFM across regions and tasks.

LLM Usage Statement: We used large language models for polishing and improving the clarity of
writing. They were not involved in research ideation, experiment design, analysis, or generation of
results.

D.5 PSEUDOCODE OF CROSS-ATTENTION FUSION

We summarize the cross-attention fusion mechanism used in TerraFM. The fusion module employs
a small, fixed set of shared learnable queries (we use N, = 5) that are applied uniformly across
all spatial positions. For a 224 x 224 crop with a 16 x 16 patch size, each modality produces
N = 196 spatial tokens. At each spatial location n, the modality-specific tokens at that position
(M tokens in total) serve as input to keys and values computation, while the shared queries attend
over these modality tokens to produce N, intermediate outputs. These per-location outputs are
then aggregated into a single fused token, yielding a fused sequence of length N (plus the class
token) for the ViT encoder. Thus, the fusion block preserves the backbone’s original sequence
length and performs modality mixing independently at each spatial location, with spatial interactions
handled by subsequent transformer layers. Below, we provide a concise PyTorch-style pseudocode
implementation of this per-location fusion mechanism.
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def cross_attention_fusion(Z_all, g,

# Z_all
# g

[N, M, D]
[N_qg, D]
positions)
[D, 1]

D = Z_all.shape
_gq = g.shape[0]

# Project shared queries once
Q = W_qg(q) # [N_g, D]

fused_tokens = []
for n in range (N) :

W_gq,

wW_k, W_v,

tokens at N spatial positions,
shared learnable queries

p_r, mha):

M modalities
(reused for all

projection for scoring aggregated query outputs

(reused across all spatial positions)

# Tokens from all modalities at spatial position n

X n = 7Z_all[n] #

(M, DI

# Linear projections to keys and values

K n = W_k(x_n) #
V_n = W_v(x_n) #

(M, D]
(M, D]

# Cross-attention over modalities at position n

# (Q attends to K_n,
z_prime_n, = mha (Q,

v_n;
K_n,

# [N_qg, D]

returns N_g outputs)
V_n)

# Learned weighted mean over N_g query outputs

scores = (z_prime_n @ p_r).squeeze(-1) # [N_qg]
w = scores.softmax (dim=0) # [N_qgl
z_fused_n = (w[:, None] % z_prime_n) .sum(dim=0) # [D]

fused_tokens.append(z_fused_n)

# Final fused sequence fed to the shared encoder Enc_phi

7Z_fused =
return Z_fused
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Image Ground Truth TerraFM

Figure Ap3: Qualitative results for landslide segmentation. Each triplet shows the input image (left),
the ground truth mask (middle), and the TerraFM prediction (right).
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Tile Count per 1° Grid

Figure Ap4: Global spatial distribution of the Major-TOM (Francis & Czerkawskil, 2024) training
subset. Each square shows a 1° x 1° cell, colored by the number of 10.68 km x 10.68 km tiles it

contains.

GridCells I Buitup [ Herbaceous Wetiand [l Open Seas Snow and Ice
Majority LandCover cropland [l Mangroves B Permanent Water Bodies [l Tree Cover
- Bare / Sparse Vegetation Grassland - Moss and Lichen Shrubland

Figure Ap5: Global distribution of sampled training tiles by dominant land cover class, based on ESA
WorldCover labels. Insets show detailed tile-level diversity, highlighting coverage across built-up,
vegetation, and water classes.
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