

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 POSTERIOR BEHAVIORAL CLONING: PRETRAINING BC POLICIES FOR EFFICIENT RL FINETUNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Standard practice across domains from robotics to language is to first pretrain a policy on a large-scale demonstration dataset, and then finetune this policy, typically with reinforcement learning (RL), in order to improve performance on deployment domains. This finetuning step has proved critical in achieving human or super-human performance, yet while much attention has been given to developing more effective finetuning algorithms, little attention has been given to ensuring the pretrained policy is an effective initialization for RL finetuning. In this work we seek to understand how the pretrained policy affects finetuning performance, and how to pretrain policies in order to ensure they are effective initializations for finetuning. We first show theoretically that, by training a policy to clone the demonstrator’s *posterior* distribution given the demonstration dataset—rather than simply the demonstrations themselves—we can obtain a policy that ensures coverage over the demonstrator’s actions—a minimal condition for effective finetuning—without hurting the performance of the pretrained policy. Furthermore, we show that standard behavioral cloning (BC) pretraining fails to achieve this without significant tradeoffs in terms of sampling costs. Motivated by this, we then show that this approach is practically implementable with modern generative policies in robotic control domains, in particular diffusion policies, and leads to significantly improved finetuning performance on realistic robotic control benchmarks, as compared to standard behavioral cloning.

1 INTRODUCTION

Across domains—from language, to vision, to robotics—a common paradigm has emerged for training highly effective “policies”: collect a large set of demonstrations, “pretrain” a policy via behavioral cloning (BC) to mimic these demonstrations, then “finetune” the pretrained policy on a deployment domain of interest. While pretraining can endow the policy with generally useful abilities, the finetuning step has proved critical in obtaining effective performance, enabling human value alignment and reasoning capabilities in language domains (Ouyang et al., 2022; Bai et al., 2022a; Team et al., 2025; Guo et al., 2025a), and improving task solving precision and generalization to unseen tasks in robotic domains (Nakamoto et al., 2024; Chen et al., 2025; Kim et al., 2025; Wagenmaker et al., 2025). In particular, reinforcement learning (RL)-based finetuning—where the pretrained policy is deployed in a setting of interest and its behavior updated based on the outcomes of these online rollouts—is especially crucial in improving the performance of a pretrained policy.

Critical to achieving successful RL-based finetuning performance in many domains—particularly in settings when policy deployment is costly and time-consuming, such as robotic control—is sample efficiency; effectively modifying the behavior of the pretrained model using as few deployment rollouts as possible. While significant attention has been given to developing more efficient finetuning algorithms, this ignores a primary ingredient in the RL finetuning process: the pretrained policy itself. Though generally accepted that a stronger pretrained policy is a better initialization for finetuning (Guo et al., 2025a; Yue et al., 2025), it is not well understood how pretraining impacts finetuning performance beyond this, and how we might pretrain policies to enable more efficient RL finetuning.

In this work we seek to understand the role of the pretrained policy in RL finetuning, and how we might pretrain policies that (a) enable efficient RL finetuning, and (b) before finetuning, perform no worse than the standard BC policy. We propose a novel pretraining approach—*posterior behavioral*

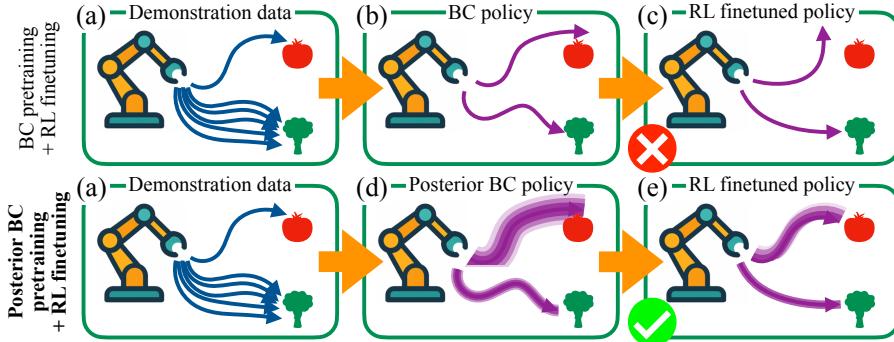


Figure 1: We consider the setting where we are given demonstration data for some tasks of interest, (a). (b) Standard BC pretraining fits the behaviors in the demonstrations, leading to effective performance in regions with high demonstration data density, yet poor performance in regions with low data density. (c) This leads to ineffective RL finetuning, since rollouts from the BC policy provide little meaningful reward signal in such low data density regions, which is typically necessary to enable effective improvement. (d) In contrast, we propose *posterior behavioral cloning*, which instead of directly mimicking the demonstrations, trains a generative policy to fit the *posterior distribution* of the demonstrator’s actions. This endows the pretrained policy with a wider distribution of actions in regions of low demonstrator data density, while in regions of high data density it reduces to approximately the standard BC policy. (e) This wider action distribution allows for collection of diverse observations with more informative reward signal, allowing for more effective RL finetuning.

—which, rather than fitting the empirical distribution of demonstrations as standard BC does, instead fits the *posterior* distribution over the demonstrator’s behavior. This enables the pretrained policy to take into account its potential uncertainty about the demonstrator’s behavior, and adjust the entropy of its action distribution based on this uncertainty. In states where it is uncertain about the demonstrator’s actions, posterior BC samples from a high-entropy distribution, allowing for a more diverse set of actions that may enable further policy improvement, while in states where it is certain about the demonstrator’s actions, it samples from a low-entropy distribution, simply mimicking what it knows to be the (correct) demonstrator behavior (see Figure 1).

Theoretically, we show that posterior BC leads to provable improvements over standard BC in terms of the potential for downstream RL performance. In particular, we focus on the ability of the pretrained policy to cover the demonstrator policy’s actions—whether it samples all actions the demonstrator policy might sample—which, for finetuning approaches that rely on rolling out the pretrained policy, is a prerequisite for ensuring finetuning can even match the performance of the demonstrator. We show that standard BC can provably fail to cover the demonstrator’s distribution, while posterior BC *does* cover the demonstrator’s distribution, incurs no suboptimality in the performance of the pretrained policy as compared to the standard BC policy, and achieves a near-optimal sampling cost out of all policy estimators which have suboptimality no more than the BC policy’s.

Inspired by this, we develop a practical approach to approximating the posterior of the demonstrator in continuous action domains, and instantiate posterior BC with modern generative models—diffusion models—on robotic control tasks. We demonstrate experimentally that posterior BC pretraining can lead to significant performance gains in terms of the efficiency and effectiveness of RL finetuning, as compared to running RL finetuning on a policy pretrained with standard BC, and achieves these gains without decreasing the performance of the pretrained policy itself. We show that this holds for a variety of finetuning algorithms—both policy-gradient-style algorithms, and algorithms which explicitly refine or filter the distribution of the pretrained policy—enabling effective finetuning performance across a variety of challenging robotic tasks.

2 RELATED WORK

BC pretraining. BC training of expressive generative models—where the model is trained to predict the next “action” of the demonstrator—forms the backbone of pretraining for LLMs (Radford et al., 2018) and robotic control policies (Bojarski, 2016; Zhang et al., 2018; Rahmatizadeh et al., 2018; Stepputtis et al., 2020; Shafiuallah et al., 2022; Gu et al., 2023; Team et al., 2024; Zhao et al.,

108 2024; Black et al., 2024; Kim et al., 2024). We focus in particular on policies parameterized as
 109 diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020), which have seen
 110 much attention in the robotics community (Chi et al., 2023; Ankile et al., 2024a; Zhao et al., 2024;
 111 Ze et al., 2024; Sridhar et al., 2024; Dasari et al., 2024; Team et al., 2024; Black et al., 2024; Bjorck
 112 et al., 2025). These works, however, simply pretrain with standard BC, and do not consider how the
 113 pretraining may affect RL finetuning performance.

114 **Other approaches for pretraining from demonstrations.** While our primary focus is on behav-
 115 ior cloning (as noted, the workhorse of most modern applications) other approaches to pretraining
 116 from demonstrations exist. BC is only one possible instantiation of *imitation learning*; other
 117 approaches to imitation learning include inverse RL (Ng et al., 2000; Abbeel & Ng, 2004; Ziebart
 118 et al., 2008), methods that aim to learn a policy matching the state distribution of the demonstrator,
 119 such as adversarial imitation learning (Ho & Ermon, 2016; Kostrikov et al., 2018; Fu et al., 2017;
 120 Kostrikov et al., 2019; Ni et al., 2021; Garg et al., 2021; Xu et al., 2022; Li et al., 2023b; Yue et al.,
 121 2024), and robust imitation learning (Chae et al., 2022; Desai et al., 2020; Tangkaratt et al., 2020;
 122 Wang et al., 2021; Giammarino et al., 2025). The majority of these works, however, either assume
 123 access to additional data sources (e.g. suboptimal trajectories), or require online environment access
 124 and are therefore not truly offline pretraining approaches, the focus of this work. Furthermore, none
 125 of these works explicitly consider the role of pretraining in enabling efficient RL finetuning.

126 Meta-learning directly aims learn an initialization that can be quickly adapted to a new task. While
 127 instantiations of meta-learning for imitation learning exist (Duan et al., 2017; Finn et al., 2017b;
 128 James et al., 2018; Dasari & Gupta, 2021; Gao et al., 2023), our setting differs fundamentally from
 129 the meta-imitation learning setting. Meta-imitation learning assumes access to demonstration data
 130 from *more than one task*, and attempts to learn an initialization that will allow for quickly adapting
 131 to demonstrations from a *new task*. In contrast, we primarily consider learning on a *single task*
 132 (though our approach does extend to multi-task learning), and aim to find an initialization that
 133 allows for improvement on the *same task*, while preserving pretrained performance on this task.
 134 Furthermore, rather than learning from new *demonstrations*, as meta-imitation learning does, we
 135 aim to learn from (potentially suboptimal) data collected online and that is labeled with rewards.

136 **RL finetuning of pretrained policies.** RL finetuning of pretrained policies is a critical step in both
 137 language and robotic domains. In language domains, RL finetuning has proved crucial in aligning
 138 LLMs to human values (Ziegler et al., 2019; Ouyang et al., 2022; Bai et al., 2022a; Ramamurthy
 139 et al., 2022; Touvron et al., 2023), and enabling reasoning abilities (Shao et al., 2024; Team et al.,
 140 2025; Guo et al., 2025a). A host of finetuning algorithms have been developed, both online (Bai
 141 et al., 2022b; Bakker et al., 2022; Dumoulin et al., 2023; Lee et al., 2023; Munos et al., 2023; Swamy
 142 et al., 2024; Chakraborty et al., 2024; Chang et al., 2024) and offline (Rafailov et al., 2023; Azar
 143 et al., 2024; Rosset et al., 2024; Tang et al., 2024; Yin et al., 2024). In robotic and control domains,
 144 RL finetuning methods include directly modifying the weights of the base pretrained policy (Zhang
 145 et al., 2024; Xu et al., 2024; Mark et al., 2024; Ren et al., 2024; Hu et al., 2025; Guo et al., 2025b;
 146 Lu et al., 2025; Chen et al., 2025; Liu et al., 2025), Best-of- N sampling-style approaches that filter
 147 the output of the pretrained policy with a learned value function (Chen et al., 2022; Hansen-Estruch
 148 et al., 2023; He et al., 2024; Nakamoto et al., 2024; Dong et al., 2025b), “steering” the pretrained
 149 policy by altering its sampling process (Wagenmaker et al., 2025), and learning smaller residual
 150 policies to augment the pretrained policy’s actions (Ankile et al., 2024b; Yuan et al., 2024; Jülg
 151 et al., 2025; Dong et al., 2025a). Our work is tangential to this line of work: rather than improving
 152 the finetuning algorithm, we aim to ensure the pretrained policy is amenable to RL finetuning.

153 **Posterior sampling and exploration.** Our proposed approach relies on modeling the posterior
 154 distribution of the demonstrator’s actions. While this is, to the best of our knowledge, the first
 155 example of applying posterior sampling to BC, posterior methods have a long history in RL, going
 156 back to the work of Thompson (1933). This works spans applied (Osband et al., 2016a;b; 2018;
 157 Zintgraf et al., 2019) and theoretical (Agrawal & Goyal, 2012; Russo & Van Roy, 2014; Russo et al.,
 158 Janz et al., 2024; Kveton et al., 2020; Russo, 2019) settings. More generally, our approach can
 159 be seen as enabling BC-trained policies to *explore* more effectively. Exploration is a well-studied
 160 problem in the RL community (Śtdzie et al., 2015; Bellemare et al., 2016; Burda et al., 2018; Choi
 161 et al., 2018; Ecoffet et al., 2019; Shyam et al., 2019; Lee et al., 2021; Henaff et al., 2022), with
 162 several works considering learning exploration strategies from offline data (Hu et al., 2023; Li
 163 et al., 2023a; Wilcoxon et al., 2024; Wagenmaker et al.). These works, however, either consider
 164 RL-based pretraining (while we focus on BC) or do not consider the question of online finetuning.

162 **3 PRELIMINARIES**

164 **Mathematical notation.** Let \lesssim denote inequality up to absolute constants, $\Delta_{\mathcal{X}}$ the simplex over \mathcal{X} ,
 165 and $\text{unif}(\mathcal{X})$ the uniform distribution over \mathcal{X} . $\mathbb{I}\{\cdot\}$ denotes the indicator function, $\mathbb{E}^{\pi}[\cdot]$ the expectation under policy π and, unless otherwise noted, $\mathbb{E}[\cdot]$ the expectation over the demonstrator dataset.
 166

167 **Markov decision processes.** We consider decision-making in the context of episodic, fixed-horizon
 168 Markov decision processes (MDPs). An MDP \mathcal{M} is denoted by a tuple $(\mathcal{S}, \mathcal{A}, \{P_h\}_{h=1}^H, P_0, r, H)$,
 169 where \mathcal{S} is the set of states, \mathcal{A} the set of actions, $P_h : \mathcal{S} \times \mathcal{A} \rightarrow \Delta_{\mathcal{S}}$ the next-state distribution at step
 170 h , $P_0 \in \Delta_{\mathcal{S}}$ the initial state distribution, $r_h : \mathcal{S} \times \mathcal{A} \rightarrow \Delta_{[0,1]}$ the reward distribution, and H the
 171 horizon. Interaction with \mathcal{M} proceeds in episodes of length H . At step 1, we sample a state $s_1 \sim P_0$,
 172 take an action $a_1 \in \mathcal{A}$, receive reward $r_1(s_1, a_1)$, and transition to state $s_2 \sim P_1(\cdot | s_1, a_1)$. This
 173 continues for H steps until the MDP resets. We let $\mathcal{J}(\pi) := \mathbb{E}^{\pi}[\sum_{h=1}^H r_h(s_h, a_h)]$ denote the
 174 expected reward for policy π over one episode. In general, our goal is to maximize $\mathcal{J}(\pi)$.
 175

176 **Behavioral cloning.** We assume we are given some dataset $\mathfrak{D} = \{(s_1^t, a_1^t, \dots, s_H^t, a_H^t)\}_{t=1}^T$ col-
 177 lected by running a *demonstrator* policy π^{β} on \mathcal{M} , so that $(s_1^t, a_1^t, \dots, s_H^t, a_H^t)$ denotes a full tra-
 178 jectory rollout of π^{β} on \mathcal{M} , with $a_h^t \sim \pi_h^{\beta}(\cdot | s_h^t)$. We assume that π^{β} is Markovian but otherwise
 179 make no further assumptions on it (so in particular, π^{β} may be stochastic and suboptimal). Our
 180 demonstrator dataset does not include reward labels—preventing standard offline RL approaches
 181 from applying—but we assume that we have access to reward labels during online interactions.
 182

183 *Behavioral cloning* (BC) attempts to fit a policy $\hat{\pi}^{\beta}$ to match the action distribution of π^{β} using
 184 \mathfrak{D} . Typically this is achieved via supervised learning, where $\hat{\pi}^{\beta}$ is trained to predict a given s for
 185 $(s, a) \in \mathfrak{D}$. In the tabular setting, which we consider in Section 4, the natural choice for $\hat{\pi}^{\beta}$ simply
 186 fits the empirical distribution of actions in \mathfrak{D} :

$$\hat{\pi}_h^{\beta}(a | s) := \frac{T_h(s, a)}{T_h(s)} \cdot \mathbb{I}\{T_h(s) > 0\} + \text{unif}(\mathcal{A}) \cdot \mathbb{I}\{T_h(s) = 0\} \quad (1)$$

187 where $T_h(s, a) = \sum_{t=1}^T \mathbb{I}\{(s_h^t, a_h^t) = (s, a)\}$ and $T_h(s) = \sum_{t=1}^T \mathbb{I}\{s_h^t = s\}$. The following result
 188 bounds the suboptimality of this estimator, and shows that it is optimal estimator, up to log factors.
 189

190 **Proposition 1** (Rajaraman et al. (2020)). *If \mathfrak{D} contains T demonstrator trajectories, we have*
 191 $\mathcal{J}(\pi^{\beta}) - \mathbb{E}[\mathcal{J}(\hat{\pi}^{\beta})] \lesssim \frac{H^2 S \log T}{T}$. *Furthermore, for any estimator $\hat{\pi}$, there exists some MDP \mathcal{M}*
 192 *and demonstrator π^{β} such that $\mathcal{J}(\pi^{\beta}) - \mathbb{E}[\mathcal{J}(\hat{\pi})] \gtrsim \min\{H, \frac{H^2 S}{T}\}$.*
 193

194 In other words, without additional reward information, we cannot in general hope to obtain a policy
 195 from \mathfrak{D} that does better than (1), if our goal is to maximize the performance of the pretrained policy.
 196

197 **4 DEMONSTRATOR ACTION COVERAGE VIA POSTERIOR SAMPLING**

198 In this section we seek to understand how pretraining affects the ability to further improve the down-
 199 stream policy with RL finetuning, and how we might pretrain to enable downstream improvement.
 200 For simplicity, here we assume that our MDP \mathcal{M} is tabular, and let S and A denote the cardinal-
 201 ities of the state and action spaces, respectively; we will show how our proposed approach can be
 202 extended to more general settings in the following section.
 203

204 **4.1 DEMONSTRATOR ACTION COVERAGE AS A PREREQUISITE FOR FINETUNING**

205 The performance of RL finetuning depends significantly on the RL algorithm applied. Rather than
 206 limiting our results to a particular RL algorithm, we instead focus on what is often a prerequisite
 207 for effective application of any such approach—demonstrating that the *support* of the pretrained
 208 policy is sufficient to enable improvement. In particular, we consider the following definition for the
 209 “effective” support of a policy, relative to the demonstrator policy π^{β} .
 210

211 **Definition 4.1** (γ -sampler). We say that policy π is a γ -sampler of π^{β} if, for all $(s, h) \in \mathcal{S} \times [H]$
 212 and $a \in \mathcal{A}$, we have that $\pi_h^{\beta}(a | s) \geq \gamma \cdot \pi_h(a | s)$.
 213

214 The majority of RL finetuning approaches rely on rolling out the pretrained policy—which we de-
 215 note as $\hat{\pi}^{\text{pt}}$ —online, and using the collected observations to finetune its behavior. If our pretrained
 216 policy is a γ -sampler of π^{β} , then this ensures that any action sampled by π^{β} will also be sampled
 217 by $\hat{\pi}^{\text{pt}}$ in these rollouts (with some probability). While this is not a *sufficient* condition for online

improvement, it is a *necessary* condition, in some cases, for performing as well as the demonstrator π^β (as Proposition 2 demonstrates), and is therefore a necessary condition for improving over π^β . Furthermore, the *value* of γ also has impact on the computational cost of RL finetuning. A γ -sampler requires a factor of $\frac{1}{\gamma}$ more samples than π^β to ensure it samples some action in the support of π^β . For approaches such as Best-of- N sampling that rely on sampling many actions from the pretrained policy and then taking the best one, a large value of γ therefore ensures that we can efficiently sample actions likely to be sampled by the demonstrator policy π^β , while if γ is small, it may require taking a significant number of samples from $\hat{\pi}^{\text{pt}}$ to ensure we cover the behavior of π^β , greatly increasing the computational cost due to this sampling.

In the following, we aim to understand how we can pretrain policies that are γ -samplers, and to do this with large values of γ . Furthermore, we aim to achieve this without incurring significant additional suboptimality as compared to $\hat{\pi}^\beta$ —we would like to ensure that $\hat{\pi}^{\text{pt}}$ is an effective initialization for finetuning while still itself achieving effective online performance.

4.2 BEHAVIORAL CLONING FAILS TO ACHIEVE ACTION COVERAGE

We first consider standard BC, i.e. (1). The following result shows that the estimator in (1), despite achieving the optimal suboptimality rate, can fail to achieve sufficient action coverage, and that this fundamentally limits its ability to serve as an effective initialization for finetuning.

Proposition 2 (Informal). *Fix any $\epsilon \in (0, 1/8]$. Then there exists some MDP \mathcal{M} and demonstrator policy π^β such that, unless $T \geq \frac{1}{20\epsilon}$, we have that, with probability at least 1/2:*

$$\mathcal{J}(\pi^\beta) - \epsilon > \max_{\pi \in \hat{\Pi}} \mathcal{J}(\pi) \quad \text{for} \quad \hat{\Pi} := \{\pi : \pi_h(a | s) = 0 \text{ if } \hat{\pi}_h^\beta(a | s) = 0, \forall s, a, h\}.$$

Furthermore, if we collect samples with $\hat{\pi}^\beta$ on \mathcal{M} we will not be able to identify an ϵ -optimal policy.

We state the full version of Proposition 2 as Proposition 5 in the appendix. Proposition 2 shows that, unless we have a sufficiently large demonstrator dataset ($T \geq \frac{1}{20\epsilon}$), half of the time (i.e. half of the random draws of the demonstrator dataset) the policy returned by standard BC will not contain a near-optimal policy in its support and, furthermore, that rolling out $\hat{\pi}^\beta$ on \mathcal{M} will therefore not allow us to learn a near-optimal policy on \mathcal{M} . In other words, some fraction of the time standard BC produces a policy which will simply *never* play actions required to solve the task at the level of the demonstrator policy, and any online improvement approach that relies on rolling out the BC pretrained policy to collect observations will therefore fail to identify an ϵ -optimal policy—online improvement is not possible with this pretrained policy. This implies that pretraining a policy that matches the demonstrator’s empirical action distribution as represented in \mathcal{D} —the typical goal of behavioral cloning—is insufficient for downstream RL finetuning.

A straightforward solution to this is to simply add exploration noise to our pretrained policy—rather than playing $\hat{\pi}^\beta$ at every step, with some probability play a random action. While this will clearly address the shortcoming of generative BC outlined above—*every* action will now be in the support—as the following result shows, there is a fundamental tradeoff between the suboptimality of this policy and the number of samples from the policy required to ensure we cover our demonstrator’s behavior.

Proposition 3. *Fix $T > 0$, $H \geq 2$, $S \geq \lceil \log_2 4T \rceil + 2$, $\xi \geq 0$, define $\epsilon := \frac{H^2 S \log T}{T} + \xi$, and assume $\epsilon \leq \frac{1}{2}$. Define the policy $\hat{\pi}^{u,\alpha}$ as $\hat{\pi}_h^{u,\alpha}(\cdot | s) := (1 - \alpha) \cdot \hat{\pi}_h^\beta(\cdot | s) + \alpha \cdot \text{unif}(\mathcal{A})$. Then there exists some MDP \mathcal{M} with S states, 2 actions, and horizon H where, in order to ensure that:*

1. $\mathcal{J}(\pi^\beta) - \mathbb{E}[\mathcal{J}(\hat{\pi}^{u,\alpha})] \leq \epsilon$,
2. $\hat{\pi}^{u,\alpha}$ is a γ -sampler of π^β with probability at least $1 - \delta$, for $\delta \in (0, 1/4e)$,

we must have $\alpha \leq 32\epsilon$ and $\gamma \leq \frac{64}{A} \cdot \epsilon$. Furthermore, with probability at least $1/4e$, we have

$$\mathcal{J}(\pi^\beta) - \frac{1}{T} \cdot \epsilon > \max_{\pi \in \hat{\Pi}} \mathcal{J}(\pi) \quad \text{for} \quad \hat{\Pi} := \{\pi : \pi_h(a | s) = 0 \text{ if } \hat{\pi}_h^\beta(a | s) = 0, \forall s, a, h\}.$$

In order to achieve the $\frac{H^2 S \log T}{T}$ suboptimality rate achieved by standard BC, Proposition 3 then shows that we must have $\gamma \lesssim \frac{1}{A} \cdot \frac{H^2 S \log T}{T}$ or, in other words, to ensure we sample a particular action from $\hat{\pi}^{u,\alpha}$ that is sampled by π^β , it will require sampling a factor of $\frac{AT}{H^2 S \log T}$ *more* samples

from $\hat{\pi}^{u,\alpha}$ than it would require from π^β . While this does enable approaches like Best-of- N to improve the policy, in settings where T is large, this requires a significant number of samples from the pretrained policy, greatly increasing the computational burden of such an approach. Furthermore, Proposition 3 shows that this limitation is critical—if we seek to shortcut this exploration and set $\alpha \leftarrow 0$, we will fail to match the performance of π^β on this instance completely.

4.3 DEMONSTRATOR’S POSTERIOR POLICY ACHIEVES ACTION COVERAGE

Can we do better than this? Here we show that mixing the BC policy with the *posterior* on the demonstrator’s policy achieves a near optimal balance between suboptimality and action coverage.

Definition 4.2 (Posterior Demonstrator Policy). Given prior distribution $P_{\text{prior}}^\beta \in \Delta_\Pi$ over demonstrator policies, let $P_{\text{post}}^\beta(\cdot | \mathfrak{D})$ denote the posterior distribution given demonstration dataset \mathfrak{D} . We then define the *posterior demonstrator policy* $\hat{\pi}^{\text{post}}$ as $\hat{\pi}_h^{\text{post}}(a | s) := \mathbb{E}_{\pi \sim P_{\text{post}}^\beta(\cdot | \mathfrak{D})}[\pi_h(a | s)]$.

$\hat{\pi}^{\text{post}}$ is the expected policy of the demonstrator under prior P_{prior}^β given observations \mathfrak{D} . In practice, we require a slightly regularized version of $\hat{\pi}^{\text{post}}$, $\hat{\pi}^{\text{post},\lambda}$, which is identical to $\hat{\pi}^{\text{post}}$ if $HT \lesssim e^A$, and otherwise adds a small amount of regularization (see Section B.3). We have the following.

Theorem 1. Let P_{prior}^β be the uniform distribution over Markovian policies, and set $\hat{\pi}^{\text{pt}}$ to

$$\hat{\pi}_h^{\text{pt}}(a | s) = (1 - \alpha) \cdot \hat{\pi}_h^\beta(a | s) + \alpha \cdot \hat{\pi}_h^{\text{post},\lambda}(a | s) \quad (2)$$

for $\alpha = \frac{1}{\max\{A, H, \log(HT)\}}$. Then

$$\mathcal{J}(\pi^\beta) - \mathbb{E}[\mathcal{J}(\hat{\pi}^{\text{pt}})] \lesssim \frac{H^2 S \log T}{T},$$

and with probability at least $1 - \delta$, for all (s, a, h) ,

$$\hat{\pi}_h^{\text{pt}}(a | s) \gtrsim \frac{1}{A + H + \log(HT)} \cdot \min \left\{ \frac{\pi_h^\beta(a | s)}{\log(SH/\delta)}, \frac{1}{A + \log(HT)} \right\}.$$

Theorem 2. Fix any $A > 1$ and $T > 1$. Then there exists a family of MDPs $\{\mathcal{M}^i\}_{i \in [A]}$ such that each \mathcal{M}^i has A actions and $S = H = 1$, and if any estimator $\hat{\pi}$ satisfies $\mathcal{J}^{\mathcal{M}^i}(\pi^{\beta,i}) - \mathbb{E}^{\mathcal{M}^i}[\mathcal{J}(\hat{\pi})] \leq c \cdot \frac{H^2 S \log T}{T}$ for all $i \in [A]$ and some constant $c > 0$, then for $\hat{\pi}$ to be a γ -sampler of $\pi^{\beta,i}$ on each \mathcal{M}^i with probability at least $\delta \in (0, 1/4]$, we must have $\gamma \leq c \cdot \frac{\log T}{A}$.

Theorem 1 shows that our choice of $\hat{\pi}^{\text{pt}}$ achieves the same suboptimality guarantee as $\hat{\pi}^\beta$ —it performs no worse than $\hat{\pi}^\beta$ —and requires only a factor of $\approx A + H$ more samples to ensure we sample a particular action from π^β than π^β itself does for actions a such that $\pi_h^\beta(a | s) \lesssim 1/A$ (and otherwise requires at most a factor of $A(A + H)$ more). Furthermore, Theorem 2 shows that, to achieve this optimal suboptimality guarantee, any estimator *must* take a factor of A more samples than π^β . In other words, if we want a policy that preserves the optimality of $\hat{\pi}^\beta$ while playing a diverse enough distribution to enable further online improvement, mixing the posterior demonstrator policy with the BC policy achieves the near-optimal tradeoff, and plays all actions taken by π^β with minimal computational overhead and without incurring additional suboptimality over the BC policy.

5 POSTERIOR BEHAVIORAL CLONING

We next show this approach can be instantiated in continuous control settings with expressive generative policy classes. To motivate our instantiation, consider the setting where:

$$\pi_h^\beta(\cdot | s) = \mathcal{N}(\mu_h(s), \sigma_h^2(s) \cdot I),$$

for (unknown) $\mu_h(s) \in \mathbb{R}^d$ and (known) $\sigma_h(s) \in \mathbb{R}$. Assume we have observations $\mathfrak{D} = \{a_1, \dots, a_k\} \sim \pi_h^\beta(\cdot | s)$ and a $\mathcal{N}(0, I)$ prior on $\mu_h(s)$. The following result, an extension of Osband et al. (2018), shows we can approximate posterior samples by fitting to “noisy” actions.

Proposition 4. We have $P_{\text{post}}^\beta(\cdot | \mathfrak{D}) = \mathcal{N}\left(\frac{1}{\sigma_h^2(s) + k} \cdot \sum_{t=1}^k a_t, \frac{\sigma_h^2(s)}{\sigma_h^2(s) + k} \cdot I\right)$ and, if we set

$$\hat{\mu}_h(s) = \arg \min_{\mu} \sum_{i=1}^k \|\mu - \tilde{a}_i\|_2^2 + \sigma_h^2(s) \cdot \|\mu - \tilde{\mu}_h(s)\|_2^2,$$

for $\tilde{a}_t = a_t + w_t$, $w_t \sim \mathcal{N}(0, \sigma_h^2(s) \cdot I)$, and $\tilde{\mu} \sim \mathcal{N}(0, I)$, then $\hat{\mu}_h(s) \sim P_{\text{post}}^\beta(\cdot | \mathfrak{D})$.

324 Proposition 4 shows that we can compute samples from the posterior on $\mu_h(s)$ by simply fitting
 325 a “noised” version of our demonstrations. While in practice our data likely does not satisfy this
 326 Gaussianity assumption, the above argument nonetheless suggests that a simple approach to capture
 327 the behavior of $\hat{\pi}_h^{\text{post}}(\cdot | s)$ is to generate a “noisy” version of \mathfrak{D} by perturbing the actions in \mathfrak{D} with
 328 random noise, then fitting some predictor f on this noisy version of \mathfrak{D} . By repeating this K times,
 329 we can generate K approximate posterior samples $\{f_\ell\}_{\ell \in [K]}$.

330 Our theory suggests, however, that we should sample not simply from the posterior, but from $\hat{\pi}^{\text{post}}$,
 331 the expected policy under the posterior. In the Gaussian setting of Proposition 4, to sample from
 332 $\hat{\pi}_h^{\text{post}}(\cdot | s)$ it suffices to perturb a sample from the posterior, $\hat{\mu}_h(s)$, by 0-mean noise with the
 333 demonstrator’s covariance: $\hat{\mu}_h(s) + w \sim \hat{\pi}_h^{\text{post}}(\cdot | s)$ if $w \sim \mathcal{N}(0, \sigma_h^2(s) \cdot I)$. If we do not know the
 334 demonstrator’s covariance, we can approximate it by sampling, for $(s, a) \in \mathfrak{D}$: $\tilde{a} = a + w$ where
 335 $w \sim \mathcal{N}(0, \frac{\sigma_h^2(s)}{\sigma_h^2(s) + k} \cdot I)$. Note that the covariance of a ’s distribution is precisely the demonstrator’s
 336 covariance, since $a \sim \pi_h^\beta(\cdot | s)$. Therefore, \tilde{a} will be distributed with the demonstrator’s mean and
 337 covariance, plus 0-mean noise sampled with the posterior’s covariance. While the *mean* of this distri-
 338 bution differs from $\hat{\pi}_h^{\text{post}}(\cdot | s)$, its covariance matches the covariance of $\hat{\pi}_h^{\text{post}}(\cdot | s)$. As we show in
 339 Lemma 8, the difference in mean between $\hat{\pi}_h^{\text{post}}(\cdot | s)$ and $\pi_h^\beta(\cdot | s)$ is distributed approximately as
 340 the posterior’s covariance, suggesting that the difference in mean between \tilde{a} and $\hat{\pi}_h^{\text{post}}(\cdot | s)$ is there-
 341 fore effectively washed out by the posterior’s randomness— \tilde{a} is sampled approximately as $\hat{\pi}_h^{\text{post}}(\cdot |$
 342 $s)$. To produce an approximate sample from $\hat{\pi}^{\text{post}}(\cdot | s)$ in the general case, then, we sample:
 343

$$\tilde{a} = a + \alpha \cdot w, \quad w \sim \mathcal{N}(0, \text{cov}(s)), \quad (3)$$

344 for any $(s, a) \in \mathfrak{D}$, and where $\text{cov}(s) := \sum_{\ell=1}^K (f_\ell(s) - \bar{f}(s))(f_\ell(s) - \bar{f}(s))^\top$ for
 345 $\bar{f}(s) \leftarrow \frac{1}{K} \sum_{\ell=1}^K f_\ell(s)$, and α is some weighting we can tune as desired.

349 5.1 POSTERIOR BEHAVIORAL CLONING

350 Applying Proposition 4 and Equation (3), we can generate approximate samples from $\hat{\pi}^{\text{post}}(\cdot | s)$
 351 for any s in our demonstration dataset. Theorem 1 suggests that, to obtain a pretrained policy $\hat{\pi}^{\text{pt}}$
 352 that is an effective initialization for RL finetuning, it suffices to fit $\hat{\pi}^{\text{pt}}$ to a mixture distribution of the
 353 BC policy and $\hat{\pi}^{\text{post}}$. Approximating this mixture by modulating α in (3), we arrive at the following.

355 **Algorithm 1** Posterior Behavioral Cloning (POSTBC)

356 1: **input:** demonstration dataset \mathfrak{D} , generative model class $\hat{\pi}^\theta$, posterior weight α
 357 2: Generate approximate posterior samples $\{f_\ell\}_{\ell \in [K]}$ and compute $\text{cov}(\cdot)$ from $\{f_\ell\}_{\ell \in [K]}$ as above
 358 3: **for** $i = 1, 2, 3, \dots$ **do**
 359 4: Draw batch $\mathfrak{D}_i \sim \text{unif}(\mathfrak{D})$
 360 5: For all $(s, a) \in \mathfrak{D}_i$, compute \tilde{a} as in (3) using $\text{cov}(\cdot)$ and α , and set $\tilde{\mathfrak{D}}_i \leftarrow \{(s, \tilde{a}) : s \in \mathfrak{D}\}$
 361 6: Take gradient step on $\hat{\pi}^\theta$ on loss of $\tilde{\mathfrak{D}}_i$
 362

363 With $\hat{\pi}^\theta$ an expressive generative model, Algorithm 1 will produce a policy which, instead of fitting
 364 the empirical distribution of the demonstrator, fits the full expected posterior of the demonstrator’s
 365 behavior. This approximates the posterior mixture in Equation (2), and, Theorem 1 suggests, leads
 366 to a more effective initialization for RL finetuning, instantiating the behavior illustrated in Figure 1.
 367 While Proposition 4 motivates a principled method for generating approximate posterior samples,
 368 the precise method used to generate such samples is not a critical part of our approach, and any other
 369 method to generate posterior samples can also be combined with Algorithm 1. In particular, we
 370 find that in many cases computing f_ℓ by fitting on a dataset generated by *bootstrapped sampling*—
 371 generating a dataset by sampling with replacement from \mathfrak{D} (Fushiki et al., 2005; Osband & Van Roy,
 372 2015; Osband et al., 2016a)—often leads to more effective performance.

373 6 EXPERIMENTS

374 Finally, we seek to demonstrate that in practice posterior behavioral cloning (a) enables more
 375 efficient RL finetuning of pretrained policies, and (b) leads to a pretrained policy that performs
 376 effectively itself, on par with the BC pretrained policy. We focus on continuous control domains, in
 377 particular robotic control. We test on both the Robomimic (Mandlekar et al., 2021) and Libero

(Liu et al., 2023) simulators. `Robomimic` is comprised of several robotic manipulation tasks, providing a set of human demonstrations on each task, and enables training and finetuning of single-task BC policies. We consider the `Lift`, `Can`, and `Square` tasks on `Robomimic`. `Libero` similarly contains a variety of robotic manipulation tasks with provided human demonstrations, but enables multi-task training, allowing for pretraining on large corpora of data and then finetuning on particular tasks of interest. In particular, we rely on a subset of the `Libero` 90 suite of tasks, training and evaluating on the first 21 tasks, corresponding to three different kitchen manipulation scenes. See Figure 2 for a visualization of our settings. [Further details on all experiments can be found in Section D and additional ablations can be found in Section D.3.](#)

We instantiate $\hat{\pi}^{\text{pt}}$ with a diffusion model, which has become the de-facto standard for parameterizing BC policies in continuous control settings (Chi et al., 2023; Ankile et al., 2024a; Dasari et al., 2024; Team et al., 2024; Black et al., 2024; Bjorck et al., 2025). For the `Robomimic` experiments, we use an MLP-based architecture, trained on a single-task demonstration dataset, and rely on state-based observations. For `Libero`, we utilize a diffusion transformer architecture due to Dasari et al. (2024) and rely on image-based observations and language task conditioning. In `Libero`, we pre-train a single $\hat{\pi}^{\text{pt}}$ policy on the demonstration data from all 21 tasks (Black et al., 2024; Kim et al., 2024; Khazatsky et al., 2024), and then run RL finetuning on each individual task. To leave room for RL improvement (i.e. to ensure performance is not saturated by the pretrained policy) we limit the number of demos per task in the pretraining dataset. In all cases, we use a binary success reward.

In principle, POSTBC can be combined with any RL finetuning algorithm, and we seek to demonstrate that it improves performance on a representative set of approaches. In particular, we consider DSRL (Wagenmaker et al., 2025), which refines a pretrained diffusion policy’s distribution by running RL over its latent-noise space, DPPO (Ren et al., 2024), an on-policy policy-gradient-style algorithm for finetuning diffusion policies, and Best-of- N sampling. [For DSRL and DPPO we utilize the publicly available implementations without modification.](#) Best-of- N can be instantiated in a variety of ways (see e.g. Chen et al. (2022); Hansen-Estruch et al. (2023); He et al. (2024); Nakamoto et al. (2024); Dong et al. (2025b)). Here we instantiate it by rolling out the pretrained policy on the task of interest T times (where T is specified in our results) to collect trajectories labeled with success and failure, and train a Q -function via IQL (Kostrikov et al., 2021) on these trajectories. At test time, we again roll out the pretrained policy but at each state sample N actions from the policy, and play the action that has the largest value under the IQL-trained Q -function.

As baselines, we consider running standard BC pretraining on \mathfrak{D} , as well as what we refer to as σ -BC, where instead of perturbing the actions in \mathfrak{D} by the posterior variance as in (3), we instead perturb them by uniform, state-independent noise with variance σ^2 . This is then equivalent to POSTBC, except we set $\text{cov}(s) = \sigma^2 \cdot I$ for some fixed $\sigma > 0$ in (3) (note that this is a continuous analog to the approach considered in Proposition 3). This itself is a novel approach and our theory predicts it too may lead to improved performance over pretraining with standard BC. [On Robomimic, we also compare against VALUEDICE \(Kostrikov et al., 2019\) \(which we abbreviate as DICE\), a imitation learning approach that attempts to learn a policy with state distribution matching the state distribution of the demonstrations, and only requires access to offline demonstration data.](#) For all experiments, error bars denote 1 standard error. All results are averaged over from 3-5 seeds and policies are evaluated with 200 rollouts for `Robomimic` and 100 for `Libero`.

6.1 POSTERIOR BC ENABLES EFFICIENT RL FINETUNING

Our results from running DSRL on `Libero` are given in Figure 3 and on `Robomimic` in Figure 4. For `Libero`, we run DSRL on three tasks from scene 2: “open the top drawer of the cabinet”, “put the black bowl at the front on the plate”, and “put the middle black bowl on the plate”. We see that POSTBC pretraining leads to significant gains for `Libero`, enabling efficient RL finetuning in settings where both standard BC pretraining and σ -BC pretraining fail. [On Robomimic, POSTBC significantly outperforms both baselines on Square, and achieves modest gains over BC on Lift and Can \(requiring roughly 2 \$\times\$ fewer samples to achieve 75% performance than BC\).](#) Our results for DPPO are given in Figure 4 where we see that POSTBC pretraining again leads to substantial gains on `Square`. This illustrates that POSTBC can improve performance even of on-policy RL-finetuning algorithms that modify the weights of the pretrained policy. We note as well that, even in the cases when POSTBC does not yield substantial gains, it performs no worse than BC.

Our Best-of- N results are given in Table 1. We see that across settings, POSTBC-pretraining leads to consistent improvements over both BC- and σ -BC-pretrained policies, [and also consistently](#)

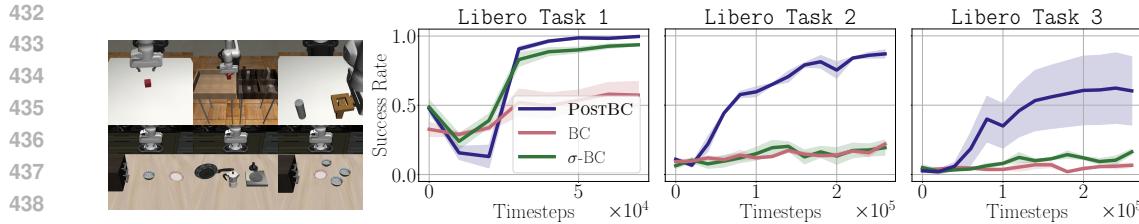


Figure 2: Robomimic and Libero settings
Figure 3: Comparison of DSRL finetuning performance combined with different BC pretraining approaches on Libero.

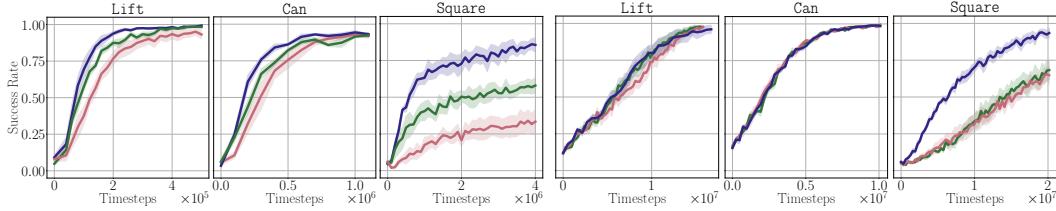


Figure 4: Comparison of DSRL finetuning performance combined with different BC pretraining approaches on Robomimic.

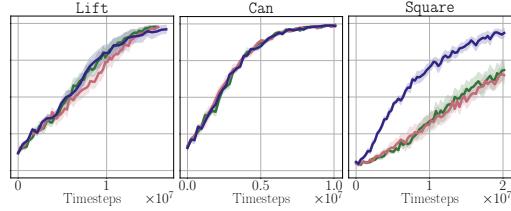


Figure 5: Comparison of DPPO finetuning performance combined with different BC pretraining approaches on Robomimic.

Task	Pretrained Performance		Best-of- N (1000 Rollouts)			Best-of- N (2000 Rollouts)				
	BC	POSTBC	BC	σ -BC	DICE	POSTBC	BC	σ -BC	DICE	POSTBC
Robomimic Lift	70.1 ± 1.7	68.1 ± 0.7	55.6 ± 2.4	52.3 ± 3.7	42.3 ± 8.6	63.3 ± 2.1	63.8 ± 3.6	73.5 ± 1.1	57.8 ± 9.0	75.7 ± 2.0
Robomimic Can	43.4 ± 0.6	41.6 ± 0.4	69.8 ± 2.0	72.8 ± 3.0	40.2 ± 8.4	73.3 ± 3.2	76.6 ± 2.4	80.7 ± 1.4	49.5 ± 8.5	79.5 ± 1.9
Robomimic Square	18.8 ± 0.3	17.7 ± 0.3	37.9 ± 2.3	45.7 ± 1.4	11.6 ± 1.9	48.3 ± 1.2	48.4 ± 1.0	50.0 ± 3.2	18.5 ± 1.9	52.4 ± 2.4
Libero Scene 1	22.1 ± 8.3	24.4 ± 6.1	38.0 ± 7.2	63.9 ± 3.8	-	60.8 ± 4.5	47.0 ± 6.4	66.8 ± 4.3	-	76.3 ± 3.0
Libero Scene 2	11.5 ± 3.4	13.1 ± 3.9	21.7 ± 3.6	26.7 ± 5.0	-	44.4 ± 5.7	23.9 ± 4.2	29.7 ± 4.5	-	48.4 ± 4.4
Libero Scene 3	40.1 ± 10.4	42.0 ± 10.2	49.2 ± 7.0	51.8 ± 7.1	-	65.5 ± 6.8	51.6 ± 10.2	59.4 ± 7.2	-	66.4 ± 7.3
Libero All	22.2 ± 4.3	23.0 ± 3.9	33.5 ± 3.5	43.7 ± 3.6	-	54.6 ± 3.5	38.0 ± 3.7	48.7 ± 3.4	-	61.6 ± 3.0

Table 1: Comparison of success rates of pretrained policies and Best-of- N sampling on Robomimic and Libero, for different pretraining approaches. **Bolded text denotes best approach.** Please see Table 3 for pretrained performance of σ -BC and DICE.

outperforms **VALUEDICE**. In particular, on Libero, POSTBC improves by approximately 20% over BC, and 10% over σ -BC. Table 1 also provides the performance of the pretrained policies, where we see that, in general, the POSTBC-pretrained policy performs on par with the BC-pretrained policy, demonstrating that POSTBC-pretraining produces a policy which performs as well as the BC pretrained policy. Together these results show that in realistic continuous control settings, pretraining with POSTBC can lead to significant improvements over standard BC pretraining in terms of RL finetuning performance, without sacrificing the performance of the pretrained policy itself.

Understanding how POSTBC improves RL finetuning performance. Finally, we seek to provide insight into how POSTBC improves RL finetuning performance. In particular, we aim to disambiguate the role of the additional *exploration* a POSTBC policy may provide over a BC policy, versus the role that having access to a larger action distribution at test time might play. While these factors are intimately coupled for DSRL and DPPO, for Best-of- N sampling we can decouple them by selecting the rollout policy (the “exploration” policy) that collects data to learn the filtering function, and the policy whose actions we filter with the learned function at test-time (the “steering” policy).

We consider mixing the role of the BC and POSTBC policy on Robomimic Lift in this way, and provide our results in Table 2. We find that the choice of rollout policy has little impact on performance, but the steering policy can impact performance significantly. This suggests that the utility of POSTBC is primarily in its ability to provide a wider range of actions that can be sampled from the pretrained policy, enabling RL finetuning approaches to easily select the maximizing action.

BC rollouts + BC steering	BC rollouts + POSTBC steering	POSTBC rollouts + BC steering	POSTBC rollouts + POSTBC steering
63.8 ± 3.6	78.6 ± 1.4	65.0 ± 4.4	75.7 ± 2.0

Table 2: Best-of- N sampling on Robomimic Lift, varying the rollout policy and the steering policy.

486 REPRODUCIBILITY STATEMENT
487488 Full proofs for all theoretical results are given in the appendix, allowing our results to be checked.
489 For the experimental results, we have stated hyperparameters used in the appendix, and plan to also
490 release our code publicly.
491492 REFERENCES
493494 Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
495 *Proceedings of the twenty-first international conference on Machine learning*, pp. 1, 2004.497 Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit prob-
498 lem. In *Conference on learning theory*, pp. 39–1. JMLR Workshop and Conference Proceedings,
499 2012.500 Lars Ankile, Anthony Simeonov, Idan Shenfeld, and Pulkit Agrawal. Juicer: Data-efficient imitation
501 learning for robotic assembly. In *2024 IEEE/RSJ International Conference on Intelligent Robots*
502 and Systems (IROS), pp. 5096–5103. IEEE, 2024a.504 Lars Ankile, Anthony Simeonov, Idan Shenfeld, Marcel Torne, and Pulkit Agrawal. From imitation
505 to refinement–residual rl for precise assembly. *arXiv preprint arXiv:2407.16677*, 2024b.506 Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
507 Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learn-
508 ing from human preferences. In *International Conference on Artificial Intelligence and Statistics*,
509 pp. 4447–4455. PMLR, 2024.511 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
512 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
513 assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*,
514 2022a.515 Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
516 Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
517 lessness from ai feedback. *arXiv preprint arXiv:2212.08073*, 2022b.518 Michiel Bakker, Martin Chadwick, Hannah Sheahan, Michael Tessler, Lucy Campbell-Gillingham,
519 Jan Balaguer, Nat McAleese, Amelia Glaese, John Aslanides, Matt Botvinick, et al. Fine-tuning
520 language models to find agreement among humans with diverse preferences. *Advances in Neural*
521 *Information Processing Systems*, 35:38176–38189, 2022.523 Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
524 ing with offline data. In *International Conference on Machine Learning*, pp. 1577–1594. PMLR,
525 2023.526 Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
527 Unifying count-based exploration and intrinsic motivation. *Advances in neural information pro-*
528 *cessing systems*, 29, 2016.530 Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
531 Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr0ot n1: An open foundation model
532 for generalist humanoid robots. *arXiv preprint arXiv:2503.14734*, 2025.533 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
534 Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π_0 : A vision-language-action flow
535 model for general robot control. *arXiv preprint arXiv:2410.24164*, 2024.537 Mariusz Bojarski. End to end learning for self-driving cars. *arXiv preprint arXiv:1604.07316*, 2016.538 539 Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. *arXiv preprint arXiv:1810.12894*, 2018.

540 Jongseong Chae, Seungyul Han, Whiyoung Jung, Myungsik Cho, Sungho Choi, and Youngchul
 541 Sung. Robust imitation learning against variations in environment dynamics. In *International*
 542 *Conference on Machine Learning*, pp. 2828–2852. PMLR, 2022.

543 Souradip Chakraborty, Jiahao Qiu, Hui Yuan, Alec Koppel, Furong Huang, Dinesh Manocha, Am-
 544 rit Singh Bedi, and Mengdi Wang. Maxmin-rlhf: Towards equitable alignment of large language
 545 models with diverse human preferences. *arXiv preprint arXiv:2402.08925*, 2024.

546 Jonathan D Chang, Wenhao Shan, Owen Oertell, Kianté Brantley, Dipendra Misra, Jason D Lee,
 547 and Wen Sun. Dataset reset policy optimization for rlhf. *arXiv preprint arXiv:2404.08495*, 2024.

548 Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
 549 via high-fidelity generative behavior modeling. *arXiv preprint arXiv:2209.14548*, 2022.

550 Yuhui Chen, Shuai Tian, Shugao Liu, Yingting Zhou, Haoran Li, and Dongbin Zhao. Con-
 551 rft: A reinforced fine-tuning method for vla models via consistency policy. *arXiv preprint*
 552 *arXiv:2502.05450*, 2025.

553 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
 554 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The Inter-
 555 national Journal of Robotics Research*, pp. 02783649241273668, 2023.

556 Jongwook Choi, Yijie Guo, Marcin Moczulski, Junhyuk Oh, Neal Wu, Mohammad Norouzi,
 557 and Honglak Lee. Contingency-aware exploration in reinforcement learning. *arXiv preprint*
 558 *arXiv:1811.01483*, 2018.

559 Sudeep Dasari and Abhinav Gupta. Transformers for one-shot visual imitation. In *Conference on*
 560 *Robot Learning*, pp. 2071–2084. PMLR, 2021.

561 Sudeep Dasari, Oier Mees, Sebastian Zhao, Mohan Kumar Srirama, and Sergey Levine. The ingre-
 562 dents for robotic diffusion transformers. *arXiv preprint arXiv:2410.10088*, 2024.

563 Siddharth Desai, Ishan Durugkar, Haresh Karnan, Garrett Warnell, Josiah Hanna, and Peter Stone.
 564 An imitation from observation approach to transfer learning with dynamics mismatch. *Advances*
 565 *in Neural Information Processing Systems*, 33:3917–3929, 2020.

566 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 567 bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of*
 568 *the North American chapter of the association for computational linguistics: human language*
 569 *technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.

570 Perry Dong, Qiyang Li, Dorsa Sadigh, and Chelsea Finn. Expo: Stable reinforcement learning with
 571 expressive policies. *arXiv preprint arXiv:2507.07986*, 2025a.

572 Perry Dong, Suvir Mirchandani, Dorsa Sadigh, and Chelsea Finn. What matters for batch online
 573 reinforcement learning in robotics? *arXiv preprint arXiv:2505.08078*, 2025b.

574 Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl²: Fast
 575 reinforcement learning via slow reinforcement learning. *arXiv preprint arXiv:1611.02779*, 2016.

576 Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya
 577 Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. *Advances in*
 578 *neural information processing systems*, 30, 2017.

579 Vincent Dumoulin, Daniel D Johnson, Pablo Samuel Castro, Hugo Larochelle, and Yann Dauphin.
 580 A density estimation perspective on learning from pairwise human preferences. *arXiv preprint*
 581 *arXiv:2311.14115*, 2023.

582 Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a
 583 new approach for hard-exploration problems. *arXiv preprint arXiv:1901.10995*, 2019.

584 Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
 585 of deep networks. In *International conference on machine learning*, pp. 1126–1135. PMLR,
 586 2017a.

594 Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual imita-
 595 tion learning via meta-learning. In *Conference on robot learning*, pp. 357–368. PMLR, 2017b.
 596

597 Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. *Advances*
 598 in *neural information processing systems*, 31, 2018.

599 Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity of
 600 interactive decision making. *arXiv preprint arXiv:2112.13487*, 2021.
 601

602 Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse rein-
 603 forcement learning. *arXiv preprint arXiv:1710.11248*, 2017.

604 Tadayoshi Fushiki, Fumiyasu Komaki, and Kazuyuki Aihara. Nonparametric bootstrap prediction.
 605 *Bernoulli*, 11(2):293–307, 2005.
 606

607 Chongkai Gao, Yizhou Jiang, and Feng Chen. Transferring hierarchical structures with dual meta
 608 imitation learning. In *Conference on Robot Learning*, pp. 762–773. PMLR, 2023.

609 Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn:
 610 Inverse soft-q learning for imitation. *Advances in Neural Information Processing Systems*, 34:
 611 4028–4039, 2021.

612 Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, and Sergey Levine. Offline rl policies should be trained
 613 to be adaptive. In *International Conference on Machine Learning*, pp. 7513–7530. PMLR, 2022.
 614

615 Vittorio Giammarino, James Queeney, and Ioannis Ch Paschalidis. Visually robust adversarial imi-
 616 tation learning from videos with contrastive learning. In *2025 IEEE International Conference on*
 617 *Robotics and Automation (ICRA)*, pp. 15642–15648. IEEE, 2025.

618 Jiayuan Gu, Sean Kirmani, Paul Wohlhart, Yao Lu, Montserrat Gonzalez Arenas, Kanishka Rao,
 619 Wenhao Yu, Chuyuan Fu, Keerthana Gopalakrishnan, Zhuo Xu, et al. Rt-trajectory: Robotic task
 620 generalization via hindsight trajectory sketches. *arXiv preprint arXiv:2311.01977*, 2023.
 621

622 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 623 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 624 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025a.

625 Yanjiang Guo, Jianke Zhang, Xiaoyu Chen, Xiang Ji, Yen-Jen Wang, Yucheng Hu, and Jianyu Chen.
 626 Improving vision-language-action model with online reinforcement learning. *arXiv preprint*
 627 *arXiv:2501.16664*, 2025b.

628 Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
 629 Idql: Implicit q-learning as an actor-critic method with diffusion policies. *arXiv preprint*
 630 *arXiv:2304.10573*, 2023.
 631

632 Longxiang He, Li Shen, Junbo Tan, and Xueqian Wang. Alignql: Policy alignment in implicit
 633 q-learning through constrained optimization. *arXiv preprint arXiv:2405.18187*, 2024.

634 Mikael Henaff, Roberta Raileanu, Minqi Jiang, and Tim Rocktäschel. Exploration via elliptical
 635 episodic bonuses. *Advances in Neural Information Processing Systems*, 35:37631–37646, 2022.
 636

637 Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. *Advances in neural*
 638 *information processing systems*, 29, 2016.

639 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 640 *neural information processing systems*, 33:6840–6851, 2020.

641 Hao Hu, Yiqin Yang, Jianing Ye, Ziqing Mai, and Chongjie Zhang. Unsupervised behavior extrac-
 642 tion via random intent priors. *Advances in Neural Information Processing Systems*, 36:51491–
 643 51514, 2023.
 644

645 Jiaheng Hu, Rose Hendrix, Ali Farhadi, Aniruddha Kembhavi, Roberto Martín-Martín, Peter Stone,
 646 Kuo-Hao Zeng, and Kiana Ehsani. Flare: Achieving masterful and adaptive robot policies
 647 with large-scale reinforcement learning fine-tuning. In *2025 IEEE International Conference on*
 648 *Robotics and Automation (ICRA)*, pp. 3617–3624. IEEE, 2025.

648 Stephen James, Michael Bloesch, and Andrew J Davison. Task-embedded control networks for
 649 few-shot imitation learning. In *Conference on robot learning*, pp. 783–795. PMLR, 2018.
 650

651 David Janz, Shuai Liu, Alex Ayoub, and Csaba Szepesvári. Exploration via linearly perturbed loss
 652 minimisation. In *International Conference on Artificial Intelligence and Statistics*, pp. 721–729.
 653 PMLR, 2024.

654 Tobias Jülg, Wolfram Burgard, and Florian Walter. Refined policy distillation: From vla generalists
 655 to rl experts. *arXiv preprint arXiv:2503.05833*, 2025.
 656

657 Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
 658 Karamchetti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis,
 659 Peter David Fagan, Joey Hejna, Masha Itkina, Marion Lepert, Yecheng Jason Ma, Patrick Tree
 660 Miller, Jimmy Wu, Suneel Belkhale, Shivin Dass, Huy Ha, Arhan Jain, Abraham Lee, Young-
 661 woon Lee, Marius Memmel, Sungjae Park, Ilija Radosavovic, Kaiyuan Wang, Albert Zhan, Kevin
 662 Black, Cheng Chi, Kyle Beltran Hatch, Shan Lin, Jingpei Lu, Jean Mercat, Abdul Rehman, Pan-
 663 nag R Sanketi, Archit Sharma, Cody Simpson, Quan Vuong, Homer Rich Walke, Blake Wulfe,
 664 Ted Xiao, Jonathan Heewon Yang, Arefeh Yavary, Tony Z. Zhao, Christopher Agia, Rohan Baijal,
 665 Mateo Guaman Castro, Daphne Chen, Qiuyu Chen, Trinity Chung, Jaimyn Drake, Ethan Paul
 666 Foster, Jensen Gao, Vitor Guizilini, David Antonio Herrera, Minho Heo, Kyle Hsu, Jiaheng
 667 Hu, Muhammad Zubair Irshad, Donovon Jackson, Charlotte Le, Yunshuang Li, Kevin Lin, Roy
 668 Lin, Zehan Ma, Abhiram Maddukuri, Suvir Mirchandani, Daniel Morton, Tony Nguyen, Abigail
 669 O'Neill, Rosario Scalise, Derick Seale, Victor Son, Stephen Tian, Emi Tran, Andrew E. Wang,
 670 Yilin Wu, Annie Xie, Jingyun Yang, Patrick Yin, Yunchu Zhang, Osbert Bastani, Glen Berseth,
 671 Jeannette Bohg, Ken Goldberg, Abhinav Gupta, Abhishek Gupta, Dinesh Jayaraman, Joseph J
 672 Lim, Jitendra Malik, Roberto Martín-Martín, Subramanian Ramamoorthy, Dorsa Sadigh, Shuran
 673 Song, Jiajun Wu, Michael C. Yip, Yuke Zhu, Thomas Kollar, Sergey Levine, and Chelsea Finn.
 Droid: A large-scale in-the-wild robot manipulation dataset. 2024.

674 Moo Jin Kim, Karl Pertsch, Siddharth Karamchetti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 675 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
 676 vision-language-action model. *arXiv preprint arXiv:2406.09246*, 2024.
 677

678 Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
 679 mizing speed and success. *arXiv preprint arXiv:2502.19645*, 2025.

680 Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tomp-
 681 son. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial
 682 imitation learning. *arXiv preprint arXiv:1809.02925*, 2018.
 683

684 Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
 685 matching. *arXiv preprint arXiv:1912.05032*, 2019.

686 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
 687 learning. *arXiv preprint arXiv:2110.06169*, 2021.

688 Aviral Kumar, Anikait Singh, Frederik Ebert, Mitsuhiro Nakamoto, Yanlai Yang, Chelsea Finn, and
 689 Sergey Levine. Pre-training for robots: Offline rl enables learning new tasks from a handful of
 690 trials. *arXiv preprint arXiv:2210.05178*, 2022.
 691

692 Branislav Kveton, Manzil Zaheer, Csaba Szepesvari, Lihong Li, Mohammad Ghavamzadeh, and
 693 Craig Boutilier. Randomized exploration in generalized linear bandits. In *International Confer-
 694 ence on Artificial Intelligence and Statistics*, pp. 2066–2076. PMLR, 2020.
 695

696 Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, Colton Bishop, Victor
 697 Carbune, and Abhinav Rastogi. Rlaif: Scaling reinforcement learning from human feedback with
 698 ai feedback. *arXiv preprint arXiv:2309.00267*, 2023.
 699

700 Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified frame-
 701 work for ensemble learning in deep reinforcement learning. In *International Conference on Ma-
 chine Learning*, pp. 6131–6141. PMLR, 2021.

702 Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
 703 reinforcement learning via balanced replay and pessimistic q-ensemble. In *Conference on Robot
 704 Learning*, pp. 1702–1712. PMLR, 2022.

705 Qiyang Li, Jason Zhang, Dibya Ghosh, Amy Zhang, and Sergey Levine. Accelerating exploration
 706 with unlabeled prior data. *Advances in Neural Information Processing Systems*, 36:67434–67458,
 707 2023a.

708 Ziniu Li, Tian Xu, Zeyu Qin, Yang Yu, and Zhi-Quan Luo. Imitation learning from imperfection:
 709 Theoretical justifications and algorithms. *Advances in Neural Information Processing Systems*,
 710 36:18404–18443, 2023b.

711 Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
 712 Benchmarking knowledge transfer for lifelong robot learning. *Advances in Neural Information
 713 Processing Systems*, 36:44776–44791, 2023.

714 Jijia Liu, Feng Gao, Bingwen Wei, Xinlei Chen, Qingmin Liao, Yi Wu, Chao Yu, and Yu Wang.
 715 What can rl bring to vla generalization? an empirical study. *arXiv preprint arXiv:2505.19789*,
 716 2025.

717 Guanxing Lu, Wenkai Guo, Chubin Zhang, Yuheng Zhou, Haonan Jiang, Zifeng Gao, Yansong
 718 Tang, and Ziwei Wang. Vla-rl: Towards masterful and general robotic manipulation with scalable
 719 reinforcement learning. *arXiv preprint arXiv:2505.18719*, 2025.

720 Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
 721 Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning from offline
 722 human demonstrations for robot manipulation. *arXiv preprint arXiv:2108.03298*, 2021.

723 Max Sobol Mark, Tian Gao, Georgia Gabriela Sampaio, Mohan Kumar Srirama, Archit Sharma,
 724 Chelsea Finn, and Aviral Kumar. Policy agnostic rl: Offline rl and online rl fine-tuning of any
 725 class and backbone. *arXiv preprint arXiv:2412.06685*, 2024.

726 Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
 727 Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al. Nash
 728 learning from human feedback. *arXiv preprint arXiv:2312.00886*, 2023.

729 Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
 730 Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
 731 tuning. *Advances in Neural Information Processing Systems*, 36:62244–62269, 2023.

732 Mitsuhiko Nakamoto, Oier Mees, Aviral Kumar, and Sergey Levine. Steering your generalists:
 733 Improving robotic foundation models via value guidance. *arXiv preprint arXiv:2410.13816*, 2024.

734 Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In *Icml*, vol-
 735 ume 1, pp. 2, 2000.

736 Tianwei Ni, Harshit Sikchi, Yufei Wang, Tejas Gupta, Lisa Lee, and Ben Eysenbach. f-irl: Inverse
 737 reinforcement learning via state marginal matching. In *Conference on Robot Learning*, pp. 529–
 738 551. PMLR, 2021.

739 Ian Osband and Benjamin Van Roy. Bootstrapped thompson sampling and deep exploration. *arXiv
 740 preprint arXiv:1507.00300*, 2015.

741 Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
 742 bootstrapped dqn. *Advances in neural information processing systems*, 29, 2016a.

743 Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via random-
 744 ized value functions. In *International Conference on Machine Learning*, pp. 2377–2386. PMLR,
 745 2016b.

746 Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
 747 learning. *Advances in neural information processing systems*, 31, 2018.

756 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 757 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 758 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 759 27730–27744, 2022.

760 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
 761 standing by generative pre-training. 2018.

763 Rafael Raffailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 764 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
 765 *in neural information processing systems*, 36:53728–53741, 2023.

766 Rouhollah Rahmatizadeh, Pooya Abolghasemi, Ladislau Bölöni, and Sergey Levine. Vision-based
 767 multi-task manipulation for inexpensive robots using end-to-end learning from demonstration. In
 768 *2018 IEEE international conference on robotics and automation (ICRA)*, pp. 3758–3765. IEEE,
 769 2018.

771 Nived Rajaraman, Lin Yang, Jiantao Jiao, and Kannan Ramchandran. Toward the fundamental limits
 772 of imitation learning. *Advances in Neural Information Processing Systems*, 33:2914–2924, 2020.

773 Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Chris-
 774 tian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
 775 language processing: Benchmarks, baselines, and building blocks for natural language policy
 776 optimization. *arXiv preprint arXiv:2210.01241*, 2022.

777 Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majum-
 778 dar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimiza-
 779 tion. *arXiv preprint arXiv:2409.00588*, 2024.

781 Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
 782 Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with general
 783 preferences. *arXiv preprint arXiv:2404.03715*, 2024.

785 Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. *Advances*
 786 *in neural information processing systems*, 32, 2019.

787 Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. *Mathematics of*
 788 *Operations Research*, 39(4):1221–1243, 2014.

790 Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on
 791 thompson sampling. *Foundations and Trends® in Machine Learning*, 11(1):1–96, 2018.

792 Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior
 793 transformers: Cloning k modes with one stone. *Advances in neural information processing sys-*
 794 *tems*, 35:22955–22968, 2022.

796 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 797 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 798 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

799 Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. In
 800 *International conference on machine learning*, pp. 5779–5788. PMLR, 2019.

802 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 803 learning using nonequilibrium thermodynamics. In *International conference on machine learn-*
 804 *ing*, pp. 2256–2265. pmlr, 2015.

805 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv*
 806 *preprint arXiv:2010.02502*, 2020.

808 Ajay Sridhar, Dhruv Shah, Catherine Glossop, and Sergey Levine. Nomad: Goal masked diffus-
 809 ion policies for navigation and exploration. In *2024 IEEE International Conference on Robotics and*
Automation (ICRA), pp. 63–70. IEEE, 2024.

810 Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
 811 learning with deep predictive models. *arXiv preprint arXiv:1507.00814*, 2015.

812

813 Simon Stepputtis, Joseph Campbell, Mariano Phielipp, Stefan Lee, Chitta Baral, and Heni
 814 Ben Amor. Language-conditioned imitation learning for robot manipulation tasks. *Advances
 815 in Neural Information Processing Systems*, 33:13139–13150, 2020.

816 Gokul Swamy, Christoph Dann, Rahul Kidambi, Zhiwei Steven Wu, and Alekh Agarwal. A
 817 minimaximalist approach to reinforcement learning from human feedback. *arXiv preprint
 818 arXiv:2401.04056*, 2024.

819

820 Yunhao Tang, Zhaohan Daniel Guo, Zeyu Zheng, Daniele Calandriello, Rémi Munos, Mark Row-
 821 land, Pierre Harvey Richemond, Michal Valko, Bernardo Ávila Pires, and Bilal Piot. Generalized
 822 preference optimization: A unified approach to offline alignment. *arXiv preprint
 823 arXiv:2402.05749*, 2024.

824 Voot Tangkaratt, Nontawat Charoenphakdee, and Masashi Sugiyama. Robust imitation learning
 825 from noisy demonstrations. *arXiv preprint arXiv:2010.10181*, 2020.

826

827 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 828 Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1.5: Scaling reinforcement learning with
 829 llms. *arXiv preprint arXiv:2501.12599*, 2025.

830

831 Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
 832 Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
 833 policy. *arXiv preprint arXiv:2405.12213*, 2024.

834

835 William R Thompson. On the likelihood that one unknown probability exceeds another in view of
 836 the evidence of two samples. *Biometrika*, 25(3/4):285–294, 1933.

837

838 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 839 lay Bashlykov, Soumya Batra, Prajwala Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 840 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

841

842 Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
 843 Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. In *Inter-
 844 national Conference on Machine Learning*, pp. 34556–34583. PMLR, 2023.

845

846 Andrew Wagenmaker, Zhiyuan Zhou, and Sergey Levine. Behavioral exploration: Learning to ex-
 847 plore via in-context adaptation. In *Forty-second International Conference on Machine Learning*.

848

849 Andrew Wagenmaker, Mitsuhiro Nakamoto, Yunchu Zhang, Seohong Park, Waleed Yagoub,
 850 Anusha Nagabandi, Abhishek Gupta, and Sergey Levine. Steering your diffusion policy with
 851 latent space reinforcement learning. *arXiv preprint arXiv:2506.15799*, 2025.

852

853 Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
 854 Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
 855 *arXiv preprint arXiv:1611.05763*, 2016.

856

857 Yunke Wang, Chang Xu, and Bo Du. Robust adversarial imitation learning via adaptively-selected
 858 demonstrations. In *IJCAI*, pp. 3155–3161, 2021.

859

860 Max Wilcoxon, Qiyang Li, Kevin Frans, and Sergey Levine. Leveraging skills from unlabeled prior
 861 data for efficient online exploration. *arXiv preprint arXiv:2410.18076*, 2024.

862

863 Charles Xu, Qiyang Li, Jianlan Luo, and Sergey Levine. Rldg: Robotic generalist policy distillation
 864 via reinforcement learning. *arXiv preprint arXiv:2412.09858*, 2024.

865

866 Haoran Xu, Xianyuan Zhan, Honglei Yin, and Huiling Qin. Discriminator-weighted offline imitation
 867 learning from suboptimal demonstrations. In *International Conference on Machine Learning*, pp.
 868 24725–24742. PMLR, 2022.

869

870 Yueqin Yin, Zhendong Wang, Yi Gu, Hai Huang, Weizhu Chen, and Mingyuan Zhou. Relative
 871 preference optimization: Enhancing llm alignment through contrasting responses across identical
 872 and diverse prompts. *arXiv preprint arXiv:2402.10958*, 2024.

864 Xiu Yuan, Tongzhou Mu, Stone Tao, Yunhao Fang, Mengke Zhang, and Hao Su. Policy decorator:
 865 Model-agnostic online refinement for large policy model. *arXiv preprint arXiv:2412.13630*, 2024.
 866

867 Sheng Yue, Xingyuan Hua, Ju Ren, Sen Lin, Junshan Zhang, and Yaoxue Zhang. Ollie: Imitation
 868 learning from offline pretraining to online finetuning. *arXiv preprint arXiv:2405.17477*, 2024.
 869

870 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
 871 inforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv
 872 preprint arXiv:2504.13837*, 2025.
 873

874 Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
 875 policy: Generalizable visuomotor policy learning via simple 3d representations. *arXiv preprint
 876 arXiv:2403.03954*, 2024.
 877

878 Haichao Zhang, We Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforce-
 879 ment learning. *arXiv preprint arXiv:2302.00935*, 2023.
 880

881 Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg, and Pieter Abbeel.
 882 Deep imitation learning for complex manipulation tasks from virtual reality teleoperation. In
 883 *2018 IEEE international conference on robotics and automation (ICRA)*, pp. 5628–5635. IEEE,
 884 2018.
 885

886 Zijian Zhang, Kaiyuan Zheng, Zhaorun Chen, Joel Jang, Yi Li, Siwei Han, Chaoqi Wang, Mingyu
 887 Ding, Dieter Fox, and Huaxiu Yao. Grape: Generalizing robot policy via preference alignment.
 888 *arXiv preprint arXiv:2411.19309*, 2024.
 889

890 Tony Z Zhao, Jonathan Tompson, Danny Driess, Pete Florence, Kamyar Ghasemipour, Chelsea
 891 Finn, and Ayzaan Wahid. Aloha unleashed: A simple recipe for robot dexterity. *arXiv preprint
 892 arXiv:2410.13126*, 2024.
 893

894 Han Zheng, Xufang Luo, Pengfei Wei, Xuan Song, Dongsheng Li, and Jing Jiang. Adaptive policy
 895 learning for offline-to-online reinforcement learning. In *Proceedings of the AAAI Conference on
 896 Artificial Intelligence*, volume 37, pp. 11372–11380, 2023.
 897

898 Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
 899 reinforcement learning. In *Aaai*, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.
 900

901 Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
 902 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv
 903 preprint arXiv:1909.08593*, 2019.
 904

905 Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann,
 906 and Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-
 907 learning. *arXiv preprint arXiv:1910.08348*, 2019.
 908

909

910

911

912

913

914

915

916

917

918

A ADDITIONAL RELATED WORK

919

920

Reinforcement Learning-Based Pretraining. In the RL literature, two lines of work bear some
921 resemblance to ours as well. The *offline-to-online RL* setting aims to train policies with RL on
922 offline datasets that can then be improved with further online interaction (Lee et al., 2022; Ghosh
923 et al., 2022; Kumar et al., 2022; Zhang et al., 2023; Uchendu et al., 2023; Zheng et al., 2023;
924 Ball et al., 2023; Nakamoto et al., 2023), and the *meta-RL* setting aims to meta-learn a policy on
925 some set of tasks which can then be quickly adapted to a new task (Wang et al., 2016; Duan et al.,
926 2016; Finn et al., 2017a; 2018). While similar to our work in that these works also aim to learn
927 behaviors that can be efficiently improved online, the settings differ significantly in that the offline-
928 or meta-pretraining typically requires reward labels (rather than unlabeled demonstrations) and are
929 performed with RL (rather than BC)—in contrast, we study how BC-like pretraining (as noted, the
930 workhorse of most modern applications) can enable efficient online adaptation.

931

932

B PROOFS

933

934

Some algebra shows that in the tabular setting, under the uniform prior, we have

935

936
$$\hat{\pi}_h^{\text{post}}(a | s) := \begin{cases} \frac{T_h(s, a) + 1}{T_h(s) + A} & T_h(s) > 0 \\ \text{unif}(\mathcal{A}) & \text{o.w.} \end{cases}$$
937

938

B.1 BC POLICY FAILS TO COVER ACTIONS

939

940

Proposition 5 (Full version of Proposition 2). *Fix any $\epsilon \in (0, 1/8]$. Then there exist some MDPs
941 $\mathcal{M}^1, \mathcal{M}^2$ and demonstrator policy π^β such that, if $\mathcal{M} \in \{\mathcal{M}^1, \mathcal{M}^2\}$, unless $T \geq \frac{1}{20\epsilon}$, we have that,
942 with probability at least 1/2:*

943

944
$$\mathcal{J}(\pi^\beta) - \epsilon > \max_{\pi \in \hat{\Pi}} \mathcal{J}(\pi) \quad \text{for} \quad \hat{\Pi} := \{\pi : \pi_h(a | s) = 0 \text{ if } \hat{\pi}_h^\beta(a | s) = 0, \forall s, a, h\}.$$
945

946

Furthermore,

947

948
$$\min_{\hat{\pi}} \max_{i \in \{1, 2\}} \mathbb{E}^{\mathcal{M}^i, \hat{\pi}^\beta} [\max_{\pi} \mathcal{J}^{\mathcal{M}^i}(\pi) - \mathcal{J}^{\mathcal{M}^i}(\hat{\pi})] \geq \frac{1}{2}.$$
949

950

Proof. Let \mathcal{M}^1 and \mathcal{M}^2 denote multi-armed bandits with 3 arms and reward functions r^1 and r^2 :

951

952
$$\begin{aligned} r^1(a_1) &= 0, r^1(a_2) = 1, r^1(a_3) = 0 \\ r^2(a_1) &= 0, r^2(a_2) = 0, r^2(a_3) = 1. \end{aligned}$$
953

954

Let $\pi^\beta(a_1) = 1 - 4\epsilon$, $\pi^\beta(a_2) = 2\epsilon$, $\pi^\beta(a_3) = 2\epsilon$.

955

956

By construction of $\hat{\pi}^\beta$, if $T(a_2) = 0$ then we will have $\hat{\pi}^\beta(a_2) = 0$, and if $T(a_3) = 0$ we will have
957 $\hat{\pi}^\beta(a_3) = 0$. By the definition of both \mathcal{M}^1 and \mathcal{M}^2 , we have

958

959
$$\mathbb{P}^{\mathcal{M}^i}[T(a_2) = 0, T(a_3) = 0] = (1 - 4\epsilon)^T.$$
960

961 As we have assumed that $T \leq \frac{1}{20\epsilon}$ and $\epsilon \in (0, 1/8]$, some calculation shows that we can lower
962 bound this as 1/2. Note that for both \mathcal{M}^1 and \mathcal{M}^2 , we have $\mathcal{J}(\pi^\beta) = 2\epsilon$, while for policies $\hat{\pi}^\beta$ that
963 only play a_1 , we have $\mathcal{J}(\hat{\pi}^\beta) = 0$. This proves the first part of the result.
964

965 For the second part, note that the optimal policy on \mathcal{M}^1 plays only a_2 and has expected reward of
966 1, while the optimal policy on \mathcal{M}^2 plays only a_2 and has expected reward of 1. Let $\hat{\pi}$ denote an
967 estimate of the optimal policy and $\mathbb{E}^{\mathcal{M}^i, \hat{\pi}^\beta}[\cdot]$ the expectation induced by playing the policy $\hat{\pi}^\beta$ from
968 the first part on instance \mathcal{M}^i . Then:
969

970
$$\min_{\hat{\pi}} \max_{i \in \{1, 2\}} \mathbb{E}^{\mathcal{M}^i, \hat{\pi}^\beta} [\max_{\pi} \mathcal{J}^{\mathcal{M}^i}(\pi) - \mathcal{J}^{\mathcal{M}^i}(\hat{\pi})] = \min_{\hat{\pi}} \max_{i \in \{1, 2\}} \mathbb{E}^{\mathcal{M}^i, \hat{\pi}^\beta} [1 - \hat{\pi}(a_{1+i})].$$
971

972 Note that $1 - \hat{\pi}(a_2) = \hat{\pi}(a_1) + \hat{\pi}(a_3) \geq \hat{\pi}(a_3)$. Thus we can lower bound the above as
 973

$$\begin{aligned} 974 &\geq \min_{\hat{\pi}} \max\{\mathbb{E}^{\mathcal{M}^1, \hat{\pi}^\beta}[\hat{\pi}(a_3)], \mathbb{E}^{\mathcal{M}^2, \hat{\pi}^\beta}[1 - \hat{\pi}(a_3)]\} \\ 975 &\geq \min_{\hat{\pi}} \frac{1}{2} \left(\mathbb{E}^{\mathcal{M}^1, \hat{\pi}^\beta}[\hat{\pi}(a_3)] + \mathbb{E}^{\mathcal{M}^2, \hat{\pi}^\beta}[1 - \hat{\pi}(a_3)] \right) \\ 976 &\geq \frac{1}{2} - \frac{1}{2} \min_{\hat{\pi}} \left| \mathbb{E}^{\mathcal{M}^1, \hat{\pi}^\beta}[\hat{\pi}(a_3)] - \mathbb{E}^{\mathcal{M}^2, \hat{\pi}^\beta}[\hat{\pi}(a_3)] \right|. \\ 977 \end{aligned}$$

980 We can bound

$$981 \quad \left| \mathbb{E}^{\mathcal{M}^1, \hat{\pi}^\beta}[\hat{\pi}(a_3)] - \mathbb{E}^{\mathcal{M}^2, \hat{\pi}^\beta}[\hat{\pi}(a_3)] \right| \leq \text{TV}(\mathbb{P}^{\mathcal{M}^1, \hat{\pi}^\beta}, \mathbb{P}^{\mathcal{M}^2, \hat{\pi}^\beta}). \\ 982$$

983 Since \mathcal{M}^1 and \mathcal{M}^2 only differ on a_2 and a_3 , and since $\hat{\pi}^\beta(a_2) = \hat{\pi}^\beta(a_3) = 0$, we have
 984 $\text{TV}(\mathbb{P}^{\mathcal{M}^1, \hat{\pi}^\beta}, \mathbb{P}^{\mathcal{M}^2, \hat{\pi}^\beta}) = 0$. Thus, we conclude that
 985

$$986 \quad \min_{\hat{\pi}} \max_{i \in \{1, 2\}} \mathbb{E}^{\mathcal{M}^i, \hat{\pi}^\beta}[\max_{\pi} \mathcal{J}^{\mathcal{M}^i}(\pi) - \mathcal{J}^{\mathcal{M}^i}(\hat{\pi})] \geq \frac{1}{2}. \\ 987$$

988 This proves the second part of the result. □

991 B.2 UNIFORM NOISE FAILS

993 *Proof of Proposition 3. Construction.* Let \mathcal{M} be the MDP with state space $\{\tilde{s}_1, \dots, \tilde{s}_k, s_1, s_2\}$,
 994 actions $\{a_1, a_2\}$, horizon $H \geq 2$ with initial state distribution:
 995

$$996 \quad P_0(s_1) = 1/2, \quad P_0(\tilde{s}_1) = 2^{-2} + 2^{-k}, \quad P_0(\tilde{s}_i) = 2^{-i-1}, i \geq 2,$$

997 transition function, for all $h \in [H]$:

$$\begin{aligned} 998 \quad P_h(\tilde{s}_i \mid \tilde{s}_i, a) &= 1, \forall a \in \mathcal{A}, \quad P_h(s_1 \mid s_1, a_1) = 1, \\ 999 \quad P_h(s_2 \mid s_1, a_2) &= 1, \quad P_h(s_2 \mid s_2, a) = 1, \forall a \in \mathcal{A}, \\ 1000 \end{aligned}$$

1001 and reward that is 0 everywhere except

$$1002 \quad r_1(\tilde{s}_i, a_1) = r_H(s_1, a_1) = 1, \quad r_1(\tilde{s}_i, a_2) = 1 - 2\Delta,$$

1004 for some $\Delta > 0$ to be specified. We consider π^β defined as

$$1006 \quad \pi_h^\beta(a_1 \mid \tilde{s}_i) = \pi_h^\beta(a_2 \mid \tilde{s}_i) = \frac{1}{2}, \quad \pi_h^\beta(a_1 \mid s_1) = 1.$$

1008 Let $\epsilon := \frac{H^2 S \log T}{T} + \xi$, and set $\Delta \leftarrow 2\epsilon$.
 1009

1010 **Upper bound on α .** Note that $\mathcal{J}(\pi^\beta) = 1 - \frac{1}{2}\Delta$, and that the value of the optimal policy π^* is
 1011 $\mathcal{J}(\pi^*) = \max_{\pi} \mathcal{J}(\pi) = 1$. Let $\tilde{\pi}^{u, \alpha}$ denote the policy that, on all \tilde{s}_i plays π^* , and on other states
 1012 plays π^* with probability $1 - \alpha$, and otherwise plays $\text{unif}(\mathcal{A})$. Note then that, regardless of the value
 1013 of $\hat{\pi}^\beta$, we have that $\mathcal{J}(\tilde{\pi}^{u, \alpha}) \geq \mathcal{J}(\hat{\pi}^{u, \alpha})$. Thus,

$$1014 \quad \mathcal{J}(\pi^\beta) - \mathbb{E}[\mathcal{J}(\hat{\pi}^{u, \alpha})] \geq \mathcal{J}(\pi^\beta) - \mathcal{J}(\tilde{\pi}^{u, \alpha}) \\ 1015$$

1016 If we are in s_1 at $h = 2$, the only way we can receive any reward on the episode is if we take action
 1017 a_1 for the last $H - 1$ steps, and we then receive a reward of 1. Under $\tilde{\pi}^{u, \alpha}$, we take a_1 at each step
 1018 with probability $1 - \alpha + \alpha/A$, so our probability of getting a reward of 1 is $(1 - \alpha + \alpha/A)^{H-1}$.
 1019 Note that in contrast π^β will always play a_1 and receive a reward of 1 in this situation. If we are in
 1020 \tilde{s}_i at $h = 2$ for any i , then π^β will incur a loss of Δ more than $\tilde{\pi}^{u, \alpha}$. Thus, we can lower bound

$$1021 \quad \mathcal{J}(\pi^\beta) - \mathcal{J}(\tilde{\pi}^{u, \alpha}) \geq -\frac{1}{2}\Delta + \frac{1}{2} \cdot (1 - (1 - \alpha + \alpha/A)^{H-1}) \\ 1022$$

1023 By assumption we have that $\frac{1}{2}\Delta = \epsilon$. Thus, if we want $\mathcal{J}(\pi^\beta) - \mathbb{E}[\mathcal{J}(\hat{\pi}^{u, \alpha})] \leq \epsilon$, we need
 1024

$$1025 \quad \frac{1}{2} \cdot (1 - (1 - \alpha + \alpha/A)^{H-1}) \leq 2\epsilon.$$

1026 Rearranging this, we have
 1027

$$1 - 4\epsilon \leq (1 - \alpha + \alpha/A)^{H-1} \iff \frac{1}{H-1} \log(1 - 4\epsilon) \leq \log(1 - \alpha + \alpha/A).$$

1030 From the Taylor decomposition of $\log(1 - x)$, we see that $\log(1 - \alpha + \alpha/A) \leq -(1 - 1/A)\alpha$.
 1031 Furthermore, we can lower bound

$$\log(1 - 4\epsilon) \geq -8\epsilon$$

1032 as long as $\epsilon \leq 1/2$. Altogether, then, we have
 1033

$$\frac{-8\epsilon}{H-1} \leq -(1 - 1/A)\alpha \implies \alpha \leq \frac{8\epsilon}{(H-1)(1 - 1/A)} \implies \alpha \leq 32\epsilon$$

1034 where the last inequality follows since $H \geq 2, A = 2$.
 1035

1036 **Upper bound on γ .** Let $i_T := \arg \max_i \{2^{-i-1} \mid 2^{-i-1} \leq 1/T\}$, so that $1/2T \leq P_0(\tilde{s}_{i_T}) \leq 1/T$, and note that such an \tilde{s}_{i_T} exists by construction. Let \mathcal{E} be the event $\mathcal{E} := \{T_1(\tilde{s}_{i_T}) = T_1(\tilde{s}_{i_T}, a_2) = 1\}$. We have
 1037

$$\begin{aligned} \mathbb{P}[\mathcal{E}] &= \mathbb{P}[T_1(\tilde{s}_{i_T}, a_2) = 1 \mid T_1(\tilde{s}_{i_T}) = 1] \mathbb{P}[T_1(\tilde{s}_{i_T}) = 1] \\ &= \frac{1}{2} \cdot T P_0(\tilde{s}_{i_T})(1 - P_0(\tilde{s}_{i_T}))^{T-1} \\ &= \frac{1}{2} \cdot T \cdot \frac{1}{2T} \cdot (1 - \frac{1}{T})^{T-1} \\ &\geq \frac{1}{4e}. \end{aligned}$$

1038 Note that on the event \mathcal{E} , we have $\hat{\pi}_1^\beta(a_1 \mid \tilde{s}_{i_T}) = 0$, but $\pi_1^\beta(a_1 \mid \tilde{s}_{i_T}) = 1/2$. Thus,
 1039

$$\hat{\pi}_1^{\text{u},\alpha}(a_1 \mid \tilde{s}_{i_T}) = \alpha/A \leq 32\epsilon/A = 64\epsilon/A \cdot \pi_1^\beta(a_1 \mid \tilde{s}_{i_T})$$

1040 where we have used the bound on α shown above. Thus, on \mathcal{E} , we will only have that $\hat{\pi}^{\text{u},\alpha}$ is a
 1041 γ -sampler for $\gamma \leq 64\epsilon/A$. Since \mathcal{E} occurs with probability at least $1/4e$, it follows that if we want to
 1042 guarantee $\hat{\pi}^{\text{u},\alpha}$ is a γ -sampler with probability at least $1 - \delta$ for $\delta < 1/4e$, we must have $\gamma \leq 64\epsilon/A$.
 1043

1044 Note as well that, since $\hat{\pi}_1^\beta(a_2 \mid \tilde{s}_{i_T}) = 1$, any policy in the support of $\hat{\pi}^\beta$ will be suboptimal by a
 1045 factor of at least $P_0(\tilde{s}_{i_T}) \cdot 2\Delta \geq \Delta/T$. \square
 1046

1047 B.3 ANALYSIS OF POSTERIOR POLICY

1048 Throughout this section we denote
 1049

$$\tilde{\pi}_h(a \mid s) := \begin{cases} (1 - \alpha) \cdot \frac{T_h(s,a)}{T_h(s)} + \alpha \cdot \frac{T_h(s,a) + \lambda/A}{T_h(s) + \lambda} & T_h(s) > 0 \\ \text{unif}(\mathcal{A}) & T_h(s) = 0 \end{cases}$$

1050 for some $\alpha \in [0, 1]$.
 1051

1052 We also denote $w_h^\pi(s, a) := \mathbb{P}^\pi[s_h = s, a_h = a]$. $Q_h^\pi(s, a) := \mathbb{E}^\pi[\sum_{h' > h} r_{h'}(s_{h'}, a_{h'}) \mid s_h = s, a_h = a]$ denotes the standard Q -function. $\mathcal{J}(\pi; r)$ denotes the expected return of policy π for
 1053 reward r .
 1054

1055 **Lemma 1.** As long as $\delta \leq 0.9$ and $\lambda \geq A$, we have
 1056

$$\mathbb{P}\left[\tilde{\pi}_h(a \mid s) \geq \alpha \cdot \min\left\{\frac{\pi_h^\beta(a \mid s)}{64 \log SH/\delta}, \frac{1}{2\lambda}\right\}, \forall a \in \mathcal{A}, s \in \mathcal{S}, h \in [H]\right] \geq 1 - \delta.$$

1057 *Proof.* Consider some (s, h) . By Bernstein's inequality, if $T_h(s) > 0$, we have that with probability
 1058 at least $1 - \delta$,
 1059

$$\frac{T_h(s, a)}{T_h(s)} \geq \pi_h^\beta(a \mid s) - \sqrt{\frac{2\pi_h^\beta(a \mid s) \log 1/\delta}{T_h(s)}} - \frac{2 \log 1/\delta}{3T_h(s)}. \quad (4)$$

From some algebra, we see that as long as $T_h(s) \geq \frac{32 \log 1/\delta}{\pi_h^\beta(a|s)}$, we have that $\frac{T_h(s,a)}{T_h(s)} \geq \frac{1}{2} \pi_h^\beta(a|s)$. By the definition of $\tilde{\pi}$, under the good event of (4) we can then lower bound

$$\begin{aligned} \tilde{\pi}_h(a|s) &\geq \begin{cases} \frac{\alpha}{1+\lambda/T_h(s)} \cdot \frac{1}{2} \pi_h^\beta(a|s) & T_h(s) \geq \frac{32 \log 1/\delta}{\pi_h^\beta(a|s)} \\ \frac{\alpha\lambda/A}{T_h(s)+A} & \text{o.w.} \end{cases} \\ &\geq \begin{cases} \frac{\alpha \cdot 32 \log 1/\delta}{32 \log 1/\delta + \lambda \cdot \pi_h^\beta(a|s)} \cdot \frac{1}{2} \pi_h^\beta(a|s) & N_h(s) \geq \frac{32 \log 1/\delta}{\pi_h^\beta(a|s)} \\ \frac{\alpha\lambda/A \cdot \pi_h^\beta(a|s)}{32 \log 1/\delta + \lambda \cdot \pi_h^\beta(a|s)} & \text{o.w.} \end{cases} \\ &\stackrel{(a)}{\geq} \frac{\alpha \cdot \pi_h^\beta(a|s)}{32 \log 1/\delta + \lambda \cdot \pi_h^\beta(a|s)} \\ &\geq \alpha \cdot \min \left\{ \frac{\pi_h^\beta(a|s)}{64 \log 1/\delta}, \frac{1}{2\lambda} \right\} \end{aligned}$$

where (a) follows as long as $\delta \leq 0.9$ and $\lambda \geq A$. In the case when $T_h(s) = 0$ we have $\tilde{\pi}_h(a|s) = 1/A \geq 1/\lambda$, so this lower bound still holds. Taking a union bound over arms proves the result. \square

Lemma 2. *As long as $\lambda \geq 4 \log(HT)$, we have*

$$\mathbb{E}[\mathcal{J}(\hat{\pi}^\beta) - \mathcal{J}(\tilde{\pi})] \lesssim (1 + \alpha H) \cdot \frac{H^2 S \log T}{T} + \alpha \cdot \frac{H^2 S \lambda}{T}.$$

Proof. By the Performance-Difference Lemma we have:

$$\begin{aligned} \mathcal{J}(\hat{\pi}^\beta) - \mathcal{J}(\tilde{\pi}) &= \sum_{h=1}^H \sum_{s \in \mathcal{S}} w_h^{\hat{\pi}^\beta}(s) \cdot \left(\mathbb{E}_{a \sim \hat{\pi}_h^\beta(s)}[Q_h^{\tilde{\pi}}(s, a)] - \mathbb{E}_{a \sim \tilde{\pi}_h(s)}[Q_h^{\tilde{\pi}}(s, a)] \right) \\ &\leq \sum_{h=1}^H \sum_{s \in \mathcal{S}} w_h^{\hat{\pi}^\beta}(s) \cdot \left| \mathbb{E}_{a \sim \hat{\pi}_h^\beta(s)}[Q_h^{\tilde{\pi}}(s, a)] - \mathbb{E}_{a \sim \tilde{\pi}_h(s)}[Q_h^{\tilde{\pi}}(s, a)] \right|. \end{aligned} \quad (5)$$

For (s, h) with $N_h(s) > 0$, we have

$$\left| \mathbb{E}_{a \sim \hat{\pi}_h^\beta(s)}[Q_h^{\tilde{\pi}}(s, a)] - \mathbb{E}_{a \sim \tilde{\pi}_h(s)}[Q_h^{\tilde{\pi}}(s, a)] \right| \leq \sum_{a \in \mathcal{A}} H \cdot |\hat{\pi}_h^\beta(a|s) - \tilde{\pi}_h(a|s)|,$$

where we have used that $Q_h^{\hat{\pi}^{\text{post}}}(s, a) \in [0, H]$. Then, using the definition of $\hat{\pi}^\beta$ and $\tilde{\pi}$ we can bound this as

$$\begin{aligned} &\leq \sum_{a \in \mathcal{A}} \alpha H \cdot \left| \frac{T_h(s, a)}{T_h(s)} - \frac{T_h(s, a) + \lambda/A}{T_h(s) + \lambda} \right| \\ &= \sum_{a \in \mathcal{A}} \frac{\alpha H}{A} \cdot \left| \frac{AT_h(s, a) - T_h(s)}{T_h(s)(T_h(s) + \lambda)} \right| \\ &\leq \sum_{a \in \mathcal{A}} \frac{\alpha H}{A} \cdot \frac{AT_h(s, a) + T_h(s)}{T_h(s)(T_h(s) + \lambda)} \\ &= \frac{2\alpha\lambda H}{T_h(s) + \lambda}. \end{aligned}$$

Since $\mathbb{E}_{a \sim \hat{\pi}_h^\beta(s)}[Q_h^{\tilde{\pi}}(s, a)] - \mathbb{E}_{a \sim \tilde{\pi}_h(s)}[Q_h^{\tilde{\pi}}(s, a)] = 0$ by construction when $T_h(s) = 0$, we then have

$$(5) \leq \sum_{h=1}^H \sum_{s \in \mathcal{S}} w_h^{\hat{\pi}^\beta}(s) \cdot \frac{2\alpha\lambda H}{T_h(s) + \lambda}.$$

1134 Let \mathcal{E} denote the good event from Lemma 3 with $\delta = \frac{S}{T}$. Then as long as $\lambda \geq 4\log(HT)$ we can
 1135 bound the above as

$$\begin{aligned} 1136 \quad & \leq \sum_{h=1}^H \sum_{s \in \mathcal{S}} w_h^{\hat{\pi}^\beta}(s) \cdot \frac{2\alpha\lambda H}{T_h(s) + \lambda} \mathbb{I}\{\mathcal{E}\} + 2H^2 \cdot \mathbb{I}\{\mathcal{E}^c\} \\ 1137 \quad & \leq \sum_{h=1}^H \sum_{s \in \mathcal{S}} w_h^{\hat{\pi}^\beta}(s) \cdot \frac{4\alpha\lambda H}{w_h^{\pi^\beta}(s) \cdot T + \lambda} + 2H^2 \cdot \mathbb{I}\{\mathcal{E}^c\}. \\ 1138 \quad & \end{aligned}$$

1142 Let \tilde{r} denote the reward function:

$$\begin{aligned} 1144 \quad \tilde{r}_h(s, a) &:= \frac{\lambda}{w_h^{\pi^\beta}(s) \cdot T + \lambda} \\ 1145 \quad & \end{aligned}$$

1146 and note that $\tilde{r} \in [0, 1]$, and

$$\begin{aligned} 1148 \quad & \sum_{h=1}^H \sum_{s \in \mathcal{S}} w_h^{\hat{\pi}^\beta}(s) \cdot \frac{4\alpha\lambda H}{w_h^{\pi^\beta}(s) \cdot T + \lambda} = 4\alpha H \cdot \mathcal{J}(\hat{\pi}^\beta; \tilde{r}). \\ 1149 \quad & \end{aligned}$$

1151 By Theorem 4.4 of Rajaraman et al. (2020), we have¹

$$\begin{aligned} 1153 \quad \mathbb{E}[\mathcal{J}(\hat{\pi}^\beta; \tilde{r})] &\lesssim \mathcal{J}(\pi^\beta; \tilde{r}) + \frac{H^2 S \log T}{T} \\ 1154 \quad &= \sum_{h=1}^H \sum_{s \in \mathcal{S}} w_h^{\pi^\beta}(s) \cdot \frac{\lambda}{w_h^{\pi^\beta}(s) \cdot T + \lambda} + \frac{H^2 S \log T}{T} \\ 1155 \quad &\leq \frac{HS\lambda}{T} + \frac{H^2 S \log T}{T}. \\ 1156 \quad & \end{aligned}$$

1160 Noting that $\mathbb{E}[2H^2 \cdot \mathbb{I}\{\mathcal{E}^c\}] \leq 2H^2 \delta \leq \frac{2H^2 S}{T}$ completes the proof. \square

1162 **Lemma 3.** *With probability at least $1 - \delta$, for all (s, h) , we have*

$$1164 \quad T_h(s) + \lambda \geq \frac{1}{2} w_h^{\pi^\beta}(s) \cdot T + \frac{1}{2} \lambda$$

1165 as long as $\lambda \geq 4 \log \frac{SH}{\delta}$.

1166 *Proof.* Consider some (s, h) and note that $\mathbb{E}[T_h(s)/T] = w_h^{\pi^\beta}(s)$. By Bernstein's inequality, we
 1167 have with probability $1 - \delta/SH$:

$$1171 \quad T_h(s) \geq w_h^{\pi^\beta}(s) \cdot T - \sqrt{2w_h^{\pi^\beta}(s) \cdot T \cdot \log \frac{SH}{\delta}} - \frac{2}{3} \log \frac{SH}{\delta}.$$

1173 We would then like to show that

$$\begin{aligned} 1175 \quad & w_h^{\pi^\beta}(s) \cdot T - \sqrt{2w_h^{\pi^\beta}(s) \cdot T \cdot \log \frac{SH}{\delta}} - \frac{2}{3} \log \frac{SH}{\delta} + \lambda \geq \frac{1}{2} (w_h^{\pi^\beta}(s) \cdot T + \lambda) \\ 1176 \quad & \iff \frac{1}{2} w_h^{\pi^\beta}(s) \cdot T + \frac{1}{2} \lambda \geq \sqrt{2w_h^{\pi^\beta}(s) \cdot T \cdot \log \frac{SH}{\delta}} + \frac{2}{3} \log \frac{SH}{\delta} \\ 1177 \quad & \end{aligned}$$

1179 As we have assumed $\lambda \geq 4 \log \frac{SH}{\delta}$, it suffices to show

$$1181 \quad \frac{1}{2} w_h^{\pi^\beta}(s) \cdot T + \log \frac{SH}{\delta} \geq \sqrt{2w_h^{\pi^\beta}(s) \cdot T \cdot \log \frac{SH}{\delta}}.$$

1184 However, this is true by the AM-GM inequality. A union bound proves the result. \square

1185 ¹Note that Theorem 4.4 of Rajaraman et al. (2020) shows an inequality in the opposite direction of what we
 1186 show here: they bound $\mathcal{J}(\pi^\beta; \tilde{r}) - \mathbb{E}[\mathcal{J}(\hat{\pi}^\beta; \tilde{r})]$ instead of $\mathbb{E}[\mathcal{J}(\hat{\pi}^\beta; \tilde{r})] - \mathcal{J}(\pi^\beta; \tilde{r})$. However, we see that the
 1187 only place in their proof where their argument relied on this ordering is in Lemma A.8. We show in Lemma 4
 1188 that a reverse version of their Lemma A.8 holds, allowing us to instead bound $\mathbb{E}[\mathcal{J}(\hat{\pi}^\beta; \tilde{r})] - \mathcal{J}(\pi^\beta; \tilde{r})$.

1188
 1189 **Lemma 4** (Reversed version of Lemma A.8 of Rajaraman et al. (2020)). *Adopting the notation from*
 1190 *Rajaraman et al. (2020), we have*

$$1191 \quad \mathbb{E}[\Pr_{\pi^{\text{first}}}[\mathcal{E}]] \leq \frac{SH \log N}{N}$$

$$1192$$

1193 for \mathcal{E}^c the event that within a trajectory, the policy only visits states for which $T_h(s) > 0$.
 1194

1195 *Proof.* Let $\mathcal{E}_{s,h}$ denote the event that the state s is visited at step h and $T_h(s) = 0$, and $\mathcal{E}_h :=$
 1196 $\cup_{s \in \mathcal{S}} \mathcal{E}_{s,h}$. Then, by simple set inclusions, we have:
 1197

$$1198 \quad \mathcal{E} = \bigcup_{h \in [H]} \bigcup_{s \in \mathcal{S}} \mathcal{E}_{s,h} = \bigcup_{h \in [H]} \bigcup_{s \in \mathcal{S}} \left(\mathcal{E}_{s,h} \cap \bigcap_{h' < h} \mathcal{E}_{h'}^c \right).$$

$$1199$$

$$1200$$

1201 By a union bound it follows that
 1202

$$1203 \quad \mathbb{E}[\Pr_{\pi^{\text{first}}}[\mathcal{E}]] \leq \sum_{h \in [H]} \sum_{s \in \mathcal{S}} \mathbb{E}[\Pr_{\pi^{\text{first}}}[\mathcal{E}_{s,h} \cap \bigcap_{h' < h} \mathcal{E}_{h'}^c]].$$

$$1204$$

$$1205$$

1206 Now note that

$$1207 \quad \Pr_{\pi^{\text{first}}}[\mathcal{E}_{s,h} \cap \bigcap_{h' < h} \mathcal{E}_{h'}^c] = \Pr_{\pi^{\text{first}}}[\mathcal{E}_{s,h} \mid \bigcap_{h' < h} \mathcal{E}_{h'}^c] \Pr_{\pi^{\text{first}}}[\bigcap_{h' < h} \mathcal{E}_{h'}^c]$$

$$1208$$

$$1209 \quad = \Pr_{\pi^{\text{first}}}[\mathcal{E}_{s,h} \mid \bigcap_{h' < h} \mathcal{E}_{h'}^c] \Pr_{\pi^{\text{first}}}[\mathcal{E}_{h-1}^c \mid \bigcap_{h' < h-1} \mathcal{E}_{h'}^c] \Pr_{\pi^{\text{first}}}[\bigcap_{h' < h-1} \mathcal{E}_{h'}^c]$$

$$1210$$

$$1211 \quad \vdots$$

$$1212$$

$$1213 \quad = \Pr_{\pi^{\text{first}}}[\mathcal{E}_{s,h} \mid \bigcap_{h' < h} \mathcal{E}_{h'}^c] \cdot \prod_{h' < h} \Pr_{\pi^{\text{first}}}[\mathcal{E}_{h'}^c \mid \bigcap_{h'' < h'} \mathcal{E}_{h''}^c].$$

$$1214$$

$$1215$$

1216 If the event $\bigcap_{h' < h} \mathcal{E}_{h'}^c$ holds, then up to step h no states are encountered for which $T_{h'}(s) = 0$.
 1217 Thus, on such states, π^{first} and $\pi^{\text{orc-first}}$ will behave identically. It follows that $\mathbb{E}[\Pr_{\pi^{\text{first}}}[\mathcal{E}_{s,h} \mid$
 1218 $\bigcap_{h' < h} \mathcal{E}_{h'}^c]] = \mathbb{E}[\Pr_{\pi^{\text{orc-first}}}[\mathcal{E}_{s,h} \mid \bigcap_{h' < h} \mathcal{E}_{h'}^c]]$. By a similar argument, we have $\Pr_{\pi^{\text{orc-first}}}[\mathcal{E}_{h'}^c \mid$
 1219 $\bigcap_{h'' < h'} \mathcal{E}_{h''}^c] = \Pr_{\pi^{\text{first}}}[\mathcal{E}_{h'}^c \mid \bigcap_{h'' < h'} \mathcal{E}_{h''}^c]$ for each $h' < h$. Thus,
 1220

$$1221 \quad \Pr_{\pi^{\text{first}}}[\mathcal{E}_{s,h} \cap \bigcap_{h' < h} \mathcal{E}_{h'}^c] = \Pr_{\pi^{\text{orc-first}}}[\mathcal{E}_{s,h} \cap \bigcap_{h' < h} \mathcal{E}_{h'}^c].$$

$$1222$$

$$1223$$

1224 It follows that

$$1225 \quad \mathbb{E}[\Pr_{\pi^{\text{first}}}[\mathcal{E}]] \leq \sum_{h \in [H]} \sum_{s \in \mathcal{S}} \mathbb{E}[\Pr_{\pi^{\text{orc-first}}}[\mathcal{E}_{s,h} \cap \bigcap_{h' < h} \mathcal{E}_{h'}^c]] \leq \sum_{h \in [H]} \sum_{s \in \mathcal{S}} \mathbb{E}[\Pr_{\pi^{\text{orc-first}}}[\mathcal{E}_{s,h}]].$$

$$1226$$

$$1227$$

1228 From here the proof follows identically to the proof of Lemma A.8 of Rajaraman et al. (2020). \square
 1229

1230 *Proof of Theorem 1.* Set $\lambda = \max\{A, 4 \log(HT)\}$ and $\alpha = \frac{1}{\max\{A, H, \log(HT)\}}$. We have
 1231

$$1232 \quad \mathcal{J}(\pi^\beta) - \mathbb{E}[\mathcal{J}(\hat{\pi}^\beta)] + \mathbb{E}[\mathcal{J}(\tilde{\pi}^\beta)] - \mathbb{E}[\mathcal{J}(\tilde{\pi})] \lesssim \frac{H^2 S \log T}{T} + (1 + \alpha H) \cdot \frac{H^2 S \log T}{T} + \alpha \cdot \frac{H^2 S \lambda}{T}$$

$$1233$$

$$1234$$

1235 where we bound $\mathcal{J}(\pi^\beta) - \mathbb{E}[\mathcal{J}(\hat{\pi}^\beta)]$ by Theorem 4.4 of Rajaraman et al. (2020), and $\mathbb{E}[\mathcal{J}(\hat{\pi}^\beta)] -$
 1236 $\mathbb{E}[\mathcal{J}(\tilde{\pi})]$ by Lemma 2 since $\lambda \geq 4 \log(HT)$. By our choice of $\alpha = \frac{1}{\max\{A, H, \log(HT)\}}$, we can
 1237 bound all of this as

$$1238 \quad \lesssim \frac{H^2 S \log T}{T}.$$

$$1239$$

$$1240$$

1241 This proves the suboptimality guarantee. To show that $\tilde{\pi}$ is a γ -sampler, we applying Lemma 1 using
 1242 our values of λ and α . \square

1242 B.4 OPTIMALITY OF POSTERIOR SAMPLING
12431244 Let \mathcal{M} denote a multi-armed bandit with A actions where $r(a_1) = 1$ and $r(a_i) = 0$ for $i > 1$. Let
1245 $\pi^{\beta,i}$ denote the policy defined as

1246
1247
$$\pi^{\beta,i}(a) = \begin{cases} 1 - \alpha & a = 1 \\ \alpha & a = i \\ 0 & \text{o.w.} \end{cases}$$

1248
1249

1250 for $i > 1$ and α some value we will set, and $\pi^{\beta,1}(1) = 1$. We let $\mathcal{M}^i = (\mathcal{M}, \pi^{\beta,i})$ the instance-
1251 demonstrator pair, $\mathbb{E}^i[\cdot]$ the expectation on this instance, \mathbb{P}^i the distribution on this instance, and
1252 $\mathbb{P}^{i,T} = \otimes_{t=1}^T \mathbb{P}^i$.
12531254 **Lemma 5.** *Consider the instance constructed above. Then we have that, for $j \neq i$:*

1255
$$\mathbb{P}^i[\hat{\pi}(i) \geq \gamma \cdot \alpha] \leq 2 \cdot \mathbb{P}^j[\hat{\pi}(i) \geq \gamma \cdot \alpha] + T \cdot \alpha.$$

1256

1257 *Proof.* This follows from Lemma A.11 of Foster et al. (2021), which immediately gives that:
1258

1259
$$\mathbb{P}^i[\{\hat{\pi}(i) \geq \gamma \cdot \alpha\}] \leq 2 \cdot \mathbb{P}^j[\hat{\pi}(i) \geq \gamma \cdot \alpha] + D_H^2(\mathbb{P}^{i,T}, \mathbb{P}^{j,T}),$$

1260

1261 where $D_H(\cdot, \cdot)$ denotes the Hellinger distance. Since the squared Hellinger distance is subadditive
1262 we have

1263
$$D_H^2(\mathbb{P}^{i,T}, \mathbb{P}^{j,T}) \leq T \cdot D_H^2(\mathbb{P}^i, \mathbb{P}^j).$$

1264

1265 By elementary calculations we see that $D_H^2(\mathbb{P}^i, \mathbb{P}^j) = \alpha$, which proves the result. \square
12661267 **Theorem 3** (Full version of Theorem 2). *Let $\hat{\pi}$ be a γ -sampler of π^β for each $\mathcal{M}^i, i \in [A]$, and
1268 some $\delta \in (0, 1/4]$, and assume that*

1269
$$\mathcal{J}(\pi^{\beta,i}) - \mathbb{E}^i[\mathcal{J}(\hat{\pi})] \leq \xi, \quad \forall i \geq 1$$

1270

1271 for some $\xi > 0$. Then if $T \leq \frac{1}{4\alpha}$, it must be the case that

1272
$$\gamma \leq \frac{\xi}{4A\alpha}.$$

1273

1274 In particular, setting $\xi = c \cdot \frac{\log T}{T}$ and if $\alpha = \frac{1}{4T}$, we have

1275
$$\gamma \leq c \cdot \frac{\log T}{A}.$$

1276

1277 *Proof.* Our goal is to find the maximum value of γ such that our constraint on the optimality of $\hat{\pi}$ is
1278 met, for each \mathcal{M}^i . In particular, this can be upper bounded as

1279
$$\max_{\hat{\pi}, \gamma} \gamma \quad \text{s.t.} \quad \mathbb{P}^i[\{\hat{\pi}(a) \geq \gamma \cdot \pi^\beta(a), \forall a \in \mathcal{A}\}] \geq 1 - \delta, \quad \mathcal{J}(\pi^{\beta,i}) - \mathbb{E}^i[\mathcal{J}(\hat{\pi})] \leq \xi, \quad \forall i \geq 1. \quad (6)$$

1280

1281 Note that for $\mathcal{M}^i, i \geq 1$, the event $\{\hat{\pi}(a) \geq \gamma \cdot \pi^{\beta,i}(a), \forall a \in \mathcal{A}\}$ is a subset of the event $\{\hat{\pi}(i) \geq \gamma \cdot \alpha\}$. This allows us to bound (6) as
1282

1283
$$\max_{\hat{\pi}, \gamma} \gamma \quad \text{s.t.} \quad \mathbb{P}^i[\hat{\pi}(i) \geq \gamma \cdot \alpha] \geq 1 - \delta, \quad \mathcal{J}(\pi^{\beta,i}) - \mathbb{E}^i[\mathcal{J}(\hat{\pi})] \leq \xi, \quad \forall i \geq 1. \quad (7)$$

1284

1285 By Lemma 5, we have that for each $i > 1$,

1286
$$\mathbb{P}^i[\hat{\pi}(i) \geq \gamma \cdot \alpha] \leq 2 \cdot \mathbb{P}^1[\hat{\pi}(i) \geq \gamma \cdot \alpha] + T \cdot \alpha.$$

1287

1288 Furthermore, on \mathcal{M}^1 we have $\mathcal{J}(\pi^{\beta,1}) - \mathbb{E}^1[\mathcal{J}(\hat{\pi})] = \mathbb{E}^1[\sum_{i>1} \hat{\pi}(i)]$. Given this, we can upper
1289 bound (7) as

1290
$$\max_{\hat{\pi}, \gamma} \gamma \quad \text{s.t.} \quad \mathbb{P}^1[\hat{\pi}(i) \geq \gamma \cdot \alpha] \geq \frac{1}{2} \cdot (1 - \delta - T \cdot \alpha), \quad \forall i > 1, \quad \mathbb{E}^1[\sum_{i>1} \hat{\pi}(i)] \leq \xi. \quad (8)$$

1291

1296 By Markov's inequality, we have
 1297

$$1298 \mathbb{P}^1[\hat{\pi}(i) \geq \gamma \cdot \alpha] \leq \frac{\mathbb{E}^1[\hat{\pi}(i)]}{\gamma \cdot \alpha}.$$

1300 Furthermore, since we have assumed $\delta \leq 1/4$ and $T \leq \frac{1}{4\alpha}$, we have $\frac{1}{2} \cdot (1 - \delta - T \cdot \alpha) \geq \frac{1}{4}$. We
 1301 can therefore bound (8) as

$$1302 \max_{\hat{\pi}, \gamma} \gamma \quad \text{s.t.} \quad \mathbb{E}^1[\hat{\pi}(i)] \geq \frac{1}{4} \cdot \gamma \alpha, \forall i > 1, \mathbb{E}^1[\sum_{i>1} \hat{\pi}(i)] \leq \xi. \quad (9)$$

1305 However, we see then that we immediately have that

$$1306 \gamma \leq \frac{\xi}{4A\alpha}.$$

1307 This proves the result. \square
 1308

1311 C APPROXIMATE POSTERIOR

1313 Let $P(\cdot | \mu)$ denote the distribution $\mathcal{N}(\mu, \Sigma)$, where we assume μ is unknown and Σ is known.
 1314 Assume that we have samples $\mathcal{D} = \{x_1, \dots, x_T\} \sim P(\cdot | \mu^*)$. Let $Q_{\text{prior}} = \mathcal{N}(0, \Lambda_0)$ denote the
 1315 prior on μ . Throughout this section we let $=^d$ denote equality in distribution.

1316 **Lemma 6.** *Under Q_{prior} , we have that the posterior Q_{post} on μ is:*

$$1318 Q_{\text{post}}(\cdot | \mathcal{D}) = \mathcal{N}\left(\Lambda_{\text{post}} \Sigma^{-1} \cdot \sum_{t=1}^T x_t, \Lambda_{\text{post}}\right),$$

1320 for $\Lambda_{\text{post}}^{-1} = \Lambda_0^{-1} + T \cdot \Sigma^{-1}$.

1323 *Proof.* Dropping terms that do not depend on μ , we have

$$1324 Q_{\text{post}}(\mu | \mathcal{D}) = \frac{P(\mathcal{D} | \mu)Q_{\text{prior}}(\mu)}{P(\mathcal{D})} \\ 1325 \propto \exp\left(-\frac{1}{2} \sum_{t=1}^T (x_t - \mu)^\top \Sigma^{-1} (x_t - \mu)\right) \cdot \exp\left(-\frac{1}{2} \mu^\top \Lambda_0 \mu\right) \\ 1326 \propto \exp\left(-\frac{1}{2} T \mu^\top \Sigma^{-1} \mu - \frac{1}{2} \mu^\top Q_{\text{prior}}^{-1} \mu + \mu^\top \Sigma^{-1} \cdot \sum_{t=1}^T x_t\right) \\ 1327 = \exp\left(-\frac{1}{2} (\mu - \Lambda_{\text{post}} v)^\top \Lambda_{\text{post}}^{-1} (\mu - \Lambda_{\text{post}} v) + \frac{1}{2} v^\top \Lambda_{\text{post}} v\right)$$

1334 for $\Lambda_{\text{post}}^{-1} = \Lambda_0^{-1} + T \cdot \Sigma^{-1}$, and $v = \Sigma^{-1} \cdot \sum_{t=1}^T x_t$. \square

1336 **Lemma 7** (General version of Proposition 4). *Let*

$$1338 \hat{\mu} = \arg \min_{\mu} \sum_{t=1}^T (\mu - \tilde{x}_t)^\top \Sigma^{-1} (\mu - \tilde{x}_t) + (\mu - \tilde{\mu})^\top \Lambda_0^{-1} (\mu - \tilde{\mu}),$$

1340 for $\tilde{x}_t = x_t + w_t$, $w_t \sim \mathcal{N}(0, \Sigma)$, and $\tilde{\mu} \sim Q_{\text{prior}}$. Then $\hat{\mu} =^d Q_{\text{post}}(\cdot | \mathcal{D})$.

1342 *Proof.* By computing the gradient of the objective, setting it equal to 0, and solving for μ , we see
 1343 that

$$1345 \hat{\mu} = (\Lambda_0^{-1} + T \Sigma^{-1})^{-1} \cdot \left(\Sigma^{-1} \cdot \sum_{t=1}^T \tilde{x}_t + \Lambda_0^{-1} \tilde{\mu}\right) \\ 1346 = (\Lambda_0^{-1} + T \Sigma^{-1})^{-1} \cdot \Sigma^{-1} \cdot \sum_{t=1}^T x_t + (\Lambda_0^{-1} + T \Sigma^{-1})^{-1} \cdot \left(\Sigma^{-1} \cdot \sum_{t=1}^T w_t + \Lambda_0^{-1} \tilde{\mu}\right).$$

1350 Note that the first term in the above is deterministic conditioned on \mathfrak{D} , and the second term is mean
 1351 0 and has covariance $(\Lambda_0^{-1} + T\Sigma^{-1})^{-1}$. We see then that the mean and covariance of $\hat{\mu}$ match the
 1352 mean the covariance of $Q_{\text{post}}(\cdot | \mathfrak{D})$ given in Lemma 6, which proves the result. \square
 1353

1354 **Lemma 8.** *Let \tilde{x} be distributed as*

$$1355 \quad \tilde{x} \sim \mathcal{N}(\hat{\mu}, \Sigma) \quad \text{for } \hat{\mu} \sim Q_{\text{post}}(\cdot | \mathfrak{D}) \quad \text{and } \mathfrak{D} \sim P(\cdot | \mu^*).$$

1356 *Then*

$$1358 \quad \tilde{x} =^d x_{T+1} + 2w + z$$

1359 *for $x_{T+1} \sim P(\cdot | \mu^*)$, $w \sim \mathcal{N}(0, \Lambda_{\text{post}})$, and z some random variable satisfying $\mathbb{E}[\|z\|_2^2] \leq$
 1360 $\mathcal{O}(1/T^2)$.*

1362 *Proof.* Note that $x_t = \mu^* + \eta_t$, for $\eta_t \sim \mathcal{N}(0, \Sigma)$. We then have

$$1364 \quad \mu^* - \Lambda_{\text{post}}\Sigma^{-1} \cdot \sum_{t=1}^T x_t = \mu^* - T\Lambda_{\text{post}}\Sigma^{-1}\mu^* - \Lambda_{\text{post}}\Sigma^{-1} \cdot \sum_{t=1}^T \eta_t. \quad (10)$$

1367 Note that

$$1368 \quad T\Lambda_{\text{post}}\Sigma^{-1}\mu^* = \Lambda_{\text{post}}(T\Sigma^{-1} + \Lambda_0^{-1})\mu^* - \Lambda_{\text{post}}\Lambda_0^{-1}\mu^* = \mu^* - \Lambda_{\text{post}}\Lambda_0^{-1}\mu^*.$$

1370 Furthermore, we have that

$$1372 \quad -\Lambda_{\text{post}}\Sigma^{-1} \cdot \sum_{t=1}^T \eta_t =^d \mathcal{N}(0, T\Lambda_{\text{post}}\Sigma^{-1}\Lambda_{\text{post}}) =^d \mathcal{N}(0, \Lambda_{\text{post}} - \Lambda_{\text{post}}\Lambda_0^{-1}\Lambda_{\text{post}}).$$

1374 It follows that

$$1376 \quad (10) =^d \mathcal{N}(\Lambda_{\text{post}}\Lambda_0^{-1}\mu^*, \Lambda_{\text{post}} - \Lambda_{\text{post}}\Lambda_0^{-1}\Lambda_{\text{post}}).$$

1377 Note that by construction, $\Lambda_{\text{post}}\Lambda_0^{-1}\mu^* \leq \mathcal{O}(1/T)$. Furthermore, $\|\Lambda_{\text{post}}\Lambda_0^{-1}\Lambda_{\text{post}}\|_2 = \mathcal{O}(1/T^2)$.
 1378 Thus,

$$1380 \quad (10) =^d \mathcal{N}(0, \Lambda_{\text{post}} - \mathcal{O}(1/T^2)) + \mathcal{O}^d(1/T)$$

1381 where here we let $\mathcal{O}^d(1/T)$ denote some term X such that $\mathbb{E}[\|X\|_2^2] \leq \mathcal{O}(1/T)$. As a perturbation
 1382 of $\mathcal{O}(1/T^2)$ to the covariance will result in a perturbation whose norm is bounded in expectation as
 1383 $\mathcal{O}(1/T)$, we have

$$1385 \quad (10) =^d \mathcal{N}(0, \Lambda_{\text{post}}) + \mathcal{O}^d(1/T).$$

1386 Let $w \sim \mathcal{N}(0, \Lambda_{\text{post}})$ and $\eta \sim \mathcal{N}(0, \Sigma)$. Then, by Lemmas 6 and 7:

$$1388 \quad \begin{aligned} \hat{\mu} + \eta &=^d \Lambda_{\text{post}}\Sigma^{-1} \cdot \sum_{t=1}^T x_t + w + \eta \\ 1389 &=^d \mu^* + \mathcal{N}(0, \Lambda_{\text{post}}) + w + \eta + \mathcal{O}^d(1/T) \\ 1390 &=^d \mu^* + 2w + \eta + \mathcal{O}^d(1/T) \\ 1392 &=^d x_{T+1} + 2w + \mathcal{O}^d(1/T) \end{aligned}$$

1394 for $x_{T+1} \sim P(\cdot | \mu^*)$. \square

1397 D ADDITIONAL EXPERIMENTAL DETAILS

1399 We summarize our approach for generating approximate posterior samples in Algorithm 2. In all
 1400 experiments, we parameterize f_ℓ with Gaussian policy. While using more expressive generative
 1401 policies to produce the final policy leads to better performance, as we only use f_ℓ to estimate the
 1402 variance at each point, a Gaussian policy suffices. Furthermore, Gaussian policies are often easier
 1403 to fit than generative policies—often requiring less gradient steps than, for example, diffusion
 1404 policies—so using a Gaussian policy reduces the computation required as well.

1404 **Algorithm 2** Posterior Variance Approximation via Ensembled Prediction
1405 1: **input:** demonstration dataset \mathfrak{D} , ensemble size K , function class \mathcal{F} , dataset type (\in
1406 $\{\text{noisy, bootstrapped}\}$)
1407 2: **for** $\ell = 1, 2, \dots, K$ **do**
1408 3: **if** dataset type == noisy **then**
1409 Set $\mathfrak{D}_\ell \leftarrow \{(s, a + w_{sa}^\ell) : \forall (s, a) \in \mathfrak{D}\}$ where $w_{sa}^\ell \sim \mathcal{N}(0, I)$
1410 **else if** dataset type == bootstrapped **then**
1411 Set $\mathfrak{D}_\ell \leftarrow \{|\mathfrak{D}|$ points (s, a) sampled with replacement from $\mathfrak{D}\}$
1412 Fit f_ℓ by solving $f_\ell \leftarrow \arg \min_{f \in \mathcal{F}} \sum_{(s, a) \in \mathfrak{D}_\ell} \|f_\ell(s) - \tilde{a}\|_2^2$
1413 8: **return** $\{f_\ell\}_{\ell \in [K]}$

Task	Pretrained Performance			
	BC	σ -BC	DICE	POSTBC
Robomimic Lift	70.1 ± 1.7	66.7 ± 0.8	20.0 ± 2.4	68.1 ± 0.7
Robomimic Can	43.4 ± 0.6	44.3 ± 0.9	14.1 ± 2.8	41.6 ± 0.4
Robomimic Square	18.8 ± 0.3	18.3 ± 0.3	6.2 ± 0.6	17.7 ± 0.3
Libero Scene 1	22.1 ± 8.3	23.2 ± 6.2	-	24.4 ± 6.1
Libero Scene 2	11.5 ± 3.4	10.3 ± 4.1	-	13.1 ± 3.9
Libero Scene 3	40.1 ± 10.4	37.4 ± 7.6	-	42.0 ± 10.2
Libero All	22.2 ± 4.3	21.1 ± 3.7	-	23.0 ± 3.9

1423 Table 3: Comparison of **success rates** of all pretrained policies on Robomimic and Libero, for
1424 different pretraining approaches. **Bolded text denotes best approach.**

1426 D.1 ROBOMIMIC EXPERIMENTS

1428 For all Robomimic experiments, we run POSTBC as stated in Algorithm 1 however, instead of computing
1429 the full covariance of the posterior, we only compute the diagonal covariance. We instantiate
1430 $\hat{\pi}^\theta$ with a diffusion policy that uses an MLP architecture. For f_ℓ , we train an MLP to simply predict
1431 the noised action directly in \mathfrak{D}_i (i.e. we do not use a diffusion model for f_ℓ), but use the same architecture
1432 and dimensions for f_ℓ as the diffusion policies. **We used bootstrapped sampling to compute**
1433 **the ensemble for all settings but Best-of- N on Lift.** In all cases we pretrain on the Multi-Human
1434 Robomimic datasets, and in cases where we use less than the full dataset, we randomly select
1435 trajectories from the dataset to train on, using the same trajectories for each approach.

1436 For each RL finetuning method, we sweep over the same hyperparameters for each pretrained policy
1437 method (i.e. BC, σ -BC, POSTBC), and include results for the best one. For σ -BC, we swept over
1438 values of σ and included results for the best-performing one. With the exception of DSRL Square,
1439 for every Robomimic experiment, we train 5 diffusion policies per pretraining method, and perform
1440 a single RL finetuning run on it, so that each stated values is averaged over 5 seeds; For DSRL Square
1441 we only average over 3 seeds. For each evaluation, we roll out the policy 200 times. For DPPG we
1442 utilize the default hyperparameters as stated in Ren et al. (2024), and utilize DDPM sampling. **For**
1443 **VALUEDICE, we use the officially published codebase, and the default hyperparameters provided**
1444 **there.** In all cases, we utilize a -1/0 success reward, using Robomimic’s built-in success detector to
1445 determine the reward. We provide hyperparameters for the individual experiments below.

1447 Table 4: **Common DSRL hyperparameters for all experiments.**

Hyperparameter	Value
Learning rate	0.0003
Batch size	256
Activation	Tanh
Target entropy	0
Target update rate (τ)	0.005
Number of actor and critic layers	3
Number of critics	2
Number of environments	4

1458

1459

1460

1461

Table 5: **DSRL hyperparameters for Robomimic experiments.**

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

Table 6: **Hyperparameters for pretrained policies for Robomimic DSRL experiments.**

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

Hyperparameter

Lift

Can

Square

Dataset size (number trajectories)

5

10

40

Action chunk size

4

4

4

train denoising steps

100

20

100

inference denoising steps

8

8

8

Hidden size

512

1024

1024

Hidden layers

3

3

3

Training epochs

3000

3000

3000

Ensemble size (POSTBC)

100

10

100

Ensemble training epochs (POSTBC)

10000

6000

3000

Posterior noise weight α (POSTBC)

1

0.5

1

Uniform noise σ (σ -BC)

0.1

0.05

0.05

1504

1505

1506

1507

1508

1509

1510

1511

Table 7: **Best-of- N hyperparameters for Robomimic experiments.**

Hyperparameter	Lift	Can	Square
Total gradient steps	3000000	2000000	2000000
IQL τ (1000 rollouts)	0.7	0.7 (BC, σ -BC, DICE), 0.9 (POSTBC)	0.7
IQL τ (2000 rollouts)	0.7 (BC, σ -BC, DICE), 0.9 (POSTBC)	0.7 (BC, σ -BC, DICE), 0.9 (POSTBC)	0.7 (BC, σ -BC, DICE), 0.9 (POSTBC)
Discount factor	0.999	0.999	0.999

1512 Table 8: Hyperparameters for pretrained policies for **Robomimic Best-of- N** experiments.
1513
1514

Hyperparameter	Lift	Can	Square
Dataset size (number trajectories)	20	300	300
Action chunk size	1	1	1
train denoising steps	100	20	100
inference denoising steps	8	8	8
Hidden size	512	1024	1024
Hidden layers	3	3	3
Training epochs	3000	3000	3000
Ensemble size (POSTBC)	10	10	10
Ensemble noise σ (POSTBC)	0.5	-	-
Ensemble training epochs (POSTBC)	500	500	500
Posterior noise weight α (POSTBC)	2	1	1
Uniform noise σ (σ -BC)	0.1	0.05	0.05

1526
1527
1528
1529
1530 Table 9: Hyperparameters for pretrained policies for **Robomimic DPPO** experiments.
1531
1532

Hyperparameter	Lift	Can	Square
Dataset size (number trajectories)	5	10	30
Action chunk size	4	4	4
train denoising steps	100	100	100
Hidden size	512	1024	1024
Hidden layers	3	3	3
Training epochs	3000	3000	3000
Ensemble size (POSTBC)	100	100	10
Ensemble training epochs (POSTBC)	3000	6000	3000
Posterior noise weight α (POSTBC)	0.5	0.25	1
Uniform noise σ (σ -BC)	0.1	0.05	0.05

1543
1544
1545 D.2 LIBERO EXPERIMENTS
1546

1547 For Libero, we utilize the transformer architecture from Dasari et al. (2024) for $\hat{\pi}^\theta$. We run POSTBC
1548 as stated in Algorithm 1, but instead of approximating the posterior by adding noise to actions, we
1549 instead used a bootstrap estimate, where we sample from \mathcal{D} with replacement, and fit f_ℓ to the boot-
1550 strapped samples (we note that this is another common strategy for uncertainty estimation in RL,
1551 see e.g. Osband et al. (2016a)). For f_ℓ , we utilize the same ResNet and tokenizer as $\hat{\pi}^\theta$, but simply
1552 utilize a 3-layer MLP head on top of it—trained to predict the actions directly—rather than a full
1553 diffusion transformer. For the Best-of- N experiments, POSTBC utilizes a diagonal posterior covariance
1554 estimate, while for the DSRL runs it is trained with the full matrix posterior covariance estimate.
1555 We train on Libero-90 data from the first 3 scenes of Libero-90—KITCHEN-SCENE1, KITCHEN-
1556 SCENE2, and KITCHEN-SCENE3—and use 25 trajectories from each task in each scene. For task
1557 conditioning, we conditioning $\hat{\pi}^\theta$ on the BERT language embedding (Devlin et al., 2019) of the
1558 corresponding text given for that task in the Libero dataset.

1559 For each RL finetuning method, we sweep over the same hyperparameters for each pretrained policy
1560 method (i.e. BC, σ -BC, POSTBC), and include results for the best one. For σ -BC, we swept over
1561 values of σ and included results for the best-performing one. The DSRL experiments are averaged
1562 over 3 different pretraining runs per method, and one DSRL run per pretrained run. The Best-of- N
1563 experiments are averaged over 2 different pretraining runs per method, and 2 Best-of- N runs per
1564 pretrained run. For each evaluation, we roll out the policy 100 times. **In all cases, we utilize a -1/0**
1565 **success reward, using Libero’s built-in success detector to determine the reward.**

We provide hyperparameters for the individual experiments below.

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
Table 10: **DSRL hyperparameters for all Libero experiments.**

Hyperparameter	Value
Learning rate	0.0003
Batch size	256
Activation	Tanh
Target entropy	0
Target update rate (τ)	0.005
Number of actor and critic layers	3
Layer size	1024
Number of critics	2
Number of environments	1
Gradient steps per update	20
Discount factor	0.99
Action magnitude	1.5
Initial episode rollouts	20

Table 11: **Best-of- N hyperparameters for all Libero experiments.**

Hyperparameter	Value
IQL learning rate	0.0003
IQL batch size	256
IQL β	3
Activation	Tanh
Target update rate	0.005
Q and V number of layers	2
Q and V layer size	256
Number of critics	2
N (Best-of- N samples)	32
IQL gradient steps	50000
IQL τ	0.9
Discount factor	0.99

Table 12: Hyperparameters for DiT diffusion policy in Libero experiments.

Hyperparameter	Value
Batch size	150
Learning rate	0.0003
Training steps	50000
LR scheduler	cosine
Warmup steps	2000
Action chunk size	4
Train denoising steps	100
Inference denoising steps	8
Image encoder	ResNet-18
Hidden size	256
Number of Heads	8
Number of Layers	4
Feedforward dimension	512
Token dimension	256
Ensemble size (POSTBC)	5
Ensemble training steps (POSTBC)	25000
Ensemble layer size	512
Ensemble number of layers	3
Posterior noise weight (POSTBC)	2 (DSRL run), 4 (Best-of- N run)
Uniform noise σ (σ -BC)	0.05

D.3 ADDITIONAL ABLATIONS

We provide several additional ablations on POSTBC.

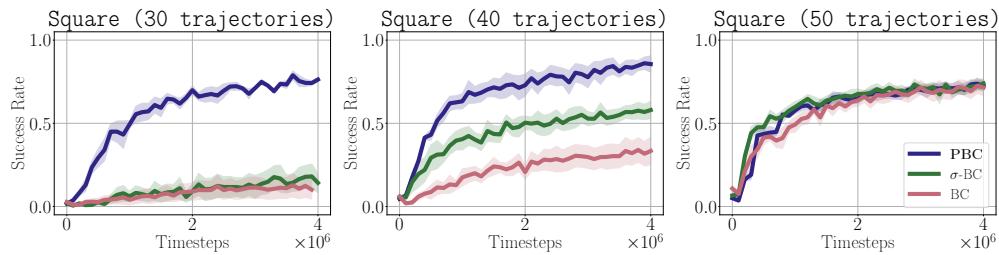
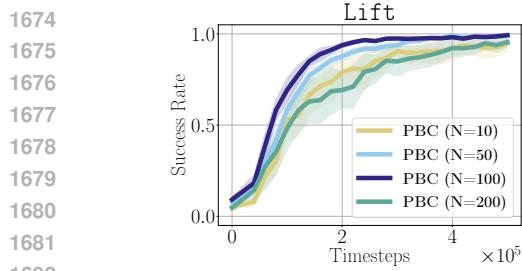


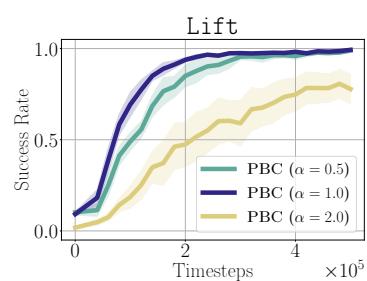
Figure 6: Comparison of DSRL finetuning performance combined with different BC pretraining approaches on Robomimic Square, varying the number of trajectories in the dataset the policies are pretrained on. As can be seen, the finetuning performance of policies pretrained with POSTBC is largely unaffected by the size of the pretraining dataset, while BC and σ -BC are both very sensitive to dataset size. For large enough datasets (50 trajectories), BC and σ -BC perform as well as POSTBC. This is to be expected—if we train on enough data, our uncertainty will be low, so POSTBC will essentially reduce to BC. These results illustrate that POSTBC gracefully interpolates between settings where BC overfits to small amounts of data, hurting its finetuning performance, and settings where BC is sufficient for effective finetuning.



1683
1684
1685
1686
1687
1688
1689
1690

Figure 7: Comparison of DSRL finetuning performance on policies pretrained with POSTBC on Robomimic Lift, varying the ensemble size. As can be seen, POSTBC performs best with an ensemble size around 100, but is not particularly sensitive to ensemble size as long as the ensemble is not too small or too large.

1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727



1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Figure 8: Comparison of DSRL finetuning performance on policies pretrained with POSTBC on Robomimic Lift, varying the noise weight α . Increasing α too much typically hurts performance, and if α is too small performance reduces to that of BC. In general we found that setting $\alpha = 1.0$ performs well across many settings.