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ABSTRACT

Modern earth observation (EO) increasingly leverages deep learning to harness the scale and diversity
of satellite imagery across sensors and regions. While recent foundation models have demonstrated
promising generalization across EO tasks, many remain limited by the scale, geographical cover-
age, and spectral diversity of their training data, factors critical for learning globally transferable
representations. In this work, we introduce TerraFM, a scalable self-supervised learning model
that leverages globally distributed Sentinel-1 and Sentinel-2 imagery, combined with large spatial
tiles and land-cover aware sampling to enrich spatial and semantic coverage. By treating sensing
modalities as natural augmentations in our self-supervised approach, we unify radar and optical
inputs via modality-specific patch embeddings and adaptive cross-attention fusion. Our training
strategy integrates local-global contrastive learning and introduces a dual-centering mechanism that
incorporates class-frequency-aware regularization to address long-tailed distributions in land cover.
TerraFM achieves strong generalization on both classification and segmentation tasks, outperforming
prior models on GEO-Bench and Copernicus-Bench. Our code and pretrained models will be publicly
released.

1 INTRODUCTION

EO provides systematic measurements of the surface of earth, supporting a wide spectrum of critical applications
such as land use monitoring Wang et al. (2023), crop evaluation Prodhan et al. (2021); Kussul et al. (2017), urban
development Yu & Fang (2023), and disaster response Huot et al. (2022); Sarkar et al. (2023); Rahnemoonfar et al.
(2021). These capabilities are enabled by a growing fleet of EO satellites, most notably the Sentinel missions, which
deliver multi-modal, multi-temporal data at a global scale Torres et al. (2012); Drusch et al. (2012). The rise of
deep learning, particularly deep neural networks (DNNs), has fundamentally reshaped the way EO data is processed
and interpreted Wang et al. (2025); Szwarcman et al. (2024); Tseng et al. (2025). Modern DNNs enable automated
extraction of spatial and semantic patterns from raw imagery, driving downstream tasks such as scene classification,
object detection, and semantic segmentation Astruc et al. (2024); Waldmann et al. (2025); Kuckreja et al. (2024); Tseng
et al. (2025); Fuller et al. (2023). These models offer a scalable alternative to traditional hand-engineered pipelines by
learning generalizable representations directly from data Guo et al. (2024). As EO data continue to expand in scale,
diversity, and complexity, DNNs have become foundation for building high-capacity models capable of generalizing
across geographies, modalities, and tasks Szwarcman et al. (2024); Astruc et al. (2024); Waldmann et al. (2025).

Remote sensing data is inherently multimodal, comprising diverse sensor types such as optical, SAR, and multispectral
imagery. Traditional EO pipelines often focus on single-modality inputs, typically high-resolution optical imagery,
limiting the model’s ability to generalize across varying sensing conditions. In contrast, multimodal and multispectral
data sources, such as Sentinel-1 SAR and Sentinel-2 Level-1C/Level-2A optical bands, capture complementary structural
and spectral information, enabling richer scene understanding Han et al. (2024); Fuller et al. (2023). Foundation models
that embrace this diversity have demonstrated superior transferability across tasks and geographies Tseng et al. (2025);
Guo et al. (2024). However, variation in ground sampling distance (GSD) across EO data makes tile size a critical
factor; smaller tiles capture local detail but risk overfitting to texture, while larger tiles provide broader semantic context
but require scale-robust architectures Reed et al. (2023). Recent works like AnySat Astruc et al. (2024) and msGFM
Han et al. (2024); Astruc et al. (2024) have shown that scale-invariant modeling and mixed-resolution pretraining lead
to more robust and generalizable representations. Crucially, large-scale sampling across geographies and resolutions
enables EO foundation models to learn invariant features across sensors and global conditions.

As EO foundation models scale to accommodate diverse sensor inputs and resolutions, two dominant pretrain-
ing paradigms have emerged: masked autoencoders (MAE) and contrastive learning. Although MAEs focus
on reconstructing the spatial structure, their reliance on RGB-centric ViTs limits their adaptability to multispec-
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tral or SAR inputs with varying spectral dimensions Li et al. (2024); Szwarcman et al. (2024). In contrast,
contrastive approaches such as DINO Caron et al. (2021); Oquab et al. (2023) and its adaptations to remote
sensing Tseng et al. (2025); Fuller et al. (2023); Waldmann et al. (2025) offer modality-agnostic training by
aligning global and local views through student-teacher distillation. However, the expansive spatial coverage
of EO datasets introduces new challenges: large portions of satellite imagery are semantically sparse or unin-
formative, and naïve sampling can lead to representation bias. This requires intelligent sampling that priori-
tizes semantically diverse regions, guided by land cover priors, for balanced and efficient representation learning.
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Figure 1: Performance comparison across GEO-Bench clas-
sification tasks using supervised fine-tuning and kNN eval-
uation. Five recent EO foundation models: AnySat Astruc
et al. (2024), DOFA Xiong et al. (2024), Galileo Tseng et al.
(2025), Prithvi-2.0 Szwarcman et al. (2024), and Satlas Bas-
tani et al. (2023) are compared against our TerraFM, which
consistently outperforms them across modalities and evalua-
tion settings, demonstrating strong generalization.

To address these limitations in standard ViTs, particularly
their RGB-centric design, lack of modality awareness,
and unimodal self-supervision, we introduce TerraFM,
a unified foundation model tailored for remote sensing.
First, we propose a Modality-Specific Patch Embedding
module, which replaces the shared projection in standard
ViTs with modality-aware embeddings adapted to multi-
spectral and SAR data. This enables flexible handling of
sensor-specific spectral profiles while preserving spatial
structure. To enhance scale-invariance and cross-view
consistency, we adopt multi-crop learning within a self-
supervised teacher-student framework, promoting robust
representation learning through global-local alignment.
Further, we interpret different aligned modalities (S1-
SAR, S2-L1C, S2-L2A) as complementary views of the
same scene and introduce a Cross-Attention Fusion mod-
ule that dynamically aggregates modality-specific tokens
using learnable spatial queries. This allows the model to
selectively emphasize sensor contributions at each spatial
location. Finally, to mitigate long-tailed land cover distri-
bution issues prevalent in EO data, we introduce a Dual
Centering mechanism into the distillation process. This
leverages WorldCover Zanaga et al. (2022) derived class
statistics to compute a frequency-aware center, improv-
ing balance across dominant and rare semantic categories
without requiring supervised objectives. These challenges
highlight the need for a unified multimodal framework
that scales effectively across sensors and resolutions. Our
approach, TerraFM, directly addresses these issues as
shown in Fig. 1, achieves superior performance compared to recent EO foundation models. Our key contributions are:

Contributions: (1) A modality-specific patch embedding mechanism is introduced to generalize ViTs across het-
erogeneous remote sensing modalities with varying spectral dimensions. (2) We treat sensor modalities as natural
augmentations and introduce a cross-attention fusion block that unifies multi-modal inputs within a shared encoder.
(3) To address long-tailed LULC distributions, a dual-centering strategy is incorporated to regularize representation
learning using class-frequency-aware statistics. (4) Extensive experiments on GEO-Bench and Copernicus-Bench
demonstrate leading performance across multiple downstream tasks using globally distributed data.

2 RELATED WORK

Self-supervised Pretraining: MAEs He et al. (2022) have become a popular choice for self-supervised pretraining
in remote sensing by reconstructing masked image regions using ViT Dosovitskiy et al. (2021). Variants like Scale-
MAE Reed et al. (2023) and MC-MAE Gao et al. (2022) enhance robustness across spatial scales via scale-aware
encodings and convolutional tokenizers. However, MAEs struggle to scale to multisensor EO data, as their RGB-centric
tokenization and reconstruction objectives limit generalization to multispectral and SAR modalities with diverse channel
structures Xie et al. (2023); Li et al. (2024).

Unlike MAEs, self-supervised contrastive learning focuses on learning discriminative representations by comparing
semantically similar and dissimilar views. Remote sensing approaches Tang et al. (2023); Fuller et al. (2023); Waldmann
et al. (2025) leverage spatial and spectral augmentations to create diverse yet consistent views. CROMA Fuller et al.
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Table 1: Comparison of recent remote sensing foundation models across modalities, scale, and benchmarks. TerraFM
uniquely blends large tile size, WorldCover-informed metadata, and global-scale training (18.7M samples) with
evaluation on both GEO-Bench and Copernicus-Bench.

Model Modalities Scale Resolution TileSize Metadata Benchmarks Pixels (~T)

SatMAE++ S2, RGB ∼1.2 M 10–60 m 224, 96 No 6 DS 0.12
Galileo S1, S2, NDVI, ESA WC etc ∼3–10.9 M 10 m 96 (flex) Yes GEO + 5 DS 1.58
CROMA S1, S2 ∼1 M 10 m 96, 120 No 7 DS 0.98
SoftCon S1, S2 ∼0.78 M 10 m 224 Yes 4 GEO + 7 DS 0.76
AnySat Aerial, S1/S2, MODIS, etc. 11.1 M 0.2–250 m 10–240 No 11 DS 0.17
Prithvi-2 S2, HLS 4.2 M 30 m 224 Yes GEO + 9 SME 5.06
DOFA S1, S2, EnMAP, etc. ∼8 M 1–30 m 512, 128 Yes GEO + 2 DS 6.74
Panopticon S1, S2, WV2/3, NAIP ∼2.6 M 0.3–100 m 96, 224 Yes GEO + 10 DS 2.34
MMEarth S1, S2, DEM, etc. ∼7.2 M 0.3–100 m 128 Yes 5 GEO 0.51
msGFM RGB, S2, SAR, DSM ∼2 M 0.1–30 m 192 No 5 DS 0.44
Copernicus-FM S1–S5P, DEM 18.7 M 10 m–1 km Mixed Yes Cop-Bench 5.12

TerraFM (Ours) S1, S2 L1C/L2A 18.7 M 10–60 m 534 Yes GEO + Cop-Bench 23.32

(2023) combines contrastive and masked autoencoding losses, while Cross-Scale MAE Tang et al. (2023) blends
generative and contrastive objectives for multi-scale learning. Student-teacher frameworks like DINO Caron et al.
(2021); Oquab et al. (2023) scale contrastive learning via EMA-updated teachers and global-local view alignment with
centering to prevent collapse. These strategies are well-suited for EO, where multimodal imagery can act as natural
augmentations, enabling scalable, label-free training and broad generalization.

Remote Sensing FMs: Recent advances in remote sensing foundation models (FMs) have scaled self-supervised
learning across architecture types, modalities, training sizes, tile resolutions, and metadata usage (Table 1). Multimodal
integration is central to recent FMs like Guo et al. (2024); Wang et al. (2025); Waldmann et al. (2025); Astruc et al.
(2024); Tseng et al. (2025); Han et al. (2024). SkySense Guo et al. (2024) applies contrastive learning to temporal-
multimodal data but requires large-scale compute. CopernicusFM Wang et al. (2025) fuses Sentinel modalities via
metadata-aware networks but faces scaling issues with heterogeneous inputs. Panopticon Waldmann et al. (2025) and
AnySat Astruc et al. (2024) align cross-modal views through contrastive training, while Galileo Tseng et al. (2025)
uses shared embeddings for SAR and multispectral fusion. Fus-MAE Chan-To-Hing & Veeravalli (2024) adopts
attention-based fusion without contrastive loss, limiting generalization.

Prithvi-2 Szwarcman et al. (2024) is restricted to single-modal optical data with temporal-spatial modeling. DOFA Xiong
et al. (2024), msGFM Han et al. (2024), and AnySat Astruc et al. (2024) address resolution variability using mixed
tile sizes or scale-adaptive designs. Our 534px tiles capture broader spatial context than prior RSFMs. While
CopernicusFM Wang et al. (2025) and DOFA Xiong et al. (2024) incorporate metadata, we leverage land cover (LULC)
priors for semantically informed learning. Both CopernicusFM and our model are trained on 18.7M samples, but ours
uses over 23T pixels during pretraining, scaling the 5.1T used by Copernicus-Pretrain Wang et al. (2025) over 4x.
This growing body of work makes clear that the next step is moving beyond single-modality or scale-limited pipelines
toward unified, globally robust EO foundation models.

3 TERRAFM: A SCALABLE MULTISENSOR FOUNDATIONAL MODEL

Unlike prior remote sensing foundation models, our approach integrates a student–teacher contrastive learning frame-
work with dual centering (to balance long-tailed classes), modality-as-augmentation (to learn cross-modal invariances),
and cross-attention fusion (to aggregate multi-sensor context), as illustrated in Figure 2. Built on a ViT backbone and
trained on 18.7M globally distributed samples using 534×534 tiles, TerraFM captures broader spatial context and
generalizes effectively across sensing modalities and geographies, achieving strong results on diverse downstream
benchmarks.

3.1 ARCHITECTURE

We use globally distributed remote sensing imagery organized over a spatial grid, partitioning the earth’s surface into
fixed-size tiles Francis & Czerkawski (2024). Each spatial unit, denoted as s, represents one such grid cell. For each
sample, we observe a set of co-registered EO modalities:

M = {S1, S2-L1C, S2-L2A},
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Figure 2: Overall architecture of TerraFM. It unifies student-teacher contrastive framework with modality augmentation
with cross-attention fusion, and a new dual centering regularization. TerraFM is founded on ViT backbone and is
trained on 18.7M globally distributed samples for pre-training and utilizes large-tile inputs for encoding broader spatial
context. For illustration, RGB channels from S2-L2A and S2-L1C are selected, and S1 is visualized using a false-color
RGB composite.

where S1 corresponds to Sentinel-1 SAR, and S2-L1C and S2-L2A represent two processing levels of Sentinel-2
optical imagery: Level-1C (top-of-atmosphere reflectance) and Level-2A (bottom-of-atmosphere surface reflectance),
respectively. Each modality m ∈ M provides a multi-channel image xm ∈ RH×W×Cm , where H and W denote
spatial dimensions, and Cm is the number of spectral channels for modality m. For example, Sentinel-1 contains two
channels (VV and VH polarizations), therefore CS1 = 2, while Sentinel-2 modalities contain up to 13 spectral bands
depending on level and resolution. These modalities are treated as complementary views of the same location, acting as
natural augmentations, which support our training strategy and encourage learning modality-invariant representations.
To provide semantic grounding, each sample s is assigned a high-level land use and land cover (LULC) category
y(s) ∈ {1, . . . , Y }, derived from the ESA WorldCover product. These categories reflect coarse semantic classes at a
global scale and are used to compute class-frequency-aware statistics for balanced representation learning.

Vision Transformer Model: ViTs adapt the transformer architecture to visual data by treating an image as a sequence
of patch tokens instead of a dense pixel grid. A typical ViT consists of two main components: a patch embedding
module and a transformer encoder. Given an input image x ∈ RH×W×C , the patch embedding layer fθ divides the
image into N non-overlapping patches of size P × P , and projects each patch into a d dimensional embedding:

{zi}Ni=1 = fθ(x), zi ∈ Rd.

This projection is typically implemented using a convolutional layer with kernel size and stride equal to the patch size
P , parameterized by weights Wθ ∈ Rd×C×P×P . To encode spatial information, the transformer encoder augments
each patch token zi with a positional vector. A learnable class token zcls is added to the sequence, which yields the full
input:

Z =
[
zcls; {zi + posi}Ni=1

]
.

The token sequence Z is processed by a stack of L transformer layers, denoted Encϕ. For classification tasks, only the
final class token zcls is forwarded to a prediction head.

Modality-Specific Patch Embedding: Standard patch embedding layers in ViTs are typically implemented using
a shared convolutional projection across all inputs, making it unsuitable for multi-modal remote sensing data. To
better handle this heterogeneity, we adopt a modality-specific patch embedding strategy. For each modality m ∈M,
we define an embedding function fθm that maps the input image x(m) ∈ RH×W×Cm to a sequence of patch tokens
Z̄(m) ∈ RN×D, where Cm is the number of channels and N is the number of patches. Each fθm is parameterized
independently to account for modality-specific dynamics. We associate each modality with a learnable embedding
vector ϵ(m) ∈ RD. This vector is added to every token from that modality via broadcasting:

Z̃(m) = Z̄ + 1N · (ϵ(m))⊤,
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where 1N ∈ RN×1 is a vector of ones. This allows the model to distinguish between modalities while preserving local
spatial and spectral features. Finally, to enable shared processing in the Transformer encoder, the enriched tokens Z̃(m)

are linearly projected into a common latent space of dimension d using a shared projection ψ : RD → Rd:

Z(m) = ψ(Z̃(m)) ∈ RN×d.

This operation aligns all modality-specific token sequences in a unified representation space, allowing the encoder to
process them jointly.

Modality Augmentation and Cross-Attention Fusion: Remote sensing observations of a single location are often
captured using multiple sensors, each providing a unique spectral or radiometric perspective. Instead of treating these
modalities as independent inputs, we interpret them as complementary views of the same scene. This allows us to use
modality diversity as a form of natural augmentation, enabling the model to learn sensor-invariant representations. In
our setup, each spatial sample s from the Major-TOM dataset Francis & Czerkawski (2024) is observed via a fixed
set of modalities. During pretraining, we independently assign modalities to the student and teacher networks via
stochastic selection (threshold = 0.5), ensuring cross-modal supervision. E.g., the teacher may observe a global crop
from Sentinel-1, while the student receives local views from Sentinel-2 L2A. This modality augmentation strategy
encourages the model to align features across sensors, improving robustness to sensor-specific artifacts. We consider
two cases based on the number of selected modalities:

1) Single-Modality Views: If only one modality is selected, the input is passed through the corresponding modality-
specific patch embedding layer followed by the shared transformer encoder. This follows the standard ViT pipeline
but uses modality-aware embeddings to handle spectral channel differences. 2) Multi-Modality Fusion via Cross-
Attention: When multiple modalities M ⊆ M are selected, we activate a modality fusion module based on cross-
attention. For each selected modalitym ∈M , we obtain a patch token sequence Z̄(m) ∈ RN×D, whereN is the number
of spatial positions. These are stacked into a tensor Zall ∈ RN×M×D, aligning spatial positions across modalities. For
each position n = 1, . . . , N , we define shared learnable queries q ∈ RNq×D, which attend to modality-specific keys
Kn ∈ RM×D and values Vn ∈ RM×D, yielding Nq intermediate outputs:

z′
n = MultiHeadAttention(q,Kn,Vn) ∈ RNq×D.

To aggregate them, we compute a learned weighted mean using softmax-normalized attention scores:

w = Softmax(z′
n · pr), zfused

n =

Nq∑
j=1

wjz
′
n[j],

where pr ∈ RD×1 is a learnable projection for scoring the query outputs. This results in a fused token zfused
n ∈ RD.

The final sequence Zfused ∈ RN×D is then passed to the shared encoder Encϕ. This cross-attention fusion allows the
model to dynamically weigh the modality contributions at each spatial location, capturing diverse information while
maintaining spatial coherence.

3.2 PRETRAINING

Our pretraining strategy builds on the DINO framework, which performs self-supervised learning. It operates using a
teacher-student setup, where both networks share the same ViT backbone and a lightweight three-layer projection head.
Let gθs and gθt denote the student and teacher networks, respectively. While the student is trained using gradient-based
optimization, the teacher is updated using EMA of the student’s weights:

θt ← λe θt + (1− λe) θs, λe = 1− (1− λ0)
1 + cos (πe/E)

2
, (1)

where e is the current epoch, E is the total number of training epochs, and λ0 ∈ [0.996, 1) is the initial momentum
coefficient. The cosine schedule gradually increases λe, stabilizing the teacher updates as training progresses. This
EMA mechanism allows the teacher to serve as a temporally smoothed ensemble of past student states, yielding more
stable and consistent targets.

Multi-Crop Learning: To enable scale-invariant and cross-view representation learning, we adopt a multi-crop
strategy as used in DINO Caron et al. (2021). For each input sample, we generate two high-resolution global crops
{x(1)

g ,x
(2)
g } ⊂ Xg and J low-resolution local crops {x(j)

ℓ }Jj=1 ⊂ Xℓ. The teacher network processes only the global
crops, while the student receives both global and local views. Each network produces a K-dim output which is
temperature-scaled and normalized via the softmax function:

Q(i)
s (x) =

exp(gθs(x)
(i)/τs)∑K

k=1 exp(gθs(x)
(k)/τs)

, Q
(i)
t (x) =

exp((gθt(x)
(i) − c(i))/τt)∑K

k=1 exp((gθt(x)
(k) − c(k))/τt)

,
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where τs and τt are temperature parameters that control output sharpness, and c ∈ RK is a centering term representing
the running mean of teacher logits, used to stabilize training and avoid representation collapse. The centering term is
updated using an exponential moving average over the teacher outputs:

c← βc+ (1− β) · 1
B

B∑
i=1

gθt(xi),

where β ∈ [0.9, 0.999] controls the momentum, and B is the batch size. The overall loss encourages consistency
between teacher and student predictions across all distinct view pairs:∑

x∈Xg

∑
x′∈X ;x′ ̸=x

LCE (Qt(x), Qs(x
′)) ,

where X = Xg ∪Xℓ, and LCE(·, ·) denotes the cross-entropy loss. This loss formulation requires the student to produce
consistent representations in all views.

Dual Centering for Long-Tailed Distributions:

Remote sensing datasets often exhibit long-tailed distributions of LULC classes, with frequent categories such as Forest
dominating, while classes like Urban or Bare Land remain underrepresented as shown in Figure 3. This imbalance
persists even after subsampling and poses challenges for representation learning. Standard self-supervised approaches
like DINO Caron et al. (2021) apply a single global centering term to stabilize training and avoid representation collapse,
but they do not account for semantic imbalance in the data. To address this, we propose a dual-centering scheme that
combines global statistics with class-frequency-aware regularization. In addition to the standard global center vector c,
we introduce a secondary center ch ∈ RK , computed from a subset of samples belonging to high-frequency LULC
classes, such as tree cover, grassland, and open seas, based on dataset-level statistics. Given a batch of teacher logits
gθt(x), the adjusted logits for training are computed as:

ĝ(x) = gθt(x)− α · c− (1− α) · ch,

where α ∈ [0, 1] balances the contribution of the global and frequency-aware centers. The vector ch is updated via
exponential moving average using only frequent-class samples within each batch. This dual-centering mechanism
serves two key purposes: (i) it preserves the stability benefits of global centering as in DINO, and (ii) it introduces a soft
rebalancing bias that counteracts the overrepresentation of dominant classes in the feature space. In ablations (Table 5),
this adjustment leads to more balanced representation learning and improved downstream performance, particularly for
underrepresented LULC categories.

4 PRETRAINING DATA SAMPLING

We utilize the Major-TOM dataset Francis & Czerkawski (2024) as our primary EO source for pertaining.
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Figure 3: Land-use/land-cover (LULC) break-
down across the training tiles. A number of
semantically important classes (e.g., builtup,
mangroves, ice) remain underrepresented due to
skewed data distribution.

It contains 2.24 million globally distributed grid cells, each spanning
approximately 10.68 km × 10.68 km (≈114 km2), and provides tri-
modal, co-registered imagery from Sentinel-2 Level-1C, Sentinel-2
Level-2A, and Sentinel-1 RTC. Major-TOM stands out as one of the
few publicly available datasets offering dense multi-modal coverage
at a global scale. However, over one-third of its samples lie outside
a 10 km terrestrial buffer, often within the Open Oceans class Zanaga
et al. (2022), limiting their relevance for land-centric tasks. Moti-
vated by insights from Roscher et al. (2024), which emphasize the
importance of semantically rich samples, and Wang et al. (2024d),
which highlight the utility of structural priors, we applied a principled
filtering strategy. Specifically, we removed 98% of ocean-classified
tiles (retaining 2% to preserve marine representation) and sampled
the terrestrial subset using global distributional priors across land
cover Zanaga et al. (2022), climate zones Beck et al. (2018), and
ESRI world regions Esri et al. (2025). This approach emphasizes
meaningful land regions with ecological variety. Figure 3 shows the
global coverage of the tile and Figure Ap4 in the Appendix covers the map. For pretraining, we curated a filtered subset
of over 1.5 million grid cells with consistent coverage across all three modalities (S1, S2-L1C, and S2-L2A). Each
10.68 km × 10.68 km grid cell was divided into four non-overlapping tiles of 534 × 534 pixels, resulting in more than 6
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million tiles per modality. In total, this yielded 18.7 million modality-specific training tiles. During training, modalities
were stochastically sampled and treated as natural augmentations to promote sensor-invariant representation learning.
To mitigate spatial sampling bias and support semantically-aware learning, we enriched each grid cell with metadata
from the ESRI World Regions dataset Esri et al. (2025).

5 EXPERIMENTS AND RESULTS

5.1 PRETRAINING IMPLEMENTATION DETAILS

We pre-train TerraFM using 534× 534 tiles as inputs. Following the DINO-style cropping strategy Caron et al. (2021),
each tile is randomly cropped at two scales: (i) global crops, sampled with ratios in [0.25, 1.0] of the tile size and
resized to 224× 224, and (ii) local crops, sampled with ratios in [0.05, 0.25] and resized to 96× 96. All inputs are then
tokenized with a 16× 16 patch resolution. The training dataset comprises around 1.53 million multi-modal samples,
from which we define a virtual epoch of 300K samples to ensure frequent parameter updates. TerraFM-B is trained for
150 epochs and TerraFM-L for 200 epochs, each with a linear warmup over the first 30 epochs. Models are trained on
64 GPUs, TerraFM-B training takes 92 hours with a batch size of 1024, while TerraFM-L uses a batch size of 2048 and
trains for 183 hours. The learning rate is linearly scaled with batch size, initialized as lr = 0.0001× batch_size/256.
Following DINO-style pretraining, we disable batch normalization in the projection head and freeze the last layer of
the student for the first 3 epochs to stabilize early training. The output dimensionality is set to K = 65,536, with the
teacher temperature linearly increasing from 0.04 to 0.06 over the first 50 epochs. The teacher momentum follows a
cosine schedule starting from 0.996. A drop path rate of 0.1 is applied for regularization. For modality fusion, we set
Nq = 5 and α = 0.8 during pretraining.

5.2 EVALUATING DOWNSTREAM TASKS

Benchmarks: We evaluate our model on two comprehensive remote sensing benchmarks: GEO-Bench Lacoste et al.
(2023) and Copernicus-Bench Wang et al. (2024a), both of which include diverse downstream tasks spanning multiple
domains and modalities. The benchmark datasets are described in Appendix A, and for evaluation protocols (linear
probing, UperNet probing, k-NN, and fine-tuning), we refer the reader to Appendix C.1.

Discussion: We report KNN classification accuracy on four standard GEO-Bench classification tasks to evaluate
the quality of learned representations in a training-free setting. As shown in Table 2, TerraFM achieves the highest
performance across three datasets, outperforming both modality-specific and multimodal foundation models. Notably,
our model achieves 95.1% on m-EuroSAT and 94.5% on m-Brick-Kiln, highlighting the effectiveness of the learned
representations on standard scene classification tasks. On other challenging tasks such as m-So2Sat and m-BigEarthNet,
our model achieves leading performance (55.9% and 69.4%, respectively), outperforming Galileo Tseng et al. (2025),
despite So2Sat having fewer channels than used during pretraining, highlighting the model’s robustness to missing
modality information. Compared to CROMA Fuller et al. (2023) and DeCUR Wang et al. (2024a), our gains suggest
that contrastive alignment combined with cross-modal fusion enhances class separability. The results across tasks of

Table 2: We evaluate image classification using k-nearest neighbors (kNN) and report Top-1 accuracy for all single-label
tasks. For the multilabel BigEarthNet benchmark, we report the F1 score. Results other than Copernicus-FM and
TerraFM are directly taken from Tseng et al. (2025).

m-EuroSat m-BigEarthNet m-So2Sat m-Brick-Kiln
Training % Training % Training % Training %

Model Backbone 100% 1% 100% 1% 100% 1% 100% 1%

SatMAE (Cong et al. (2022)) ViT-Base 84.1 34.8 50.6 29.0 36.0 23.1 86.1 73.5
SatMAE++ (Noman et al. (2024)) ViT-Large 82.7 48.5 50.8 31.6 34.7 23.4 89.6 76.7
CROMA (Fuller et al. (2023)) ViT-Base 85.6 51.3 58.8 44.7 48.8 33.8 92.6 85.1
SoftCon (Wang et al. (2024b)) ViT-Small 89.8 27.2 64.7 43.3 51.1 31.4 89.2 77.8
DOFA (Xiong et al. (2024)) ViT-Base 82.8 49.6 49.4 29.9 41.4 29.4 88.3 78.3
Satlas (Bastani et al. (2023)) Swin-Tiny 81.7 35.8 51.9 29.6 36.6 27.1 88.2 73.0
MMEarth (Nedungadi et al. (2024)) CNN-atto 81.7 30.0 58.3 39.6 39.8 25.1 89.4 79.7
DeCUR (Wang et al. (2024a)) ViT-Small 89.0 46.6 63.8 49.6 45.8 30.9 83.7 74.2
AnySat (Astruc et al. (2024)) ViT-Base 82.2 47.1 54.9 33.7 39.8 29.0 85.3 72.0
Galileo (Tseng et al. (2025)) ViT-Base 93.0 56.6 59.0 36.5 54.8 43.2 90.7 78.0
Prithvi-2.0 (Szwarcman et al. (2024)) ViT-Large 80.2 48.0 49.4 28.8 29.5 26.1 87.9 80.6
Copernicus-FMWang et al. (2025) ViT-Base 76.0 47.4 53.8 33.3 38.4 23.3 93.0 83.2

TerraFM (Ours) ViT-Base 94.2 59.3 68.7 49.4 55.1 41.6 94.5 85.6
ViT-Large 95.1 62.1 69.4 50.6 55.9 41.1 93.0 82.2
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Table 3: Performance comparison on GEO-Bench for both classification (Top-1 Accuracy), segmentation (mIoU),
and F1 score (for m-BigEarthNet). TerraFM achieves state-of-the-art results across multiple datasets, outperforming
previous FMs.

Classification Segmentation
Method Backbone m-EuroSat m-BigEarthNet m-So2Sat m-Brick-Kiln m-Cashew-Plant m-SA-Crop-Type

SatMAE ViT-Large 96.6 68.3 57.2 98.4 30.8 24.8
SatMAE++ ViT-Large 96.5 67.9 56.0 98.6 29.6 25.7
CROMA ViT-Large 96.6 71.9 60.6 98.7 31.8 32.0
SoftCon ViT-Base 97.5 70.3 61.7 98.7 29.6 30.8
DOFA ViT-Large 96.9 68.0 58.7 98.6 27.7 25.4
Satlas Swin-Base 97.5 72.8 61.9 98.4 25.1 23.4
MMEarth CNN-atto 95.7 70.0 57.2 98.9 24.2 22.2
DeCUR ViT-Small 97.9 70.9 61.7 98.7 26.2 21.5
Prithvi 2.0 ViT-Large 96.5 69.0 54.6 98.6 26.7 22.9
AnySat ViT-Base 95.9 70.3 51.8 98.6 26.1 27.1
Galileo ViT-Base 97.7 70.7 63.3 98.7 33.0 30.1

TerraFM ViT-Base 98.1 72.6 64.9 98.7 34.1 33.0
ViT-Large 98.6 73.1 66.6 99.0 37.2 34.5

varying difficulty indicate that our model learns robust and transferable representations that generalize well across
different scenarios.

Further GEO-Bench results with fine-tuning and linear probing are reported in Table 3, for classification (with
fine-tuning), TerraFM achieves the improvement on m-BigEarthNet (73.1%) and m-EuroSat (98.6%), and the best-
performing model on m-So2Sat (66.6%). For segmentation (with linear probing), our TerraFM-L notably outperforms
existing models on m-SA-Crop-Type (34.5% mIoU) and m-Cashew-Plant (37.2% mIoU). TerraFM-B surpasses
larger counterparts such as ViT-Large used in SatMAE++Noman et al. (2024) and DOFAXiong et al. (2024). On
the Copernicus-Bench Wang et al. (2025) (Table 4), TerraFM delivers state-of-the-art results across most tasks and
modalities. It achieves 67.9 mIoU on Cloud-S2, 87.8 OA on EuroSAT-S1, and 99.1 OA on EuroSAT-S2, surpassing all
prior models. On BigEarthNet-S2 and DFC2020-S1, TerraFM attains 84.4 mAP and 55.4 mIoU, respectively, marking
clear gains over existing FMs. While SoftCon Wang et al. (2024b) is slightly higher on BigEarthNet-S1 (78.7 vs. 76.9),
TerraFM consistently outperforms Copernicus-FM Wang et al. (2025) despite sharing the same ViT-B/16 backbone.
These results highlight TerraFM’s scalability and strong generalization across diverse EO benchmarks.

Table 4: Comparison of TerraFM with supervised and self-supervised methods on Copernicus-Bench. Metrics: OA
(Overall Accuracy for classification), mAP (mean Average Precision for multi-label classification), mIoU (mean
Intersection over Union for segmentation). Baselines include SoftCon Wang et al. (2024b), CROMA Fuller et al. (2023),
DOFA Xiong et al. (2024), and Copernicus-FM Wang et al. (2025).

Model / Metric Cloud-
S2 (mIoU)

EuroSAT-
S1 (OA)

EuroSAT-
S2 (OA)

BigEarthNet-
S1 (mAP)

BigEarthNet-
S2 (mAP)

DFC2020-
S1 (mIoU)

DFC2020-
S2 (mIoU)

LCZ-
S2 (OA)

Supervised (ViT-B/16) 59.4 81.5 97.6 70.6 80.1 50.8 66.2 85.3
Random (ViT-B/16) 60.4 75.4 92.5 63.8 71.6 45.4 62.3 77.4
SoftCon (ViT-B/14) 66.9 83.6 96.7 78.7 83.6 52.8 64.1 83.6
CROMA (ViT-B/8) 65.0 83.9 97.0 70.8 76.4 52.7 66.5 84.1
DOFA (ViT-B/16) 65.0 81.7 97.2 70.5 75.5 49.7 61.8 83.0
Copernicus-FM (ViT-B/16) 66.7 87.2 97.9 77.9 79.0 52.4 64.5 84.4
TerraFM (ViT-B/16) 67.9 87.8 99.1 76.9 84.4 55.4 63.8 87.0

5.3 ABLATIONS AND ANALYSIS

Impact of Components: Table 5 highlights the incremental benefits of each component in our framework. We train
TerraFM-B for 150 epochs on a 200k-sample subset from our full training dataset. The model was trained on a subset
of the training data, and KNN classification accuracy is reported for each dataset. To measure the performance on
segmentation task, we use uppernet probing on the m-Cashew-Plantation dataset from GeoBench. Adding modality as
augmentation improves performance on m-EuroSat by +4.5% and m-BigEarthNet by +3.01%. Incorporating fusion
yields a large gain on m-Cashew-Plantation by +11.82%, while dual centering provides further improvements: +3.44%
on m-BigEarthNet, +7.2% on m-EuroSat, and +14.0% on m-Cashew-Plantation.
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Figure 4: Mean entropy per LULC class from 5k training sam-
ples, with logits (K = 65,536) reduced via Gaussian projection.
The baseline (no dual-centering) shows lower entropy and over-
confident predictions skewed to frequent classes. Dual-centering
increases entropy, yielding more balanced predictions, especially
for rare classes like Mangroves and Herbaceous-Wetland.
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Figure 5: Prototype diversity is measured as the number of
unique top-5 prototypes across 5k training samples. Dual-
centering improves diversity for tail classes like Mangroves,
Herbaceous-Wetland, and Built-up, indicating richer represen-
tations. The baseline reuses fewer prototypes, reflecting over-
reliance on dominant frequent-class features.

SS MAug Fus DC BEN ES CP

✓ – – – 54.62 83.20 50.58
✓ ✓ – – 57.63 87.70 59.17
✓ ✓ ✓ – 57.74 88.50 62.40
✓ ✓ ✓ ✓ 58.06 90.40 64.58

Table 5: Ablation of components: SS = Self-
supervised contrastive learning, MAug = Modal-
ity Augmentation, Fus = Fusion, DC = Dual
Centering. BEN = m-BigEarthNet, ES = m-
EuroSat, CP = m-Cashew-Plant.

Dual-centering Motivation and Visualization: Here, we discuss the impact of Dual-centering on class-
wise prediction behavior and representation diversity. Figure 4 shows that models with Dual-centering
exhibit higher softmax entropy across most classes, indicating more calibrated predictions, particularly
benefiting rare classes like "Mangroves". Figure 5 reveals that Dual Centering significantly increases
prototype diversity, i.e., the number of distinct top-5 features activated, especially for tail classes.
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Figure 6: Performance comparison on
GEO-Bench using supervised fine-tuning
and kNN evaluation. TerraFM consis-
tently outperforms recent EO foundation
models, AnySat Astruc et al. (2024),
DOFA Xiong et al. (2024), Galileo Tseng
et al. (2025), Prithvi-2.0 Szwarcman et al.
(2024), and Satlas Bastani et al. (2023),
across modalities and evaluation settings.

This suggests that the model avoids collapsing onto frequent-class proto-
types and learns more diverse, semantically rich representations. These
results motivate Dual-centering as an effective strategy for reducing class
imbalance effects in representation learning.

MACs-Performance Trade-Off: We analyze the compute–accuracy trade-
off using Multiply–Accumulate operations (MACs) to measure inference
cost. As shown in Fig. 6, TerraFM achieves the highest m-EuroSat accu-
racy at substantially lower MACs, validating the efficiency of our fusion
design and pretraining strategy. Notably, models with higher MACs do
not guarantee better performance, underscoring the need for compact yet
expressive architectures in scalable EO settings.

For further results and other supporting information, we refer readers to the
Appendix.

6 CONCLUSION

In this work, we introduced TerraFM, a unified and scalable foundation
model (FM) specifically designed for multisensor EO. Given the unique
nature of EO data, our approach pays special treatment to sensor hetero-
geneity, scale-invariance, and class-frequency imbalance which is critical
for building generalizable EO FMs. Our pretraining approach leverages
contrastive learning to obtain geographically and spectrally aware represen-
tations from large-scale Sentinel-1 and 2 data. Specifically, we integrate
modality-specific patch embeddings, adaptive cross-attention fusion, and
a dual-centering contrastive learning objective to enrich the representations
on heterogeneous RS data. Our extensive evaluations on GEO-Bench and Copernicus-Bench demonstrate that TerraFM
consistently outperforms SoTA self-supervised ViT models across both classification and segmentation tasks.
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APPENDIX

This supplementary material presents additional experiments, analyses, and visualizations that complement the main
paper. It includes benchmarks information (A), detailed descriptions & experiments for our multimodal fusion strategies
(B), implementation details (C.1) and evaluations on scaling trends with data size (C.2), high resolution benchmarks
(C.3), & change detection (C.4), Further more we also provide additional analysis and qualitative figures (D.1). We also
report GPU-hour comparisons with comparable methods (D.2), landslide detection (D.3) and visualize the land cover
distribution of our dataset using global maps (D.4).

A BENCHMARKS

We evaluate TerraFM on two comprehensive remote sensing benchmarks, GEO-Bench and Copernicus-Bench, which
together cover a wide range of tasks, modalities, and resolutions. 1) GEO-Bench Lacoste et al. (2023) standardizes
evaluation across 12 curated tasks, including 6 classification and 6 segmentation challenges. These datasets are
selected for open access and license compliance, and have been harmonized with consistent evaluation settings. While
GEO-Bench supports various sensor types (e.g., Landsat-8, Sentinel-2, and hyperspectral sensors), for consistency with
our model’s pretraining, we restrict the main evaluation to Sentinel-2-based tasks. Specifically, we report results on m-
EuroSAT Helber et al. (2019), m-BigEarthNet Sumbul et al. (2019), m-So2Sat Zhu et al. (2019), m-Brick-Kiln Lee et al.
(2021) (classification) and m-Cashew-Plantation Z. et al. (2021), m-SA-Crop-Type Foundation (2021) (segmentation).
Additional results on the remaining GEO-Bench datasets, including high-resolution tasks, are provided in Appendix C.3.
2) Copernicus-Bench Wang et al. (2025) provides 15 downstream tasks aligned with the full Sentinel mission family
(Sentinel-1 to Sentinel-5P), and categorizes tasks into three levels: low-level (e.g., cloud detection), mid-level (e.g.,
land cover segmentation), and high-level (e.g., flood detection or yield prediction). While Copernicus-Bench leverages
all Sentinel missions, in this work, we restrict evaluation to tasks using only Sentinel-1 and Sentinel-2 imagery. We
evaluate on the following subset: Cloud-S2 Aybar et al. (2024), EuroSAT-S1 Wang et al. (2024c), EuroSAT-S2 Helber
et al. (2019), BigEarthNet-S1 Clasen et al. (2024), BigEarthNet-S2 Clasen et al. (2024), DFC2020-S1 Hänsch (2019),
DFC2020-S2 Hänsch (2019), LCZ-S2 Zhu et al. (2019).

B MULTI-MODAL FUSION STRATEGIES:

We investigate various strategies for multi-modal fusion and report results in Table Ap1 on two benchmark datasets:
m-BigEarthNet and m-EuroSat. As a baseline, we evaluate standard DINO training using only Sentinel-2 L2A input
(DINO (S2-L2A)), which learns unimodal representations. To enable explicit modality-aware learning, we apply a
Multi-Student-Teacher approach where each modality has its own student and teacher networks, along with an alignment
loss between student outputs to enforce cross-modal consistency. This yields consistent gains across both datasets.
We also test a more expressive fusion approach, CrossAttn (Q = 196) Global, where 196 learned queries (standard
for 224×224 image inputs) attend globally to multi-modal tokens immediately after patch embedding. However, this
method does not perform well, likely due to excessive parameterization and lack of inductive bias for spatial alignment.
Figure Ap1 visually summarizes key fusion strategies evaluated in Table Ap1, including (a) Multi-Student-Teacher, (b)
unimodal DINO, and (c) CrossAttn (Q = 196) Global, highlighting their architectural differences and fusion mechanisms.
Our proposed approach, TerraFM-B (Q = 1), treats a modality as an augmentation and performs fusion using a single
learned spatial query per location. This lightweight attention mechanism yields the best performance among non-
ensemble methods. To further analyze architectural choices, we test a variant, TerraFM-B (ViT PatchEmb), where the
convolutional patch embedding is replaced by a ViT-S backbone purely for token extraction. While competitive, this
setup slightly drops the performance due to increased model complexity and potential overfitting. Finally, our full
model, TerraFM-B (Q = 5), employs multiple learned spatial queries to achieve richer fusion between modalities. It
achieves the best overall performance, validating the scalability and effectiveness of our fusion design.

m-BigEarthNet m-EuroSat

DINO (S2-L2A) 54.6 83.2
Multi-Student-Teacher 55.8 87.8
CrossAttn (Q = 196) Global 52.0 77.1
TerraFM-B (Q = 1) 57.2 89.2
TerraFM-B (ViT PatchEmb) 56.9 87.2
TerraFM-B (Q = 5) 58.1 90.4

Table Ap1: Ablation study on multi-modal
fusion strategies using k-NN evaluation.
TerraFM-B with multiple spatial queries (Q
= 5) achieves the best performance.
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Figure Ap1: Architectural overview of different fusion strategies: (a) Multi-Student-Teacher with alignment loss, (b)
unimodal DINO baseline, and (c) CrossAttn (Q = 196) with global learned queries.

C EVALUATION

C.1 EVALUATION IMPLEMENTATION DETAILS

Linear Probing Evaluation: To evaluate the quality of learned representations, we follow a linear probing protocol
of DINOv2Oquab et al. (2023) that follows with a lightweight grid search over three key hyperparameters: (i) the
learning rate, (ii) the number of transformer layers from which features are extracted, and (iii) whether to use only the
[CLS] token or to concatenate it with the average-pooled patch tokens. We train the linear classifier using stochastic
gradient descent (SGD) for 50 epochs. The training data is augmented using random resized cropping. Specifically, we
sweep the learning rate over the set {10−5, 2 × 10−5, 5 × 10−5, 10−4, 2 × 10−4, 5 × 10−4, 10−3, 2 × 10−3, 5 ×
10−3, 10−2, 2 × 10−2, 5 × 10−2, 1} Importantly, this search is computationally efficient: features from the frozen
backbone are computed once per image using a single forward pass and reused across all configurations, since each
linear head only requires a simple forward pass. For each configuration, we evaluate the classifier on the validation
set and report the test accuracy achieved by the best validation configuration. UperNet Probing Evaluation: For
UperNet Xiao et al. (2018) Probing evaluation, we freeze the pretrained backbone and attach UPerNet decoder head.
Specifically, we use a Feature2Pyramid module as the neck, followed by a UPerNet decoder and an auxiliary
FCNHead. We train only the segmentation heads using the AdamW optimizer for 50 epochs without learning rate
warm-up. We conduct a grid search over base learning rates {10−1, 10−2, 10−3, 10−4, 10−5, 10−6}. and batch size
set {16, 32, 64}. k-NN Evaluation: To assess the quality of the learned representations without any finetuning, we
apply non-parametric classification using a k-nearest neighbors (k-NN) classifier on the frozen features. In addition to
sweeping over k ∈ 3, 5, 7, 10, 15, 20, 30, 50, 100 using validation set performance, we follow the same layer selection
strategy as linear probing i.e evaluating features from the last 4 transformer layers. This protocol does not require
additional training or data augmentation, making it a lightweight and reliable indicator of raw feature quality in
pretrained models. Finetuning Evaluation: For full-model finetuning, we unfreeze the backbone and jointly optimize
it with the task-specific head. We perform a grid search over learning rates in the evaluation set and batch sizes. To
stabilize training, we apply a reduced learning rate for the backbone, set to half of the main learning rate used for the
head parameters. Once the best configuration is selected based on validation performance, we evaluate the finetuned
model on the test set.

C.2 SCALING TRENDS WITH DATASET SIZE:

We report scaling results on four GEO-Bench classification tasks when increasing model size and the pretraining dataset
from 20% to 100% (Table Ap2). While all model sizes improve with additional data, the effect is more pronounced
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Table Ap2: Scaling behavior of TerraFM models with increasing model size and pretraining data across four GEO-Bench
classification tasks.

Dataset Model 20% 100% Gain

EuroSat TerraFM-S 91.7 92.0 0.3
TerraFM-B 92.0 94.2 2.2
TerraFM-L 92.1 95.1 3.0

BigEarthNet TerraFM-S 62.6 65.3 2.7
TerraFM-B 63.2 68.7 5.5
TerraFM-L 62.6 69.4 6.8

So2sat TerraFM-S 50.5 52.3 1.8
TerraFM-B 49.7 55.1 5.4
TerraFM-L 49.1 55.9 6.8

Brick-Kiln TerraFM-S 90.5 91.4 0.9
TerraFM-B 91.4 94.5 3.1
TerraFM-L 91.0 93.0 2.0

for the Base and Large variants. For example, TerraFM-L achieves a 6.8 point gain on BigEarthNet and So2Sat,
compared to only 2.7 and 1.8 for TerraFM-S. On EuroSat and Brick-Kiln, where performance is already near saturation,
the gains are smaller but still positive. These results confirm that larger models are more data-efficient and benefit
disproportionately from increased pretraining scale, aligning with scaling laws observed in recent foundation model
studies.

C.3 EVALUATION ON HIGH-RESOLUTION BENCHMARKS.

To further assess generalization, we extend TerraFM’s evaluation to include low-to-high resolution GEO-Bench tasks as
well as the widely used AID Xia et al. (2017) dataset (Table Ap3). Despite being pretrained solely on Sentinel-1 and
Sentinel-2, TerraFM achieves consistent improvements over Galileo across diverse sensors and resolutions. Notably,
TerraFM transfers effectively to m-forestnet, which uses 15m Landsat-8 inputs compared to TerraFM’s 10m Sentinel-2
pretraining resolution, yielding a +7.7 point gain from baseline. On fine-scale RGB datasets such as m-pv4ger (0.1m)
and m-chesapeake-landcover (1m), TerraFM also shows strong gains (+1.5 and +36.8 mIoU, respectively). These results
highlight TerraFM’s robustness across modalities and scales ranging from 0.1–15 m, complementing the evaluations in
the main paper.

Table Ap3: Comparison on low-to high resolution benchmarks.

Dataset Task Sensor Resolution Galileo TerraFM

m-forestnet (Irvin et al. (2020)) Classification Landsat 8 15m 49.4 57.1
m-pv4ger (Mayer et al. (2022)) Classification RGB 0.1m 96.7 98.2
AID (Xia et al. (2017)) Classification RGB — 78.2 93.8
m-pv4ger-seg (Mayer et al. (2022)) Segmentation RGB 0.1m 55.8 85.6
m-chesapeake-landcover (Schmitt et al. (2019)) Segmentation RGB 1.0m 14.6 51.4
m-nz-cattle (Laradji et al. (2020)) Segmentation RGB 0.1m 49.7 68.5
m-NeonTree (Weinstein et al. (2020)) Segmentation RGB 0.1m 51.1 54.0

C.4 EVALUATION ON CHANGE DETECTION.

We evaluate TerraFM on the OSCD Daudt et al. (2018) change detection dataset to assess the effect of sensor-invariance
on temporal tasks (Table Ap4). Despite being trained without explicit temporal supervision, TerraFM-B with U-Net
probing achieves 52.2 mIoU, substantially outperforming SSL4EO-S12 Wang et al. (2022) (35.1), SEN12MS Schmitt
et al. (2019) (30.6), and SeCo Mañas et al. (2021) (28.3). This suggests that TerraFM not only learns robust cross-sensor
invariances but also implicitly learns time-invariant representations. However, due to the nature of DINO loss, which
aligns global semantics, the model may still preserve object-level distinctions, resulting in improved performance on
OSCD.
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Table Ap4: Performance comparison on the change detection.

Method SeCo SEN12MS SSL4EO-S12 TerraFM-B

F1 Score (%) 28.33 30.62 35.08 52.20

D ADDITIONAL ANALYSIS

D.1 QUALITATIVE RESULTS:

Fig. Ap2 illustrates qualitative results for the cloud and cloud shadow segmentation task from Copernicus-Bench.
TerraFM accurately outlines both cloud and shadow regions, effectively distinguishing visually similar patterns while
maintaining spatial coherence across varied scenes.

Image Label Prediction Image Label Prediction

Figure Ap2: Qualitative results for cloud and cloud shadow segmentation. Each triplet shows the input image (left), the
ground truth mask (middle), and the TerraFM prediction (right).

D.2 GPU HOUR COMPARISON:

Compared to Prithvi-2.0, which trains ViT-L (300M) model using up to 80 GPUs for 400 epochs, consuming approxi-
mately 21,000 GPU-hours Szwarcman et al. (2024), our TerraFM (300M) achieves comparable scale using significantly
fewer resources. Specifically, TerraFM is trained for 200 epochs on 64 GPUs, amounting to approximately 12,000
GPU-hours.

D.3 LANDSLIDE DETECTION

We evaluate landslide segmentation on the Landslide4Sense (L4S) Ghorbanzadeh et al. (2022) benchmark, which
provides segmentation labels for landslide and non-landslide regions across diverse mountainous areas using multi-
source satellite data, including Sentinel-2 bands, DEM, and slope information. Our method, TerraFM, achieves
strong performance with a mean IoU of 70.8 and a landslide IoU of 43.1, outperforming the Prithvi-EO-2.0 baseline
(Table Ap5). Both TerraFM and Prithvi-EO-2.0 are trained using focal loss with a batch size of 16, Adam optimizer
with a learning rate of 1× 10−4. Figure Ap3 shows qualitative results from TerraFM, illustrating predicted landslide
masks alongside the ground truth.
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mIoU IoU (Landslide)

Prithvi-EO-2.0 (300M) 65.0 31.5
TerraFM (120M) 70.8 43.1

Table Ap5: Landslide detection per-
formance on the Landslide4Sense test
set. Despite being significantly smaller
(120M parameters vs. 300M for Prithvi-
EO-2.0), TerraFM achieves higher over-
all segmentation performance, espe-
cially for landslide regions.

D.4 LAND COVER DISTRIBUTION:

Fig. Ap5 illustrates the global spatial coverage of our pretraining data. The selected samples span diverse ecosystems,
capturing a balanced mix of urban, vegetation, sea, and arid regions. The insets demonstrate fine-grained land cover
variability, ensuring semantic richness across training tiles. This diverse geographic grounding plays a crucial role in
enabling the generalization capabilities of TerraFM across regions and tasks.

LLM Usage Statement: We used large language models for polishing and improving the clarity of writing. They were
not involved in research ideation, experiment design, analysis, or generation of results.
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Image TerraFMGround Truth

Figure Ap3: Qualitative results for landslide segmentation. Each triplet shows the input image (left), the ground truth
mask (middle), and the TerraFM prediction (right).
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Figure Ap4: Global spatial distribution of the Major-TOM Francis & Czerkawski (2024) training subset. Each square
shows a 1◦ × 1◦ cell, colored by the number of 10.68 km × 10.68 km tiles it contains.

Figure Ap5: Global distribution of sampled training tiles by dominant land cover class, based on ESA WorldCover
labels. Insets show detailed tile-level diversity, highlighting coverage across built-up, vegetation, and water classes.
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