POSTERIOR BEHAVIORAL CLONING: PRETRAINING BC POLICIES FOR EFFICIENT RL FINETUNING

Anonymous authors

000

001

002003004

006

008 009

010 011

012

013

014

015

016

017

018

019

020

021

022

024

025

026

027

028

029

031

032

034

037

038

040

041

042

043 044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Standard practice across domains from robotics to language is to first pretrain a policy on a large-scale demonstration dataset, and then finetune this policy, typically with reinforcement learning (RL), in order to improve performance on deployment domains. This finetuning step has proved critical in achieving human or super-human performance, yet while much attention has been given to developing more effective finetuning algorithms, little attention has been given to ensuring the pretrained policy is an effective initialization for RL finetuning. In this work we seek to understand how the pretrained policy affects finetuning performance, and how to pretrain policies in order to ensure they are effective initializations for finetuning. We first show theoretically that, by training a policy to clone the demonstrator's posterior distribution given the demonstration dataset—rather than simply the demonstrations themselves—we can obtain a policy that ensures coverage over the demonstrator's actions—a minimal condition for effective finetuning without hurting the performance of the pretrained policy. Furthermore, we show that standard behavioral cloning (BC) pretraining fails to achieve this without significant tradeoffs in terms of sampling costs. Motivated by this, we then show that this approach is practically implementable with modern generative policies in robotic control domains, in particular diffusion policies, and leads to significantly improved finetuning performance on realistic robotic control benchmarks, as compared to standard behavioral cloning.

1 Introduction

Across domains—from language, to vision, to robotics—a common paradigm has emerged for training highly effective "policies": collect a large set of demonstrations, "pretrain" a policy via behavioral cloning (BC) to mimic these demonstrations, then "finetune" the pretrained policy on a deployment domain of interest. While pretraining can endow the policy with generally useful abilities, the finetuning step has proved critical in obtaining effective performance, enabling human value alignment and reasoning capabilities in language domains (Ouyang et al., 2022; Bai et al., 2022a; Team et al., 2025; Guo et al., 2025a), and improving task solving precision and generalization to unseen tasks in robotic domains (Nakamoto et al., 2024; Chen et al., 2025; Kim et al., 2025; Wagenmaker et al., 2025). In particular, reinforcement learning (RL)-based finetuning—where the pretrained policy is deployed in a setting of interest and its behavior updated based on the outcomes of these online rollouts—is especially crucial in improving the performance of a pretrained policy.

Critical to achieving successful RL-based finetuning performance in many domains—particularly in settings when policy deployment is costly and time-consuming, such as robotic control—is sample efficiency; effectively modifying the behavior of the pretrained model using as few deployment rollouts as possible. While significant attention has been given to developing more efficient finetuning algorithms, this ignores a primary ingredient in the RL finetuning process: the pretrained policy itself. Though generally accepted that a stronger pretrained policy is a better initialization for finetuning (Guo et al., 2025a; Yue et al., 2025), it is not well understood how pretraining impacts finetuning performance beyond this, and how we might pretrain policies to enable more efficient RL finetuning.

In this work we seek to understand the role of the pretrained policy in RL finetuning, and how we might pretrain policies that (a) enable efficient RL finetuning, and (b) before finetuning, perform no worse than the standard BC policy. We propose a novel pretraining approach—posterior behavioral

Figure 1: We consider the setting where we are given demonstration data for some tasks of interest, (a). (b) Standard BC pretraining fits the behaviors in the demonstrations, leading to effective performance in regions with high demonstration data density, yet poor performance in regions with low data density. (c) This leads to ineffective RL finetuning, since rollouts from the BC policy provide little meaningful reward signal in such low data density regions, which is typically necessary to enable effective improvement. (d) In contrast, we propose *posterior behavioral cloning*, which instead of directly mimicking the demonstrations, trains a generative policy to fit the *posterior distribution* of the demonstrator's actions. This endows the pretrained policy with a wider distribution of actions in regions of low demonstrator data density, while in regions of high data density it reduces to approximately the standard BC policy. (e) This wider action distribution allows for collection of diverse observations with more informative reward signal, allowing for more effective RL finetuning.

cloning—which, rather than fitting the empirical distribution of demonstrations as standard BC does, instead fits the *posterior* distribution over the demonstrator's behavior. This enables the pretrained policy to take into account its potential uncertainty about the demonstrator's behavior, and adjust the entropy of its action distribution based on this uncertainty. In states where it is uncertain about the demonstrator's actions, posterior BC samples from a high-entropy distribution, allowing for a more diverse set of actions that may enable further policy improvement, while in states where it is certain about the demonstrator's actions, it samples from a low-entropy distribution, simply mimicking what it knows to be the (correct) demonstrator behavior (see Figure 1).

Theoretically, we show that posterior BC leads to provable improvements over standard BC in terms of the potential for downstream RL performance. In particular, we focus on the ability of the pretrained policy to cover the demonstrator policy's actions—whether it samples all actions the demonstrator policy might sample—which, for finetuning approaches that rely on rolling out the pretrained policy, is a prerequisite for ensuring finetuning can even match the performance of the demonstrator. We show that standard BC can provably fail to cover the demonstrator's distribution, while posterior BC *does* cover the demonstrator's distribution, incurs no suboptimality in the performance of the pretrained policy as compared to the standard BC policy, and achieves a near-optimal sampling cost out of all policy estimators which have suboptimality no more than the BC policy's.

Inspired by this, we develop a practical approach to approximating the posterior of the demonstrator in continuous action domains, and instantiate posterior BC with modern generative models—diffusion models—on robotic control tasks. We demonstrate experimentally that posterior BC pretraining can lead to significant performance gains in terms of the efficiency and effectiveness of RL finetuning, as compared to running RL finetuning on a policy pretrained with standard BC, and achieves these gains without decreasing the performance of the pretrained policy itself. We show that this holds for a variety of finetuning algorithms—both policy-gradient-style algorithms, and algorithms which explicitly refine or filter the distribution of the pretrained policy—enabling effective finetuning performance across a variety of challenging robotic tasks.

2 RELATED WORK

BC and pretraining for downstream finetuning. BC training of expressive generative models —where the model is trained to predict the next "action" of the demonstrator—forms the backbone of pretraining for LLMs (Radford et al., 2018) and robotic control policies (Bojarski, 2016; Zhang et al., 2018; Rahmatizadeh et al., 2018; Stepputtis et al., 2020; Shafiullah et al., 2022; Gu et al.,

2023; Team et al., 2024; Zhao et al., 2024; Black et al., 2024; Kim et al., 2024). We focus in particular on policies parameterized as diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020), which have seen much attention in the robotics community (Chi et al., 2023; Ankile et al., 2024a; Zhao et al., 2024; Ze et al., 2024; Sridhar et al., 2024; Dasari et al., 2024; Team et al., 2024; Black et al., 2024; Bjorck et al., 2025). These works, however, simply pretrain with standard BC, and do not consider how the pretraining may affect RL finetuning performance.

To the best of our knowledge, no existing work considers how to pretrain policies on reward-free data with BC-like objectives to ensure they are an effective initialization for RL finetuning. In the RL literature, however, two lines of work bear some resemblance to ours. The *offline-to-online RL* setting aims to train policies with RL on offline datasets that can then be improved with further online interaction (Lee et al., 2022; Ghosh et al., 2022; Kumar et al., 2022; Zhang et al., 2023; Uchendu et al., 2023; Zheng et al., 2023; Ball et al., 2023; Nakamoto et al., 2023), and the *meta-RL* setting aims to meta-learn a policy on some set of tasks which can then be quickly adapted to a new task (Wang et al., 2016; Duan et al., 2016; Finn et al., 2017; 2018). While similar to our work in that these works also aim to learn behaviors that can be efficiently improved online, the settings differ significantly in that the offline- or meta-pretraining typically requires reward labels (rather than unlabeled demonstrations) and are performed with RL (rather than BC)—in contrast, we study how BC-like pretraining (as noted, the workhorse of most modern applications) can enable efficient online adaptation.

RL finetuning of pretrained policies. RL finetuning of pretrained policies is a critical step in both language and robotic domains. In language domains, RL finetuning has proved crucial in aligning LLMs to human values (Ziegler et al., 2019; Ouyang et al., 2022; Bai et al., 2022a; Ramamurthy et al., 2022; Touvron et al., 2023), and enabling reasoning abilities (Shao et al., 2024; Team et al., 2025; Guo et al., 2025a). A host of finetuning algorithms have been developed, both online (Bai et al., 2022b; Bakker et al., 2022; Dumoulin et al., 2023; Lee et al., 2023; Munos et al., 2023; Swamy et al., 2024; Chakraborty et al., 2024; Chang et al., 2024) and offline (Rafailov et al., 2023; Azar et al., 2024; Rosset et al., 2024; Tang et al., 2024; Yin et al., 2024). In robotic and control domains, RL finetuning methods include directly modifying the weights of the base pretrained policy (Zhang et al., 2024; Xu et al., 2024; Mark et al., 2024; Ren et al., 2024; Hu et al., 2025; Guo et al., 2025b; Lu et al., 2025; Chen et al., 2025; Liu et al., 2025), Best-of-N sampling-style approaches that filter the output of the pretrained policy with a learned value function (Chen et al., 2022; Hansen-Estruch et al., 2023; He et al., 2024; Nakamoto et al., 2024; Dong et al., 2025b), "steering" the pretrained policy by altering its sampling process (Wagenmaker et al., 2025), and learning smaller residual policies to augment the pretrained policy's actions (Ankile et al., 2024b; Yuan et al., 2024; Jülg et al., 2025; Dong et al., 2025a). Our work is tangential to this line of work: rather than improving the finetuning algorithm, we aim to ensure the pretrained policy is amenable to RL finetuning.

Posterior sampling and exploration. Our proposed approach relies on modeling the posterior distribution of the demonstrator's actions. While this is, to the best of our knowledge, the first example of applying posterior sampling to BC, posterior methods have a long history in RL, going back to the work of Thompson (1933). This works spans applied (Osband et al., 2016a;b; 2018; Zintgraf et al., 2019) and theoretical (Agrawal & Goyal, 2012; Russo & Van Roy, 2014; Russo et al., 2018; Janz et al., 2024; Kveton et al., 2020; Russo, 2019) settings. More generally, our approach can be seen as enabling BC-trained policies to *explore* more effectively. Exploration is a well-studied problem in the RL community (Stadie et al., 2015; Bellemare et al., 2016; Burda et al., 2018; Choi et al., 2018; Ecoffet et al., 2019; Shyam et al., 2019; Lee et al., 2021; Henaff et al., 2022), with several works considering learning exploration strategies from offline data (Hu et al., 2023; Li et al., 2023; Wilcoxson et al., 2024; Wagenmaker et al.). These works, however, either consider RL-based pretraining (while we focus on BC) or do not consider the question of online finetuning.

3 PRELIMINARIES

Mathematical notation. Let \lesssim denote inequality up to absolute constants, $\triangle_{\mathcal{X}}$ the simplex over \mathcal{X} , and unif(\mathcal{X}) the uniform distribution over \mathcal{X} . $\mathbb{I}[\cdot]$ denotes the indicator function, $\mathbb{E}^{\pi}[\cdot]$ the expectation under policy π and, unless otherwise noted, $\mathbb{E}[\cdot]$ the expectation over the demonstrator dataset.

Markov decision processes. We consider decision-making in the context of episodic, fixed-horizon Markov decision processes (MDPs). An MDP \mathcal{M} is denoted by a tuple $(\mathcal{S}, \mathcal{A}, \{P_h\}_{h=1}^H, P_0, r, H)$, where \mathcal{S} is the set of states, \mathcal{A} the set of actions, $P_h: \mathcal{S} \times \mathcal{A} \to \triangle_{\mathcal{S}}$ the next-state distribution at step $h, P_0 \in \triangle_{\mathcal{S}}$ the initial state distribution, $r_h: \mathcal{S} \times \mathcal{A} \to \triangle_{[0,1]}$ the reward distribution, and H the

 horizon. Interaction with $\mathcal M$ proceeds in episodes of length H. At step 1, we sample a state $s_1 \sim P_0$, take an action $a_1 \in \mathcal A$, receive reward $r_1(s_1,a_1)$, and transition to state $s_2 \sim P_1(\cdot \mid s_1,a_1)$. This continues for H steps until the MDP resets. We let $\mathcal J(\pi) := \mathbb E^\pi[\sum_{h=1}^H r_h(s_h,a_h)]$ denote the expected reward for policy π over one episode. In general, our goal is to maximize $\mathcal J(\pi)$.

Behavioral cloning. We assume we are given some dataset $\mathfrak{D} = \{(s_1^t, a_1^t, \dots, s_H^t, a_H^t)\}_{t=1}^T$ collected by running a *demonstrator* policy π^β on \mathcal{M} , so that $(s_1^t, a_1^t, \dots, s_H^t, a_H^t)$ denotes a full trajectory rollout of π^β on \mathcal{M} , with $a_h^t \sim \pi_h^\beta(\cdot \mid s_h^t)$. We assume that π^β is Markovian but otherwise make no further assumptions on it (so in particular, π^β may be stochastic and suboptimal). Our demonstrator dataset does not include reward labels—preventing standard offline RL approaches from applying—but we assume that we have access to reward labels during online interactions.

Behavioral cloning (BC) attempts to fit a policy $\widehat{\pi}^{\beta}$ to match the action distribution of π^{β} using \mathfrak{D} . Typically this is achieved via supervised learning, where $\widehat{\pi}^{\beta}$ is trained to predict a given s for $(s,a)\in\mathfrak{D}$. In the tabular setting, which we consider in Section 4, the natural choice for $\widehat{\pi}^{\beta}$ simply fits the empirical distribution of actions in \mathfrak{D} :

$$\widehat{\pi}_h^{\beta}(a \mid s) := \begin{cases} \frac{T_h(s, a)}{T_h(s)} & T_h(s) > 0\\ \text{unif}(\mathcal{A}) & T_h(s) = 0, \end{cases}$$

$$\tag{1}$$

where $T_h(s,a) = \sum_{t=1}^T \mathbb{I}\{(s_h^t, a_h^t) = (s,a)\}$ and $T_h(s) = \sum_{t=1}^T \mathbb{I}\{s_h^t = s\}$. The following result bounds the suboptimality of this estimator, and shows that it is optimal estimator, up to log factors.

Proposition 1 (Rajaraman et al. (2020)). If \mathfrak{D} contains T demonstrator trajectories, we have

$$\mathcal{J}(\pi^{\beta}) - \mathbb{E}[\mathcal{J}(\widehat{\pi}^{\beta})] \lesssim \frac{H^2 S \log T}{T}.$$

Furthermore, for any estimator $\hat{\pi}$, there exists some MDP \mathcal{M} and demonstrator π^{β} such that

$$\mathcal{J}(\pi^{\beta}) - \mathbb{E}[\mathcal{J}(\widehat{\pi})] \gtrsim \min\left\{H, \tfrac{H^2S}{T}\right\}.$$

In other words, without additional reward information, we cannot in general hope to obtain a policy from \mathfrak{D} that does better than (1), if our goal is to maximize the performance of the pretrained policy.

4 DEMONSTRATOR ACTION COVERAGE VIA POSTERIOR SAMPLING

In this section we seek to understand how pretraining affects the ability to further improve the downstream policy with RL finetuning, and how we might pretrain to enable downstream improvement. For simplicity, here we assume that our MDP \mathcal{M} is tabular, and let S and A denote the cardinalities of the state and action spaces, respectively; we will show how our proposed approach can be extended to more general settings in the following section.

4.1 Demonstrator Action Coverage as a Prerequisite for Finetuning

The performance of RL finetuning depends significantly on the RL algorithm applied. Rather than limiting our results to a particular RL algorithm, we instead focus on what is often a prerequisite for effective application of any such approach—demonstrating that the *support* of the pretrained policy is sufficient to enable improvement. In particular, we consider the following definition for the "effective" support of a policy, relative to the demonstrator policy π^{β} .

Definition 4.1 (γ -sampler). We say that policy π is a γ -sampler of π^{β} if, for all $(s,h) \in \mathcal{S} \times [H]$ and $a \in \mathcal{A}$, we have that $\pi_h^{\beta}(a \mid s) \geq \gamma \cdot \pi_h(a \mid s)$.

The majority of RL finetuning approaches rely on rolling out the pretrained policy—which we denote as $\widehat{\pi}^{\rm pt}$ —online, and using the collected observations to finetune its behavior. If our pretrained policy is a γ -sampler of π^{β} , then this ensures that any action sampled by π^{β} will also be sampled by $\widehat{\pi}^{\rm pt}$ in these rollouts (with some probability). While this is not a *sufficient* condition for online improvement, it is a *necessary* condition, in some cases, for performing as well as the demonstrator π^{β} (as Proposition 2 demonstrates), and is therefore a necessary condition for improving over π^{β} . Furthermore, the *value* of γ also has impact on the computational cost of RL finetuning. A γ -sampler requires a factor of $\frac{1}{\gamma}$ more samples than π^{β} to ensure it samples some action in the support of π^{β} . For approaches such as Best-of-N sampling that rely on sampling many actions from

the pretrained policy and then taking the best one, a large value of γ therefore ensures that we can efficiently sample actions likely to be sampled by the demonstrator policy π^{β} , while if γ is small, it may require taking a significant number of samples from $\hat{\pi}^{\text{pt}}$ to ensure we cover the behavior of π^{β} , greatly increasing the computational cost due to this sampling.

In the following, we aim to understand how we can pretrain policies that are γ -samplers, and to do this with large values of γ . Furthermore, we aim to achieve this without incurring significant additional suboptimality as compared to $\widehat{\pi}^{\beta}$ —we would like to ensure that $\widehat{\pi}^{\text{pt}}$ is an effective initialization for finetuning while still itself achieving effective online performance.

4.2 Behavioral Cloning Fails to Achieve Action Coverage

We first consider standard BC, i.e. (1). The following result shows that the estimator in (1), despite achieving the optimal suboptimality rate, can fail to achieve sufficient action coverage, and that this fundamentally limits its ability to serve as an effective initialization for finetuning.

Proposition 2 (Informal). Fix any $\epsilon \in (0, 1/8]$. Then there exists some MDP \mathcal{M} and demonstrator policy π^{β} such that, unless $T \geq \frac{1}{20\epsilon}$, we have that, with probability at least 1/2:

$$\mathcal{J}(\pi^{\beta}) - \epsilon > \max_{\pi \in \widehat{\Pi}} \mathcal{J}(\pi) \quad \text{for} \quad \widehat{\Pi} := \{\pi : \pi_h(a \mid s) = 0 \text{ if } \widehat{\pi}_h^{\beta}(a \mid s) = 0, \forall s, a, h\}.$$

Furthermore, if we collect samples with $\widehat{\pi}^{\beta}$ on \mathcal{M} we will not be able to identify an ϵ -optimal policy.

Proposition 2 shows that, unless we have a sufficiently large demonstrator dataset ($T \geq \frac{1}{20\epsilon}$), half of the time (i.e. half of the random draws of the demonstrator dataset) the policy returned by standard BC will not contain a near-optimal policy in its support and, furthermore, that rolling out $\widehat{\pi}^{\beta}$ on \mathcal{M} will therefore not allow us to learn a near-optimal policy on \mathcal{M} . In other words, some fraction of the time standard BC produces a policy which will simply *never* play actions required to solve the task at the level of the demonstrator policy, and any online improvement approach that relies on rolling out the BC pretrained policy to collect observations will therefore fail to identify an ϵ -optimal policy—online improvement is not possible with this pretrained policy. This implies that pretraining a policy that matches the demonstrator's empirical action distribution as represented in \mathfrak{D} —the typical goal of behavioral cloning—is insufficient for downstream RL finetuning.

A straightforward solution to this is to simply add exploration noise to our pretrained policy—rather than playing $\widehat{\pi}^{\beta}$ at every step, with some probability play a random action. While this will clearly address the shortcoming of generative BC outlined above—every action will now be in the support—as the following result shows, there is a fundamental tradeoff between the suboptimality of this policy and the number of samples from the policy required to ensure we cover our demonstrator's behavior.

Proposition 3. Fix T>0, $H\geq 2$, $S\geq \lceil \log_2 4T\rceil+2$, $\xi\geq 0$, define $\epsilon:=\frac{H^2S\log T}{T}+\xi$, and assume $\epsilon\leq \frac{1}{2}$. Define the policy $\widehat{\pi}^{\mathrm{u},\alpha}$ as $\widehat{\pi}_h^{\mathrm{u},\alpha}(\cdot\mid s):=(1-\alpha)\cdot\widehat{\pi}_h^\beta(\cdot\mid s)+\alpha\cdot\mathrm{unif}(\mathcal{A})$. Then there exists some MDP $\mathcal M$ with S states, 2 actions, and horizon H where, in order to ensure that:

1.
$$\mathcal{J}(\pi^{\beta}) - \mathbb{E}[\mathcal{J}(\widehat{\pi}^{\mathbf{u},\alpha})] \leq \epsilon$$

2. $\widehat{\pi}^{u,\alpha}$ is a γ -sampler of π^{β} with probability at least $1-\delta$, for $\delta \in (0,1/4e)$,

we must have $\alpha \leq 32\epsilon$ and $\gamma \leq \frac{64}{A} \cdot \epsilon$. Furthermore, with probability at least 1/4e, we have $\mathcal{J}(\pi^{\beta}) - \frac{1}{T} \cdot \epsilon > \max_{\pi \in \widehat{\Pi}} \mathcal{J}(\pi) \quad \text{for} \quad \widehat{\Pi} := \{\pi : \pi_h(a \mid s) = 0 \text{ if } \widehat{\pi}_h^{\beta}(a \mid s) = 0, \forall s, a, h\}.$

In order to achieve the $\frac{H^2S\log T}{T}$ suboptimality rate achieved by standard BC, Proposition 3 then shows that we must have $\gamma\lesssim \frac{1}{A}\cdot \frac{H^2S\log T}{T}$ or, in other words, to ensure we sample a particular action from $\widehat{\pi}^{\mathrm{u},\alpha}$ that is sampled by π^{β} , it will require sampling a factor of $\frac{AT}{H^2S\log T}$ more samples from $\widehat{\pi}^{\mathrm{u},\alpha}$ than it would require from π^{β} . While this does enable approaches like Best-of-N to improve the policy, in settings where T is large, this requires a significant number of samples from the pretrained policy, greatly increasing the computational burden of such an approach. Furthermore, Proposition 3 shows that this limitation is critical—if we seek to shortcut this exploration and set $\alpha\leftarrow 0$, we will fail to match the performance of π^{β} on this instance completely.

4.3 DEMONSTRATOR'S POSTERIOR POLICY ACHIEVES ACTION COVERAGE

Can we do better than BC or BC augmented with uniform noise? Here we show that a mixture of the standard BC policy and the *posterior* on the demonstrator's policy achieves a near optimal balance between policy suboptimality and action coverage.

Definition 4.2 (Posterior Demonstrator Policy). Given prior distribution $P_{\text{prior}}^{\beta} \in \triangle_{\Pi}$ over demonstrator policies, let $P_{\text{post}}^{\beta}(\cdot \mid \mathfrak{D})$ denote the posterior distribution given demonstration dataset \mathfrak{D} . We then define the *posterior demonstrator policy* $\widehat{\pi}^{\text{post}}$ as $\widehat{\pi}_h^{\text{post}}(a \mid s) := \mathbb{E}_{\pi \sim P_{\text{post}}^{\beta}(\cdot \mid \mathfrak{D})}[\pi_h(a \mid s)]$.

 $\widehat{\pi}^{\mathrm{post}}$ is therefore the expected policy of the demonstrator under prior $P_{\mathrm{prior}}^{\beta}$ given observations \mathfrak{D} . In practice, we require a slightly regularized version of $\widehat{\pi}^{\mathrm{post}}$, $\widehat{\pi}^{\mathrm{post},\lambda}$, which is identical to $\widehat{\pi}^{\mathrm{post}}$ if $HT \lesssim e^A$, and otherwise adds a small amount of additional regularization (see Section A.3 for a precise definition). We have the following.

Theorem 1. Let P_{prior}^{β} be the uniform distribution over Markovian policies, and set $\widehat{\pi}^{\text{pt}}$ to

$$\widehat{\pi}_h^{\text{pt}}(a \mid s) = (1 - \alpha) \cdot \widehat{\pi}_h^{\beta}(a \mid s) + \alpha \cdot \widehat{\pi}_h^{\text{post},\lambda}(a \mid s)$$
 (2)

for $\alpha = \frac{1}{\max\{A, H, \log(HT)\}}$. Then

$$\mathcal{J}(\pi^{\beta}) - \mathbb{E}[\mathcal{J}(\widehat{\pi}^{\mathrm{pt}})] \lesssim \frac{H^2 S \log T}{T},$$

and with probability at least $1 - \delta$, for all (s, a, h),

$$\widehat{\pi}_h^{\mathrm{pt}}(a\mid s) \gtrsim \tfrac{1}{A+H+\log(HT)} \cdot \min\left\{ \tfrac{\pi_h^{\beta}(a\mid s)}{\log(SH/\delta)}, \tfrac{1}{A+\log(HT)} \right\}$$

Theorem 2. Fix any A>1 and T>1. Then there exists a family of MDPs $\{\mathcal{M}^i\}_{i\in[A]}$ such that each \mathcal{M}^i has A actions and S=H=1, and if any estimator $\widehat{\pi}$ satisfies $\mathcal{J}^{\mathcal{M}^i}(\pi^{\beta,i})-\mathbb{E}^{\mathcal{M}^i}[\mathcal{J}(\widehat{\pi})]\leq c\cdot \frac{H^2S\log T}{T}$ for all $i\in[A]$ and some constant c>0, then for $\widehat{\pi}$ to be a γ -sampler of $\pi^{\beta,i}$ on each \mathcal{M}^i with probability at least $\delta\in(0,1/4]$, we must have $\gamma\leq c\cdot \frac{\log T}{A}$.

Theorem 1 shows that our choice of $\widehat{\pi}^{\mathrm{pt}}$ achieves the same suboptimality guarantee as $\widehat{\pi}^{\beta}$ —it performs no worse that $\widehat{\pi}^{\beta}$ —and requires only a factor of $\approx A+H$ more samples to ensure we sample a particular action from π^{β} than π^{β} itself does for actions a such that $\pi_h^{\beta}(a\mid s)\lesssim 1/A$ (and otherwise requires at most a factor of A(A+H) more). Furthermore, Theorem 2 shows that, to achieve this optimal suboptimality guarantee, any estimator *must* take a factor of A more samples than π^{β} . In other words, if we want a policy that preserves the optimality of $\widehat{\pi}^{\beta}$ while playing a diverse enough distribution to enable further online improvement, mixing the posterior demonstrator policy with the BC policy achieves the near-optimal tradeoff, and plays all actions taken by π^{β} with minimal computational overhead and without incurring additional suboptimality over the BC policy.

5 POSTERIOR BEHAVIORAL CLONING

The previous section suggests a simple recipe to obtain a pretrained policy amenable to online improvement: compute the posterior demonstrator policy given the demonstration data, then mix the posterior demonstrator policy with the generative BC policy. In this section we show how this can be instantiated in continuous control settings using expressive generative policy classes.

To motivate our approach, consider the setting where:

$$\pi_h^{\beta}(\cdot \mid s) = \mathcal{N}(\mu_h(s), \sigma_h^2(s) \cdot I),$$

for some (unknown) $\mu_h(s) \in \mathbb{R}^d$ and (known) $\sigma_h(s) \in \mathbb{R}$. Assume we have observations $\mathfrak{D} = \{a_1, \ldots, a_k\} \sim \pi_h^{\beta}(\cdot \mid s)$, and that we have a $\mathcal{N}(0, I)$ prior on $\mu_h(s)$. The following result, an extension of Osband et al. (2018), shows that we can approximate samples from the posterior on $\mu_h(s)$ by solving an optimization problem over our (noised) observations.

Proposition 4. We have $P_{\text{post}}^{\beta}(\cdot \mid \mathfrak{D}) = \mathcal{N}(\frac{1}{\sigma_h^2(s)+k} \cdot \sum_{t=1}^k a_t, \frac{\sigma_h^2(s)}{\sigma_h^2(s)+k} \cdot I)$ and, if we set

$$\widehat{\mu}_h(s) = \arg\min_{\mu} \sum_{i=1}^k \|\mu - \widetilde{a}_i\|_2^2 + \sigma_h^2(s) \cdot \|\mu - \widetilde{\mu}_h(s)\|_2^2,$$

for $\widetilde{a}_t = a_t + w_t$, $w_t \sim \mathcal{N}(0, \sigma_h^2(s) \cdot I)$, and $\widetilde{\mu} \sim \mathcal{N}(0, I)$, then $\widehat{\mu}_h(s) \sim P_{\text{post}}^{\beta}(\cdot \mid \mathfrak{D})$.

Proposition 4 shows that we can compute samples from the posterior on $\mu_h(s)$ by simply fitting a "noised" version of our demonstrations. While in practice our data likely does not satisfy this Gaussianity assumption, the above argument nonetheless suggests a simple recipe to capture the behavior of $\widehat{\pi}_h^{\text{post}}(\cdot \mid s)$ in more general, non-Gaussian settings, which we summarize in Algorithm 1.

Algorithm 1 Posterior Variance Approximation via Ensembled Prediction

- 1: **input:** demonstration dataset \mathfrak{D} , ensemble size K, function class \mathcal{F}
- 2: **for** $\ell = 1, 2, ..., K$ **do**
- Set $\mathfrak{D}_{\ell} \leftarrow \{(s, a + w_{sa}^{\ell}) : \forall (s, a) \in \mathfrak{D}\}$ where $w_{sa}^{\ell} \sim \mathcal{N}(0, I)$ Fit f_{ℓ} by solving $f_{\ell} \leftarrow \arg\min_{f \in \mathcal{F}} \sum_{(s, \widetilde{\alpha}) \in \mathfrak{D}_{\ell}} \|f_{\ell}(s) \widetilde{a}\|_2^2$
- 5: **return** $\{f_\ell\}_{\ell\in[K]}$

324

325

326

327

328

330

331

332

333 334

335 336

337

338

339

340

341 342

343 344

345 346

347

348

349 350

351

352

353

354 355

356

357 358 359

360 361

362

363

364

365 366

367

368

369

370

371

372

373 374 375

376

377

By the above argument, each $f_{\ell}(s)$ is an approximate sample from the posterior of our demonstrator's behavior at state s. Our theory suggests, however, that we should sample not simply from the posterior, but from $\widehat{\pi}^{post}$, the expected policy under the posterior. In the Gaussian setting of Proposition 4, to sample from $\widehat{\pi}_h^{\mathrm{post}}(\cdot \mid s)$ it suffices to perturb a sample from the posterior, $\widehat{\mu}_h(s)$, by 0-mean noise with the demonstrator's covariance: $\widehat{\mu}_h(s) + w \sim \widehat{\pi}_h^{\mathrm{post}}(\cdot \mid s)$ if $w \sim \mathcal{N}(0, \sigma_h^2(s) \cdot I)$. If we do not know the demonstrator's covariance, as is usually the case in practice, and so cannot directly generate a sample $w \sim \mathcal{N}(0, \sigma_h^2(s) \cdot I)$, we can approximate it by sampling, for $(s, a) \in \mathfrak{D}$:

$$\widetilde{a} = a + w, \quad w \sim \mathcal{N}(0, \frac{\sigma_h^2(s)}{\sigma_h^2(s) + k} \cdot I).$$

Note that the covariance of a's distribution is precisely the demonstrator's covariance, since $a \sim$ $\pi_h^{\beta}(\cdot \mid s)$. Therefore, \widetilde{a} will be distributed with the demonstrator's mean and covariance, plus 0-mean noise sampled with the posterior's covariance. While the *mean* of this distribution differs from that of $\widehat{\pi}_h^{\text{post}}(\cdot \mid s)$, its covariance matches the covariance of $\widehat{\pi}_h^{\text{post}}(\cdot \mid s)$. As we show in Lemma 9, the difference in mean between $\widehat{\pi}_h^{\mathrm{post}}(\cdot \mid s)$ and $\pi_h^{\beta}(\cdot \mid s)$ is distributed approximately as the posterior's covariance, suggesting that the difference in mean between \widetilde{a} and $\widehat{\pi}_h^{\mathrm{post}}(\cdot \mid s)$ is therefore effectively washed out by the posterior's randomness— \widetilde{a} is sampled approximately as $\widehat{\pi}_h^{\mathrm{post}}(\cdot \mid s)$. To produce an approximate sample from $\widehat{\pi}^{post}(\cdot \mid s)$ in the general case, then, we sample:

$$\widetilde{a} = a + \alpha \cdot w, \quad w \sim \mathcal{N}(0, \mathsf{cov}(s)),$$
(3)

for any $(s,a) \in \mathfrak{D}$, and where $\operatorname{cov}(s) := \sum_{\ell=1}^K (f_\ell(s) - \bar{f}(s))(f_\ell(s) - \bar{f}(s))^{\top}$ for $\bar{f}(s) \leftarrow \frac{1}{K} \sum_{\ell=1}^K f_\ell(s)$, and α is some weighting we can tune as desired.

5.1 Posterior Behavioral Cloning

Applying Algorithm 1 and Equation (3), we can generate approximate samples from $\widehat{\pi}^{\text{post}}(\cdot \mid s)$ for any s in our demonstration dataset. Theorem 1 suggests that, to obtain a pretrained policy $\hat{\pi}^{\text{pt}}$ that is an effective initialization for RL finetuning, it suffices to fit $\hat{\pi}^{\text{pt}}$ to a mixture distribution of the BC policy and $\widehat{\pi}^{post}$. Approximating this mixture by modulating α in (3), we arrive at the following.

Algorithm 2 Posterior Behavioral Cloning (POSTBC)

- 1: **input:** demonstration dataset \mathfrak{D} , generative model class $\widehat{\pi}^{\theta}$, posterior weight α
- 2: Fit $\{f_\ell\}_{\ell\in[K]}$ by running Algorithm 1 on \mathfrak{D} , and compute $\mathsf{cov}(\cdot)$ from $\{f_\ell\}_{\ell\in[K]}$ as above
- 3: **for** $i = 1, 2, 3, \dots$ **do**
- 4: Draw batch $\mathfrak{D}_i \sim \text{unif}(\mathfrak{D})$
- For all $(s, a) \in \mathfrak{D}_i$, compute \widetilde{a} as in (3) using $\operatorname{cov}(\cdot)$ and α , and set $\widetilde{\mathfrak{D}}_i \leftarrow \{(s, \widetilde{a}) : s \in \mathfrak{D}\}$ 5:
- Take gradient step on $\widehat{\pi}^{\theta}$ on loss of $\widehat{\mathfrak{D}}_i$

With $\widehat{\pi}^{\theta}$ an expressive generative model, Algorithm 2 will produce a policy which, instead of fitting the empirical distribution of the demonstrator, fits the full expected posterior of the demonstrator's behavior. This approximates the posterior mixture in Equation (2), and, Theorem 1 suggests, leads to a more effective initialization for RL finetuning, instantiating the behavior illustrated in Figure 1.

6 EXPERIMENTS

Finally, we seek to demonstrate that in practice posterior behavioral cloning (a) enables more efficient RL finetuning of pretrained policies, and (b) leads to a pretrained policy that performs well itself, on par with the BC pretrained policy. We focus on continuous control domains, in particular robotic control. We test on both the Robomimic (Mandlekar et al., 2021) and Libero (Liu et al., 2023) simulators. Robomimic is comprised of several robotic manipulation tasks, providing a set of human demonstrations on each task, and enables training and finetuning of single-task BC policies. We consider the Lift, Can, and Square tasks on Robomimic. Libero similarly contains a variety of robotic manipulation tasks with provided human demonstrations, but enables multi-task training, allowing for pretraining on large corpora of data and then finetuning on particular tasks of interest. In particular, we rely on a subset of the Libero 90 suite of tasks, training and evaluating on the first 21 tasks, corresponding to three different kitchen manipulation scenes. See Figure 2 for a visualization of our settings.

We instantiate $\widehat{\pi}^{pt}$ with a diffusion model, which has become the de-facto standard for parameterizing BC policies in continuous control settings (Chi et al., 2023; Ankile et al., 2024a; Dasari et al., 2024; Team et al., 2024; Black et al., 2024; Bjorck et al., 2025). For the Robomimic experiments, we use an MLP-based architecture, trained on a single-task demonstration dataset, and rely on state-based observations. For Libero, we utilize a diffusion transformer architecture due to Dasari et al. (2024) and rely on image-based observations and language task conditioning. In Libero, we pretrain a single $\widehat{\pi}^{pt}$ policy on the demonstration data from all 21 tasks (Black et al., 2024; Kim et al., 2024; Khazatsky et al., 2024), and then run RL finetuning on each individual task. In order to leave room for RL improvement (i.e. to ensure that task performance is not saturated by the BC pretrained policy) we limit the number of demos per task in the pretraining dataset.

In principle, POSTBC can be combined with any RL finetuning algorithm, and we seek to demonstrate that it improves performance on a representative set of approaches. In particular, we consider DSRL (Wagenmaker et al., 2025), which refines a pretrained diffusion policy's distribution by running RL over its latent-noise space, DPPO (Ren et al., 2024), an on-policy policy-gradient-style algorithm for finetuning diffusion policies, and Best-of-N sampling. Best-of-N is a generic procedure which can be instantiated in a variety of ways (see e.g. (Chen et al., 2022; Hansen-Estruch et al., 2023; He et al., 2024; Nakamoto et al., 2024; Dong et al., 2025b))—here we instantiate it by rolling out the pretrained policy some number of times on the task of interest, training a Q-function via IQL (Kostrikov et al., 2021) on the rollouts, then at test time sampling N actions from the pretrained policy at each state, and taking the action with the largest Q-value.

To the best of our knowledge, there do not exist any approaches which aim to pretrain policies with a BC-like objective on (reward-free) demonstration data, with the aim of obtaining an initialization that is an effective starting point for finetuning. As baselines, then, we consider running standard BC pretraining on $\mathfrak D$ (the typical initialization for RL finetuning), as well as what we refer to as σ -BC, where instead of perturbing the actions in $\mathfrak D$ by the posterior variance as in (3), we instead perturb them by uniform, state-independent noise with variance σ^2 . This is then equivalent to POSTBC, except we set $\text{cov}(s) = \sigma^2 \cdot I$ for some fixed $\sigma > 0$ in (3) (note that this is a continuous analog to the approach considered in Proposition 3). This itself is a novel approach and our theory predicts it too may lead to improved performance over pretraining with standard BC. For all experiments, error bars denote 1 standard error. All results are averaged over from 3-5 seeds and policies are evaluated with 200 rollouts for Robomimic and 100 for Libero. Please see Section C for additional details.

6.1 POSTERIOR BC ENABLES EFFICIENT RL FINETUNING

Our results from running DSRL on Libero are given in Figure 3 and on Robomimic in Figure 4. For Libero, we run DSRL on three tasks from scene 2: "open the top drawer of the cabinet", "put the black bowl at the front on the plate", and "put the middle black bowl on the plate". We see that POSTBC pretraining leads to significant gains for Libero, enabling efficient RL finetuning in settings where both standard BC pretraining and σ -BC pretraining fail. On Robomimic we observe more modest gains, yet note that POSTBC pretraining does no worse than other pretraining approaches, and on Square does lead to notable gains over BC pretraining. Our results for DPPO are given in Figure 4 where we see that POSTBC pretraining again leads to modest gains on Square.

Our Best-of-N results are given in Table 1. We see that across settings, POSTBC-pretraining leads to consistent improvements over both BC- and σ -BC-pretrained policies. In particular, on Libero,

Figure 2: Robomimic Figure 3: Comparison of DSRL finetuning performance combined with and Libero settings different BC pretraining approaches on Libero.

Figure 4: Comparison of DSRL finetuning performance combined with different BC pretraining apformance combined with different BC pretraining approaches on Robomimic.

Figure 5: Comparison of DPPO finetuning performance combined with different BC pretraining approaches on Libero.

	Pretra	ained Perforr	nance	Best-of	f-N (1000 R	ollouts)	Best-of	f-N (2000 R	ollouts)
Task	BC	σ -BC	PostBc	BC	σ -BC	PostBc	BC	σ -BC	PostBc
Robomimic Lift	70.1 ±1.7	66.7 ±0.8	68.1 ±0.7	55.6 ±2.4	52.3 ±3.7	63.3 ±2.1	63.8 ±3.6	$73.5_{\pm 1.1}$	$75.7_{\pm 2.0}$
Robomimic Can	43.4 ± 0.6	44.3 ± 0.9	42.2 ± 1.2	69.8 ±2.9	72.8 ± 3.0	70.6 ± 2.7	76.6 ± 2.4	$80.7_{\pm 1.4}$	$79.3_{\pm 2.4}$
Robomimic Square	18.8 ±0.3	18.3 ± 0.3	17.0 ± 0.5	37.9 ± 2.3	45.7 ± 1.4	40.6 ± 1.7	48.4 ± 1.0	$50.0_{\pm 3.2}$	51.6 ± 2.9
Libero Scene 1 (5 tasks)	22.1 ± 8.3	23.2 ± 6.2	24.4 ± 6.1	38.0 ±7.2	63.9 ± 3.8	60.8 ± 4.5	-	-	-
Libero Scene 2 (7 tasks)	11.5 ± 3.4	10.3 ± 4.1	13.1 ± 3.9	21.7 ±3.6	26.7 ± 5.0	44.4 ± 5.7	-	-	-
Libero Scene 3 (4 tasks)	40.1 ±10.4	37.4 ± 7.6	42.0 ± 10.2	49.2 ± 7.0	51.8 ± 7.1	65.5 ± 6.8	-	-	-
Libero All (21 tasks)	22.2 ± 4.3	21.1 ± 3.7	23.0 ± 3.9	33.5 ±3.5	43.7 ± 3.6	54.6 ± 3.5	-	-	-

Table 1: Comparison of performance of pretrained policies and Best-of-N sampling on Robomimic and Libero, for different BC pretraining approaches.

PostBc improves by approximately 20% over Bc, and 10% over σ -Bc. Table 1 also provides the performance of the pretrained policies, where we see that, in general, the PostBc-pretrained policy performs on par with the Bc-pretrained policy, demonstrating that PostBc-pretraining produces a policy which performs as well as the Bc pretrained policy—PostBc-pretraining does not hurt pretrained policy performance. Together these results show that in realistic continuous control settings, pretraining with PostBc can lead to significant improvements over standard Bc pretraining in terms of RL finetuning performance, without sacrificing the performance of the pretrained policy itself.

Understanding how PostBc improves RL finetuning performance. Finally, we seek to provide insight into how PostBc improves RL finetuning performance. In particular, we aim to disambiguate the role of the additional *exploration* a PostBc policy may provide over a BC policy, versus the role that having access to a larger action distribution at test time might play. While these factors are intimately coupled for Dsrl and Dppo, for Best-of-N sampling we can decouple them by selecting the rollout policy (the "exploration" policy) that collects data to learn the filtering function, and the policy whose actions we filter with the learned function at test-time (the "steering" policy).

We consider mixing the role of the BC and POSTBC policy on Robomimic Lift in this way, and provide our results in Table 2. We find that the choice of rollout policy has little impact on performance, but the steering policy can impact perfor-

BC rollouts +	BC rollouts +	POSTBC rollouts +	POSTBC rollouts +
BC steering	POSTBC steering	BC steering	POSTBC steering
63.8 ±3.6	78.6 ±1.4	65.0 ±4.4	75.7 ±2.0

Table 2: Best-of-N sampling on Robomimic Lift, varying the rollout policy and the steering policy.

mance significantly. This suggests that the utility of POSTBC is primarily in its ability to provide a wider range of actions that can be sampled from the pretrained policy, enabling RL finetuning approaches to easily select the maximizing action.

REPRODUCIBILITY STATEMENT

Full proofs for all theoretical results are given in the appendix, allowing our results to be checked. For the experimental results, we have stated hyperparameters used in the appendix, and plan to also release our code publicly.

REFERENCES

- Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare. Deep reinforcement learning at the edge of the statistical precipice. *Advances in neural information processing systems*, 34:29304–29320, 2021.
- Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit problem. In *Conference on learning theory*, pp. 39–1. JMLR Workshop and Conference Proceedings, 2012.
- Lars Ankile, Anthony Simeonov, Idan Shenfeld, and Pulkit Agrawal. Juicer: Data-efficient imitation learning for robotic assembly. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5096–5103. IEEE, 2024a.
- Lars Ankile, Anthony Simeonov, Idan Shenfeld, Marcel Torne, and Pulkit Agrawal. From imitation to refinement–residual rl for precise assembly. *arXiv preprint arXiv:2407.16677*, 2024b.
- Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from human preferences. In *International Conference on Artificial Intelligence and Statistics*, pp. 4447–4455. PMLR, 2024.
- Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*, 2022a.
- Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from ai feedback. *arXiv preprint arXiv:2212.08073*, 2022b.
- Michiel Bakker, Martin Chadwick, Hannah Sheahan, Michael Tessler, Lucy Campbell-Gillingham, Jan Balaguer, Nat McAleese, Amelia Glaese, John Aslanides, Matt Botvinick, et al. Fine-tuning language models to find agreement among humans with diverse preferences. *Advances in Neural Information Processing Systems*, 35:38176–38189, 2022.
- Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning with offline data. In *International Conference on Machine Learning*, pp. 1577–1594. PMLR, 2023.
- Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos. Unifying count-based exploration and intrinsic motivation. *Advances in neural information processing systems*, 29, 2016.
- Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan, Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model for generalist humanoid robots. *arXiv preprint arXiv:2503.14734*, 2025.
- Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π_0 : A vision-language-action flow model for general robot control. *arXiv preprint arXiv:2410.24164*, 2024.
 - Mariusz Bojarski. End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.
 - Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network distillation. *arXiv preprint arXiv:1810.12894*, 2018.

- Souradip Chakraborty, Jiahao Qiu, Hui Yuan, Alec Koppel, Furong Huang, Dinesh Manocha, Amrit Singh Bedi, and Mengdi Wang. Maxmin-rlhf: Towards equitable alignment of large language models with diverse human preferences. *arXiv* preprint arXiv:2402.08925, 2024.
 - Jonathan D Chang, Wenhao Shan, Owen Oertell, Kianté Brantley, Dipendra Misra, Jason D Lee, and Wen Sun. Dataset reset policy optimization for rlhf. *arXiv preprint arXiv:2404.08495*, 2024.
 - Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning via high-fidelity generative behavior modeling. *arXiv* preprint arXiv:2209.14548, 2022.
 - Yuhui Chen, Shuai Tian, Shugao Liu, Yingting Zhou, Haoran Li, and Dongbin Zhao. Conrft: A reinforced fine-tuning method for vla models via consistency policy. *arXiv* preprint *arXiv*:2502.05450, 2025.
 - Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The International Journal of Robotics Research*, pp. 02783649241273668, 2023.
 - Jongwook Choi, Yijie Guo, Marcin Moczulski, Junhyuk Oh, Neal Wu, Mohammad Norouzi, and Honglak Lee. Contingency-aware exploration in reinforcement learning. arXiv preprint arXiv:1811.01483, 2018.
 - Sudeep Dasari, Oier Mees, Sebastian Zhao, Mohan Kumar Srirama, and Sergey Levine. The ingredients for robotic diffusion transformers. *arXiv preprint arXiv:2410.10088*, 2024.
 - Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 conference of the North American chapter of the association for computational linguistics: human language technologies, volume 1 (long and short papers)*, pp. 4171–4186, 2019.
 - Perry Dong, Qiyang Li, Dorsa Sadigh, and Chelsea Finn. Expo: Stable reinforcement learning with expressive policies. *arXiv preprint arXiv:2507.07986*, 2025a.
 - Perry Dong, Suvir Mirchandani, Dorsa Sadigh, and Chelsea Finn. What matters for batch online reinforcement learning in robotics? *arXiv preprint arXiv:2505.08078*, 2025b.
 - Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl²: Fast reinforcement learning via slow reinforcement learning. *arXiv preprint arXiv:1611.02779*, 2016.
 - Vincent Dumoulin, Daniel D Johnson, Pablo Samuel Castro, Hugo Larochelle, and Yann Dauphin. A density estimation perspective on learning from pairwise human preferences. *arXiv preprint arXiv:2311.14115*, 2023.
 - Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a new approach for hard-exploration problems. *arXiv* preprint arXiv:1901.10995, 2019.
 - Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In *International conference on machine learning*, pp. 1126–1135. PMLR, 2017.
 - Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. *Advances in neural information processing systems*, 31, 2018.
 - Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity of interactive decision making. *arXiv preprint arXiv:2112.13487*, 2021.
 - Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, and Sergey Levine. Offline rl policies should be trained to be adaptive. In *International Conference on Machine Learning*, pp. 7513–7530. PMLR, 2022.
 - Jiayuan Gu, Sean Kirmani, Paul Wohlhart, Yao Lu, Montserrat Gonzalez Arenas, Kanishka Rao, Wenhao Yu, Chuyuan Fu, Keerthana Gopalakrishnan, Zhuo Xu, et al. Rt-trajectory: Robotic task generalization via hindsight trajectory sketches. *arXiv preprint arXiv:2311.01977*, 2023.
 - Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025a.

- Yanjiang Guo, Jianke Zhang, Xiaoyu Chen, Xiang Ji, Yen-Jen Wang, Yucheng Hu, and Jianyu Chen. Improving vision-language-action model with online reinforcement learning. *arXiv preprint arXiv:2501.16664*, 2025b.
- Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine. Idql: Implicit q-learning as an actor-critic method with diffusion policies. *arXiv preprint arXiv:2304.10573*, 2023.
- Longxiang He, Li Shen, Junbo Tan, and Xueqian Wang. Aligniql: Policy alignment in implicit q-learning through constrained optimization. *arXiv preprint arXiv:2405.18187*, 2024.
- Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W Bradley Knox, and Dorsa Sadigh. Contrastive prefence learning: Learning from human feedback without rl. *arXiv* preprint arXiv:2310.13639, 2023.
- Mikael Henaff, Roberta Raileanu, Minqi Jiang, and Tim Rocktäschel. Exploration via elliptical episodic bonuses. *Advances in Neural Information Processing Systems*, 35:37631–37646, 2022.
- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.
- Hao Hu, Yiqin Yang, Jianing Ye, Ziqing Mai, and Chongjie Zhang. Unsupervised behavior extraction via random intent priors. Advances in Neural Information Processing Systems, 36:51491–51514, 2023.
- Jiaheng Hu, Rose Hendrix, Ali Farhadi, Aniruddha Kembhavi, Roberto Martín-Martín, Peter Stone, Kuo-Hao Zeng, and Kiana Ehsani. Flare: Achieving masterful and adaptive robot policies with large-scale reinforcement learning fine-tuning. In 2025 IEEE International Conference on Robotics and Automation (ICRA), pp. 3617–3624. IEEE, 2025.
- David Janz, Shuai Liu, Alex Ayoub, and Csaba Szepesvári. Exploration via linearly perturbed loss minimisation. In *International Conference on Artificial Intelligence and Statistics*, pp. 721–729. PMLR, 2024.
- Tobias Jülg, Wolfram Burgard, and Florian Walter. Refined policy distillation: From vla generalists to rl experts. *arXiv preprint arXiv:2503.05833*, 2025.
- Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty Ellis, et al. Droid: A large-scale in-the-wild robot manipulation dataset. *arXiv preprint arXiv:2403.12945*, 2024.
- Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source vision-language-action model. *arXiv preprint arXiv:2406.09246*, 2024.
- Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Optimizing speed and success. *arXiv preprint arXiv:2502.19645*, 2025.
- Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-learning. arXiv preprint arXiv:2110.06169, 2021.
- Aviral Kumar, Anikait Singh, Frederik Ebert, Mitsuhiko Nakamoto, Yanlai Yang, Chelsea Finn, and Sergey Levine. Pre-training for robots: Offline rl enables learning new tasks from a handful of trials. *arXiv preprint arXiv:2210.05178*, 2022.
- Branislav Kveton, Manzil Zaheer, Csaba Szepesvari, Lihong Li, Mohammad Ghavamzadeh, and Craig Boutilier. Randomized exploration in generalized linear bandits. In *International Conference on Artificial Intelligence and Statistics*, pp. 2066–2076. PMLR, 2020.
- Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, Colton Bishop, Victor Carbune, and Abhinav Rastogi. Rlaif: Scaling reinforcement learning from human feedback with ai feedback. *arXiv preprint arXiv:2309.00267*, 2023.

- Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified framework for ensemble learning in deep reinforcement learning. In *International Conference on Machine Learning*, pp. 6131–6141. PMLR, 2021.
- Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online reinforcement learning via balanced replay and pessimistic q-ensemble. In *Conference on Robot Learning*, pp. 1702–1712. PMLR, 2022.
- Qiyang Li, Jason Zhang, Dibya Ghosh, Amy Zhang, and Sergey Levine. Accelerating exploration with unlabeled prior data. *Advances in Neural Information Processing Systems*, 36:67434–67458, 2023.
- Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero: Benchmarking knowledge transfer for lifelong robot learning. *Advances in Neural Information Processing Systems*, 36:44776–44791, 2023.
- Jijia Liu, Feng Gao, Bingwen Wei, Xinlei Chen, Qingmin Liao, Yi Wu, Chao Yu, and Yu Wang. What can rl bring to vla generalization? an empirical study. *arXiv preprint arXiv:2505.19789*, 2025.
- Guanxing Lu, Wenkai Guo, Chubin Zhang, Yuheng Zhou, Haonan Jiang, Zifeng Gao, Yansong Tang, and Ziwei Wang. Vla-rl: Towards masterful and general robotic manipulation with scalable reinforcement learning. *arXiv preprint arXiv:2505.18719*, 2025.
- Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-Fei, Silvio Savarese, Yuke Zhu, and Roberto Martín-Martín. What matters in learning from offline human demonstrations for robot manipulation. *arXiv preprint arXiv:2108.03298*, 2021.
- Max Sobol Mark, Tian Gao, Georgia Gabriela Sampaio, Mohan Kumar Srirama, Archit Sharma, Chelsea Finn, and Aviral Kumar. Policy agnostic rl: Offline rl and online rl fine-tuning of any class and backbone. *arXiv preprint arXiv:2412.06685*, 2024.
- Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland, Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al. Nash learning from human feedback. *arXiv preprint arXiv:2312.00886*, 2023.
- Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-tuning. *Advances in Neural Information Processing Systems*, 36:62244–62269, 2023.
- Mitsuhiko Nakamoto, Oier Mees, Aviral Kumar, and Sergey Levine. Steering your generalists: Improving robotic foundation models via value guidance. arXiv preprint arXiv:2410.13816, 2024.
- Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via bootstrapped dqn. *Advances in neural information processing systems*, 29, 2016a.
- Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via randomized value functions. In *International Conference on Machine Learning*, pp. 2377–2386. PMLR, 2016b.
- Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement learning. *Advances in neural information processing systems*, 31, 2018.
- Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35: 27730–27744, 2022.
- Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding by generative pre-training. 2018.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in neural information processing systems*, 36:53728–53741, 2023.

- Rouhollah Rahmatizadeh, Pooya Abolghasemi, Ladislau Bölöni, and Sergey Levine. Vision-based multi-task manipulation for inexpensive robots using end-to-end learning from demonstration. In 2018 IEEE international conference on robotics and automation (ICRA), pp. 3758–3765. IEEE, 2018.
 - Nived Rajaraman, Lin Yang, Jiantao Jiao, and Kannan Ramchandran. Toward the fundamental limits of imitation learning. *Advances in Neural Information Processing Systems*, 33:2914–2924, 2020.
- Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Christian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural language processing: Benchmarks, baselines, and building blocks for natural language policy optimization. *arXiv preprint arXiv:2210.01241*, 2022.
- Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majumdar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimization. *arXiv preprint arXiv:2409.00588*, 2024.
- Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with general preferences. *arXiv preprint arXiv:2404.03715*, 2024.
- Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. *Advances in neural information processing systems*, 32, 2019.
- Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. *Mathematics of Operations Research*, 39(4):1221–1243, 2014.
- Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on thompson sampling. *Foundations and Trends*® *in Machine Learning*, 11(1):1–96, 2018.
- Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior transformers: Cloning *k* modes with one stone. *Advances in neural information processing systems*, 35:22955–22968, 2022.
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
- Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. In *International conference on machine learning*, pp. 5779–5788. PMLR, 2019.
- Anand Siththaranjan, Cassidy Laidlaw, and Dylan Hadfield-Menell. Distributional preference learning: Understanding and accounting for hidden context in rlhf. *arXiv preprint arXiv:2312.08358*, 2023.
- Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In *International conference on machine learn-ing*, pp. 2256–2265. pmlr, 2015.
- Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. *arXiv* preprint arXiv:2010.02502, 2020.
- Ajay Sridhar, Dhruv Shah, Catherine Glossop, and Sergey Levine. Nomad: Goal masked diffusion policies for navigation and exploration. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 63–70. IEEE, 2024.
- Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement learning with deep predictive models. *arXiv* preprint arXiv:1507.00814, 2015.
- Simon Stepputtis, Joseph Campbell, Mariano Phielipp, Stefan Lee, Chitta Baral, and Heni Ben Amor. Language-conditioned imitation learning for robot manipulation tasks. *Advances in Neural Information Processing Systems*, 33:13139–13150, 2020.

- Gokul Swamy, Christoph Dann, Rahul Kidambi, Zhiwei Steven Wu, and Alekh Agarwal. A minimaximalist approach to reinforcement learning from human feedback. *arXiv* preprint arXiv:2401.04056, 2024.
 - Yunhao Tang, Zhaohan Daniel Guo, Zeyu Zheng, Daniele Calandriello, Rémi Munos, Mark Rowland, Pierre Harvey Richemond, Michal Valko, Bernardo Ávila Pires, and Bilal Piot. Generalized preference optimization: A unified approach to offline alignment. *arXiv preprint arXiv:2402.05749*, 2024.
 - Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with llms. *arXiv preprint arXiv:2501.12599*, 2025.
 - Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot policy. *arXiv preprint arXiv:2405.12213*, 2024.
 - William R Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika*, 25(3/4):285–294, 1933.
 - Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.
 - Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. In *International Conference on Machine Learning*, pp. 34556–34583. PMLR, 2023.
 - Andrew Wagenmaker, Zhiyuan Zhou, and Sergey Levine. Behavioral exploration: Learning to explore via in-context adaptation. In *Forty-second International Conference on Machine Learning*.
 - Andrew Wagenmaker, Mitsuhiko Nakamoto, Yunchu Zhang, Seohong Park, Waleed Yagoub, Anusha Nagabandi, Abhishek Gupta, and Sergey Levine. Steering your diffusion policy with latent space reinforcement learning. *arXiv preprint arXiv:2506.15799*, 2025.
 - Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos, Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. arXiv preprint arXiv:1611.05763, 2016.
 - Max Wilcoxson, Qiyang Li, Kevin Frans, and Sergey Levine. Leveraging skills from unlabeled prior data for efficient online exploration. *arXiv preprint arXiv:2410.18076*, 2024.
 - Charles Xu, Qiyang Li, Jianlan Luo, and Sergey Levine. Rldg: Robotic generalist policy distillation via reinforcement learning. *arXiv preprint arXiv:2412.09858*, 2024.
 - Yueqin Yin, Zhendong Wang, Yi Gu, Hai Huang, Weizhu Chen, and Mingyuan Zhou. Relative preference optimization: Enhancing llm alignment through contrasting responses across identical and diverse prompts. *arXiv preprint arXiv:2402.10958*, 2024.
 - Xiu Yuan, Tongzhou Mu, Stone Tao, Yunhao Fang, Mengke Zhang, and Hao Su. Policy decorator: Model-agnostic online refinement for large policy model. *arXiv preprint arXiv:2412.13630*, 2024.
 - Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv* preprint arXiv:2504.13837, 2025.
 - Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion policy: Generalizable visuomotor policy learning via simple 3d representations. *arXiv preprint arXiv:2403.03954*, 2024.
 - Haichao Zhang, We Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforcement learning. *arXiv preprint arXiv:2302.00935*, 2023.

- Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg, and Pieter Abbeel. Deep imitation learning for complex manipulation tasks from virtual reality teleoperation. In 2018 IEEE international conference on robotics and automation (ICRA), pp. 5628–5635. IEEE, 2018
- Zijian Zhang, Kaiyuan Zheng, Zhaorun Chen, Joel Jang, Yi Li, Siwei Han, Chaoqi Wang, Mingyu Ding, Dieter Fox, and Huaxiu Yao. Grape: Generalizing robot policy via preference alignment. arXiv preprint arXiv:2411.19309, 2024.
- Tony Z Zhao, Jonathan Tompson, Danny Driess, Pete Florence, Kamyar Ghasemipour, Chelsea Finn, and Ayzaan Wahid. Aloha unleashed: A simple recipe for robot dexterity. *arXiv preprint arXiv:2410.13126*, 2024.
- Han Zheng, Xufang Luo, Pengfei Wei, Xuan Song, Dongsheng Li, and Jing Jiang. Adaptive policy learning for offline-to-online reinforcement learning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 11372–11380, 2023.
- Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv* preprint arXiv:1909.08593, 2019.
- Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, and Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via metalearning. arXiv preprint arXiv:1910.08348, 2019.

A PROOFS

Some algebra shows that in the tabular setting, under the uniform prior, we have

$$\widehat{\pi}_h^{\text{post}}(a \mid s) := \begin{cases} \frac{T_h(s, a) + 1}{T_h(s) + A} & T_h(s) > 0\\ \text{unif}(\mathcal{A}) & o.w. \end{cases}$$

A.1 BC POLICY FAILS TO COVER ACTIONS

Proposition 5 (Full version of Proposition 2). Fix any $\epsilon \in (0, 1/8]$. Then there exist some MDPs $\mathcal{M}^1, \mathcal{M}^2$ and demonstrator policy π^β such that, if $\mathcal{M} \in \{\mathcal{M}^1, \mathcal{M}^2\}$, unless $T \geq \frac{1}{20\epsilon}$, we have that, with probability at least 1/2:

$$\mathcal{J}(\pi^{\beta}) - \epsilon > \max_{\pi \in \widehat{\Pi}} \mathcal{J}(\pi) \quad \textit{for} \quad \widehat{\Pi} := \{\pi : \pi_h(a \mid s) = 0 \; \textit{if} \; \widehat{\pi}_h^{\beta}(a \mid s) = 0, \forall s, a, h\}.$$

Furthermore,

$$\min_{\widehat{\pi}} \max_{i \in \{1,2\}} \mathbb{E}^{\mathcal{M}^i,\widehat{\pi}^\beta} \left[\max_{\pi} \mathcal{J}^{\mathcal{M}^i}(\pi) - \mathcal{J}^{\mathcal{M}^i}(\widehat{\pi}) \right] \ge \frac{1}{2}.$$

Proof. Let \mathcal{M}^1 and \mathcal{M}^2 denote multi-armed bandits with 3 arms and reward functions r^1 and r^2 :

$$r^{1}(a_{1}) = 0, r^{1}(a_{2}) = 1, r^{1}(a_{3}) = 0$$

 $r^{2}(a_{1}) = 0, r^{2}(a_{2}) = 0, r^{2}(a_{3}) = 1.$

Let
$$\pi^{\beta}(a_1) = 1 - 4\epsilon$$
, $\pi^{\beta}(a_2) = 2\epsilon$, $\pi^{\beta}(a_3) = 2\epsilon$.

By construction of $\widehat{\pi}^{\beta}$, if $T(a_2) = 0$ then we will have $\widehat{\pi}^{\beta}(a_2) = 0$, and if $T(a_3) = 0$ we will have $\widehat{\pi}^{\beta}(a_3) = 0$. By the definition of both \mathcal{M}^1 and \mathcal{M}^2 , we have

$$\mathbb{P}^{\mathcal{M}^{i}}[T(a_{2}) = 0, T(a_{3}) = 0] = (1 - 4\epsilon)^{T}.$$

As we have assumed that $T \leq \frac{1}{20\epsilon}$ and $\epsilon \in (0,1/8]$, some calculation shows that we can lower bound this as 1/2. Note that for both \mathcal{M}^1 and \mathcal{M}^2 , we have $\mathcal{J}(\pi^\beta) = 2\epsilon$, while for policies $\widehat{\pi}^\beta$ that only play a_1 , we have $\mathcal{J}(\widehat{\pi}^\beta) = 0$. This proves the first part of the result.

For the second part, note that the optimal policy on \mathcal{M}^1 plays only a_2 and has expected reward of 1, while the optimal policy on \mathcal{M}^2 plays only a_2 and has expected reward of 1. Let $\widehat{\pi}$ denote an estimate of the optimal policy and $\mathbb{E}^{\mathcal{M}^i,\widehat{\pi}^\beta}[\cdot]$ the expectation induced by playing the policy $\widehat{\pi}^\beta$ from the first part on instance \mathcal{M}^i . Then:

$$\min_{\widehat{\pi}} \max_{i \in \{1,2\}} \mathbb{E}^{\mathcal{M}^i, \widehat{\pi}^{\beta}} \left[\max_{\pi} \mathcal{J}^{\mathcal{M}^i}(\pi) - \mathcal{J}^{\mathcal{M}^i}(\widehat{\pi}) \right] = \min_{\widehat{\pi}} \max_{i \in \{1,2\}} \mathbb{E}^{\mathcal{M}^i, \widehat{\pi}^{\beta}} \left[1 - \widehat{\pi}(a_{1+i}) \right].$$

Note that $1 - \widehat{\pi}(a_2) = \widehat{\pi}(a_1) + \widehat{\pi}(a_3) \ge \widehat{\pi}(a_3)$. Thus we can lower bound the above as

$$\geq \min_{\widehat{\pi}} \max \{ \mathbb{E}^{\mathcal{M}^{1}, \widehat{\pi}^{\beta}} [\widehat{\pi}(a_{3})], \mathbb{E}^{\mathcal{M}^{2}, \widehat{\pi}^{\beta}} [1 - \widehat{\pi}(a_{3})] \}$$

$$\geq \min_{\widehat{\pi}} \frac{1}{2} \left(\mathbb{E}^{\mathcal{M}^{1}, \widehat{\pi}^{\beta}} [\widehat{\pi}(a_{3})] + \mathbb{E}^{\mathcal{M}^{2}, \widehat{\pi}^{\beta}} [1 - \widehat{\pi}(a_{3})] \right)$$

$$\geq \frac{1}{2} - \frac{1}{2} \min_{\widehat{\pi}} \left| \mathbb{E}^{\mathcal{M}^{1}, \widehat{\pi}^{\beta}} [\widehat{\pi}(a_{3})] - \mathbb{E}^{\mathcal{M}^{2}, \widehat{\pi}^{\beta}} [\widehat{\pi}(a_{3})] \right|.$$

We can bound

$$\left|\mathbb{E}^{\mathcal{M}^1,\widehat{\pi}^\beta}[\widehat{\pi}(a_3)] - \mathbb{E}^{\mathcal{M}^2,\widehat{\pi}^\beta}[\widehat{\pi}(a_3)]\right| \leq \mathrm{TV}(\mathbb{P}^{\mathcal{M}^1,\widehat{\pi}^\beta},\mathbb{P}^{\mathcal{M}^2,\widehat{\pi}^\beta}).$$

Since \mathcal{M}^1 and \mathcal{M}^2 only differ on a_2 and a_3 , and since $\widehat{\pi}^{\beta}(a_2) = \widehat{\pi}^{\beta}(a_3) = 0$, we have $\mathrm{TV}(\mathbb{P}^{\mathcal{M}^1,\widehat{\pi}^{\beta}},\mathbb{P}^{\mathcal{M}^2,\widehat{\pi}^{\beta}}) = 0$. Thus, we conclude that

$$\min_{\widehat{\pi}} \max_{i \in \{1,2\}} \mathbb{E}^{\mathcal{M}^i, \widehat{\pi}^\beta} [\max_{\pi} \mathcal{J}^{\mathcal{M}^i}(\pi) - \mathcal{J}^{\mathcal{M}^i}(\widehat{\pi})] \geq \frac{1}{2}.$$

This proves the second part of the result.

A.2 UNIFORM NOISE FAILS

Proof of Proposition 3. Construction. Let \mathcal{M} be the MDP with state space $\{\widetilde{s}_1, \ldots, \widetilde{s}_k, s_1, s_2\}$, actions $\{a_1, a_2\}$, horizon $H \geq 2$ with initial state distribution:

 $P_0(s_1) = 1/2$, $P_0(\widetilde{s}_1) = 2^{-2} + 2^{-k}$, $P_0(\widetilde{s}_i) = 2^{-i-1}$, $i \ge 2$,

transition function, for all $h \in [H]$:

$$P_h(\widetilde{s}_i \mid \widetilde{s}_i, a) = 1, \forall a \in \mathcal{A}, \quad P_h(s_1 \mid s_1, a_1) = 1,$$

 $P_h(s_2 \mid s_1, a_2) = 1, \quad P_h(s_2 \mid s_2, a) = 1, \forall a \in \mathcal{A},$

and reward that is 0 everywhere except

$$r_1(\widetilde{s}_i, a_1) = r_H(s_1, a_1) = 1, \quad r_1(\widetilde{s}_i, a_2) = 1 - 2\Delta,$$

for some $\Delta>0$ to be specified. We consider π^{β} defined as

$$\pi_h^{\beta}(a_1 \mid \widetilde{s}_i) = \pi_h^{\beta}(a_2 \mid \widetilde{s}_i) = \frac{1}{2}, \quad \pi_h^{\beta}(a_1 \mid s_1) = 1.$$

Let $\epsilon := \frac{H^2 S \log T}{T} + \xi$, and set $\Delta \leftarrow 2\epsilon$.

Upper bound on α . Note that $\mathcal{J}(\pi^{\beta}) = 1 - \frac{1}{2}\Delta$, and that the value of the optimal policy π^{\star} is $\mathcal{J}(\pi^{\star}) = \max_{\pi} \mathcal{J}(\pi) = 1$. Let $\widetilde{\pi}^{u,\alpha}$ denote the policy that, on all \widetilde{s}_i plays π^{\star} , and on other states plays π^{\star} with probability $1 - \alpha$, and otherwise plays $\min(\mathcal{A})$. Note then that, regardless of the value of $\widehat{\pi}^{\beta}$, we have that $\mathcal{J}(\widetilde{\pi}^{u,\alpha}) \geq \mathcal{J}(\widehat{\pi}^{u,\alpha})$. Thus,

$$\mathcal{J}(\pi^{\beta}) - \mathbb{E}[\mathcal{J}(\widehat{\pi}^{\mathbf{u},\alpha})] \ge \mathcal{J}(\pi^{\beta}) - \mathcal{J}(\widetilde{\pi}^{\mathbf{u},\alpha})$$

If we are in s_1 at h=2, the only way we can receive any reward on the episode is if we take action a_1 for the last H-1 steps, and we then receive a reward of 1. Under $\widetilde{\pi}^{u,\alpha}$, we take a_1 at each step with probability $1-\alpha+\alpha/A$, so our probability of getting a reward of 1 is $(1-\alpha+\alpha/A)^{H-1}$. Note that in contrast π^β will always play a_1 and receive a reward of 1 in this situation. If we are in \widetilde{s}_i at h=2 for any i, then π^β will incur a loss of Δ more than $\widetilde{\pi}^{u,\alpha}$. Thus, we can lower bound

$$\mathcal{J}(\pi^{\beta}) - \mathcal{J}(\widetilde{\pi}^{\mathbf{u},\alpha}) \ge -\frac{1}{2}\Delta + \frac{1}{2} \cdot (1 - (1 - \alpha + \alpha/A)^{H-1})$$

By assumption we have that $\frac{1}{2}\Delta = \epsilon$. Thus, if we want $\mathcal{J}(\pi^{\beta}) - \mathbb{E}[\mathcal{J}(\widehat{\pi}^{u,\alpha})] \leq \epsilon$, we need

$$\frac{1}{2} \cdot (1 - (1 - \alpha + \alpha/A)^{H-1}) \le 2\epsilon.$$

Rearranging this, we have

$$1 - 4\epsilon \le (1 - \alpha + \alpha/A)^{H-1} \iff \frac{1}{H-1}\log(1 - 4\epsilon) \le \log(1 - \alpha + \alpha/A).$$

From the Taylor decomposition of $\log(1-x)$, we see that $\log(1-\alpha+\alpha/A) \leq -(1-1/A)\alpha$. Furthermore, we can lower bound

$$\log(1-4\epsilon) \ge -8\epsilon$$

as long as $\epsilon \leq 1/2$. Altogether, then, we have

$$\frac{-8\epsilon}{H-1} \le -(1-1/A)\alpha \implies \alpha \le \frac{8\epsilon}{(H-1)(1-1/A)} \implies \alpha \le 32\epsilon$$

where the last inequality follows since $H \geq 2$, A = 2.

Upper bound on γ . Let $i_T := \arg\max_i \{2^{-i-1} \mid 2^{-i-1} \le 1/T\}$, so that $1/2T \le P_0(\widetilde{s}_{i_T}) \le 1/T$, and note that such an \widetilde{s}_{i_T} exists by construction. Let $\mathcal E$ be the event $\mathcal E := \{T_1(\widetilde{s}_{i_T}) = T_1(\widetilde{s}_{i_T}, a_2) = 1\}$. We have

$$\begin{split} \mathbb{P}[\mathcal{E}] &= \mathbb{P}[T_1(\widetilde{s}_{i_T}, a_2) = 1 \mid T_1(\widetilde{s}_{i_T}) = 1] \mathbb{P}[T_1(\widetilde{s}_{i_T}) = 1] \\ &= \frac{1}{2} \cdot T P_0(\widetilde{s}_{i_T}) (1 - P_0(\widetilde{s}_{i_T}))^{T-1} \\ &= \frac{1}{2} \cdot T \cdot \frac{1}{2T} \cdot (1 - \frac{1}{T})^{T-1} \\ &\geq \frac{1}{4e}. \end{split}$$

Note that on the event \mathcal{E} , we have $\widehat{\pi}_1^{\beta}(a_1 \mid \widetilde{s}_{i_T}) = 0$, but $\pi_1^{\beta}(a_1 \mid \widetilde{s}_{i_T}) = 1/2$. Thus,

$$\widehat{\pi}_1^{\mathrm{u},\alpha}(a_1 \mid \widetilde{s}_{i_T}) = \alpha/A \le 32\epsilon/A = 64\epsilon/A \cdot \pi_1^{\beta}(a_1 \mid \widetilde{s}_{i_T})$$

where we have used the bound on α shown above. Thus, on \mathcal{E} , we will only have that $\widehat{\pi}^{u,\alpha}$ is a γ -sampler for $\gamma \leq 64\epsilon/A$. Since \mathcal{E} occurs with probability at least 1/4e, it follows that if we want to guarantee $\widehat{\pi}^{u,\alpha}$ is a γ -sampler with probability at least $1-\delta$ for $\delta < 1/4e$, we must have $\gamma \leq 64\epsilon/A$.

Note as well that, since $\widehat{\pi}_1^{\beta}(a_2 \mid \widetilde{s}_{i_T}) = 1$, any policy in the support of $\widehat{\pi}^{\beta}$ will be suboptimal by a factor of at least $P_0(\widetilde{s}_{i_T}) \cdot 2\Delta \geq \Delta/T$.

A.3 ANALYSIS OF POSTERIOR POLICY

Throughout this section we denote

$$\widetilde{\pi}_h(a \mid s) := \begin{cases} (1 - \alpha) \cdot \frac{T_h(s, a)}{T_h(s)} + \alpha \cdot \frac{T_h(s, a) + \lambda/A}{T_h(s) + \lambda} & T_h(s) > 0\\ \text{unif}(\mathcal{A}) & T_h(s) = 0 \end{cases}$$

for some $\alpha \in [0, 1]$.

We also denote $w_h^\pi(s,a) := \mathbb{P}^\pi[s_h = s, a_h = a]$. $Q_h^\pi(s,a) := \mathbb{E}^\pi[\sum_{h' \geq h} r_{h'}(s_{h'}, a_{h'}) \mid s_h = s, a_h = a]$ denotes the standard Q-function. $\mathcal{J}(\pi;r)$ denotes the expected return of policy π for reward r.

Lemma 1. As long as $\delta \leq 0.9$ and $\lambda \geq A$, we have

$$\mathbb{P}\left[\widetilde{\pi}_h(a\mid s) \geq \alpha \cdot \min\left\{\frac{\pi_h^{\beta}(a\mid s)}{64\log SH/\delta}, \frac{1}{2\lambda}\right\}, \forall a \in \mathcal{A}, s \in \mathcal{S}, h \in [H]\right] \geq 1 - \delta.$$

Proof. Consider some (s,h). By Bernstein's inequality, if $T_h(s) > 0$, we have that with probability at least $1 - \delta$,

$$\frac{T_h(s,a)}{T_h(s)} \ge \pi_h^{\beta}(a \mid s) - \sqrt{\frac{2\pi_h^{\beta}(a \mid s)\log 1/\delta}{T_h(s)}} - \frac{2\log 1/\delta}{3T_h(s)}.$$
 (4)

From some algebra, we see that as long as $T_h(s) \geq \frac{32 \log 1/\delta}{\pi_h^{\beta}(a|s)}$, we have that $\frac{T_h(s,a)}{T_h(s)} \geq \frac{1}{2}\pi_h^{\beta}(a\mid s)$. By the definition of $\widetilde{\pi}$, under the good event of (4) we can then lower bound

For or
$$\pi$$
, under the good event of (4) we can then lower bound
$$\widetilde{\pi}_h(a\mid s) \geq \begin{cases} \frac{\alpha}{1+\lambda/T_h(s)} \cdot \frac{1}{2}\pi_h^\beta(a\mid s) & T_h(s) \geq \frac{32\log 1/\delta}{\pi_h^\beta(a\mid s)} \\ \frac{\alpha\lambda/A}{T_h(s)+A} & \text{o.w.} \end{cases}$$

$$\geq \begin{cases} \frac{\alpha \cdot 32\log 1/\delta}{32\log 1/\delta + \lambda \cdot \pi_h^\beta(a\mid s)} \cdot \frac{1}{2}\pi_h^\beta(a\mid s) & N_h(s) \geq \frac{32\log 1/\delta}{\pi_h^\beta(a\mid s)} \\ \frac{\alpha\lambda/A \cdot \pi_h^\beta(a\mid s)}{32\log 1/\delta + \lambda \cdot \pi_h^\beta(a\mid s)} & \text{o.w.} \end{cases}$$

$$\stackrel{(a)}{\geq} \frac{\alpha \cdot \pi_h^\beta(a\mid s)}{32\log 1/\delta + \lambda \cdot \pi_h^\beta(a\mid s)}$$

$$\geq \alpha \cdot \min \left\{ \frac{\pi_h^\beta(a\mid s)}{64\log 1/\delta}, \frac{1}{2\lambda} \right\}$$

where (a) follows as long as $\delta \leq 0.9$ and $\lambda \geq A$. In the case when $T_h(s) = 0$ we have $\widetilde{\pi}_h(a \mid s) = 1/A \geq 1/\lambda$, so this lower bound still holds. Taking a union bound over arms proves the result. \square

Lemma 2. As long as $\lambda \geq 4 \log(HT)$, we have

$$\mathbb{E}[\mathcal{J}(\widehat{\pi}^{\beta}) - \mathcal{J}(\widetilde{\pi})] \lesssim (1 + \alpha H) \cdot \frac{H^2 S \log T}{T} + \alpha \cdot \frac{H^2 S \lambda}{T}.$$

Proof. By the Performance-Difference Lemma we have:

$$\mathcal{J}(\widehat{\pi}^{\beta}) - \mathcal{J}(\widetilde{\pi}) = \sum_{h=1}^{H} \sum_{s \in \mathcal{S}} w_h^{\widehat{\pi}^{\beta}}(s) \cdot \left(\mathbb{E}_{a \sim \widehat{\pi}_h^{\beta}(s)} [Q_h^{\widetilde{\pi}}(s, a)] - \mathbb{E}_{a \sim \widetilde{\pi}_h(s)} [Q_h^{\widetilde{\pi}}(s, a)] \right) \\
\leq \sum_{h=1}^{H} \sum_{s \in \mathcal{S}} w_h^{\widehat{\pi}^{\beta}}(s) \cdot \left| \mathbb{E}_{a \sim \widehat{\pi}_h^{\beta}(s)} [Q_h^{\widetilde{\pi}}(s, a)] - \mathbb{E}_{a \sim \widetilde{\pi}_h(s)} [Q_h^{\widetilde{\pi}}(s, a)] \right|. \tag{5}$$

For (s, h) with $N_h(s) > 0$, we have

$$\left| \mathbb{E}_{a \sim \widehat{\pi}_h^{\beta}(s)}[Q_h^{\widetilde{\pi}}(s, a)] - \mathbb{E}_{a \sim \widetilde{\pi}_h(s)}[Q_h^{\widetilde{\pi}}(s, a)] \right| \leq \sum_{a \in A} H \cdot |\widehat{\pi}_h^{\beta}(a \mid s) - \widetilde{\pi}_h(a \mid s)|,$$

where we have used that $Q_h^{\widehat{\pi}^{\mathrm{post}}}(s,a) \in [0,H]$. Then, using the definition of $\widehat{\pi}^{\beta}$ and $\widetilde{\pi}$ we can bound this as

$$\leq \sum_{a \in \mathcal{A}} \alpha H \cdot \left| \frac{T_h(s, a)}{T_h(s)} - \frac{T_h(s, a) + \lambda/A}{T_h(s) + \lambda} \right| \\
= \sum_{a \in \mathcal{A}} \frac{\alpha \lambda H}{A} \cdot \left| \frac{AT_h(s, a) - T_h(s)}{T_h(s)(T_h(s) + \lambda)} \right| \\
\leq \sum_{a \in \mathcal{A}} \frac{\alpha \lambda H}{A} \cdot \frac{AT_h(s, a) + T_h(s)}{T_h(s)(T_h(s) + \lambda)} \\
= \frac{2\alpha \lambda H}{T_h(s) + \lambda}.$$

Since $\mathbb{E}_{a \sim \widehat{\pi}_h^{\beta}(s)}[Q_h^{\widetilde{\pi}}(s,a)] - \mathbb{E}_{a \sim \widetilde{\pi}_h(s)}[Q_h^{\widetilde{\pi}}(s,a)] = 0$ by construction when $T_h(s) = 0$, we then have

$$(5) \le \sum_{h=1}^{H} \sum_{s \in S} w_h^{\widehat{\pi}^{\beta}}(s) \cdot \frac{2\alpha\lambda H}{T_h(s) + \lambda}.$$

Let \mathcal{E} denote the good event from Lemma 3 with $\delta = \frac{S}{T}$. Then as long as $\lambda \geq 4 \log(HT)$ we can bound the above as

$$\leq \sum_{h=1}^{H} \sum_{s \in \mathcal{S}} w_h^{\widehat{\pi}^{\beta}}(s) \cdot \frac{2\alpha\lambda H}{T_h(s) + \lambda} \mathbb{I}\{\mathcal{E}\} + 2H^2 \cdot \mathbb{I}\{\mathcal{E}^c\}$$

$$\leq \sum_{h=1}^{H} \sum_{s \in \mathcal{S}} w_h^{\widehat{\pi}^{\beta}}(s) \cdot \frac{4\alpha\lambda H}{w_h^{\pi^{\beta}}(s) \cdot T + \lambda} + 2H^2 \cdot \mathbb{I}\{\mathcal{E}^c\}.$$

Let \widetilde{r} denote the reward function:

$$\widetilde{r}_h(s,a) := \frac{\lambda}{w_i^{\pi^{\beta}}(s) \cdot T + \lambda}$$

and note that $\widetilde{r} \in [0, 1]$, and

$$\sum_{h=1}^{H} \sum_{s \in \mathcal{S}} w_h^{\widehat{\pi}^{\beta}}(s) \cdot \frac{4\alpha\lambda H}{w_h^{\pi^{\beta}}(s) \cdot T + \lambda} = 4\alpha H \cdot \mathcal{J}(\widehat{\pi}^{\beta}; \widehat{r}).$$

By Theorem 4.4 of Rajaraman et al. (2020), we have¹

$$\mathbb{E}[\mathcal{J}(\widehat{\pi}^{\beta}; \widehat{r})] \lesssim \mathcal{J}(\pi^{\beta}; \widehat{r}) + \frac{H^{2}S \log T}{T}$$

$$= \sum_{h=1}^{H} \sum_{s \in \mathcal{S}} w_{h}^{\pi^{\beta}}(s) \cdot \frac{\lambda}{w_{h}^{\pi^{\beta}}(s) \cdot T + \lambda} + \frac{H^{2}S \log T}{T}$$

$$\leq \frac{HS\lambda}{T} + \frac{H^{2}S \log T}{T}.$$

Noting that $\mathbb{E}[2H^2 \cdot \mathbb{I}\{\mathcal{E}^c\}] \leq 2H^2\delta \leq \frac{2H^2S}{T}$ completes the proof.

Lemma 3. With probability at least $1 - \delta$, for all (s, h), we have

$$T_h(s) + \lambda \ge \frac{1}{2} w_h^{\pi^{\beta}}(s) \cdot T + \frac{1}{2} \lambda$$

as long as $\lambda \geq 4 \log \frac{SH}{\delta}$.

Proof. Consider some (s,h) and note that $\mathbb{E}[T_h(s)/T] = w_h^{\pi^{\beta}}(s)$. By Bernstein's inequality, we have with probability $1 - \delta/SH$:

$$T_h(s) \ge w_h^{\pi^{\beta}}(s) \cdot T - \sqrt{2w_h^{\pi^{\beta}}(s) \cdot T \cdot \log \frac{SH}{\delta}} - \frac{2}{3} \log \frac{SH}{\delta}.$$

We would then like to show that

$$w_h^{\pi^{\beta}}(s) \cdot T - \sqrt{2w_h^{\pi^{\beta}}(s) \cdot T \cdot \log \frac{SH}{\delta}} - \frac{2}{3} \log \frac{SH}{\delta} + \lambda \ge \frac{1}{2} (w_h^{\pi^{\beta}}(s) \cdot T + \lambda)$$

$$\iff \frac{1}{2} w_h^{\pi^{\beta}}(s) \cdot T + \frac{1}{2} \lambda \ge \sqrt{2w_h^{\pi^{\beta}}(s) \cdot T \cdot \log \frac{SH}{\delta}} + \frac{2}{3} \log \frac{SH}{\delta}$$

As we have assumed $\lambda \geq 4\log\frac{SH}{\delta}$, it suffices to show

$$\frac{1}{2} w_h^{\pi^\beta}(s) \cdot T + \log \frac{SH}{\delta} \ge \sqrt{2 w_h^{\pi^\beta}(s) \cdot T \cdot \log \frac{SH}{\delta}}.$$

However, this is true by the AM-GM inequality. A union bound proves the result.

Lemma 4 (Reversed version of Lemma A.8 of Rajaraman et al. (2020)). *Adopting the notation from Rajaraman et al.* (2020), we have

$$\mathbb{E}[\Pr_{\pi^{\text{first}}}[\mathcal{E}]] \le \frac{SH \log N}{N}$$

for \mathcal{E}^c the event that within a trajectory, the policy only visits states for which $T_h(s) > 0$.

Proof. Let $\mathcal{E}_{s,h}$ denote the event that the state s is visited at step h and $T_h(s) = 0$, and $\mathcal{E}_h := \bigcup_{s \in \mathcal{S}} \mathcal{E}_{s,h}$. Then, by simple set inclusions, we have:

$$\mathcal{E} = \bigcup_{h \in [H]} \bigcup_{s \in \mathcal{S}} \mathcal{E}_{s,h} = \bigcup_{h \in [H]} \bigcup_{s \in \mathcal{S}} \left(\mathcal{E}_{s,h} \cap \bigcap_{h' < h} \mathcal{E}^c_{h'} \right).$$

By a union bound it follows that

$$\mathbb{E}[\Pr_{\pi^{\mathrm{first}}}[\mathcal{E}]] \leq \sum_{h \in [H]} \sum_{s \in \mathcal{S}} \mathbb{E}[\Pr_{\pi^{\mathrm{first}}}[\mathcal{E}_{s,h} \cap \bigcap_{h' < h} \mathcal{E}^{c}_{h'}]].$$

¹Note that Theorem 4.4 of Rajaraman et al. (2020) shows an inequality in the opposite direction of what we show here: they bound $\mathcal{J}(\pi^{\beta}; \widetilde{r}) - \mathbb{E}[\mathcal{J}(\widehat{\pi}^{\beta}; \widetilde{r})]$ instead of $\mathbb{E}[\mathcal{J}(\widehat{\pi}^{\beta}; \widetilde{r})] - \mathcal{J}(\pi^{\beta}; \widetilde{r})$. However, we see that the only place in their proof where their argument relied on this ordering is in Lemma A.8. We show in Lemma 4 that a reverse version of their Lemma A.8 holds, allowing us to instead bound $\mathbb{E}[\mathcal{J}(\widehat{\pi}^{\beta}; \widetilde{r})] - \mathcal{J}(\pi^{\beta}; \widetilde{r})$.

Now note that

$$\begin{aligned} \Pr_{\pi^{\text{first}}}[\mathcal{E}_{s,h} \cap \bigcap_{h' < h} \mathcal{E}_{h'}^{c}] &= \Pr_{\pi^{\text{first}}}[\mathcal{E}_{s,h} \mid \bigcap_{h' < h} \mathcal{E}_{h'}^{c}] \Pr_{\pi^{\text{first}}}[\bigcap_{h' < h} \mathcal{E}_{h'}^{c}] \\ &= \Pr_{\pi^{\text{first}}}[\mathcal{E}_{s,h} \mid \bigcap_{h' < h} \mathcal{E}_{h'}^{c}] \Pr_{\pi^{\text{first}}}[\mathcal{E}_{h-1}^{c} \mid \bigcap_{h' < h-1} \mathcal{E}_{h'}^{c}] \Pr_{\pi^{\text{first}}}[\bigcap_{h' < h-1} \mathcal{E}_{h'}^{c}] \\ &\vdots \\ &= \Pr_{\pi^{\text{first}}}[\mathcal{E}_{s,h} \mid \bigcap_{h' < h} \mathcal{E}_{h'}^{c}] \cdot \prod_{h' < h} \Pr_{\pi^{\text{first}}}[\mathcal{E}_{h'}^{c} \mid \bigcap_{h'' < h'} \mathcal{E}_{h''}^{c}]. \end{aligned}$$

If the event $\bigcap_{h' < h} \mathcal{E}^c_{h'}$ holds, then up to step h no states are encountered for which $T_{h'}(s) = 0$. Thus, on such states, π^{first} and $\pi^{\text{orc-first}}$ will behave identically. It follows that $\mathbb{E}[\Pr_{\pi^{\text{first}}}[\mathcal{E}_{s,h} \mid \bigcap_{h' < h} \mathcal{E}^c_{h'}]] = \mathbb{E}[\Pr_{\pi^{\text{orc-first}}}[\mathcal{E}_{s,h} \mid \bigcap_{h' < h} \mathcal{E}^c_{h'}]]$. By a similar argument, we have $\Pr_{\pi^{\text{orc-first}}}[\mathcal{E}^c_{h'} \mid \bigcap_{h'' < h'} \mathcal{E}^c_{h'}]$ for each h' < h. Thus,

$$\Pr_{\pi^{\text{first}}}[\mathcal{E}_{s,h} \cap \bigcap_{h' < h} \mathcal{E}_{h'}^c] = \Pr_{\pi^{\text{orc-first}}}[\mathcal{E}_{s,h} \cap \bigcap_{h' < h} \mathcal{E}_{h'}^c].$$

It follows that

$$\mathbb{E}[\Pr_{\pi^{\text{first}}}[\mathcal{E}]] \leq \sum_{h \in [H]} \sum_{s \in \mathcal{S}} \mathbb{E}[\Pr_{\pi^{\text{orc-first}}}[\mathcal{E}_{s,h} \cap \bigcap_{h' < h} \mathcal{E}^{c}_{h'}]] \leq \sum_{h \in [H]} \sum_{s \in \mathcal{S}} \mathbb{E}[\Pr_{\pi^{\text{orc-first}}}[\mathcal{E}_{s,h}]].$$

From here the proof follows identically to the proof of Lemma A.8 of Rajaraman et al. (2020).

Proof of Theorem 1. Set $\lambda = \max\{A, 4\log(HT)\}$ and $\alpha = \frac{1}{\max\{A, H, \log(HT)\}}$. We have

$$\mathcal{J}(\pi^{\beta}) - \mathbb{E}[\mathcal{J}(\widehat{\pi}^{\beta})] + \mathbb{E}[\mathcal{J}(\widehat{\pi}^{\beta})] - \mathbb{E}[\mathcal{J}(\widehat{\pi})] \lesssim \frac{H^2 S \log T}{T} + (1 + \alpha H) \cdot \frac{H^2 S \log T}{T} + \alpha \cdot \frac{H^2 S \lambda}{T}$$

where we bound $\mathcal{J}(\pi^{\beta}) - \mathbb{E}[\mathcal{J}(\widehat{\pi}^{\beta})]$ by Theorem 4.4 of Rajaraman et al. (2020), and $\mathbb{E}[\mathcal{J}(\widehat{\pi}^{\beta})] - \mathbb{E}[\mathcal{J}(\widehat{\pi})]$ by Lemma 2 since $\lambda \geq 4\log(HT)$. By our choice of $\alpha = \frac{1}{\max\{A,H,\log(HT)\}}$, we can bound all of this as

$$\lesssim \frac{H^2 S \log T}{T}.$$

This proves the suboptimality guarantee. To show that $\widetilde{\pi}$ is a γ -sampler, we applying Lemma 1 using our values of λ and α

A.4 OPTIMALITY OF POSTERIOR SAMPLING

Let \mathcal{M} denote a multi-armed bandit with A actions where $r(a_1)=1$ and $r(a_i)=0$ for i>1. Let $\pi^{\beta,i}$ denote the policy defined as

$$\pi^{\beta,i}(a) = \begin{cases} 1 - \alpha & a = 1 \\ \alpha & a = i \\ 0 & \text{o.w.} \end{cases}$$

for i>1 and α some value we will set, and $\pi^{\beta,1}(1)=1$. We let $\mathcal{M}^i=(\mathcal{M},\pi^{\beta,i})$ the instance-demonstrator pair, $\mathbb{E}^i[\cdot]$ the expectation on this instance, \mathbb{P}^i the distribution on this instance, and $\mathbb{P}^{i,T}=\otimes_{t-1}^T\mathbb{P}^i$.

Lemma 5. Consider the instance constructed above. Then we have that, for $j \neq i$:

$$\mathbb{P}^i[\widehat{\pi}(i) \geq \gamma \cdot \alpha] \leq 2 \cdot \mathbb{P}^j[\widehat{\pi}(i) \geq \gamma \cdot \alpha] + T \cdot \alpha.$$

Proof. This follows from Lemma A.11 of Foster et al. (2021), which immediately gives that:

$$\mathbb{P}^{i}[\{\widehat{\pi}(i) \geq \gamma \cdot \alpha] \leq 2 \cdot \mathbb{P}^{j}[\widehat{\pi}(i) \geq \gamma \cdot \alpha] + D_{H}^{2}(\mathbb{P}^{i,T}, \mathbb{P}^{j,T}),$$

where $D_H(\cdot,\cdot)$ denotes the Hellinger distance. Since the squared Hellinger distance is subadditive we have

$$D^2_{\mathrm{H}}(\mathbb{P}^{i,T},\mathbb{P}^{j,T}) \le T \cdot D^2_{\mathrm{H}}(\mathbb{P}^i,\mathbb{P}^j).$$

By elementary calculations we see that $D^2_H(\mathbb{P}^i, \mathbb{P}^j) = \alpha$, which proves the result.

 Lemma 6 (Full version of Theorem 2). Let $\widehat{\pi}$ be a γ -sampler of π^{β} for each \mathcal{M}^i , $i \in [A]$, and some $\delta \in (0, 1/4]$, and assume that

$$\mathcal{J}(\pi^{\beta,i}) - \mathbb{E}^i[\mathcal{J}(\widehat{\pi})] \le \xi, \quad \forall i \ge 1$$

for some $\xi > 0$. Then if $T \leq \frac{1}{4\alpha}$, it must be the case that

$$\gamma \le \frac{\xi}{4A\alpha}.$$

In particular, setting $\xi = c \cdot \frac{\log T}{T}$ and if $\alpha = \frac{1}{4T}$, we have

$$\gamma \le c \cdot \frac{\log T}{A}.$$

Proof. Our goal is to find the maximum value of γ such that our constraint on the optimality of $\widehat{\pi}$ is met, for each \mathcal{M}^i . In particular, this can be upper bounded as

$$\max_{\widehat{\pi}, \gamma} \gamma \quad \text{s.t.} \quad \mathbb{P}^{i}[\{\widehat{\pi}(a) \geq \gamma \cdot \pi^{\beta}(a), \forall a \in \mathcal{A}\}] \geq 1 - \delta, \ \mathcal{J}(\pi^{\beta, i}) - \mathbb{E}^{i}[\mathcal{J}(\widehat{\pi})] \leq \xi, \ \forall i \geq 1. \quad (6)$$

Note that for \mathcal{M}^i , $i \geq 1$, the event $\{\widehat{\pi}(a) \geq \gamma \cdot \pi^{\beta,i}(a), \forall a \in \mathcal{A}\}$ is a subset of the event $\{\widehat{\pi}(i) \geq \gamma \cdot \alpha\}$. This allows us to bound (6) as

$$\max_{\widehat{\pi}, \gamma} \gamma \quad \text{s.t.} \quad \mathbb{P}^{i}[\widehat{\pi}(i) \ge \gamma \cdot \alpha] \ge 1 - \delta, \ \mathcal{J}(\pi^{\beta, i}) - \mathbb{E}^{i}[\mathcal{J}(\widehat{\pi})] \le \xi, \ \forall i \ge 1.$$
 (7)

By Lemma 5, we have that for each i > 1,

$$\mathbb{P}^{i}[\widehat{\pi}(i) \ge \gamma \cdot \alpha] \le 2 \cdot \mathbb{P}^{1}[\widehat{\pi}(i) \ge \gamma \cdot \alpha] + T \cdot \alpha.$$

Furthermore, on \mathcal{M}^1 we have $\mathcal{J}(\pi^{\beta,1}) - \mathbb{E}^1[\mathcal{J}(\widehat{\pi})] = \mathbb{E}^1[\sum_{i>1} \widehat{\pi}(i)]$. Given this, we can upper bound (7) as

$$\max_{\widehat{\pi}, \gamma} \gamma \quad \text{s.t.} \quad \mathbb{P}^1[\widehat{\pi}(i) \ge \gamma \cdot \alpha] \ge \frac{1}{2} \cdot (1 - \delta - T \cdot \alpha), \forall i > 1, \ \mathbb{E}^1[\sum_{i > 1} \widehat{\pi}(i)] \le \xi. \tag{8}$$

By Markov's inequality, we have

$$\mathbb{P}^1[\widehat{\pi}(i) \geq \gamma \cdot \alpha] \leq \frac{\mathbb{E}^1[\widehat{\pi}(i)]}{\gamma \cdot \alpha}.$$

Furthermore, since we have assumed $\delta \leq 1/4$ and $T \leq \frac{1}{4\alpha}$, we have $\frac{1}{2} \cdot (1 - \delta - T \cdot \alpha) \geq \frac{1}{4}$. We can therefore bound (8) as

$$\max_{\widehat{\pi}, \gamma} \gamma \quad \text{s.t.} \quad \mathbb{E}^1[\widehat{\pi}(i)] \ge \frac{1}{4} \cdot \gamma \alpha, \forall i > 1, \ \mathbb{E}^1[\sum_{i > 1} \widehat{\pi}(i)] \le \xi. \tag{9}$$

However, we see then that we immediately have that

$$\gamma \le \frac{\xi}{4A\alpha}.$$

This proves the result.

B APPROXIMATE POSTERIOR

Let $P(\cdot \mid \mu)$ denote the distribution $\mathcal{N}(\mu, \Sigma)$, where we assume μ is unknown and Σ is known. Assume that we have samples $\mathfrak{D} = \{x_1, \dots, x_T\} \sim P(\cdot \mid \mu^*)$. Let $Q_{\text{prior}} = \mathcal{N}(0, \Lambda_0)$ denote the prior on μ . Throughout this section we let $=^d$ denote equality in distribution.

Lemma 7. Under Q_{prior} , we have that the posterior Q_{post} on μ is:

$$Q_{\text{post}}(\cdot \mid \mathfrak{D}) = \mathcal{N}\left(\Lambda_{\text{post}} \Sigma^{-1} \cdot \sum_{t=1}^{T} x_{t}, \Lambda_{\text{post}}\right),$$

$$\label{eq:for_lambda} \textit{for} \, \Lambda_{\text{post}}^{-1} = \Lambda_0^{-1} + T \cdot \Sigma^{-1}.$$

Proof. Dropping terms that do not depend on μ , we have

$$Q_{\text{post}}(\mu \mid \mathfrak{D}) = \frac{P(\mathfrak{D} \mid \mu)Q_{\text{prior}}(\mu)}{P(\mathfrak{D})}$$

$$\propto \exp\left(-\frac{1}{2}\sum_{t=1}^{T}(x_t - \mu)^{\top}\Sigma^{-1}(x_t - \mu)\right) \cdot \exp\left(-\frac{1}{2}\mu^{\top}\Lambda_0\mu\right)$$

$$\propto \exp\left(-\frac{1}{2}T\mu^{\top}\Sigma^{-1}\mu - \frac{1}{2}\mu^{\top}Q_{\text{prior}}^{-1}\mu + \mu^{\top}\Sigma^{-1} \cdot \sum_{t=1}^{T}x_t\right)$$

$$= \exp\left(-\frac{1}{2}(\mu - \Lambda_{\text{post}}v)^{\top}\Lambda_{\text{post}}^{-1}(\mu - \Lambda_{\text{post}}v) + \frac{1}{2}v^{\top}\Lambda_{\text{post}}v\right)$$

for
$$\Lambda_{\mathrm{post}}^{-1} = \Lambda_0^{-1} + T \cdot \Sigma^{-1}$$
, and $v = \Sigma^{-1} \cdot \sum_{t=1}^T x_t$.

Lemma 8 (General version of Proposition 4). Let

$$\widehat{\mu} = \arg\min_{\mu} \sum_{t=1}^{T} (\mu - \widetilde{x}_t)^{\top} \Sigma^{-1} (\mu - \widetilde{x}_t) + (\mu - \widetilde{\mu})^{\top} \Lambda_0^{-1} (\mu - \widetilde{\mu}),$$

for
$$\widetilde{x}_t = x_t + w_t$$
, $w_t \sim \mathcal{N}(0, \Sigma)$, and $\widetilde{\mu} \sim Q_{\text{prior}}$. Then $\widehat{\mu} = {}^d Q_{\text{post}}(\cdot \mid \mathfrak{D})$.

Proof. By computing the gradient of the objective, setting it equal to 0, and solving for μ , we see that

$$\begin{split} \widehat{\mu} &= (\Lambda_0^{-1} + T\Sigma^{-1})^{-1} \cdot \left(\Sigma^{-1} \cdot \sum_{t=1}^T \widetilde{x}_t + \Lambda_0^{-1} \widetilde{\mu} \right) \\ &= (\Lambda_0^{-1} + T\Sigma^{-1})^{-1} \cdot \Sigma^{-1} \cdot \sum_{t=1}^T x_t + (\Lambda_0^{-1} + T\Sigma^{-1})^{-1} \cdot \left(\Sigma^{-1} \cdot \sum_{t=1}^T w_t + \Lambda_0^{-1} \widetilde{\mu} \right). \end{split}$$

Note that the first term in the above is deterministic conditioned on \mathfrak{D} , and the second term is mean 0 and has covariance $(\Lambda_0^{-1} + T\Sigma^{-1})^{-1}$. We see then that the mean and covariance of $\widehat{\mu}$ match the mean the covariance of $Q_{\text{post}}(\cdot \mid \mathfrak{D})$ given in Lemma 7, which proves the result.

Lemma 9. Let \widetilde{x} be distributed as

$$\widetilde{x} \sim \mathcal{N}(\widehat{\mu}, \Sigma) \quad \textit{for} \quad \widehat{\mu} \sim Q_{\text{post}}(\cdot \mid \mathfrak{D}) \quad \textit{and} \quad \mathfrak{D} \sim P(\cdot \mid \mu^{\star}).$$

Then

$$\widetilde{x} = d x_{T+1} + 2w + z$$

for $x_{T+1} \sim P(\cdot \mid \mu^*)$, $w \sim \mathcal{N}(0, \Lambda_{post})$, and z some random variable satisfying $\mathbb{E}[\|z\|_2^2] \leq \mathcal{O}(1/T^2)$.

Proof. Note that $x_t = \mu^* + \eta_t$, for $\eta_t \sim \mathcal{N}(0, \Sigma)$. We then have

$$\mu^* - \Lambda_{\text{post}} \Sigma^{-1} \cdot \sum_{t=1}^T x_t = \mu^* - T \Lambda_{\text{post}} \Sigma^{-1} \mu^* - \Lambda_{\text{post}} \Sigma^{-1} \cdot \sum_{t=1}^T \eta_t.$$
 (10)

Note that

$$T\Lambda_{\mathrm{post}}\Sigma^{-1}\mu^{\star}=\Lambda_{\mathrm{post}}(T\Sigma^{-1}+\Lambda_{0}^{-1})\mu^{\star}-\Lambda_{\mathrm{post}}\Lambda_{0}^{-1}\mu^{\star}=\mu^{\star}-\Lambda_{\mathrm{post}}\Lambda_{0}^{-1}\mu^{\star}.$$

Furthermore, we have that

$$-\Lambda_{\text{post}}\Sigma^{-1} \cdot \sum_{t=1}^{T} \eta_{t} = {}^{d} \mathcal{N}(0, T\Lambda_{\text{post}}\Sigma^{-1}\Lambda_{\text{post}}) = {}^{d} \mathcal{N}(0, \Lambda_{\text{post}} - \Lambda_{\text{post}}\Lambda_{0}^{-1}\Lambda_{\text{post}}).$$

It follows that

$$(10) = {}^{d} \mathcal{N} \left(\Lambda_{\text{post}} \Lambda_{0}^{-1} \mu^{\star}, \Lambda_{\text{post}} - \Lambda_{\text{post}} \Lambda_{0}^{-1} \Lambda_{\text{post}} \right).$$

Note that by construction, $\Lambda_{\rm post}\Lambda_0^{-1}\mu^{\star} \leq \mathcal{O}(1/T)$. Furthermore, $\|\Lambda_{\rm post}\Lambda_0^{-1}\Lambda_{\rm post}\|_2 = \mathcal{O}(1/T^2)$. Thus,

$$(10) = {}^{d} \mathcal{N} \left(0, \Lambda_{\text{post}} - \mathcal{O}(1/T^{2}) \right) + \mathcal{O}^{d}(1/T)$$

where here we let $\mathcal{O}^d(1/T)$ denote some term X such that $\mathbb{E}[\|X\|_2^2] \leq \mathcal{O}(1/T)$. As a perturbation of $\mathcal{O}(1/T^2)$ to the covariance will result in a perturbation whose norm is bounded in expectation as $\mathcal{O}(1/T)$, we have

$$(10) = {}^{d} \mathcal{N}(0, \Lambda_{\text{post}}) + \mathcal{O}^{d}(1/T).$$

Let $w \sim \mathcal{N}(0, \Lambda_{\text{post}})$ and $\eta \sim \mathcal{N}(0, \Sigma)$. Then, by Lemmas 7 and 8:

$$\widehat{\mu} + \eta =^{d} \Lambda_{\text{post}} \Sigma^{-1} \cdot \sum_{t=1}^{T} x_{t} + w + \eta$$

$$=^{d} \mu^{\star} + \mathcal{N} (0, \Lambda_{\text{post}}) + w + \eta + \mathcal{O}^{d} (1/T)$$

$$=^{d} \mu^{\star} + 2w + \eta + \mathcal{O}^{d} (1/T)$$

$$=^{d} x_{T+1} + 2w + \mathcal{O}^{d} (1/T)$$

for $x_{T+1} \sim P(\cdot \mid \mu^*)$.

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 ROBOMIMIC EXPERIMENTS

For all Robomimic experiments, we run POSTBC as stated in Algorithm 2 however, instead of computing the full covariance of the posterior, we only compute the diagonal covariance. We instantiate $\widehat{\pi}^{\theta}$ with a diffusion policy that uses an MLP architecture. For f_{ℓ} , we train an MLP to simply predict the noised action directly in \mathfrak{D}_i (i.e. we do not use a diffusion model for f_{ℓ}), but use the same architecture and dimensions for f_{ℓ} as the diffusion policies.

For each RL finetuning method, we sweep over the same hyperparameters for each pretrained policy method (i.e. BC, σ -BC, POSTBC), and include results for the best one. For σ -BC, we swept over values of σ and included results for the best-performing one. With the exception of DSRL Square, for every Robomimic experiment, we train 5 diffusion policies per pertraining method, and perform a single RL finetuning run on it, so that each stated values is averaged over 5 seeds; For DSRL Square we only average over 3 seeds. For each evaluation, we roll out the policy 200 times. For DPPO we utilize the default hyperparameters as stated in Ren et al. (2024), and utilize DDPM sampling. We provide hyperparameters for the individual experiments below.

Table 3: Common DSRL hyperparameters for all experiments.

Hyperparameter	Value
Learning rate	0.0003
Batch size	256
Activation	Tanh
Target entropy	0
Target update rate (τ)	0.005
Number of actor and critic layers	3
Number of critics	2
Number of environments	4

Table 4: DSRL hyperparameters for Robomimic experiments.

Hyperparameter	Lift	Can	Square
Hidden size	2048	2048	2048
Gradient steps per update	$20 (\sigma\text{-BC}), 10 (BC,POSTBC)$	20	20
Noise critic update steps	10	10	10
Discount factor	0.99	0.99	0.999
Action magnitude	1.5	1.5	1.5
Initial steps	24000	24000	32000

Table 5: Hyperparameters for pretrained policies for Robomimic DSRL experiments.

Hyperparameter	Lift	Can	Square
Dataset size (number trajectories)	5	10	40
Action chunk size	4	4	4
train denoising steps	100	20	100
inference denoising steps	8	8	8
Hidden size	512	1024	1024
Hidden layers	3	3	3
Training epochs	3000	3000	3000
Ensemble size (POSTBC)	10	10	10
Ensemble noise σ (POSTBC)	0.1	0.5	0.5
Ensemble training epochs (POSTBC)	3000	500	500
Posterior noise weight α (POSTBC)	3	1	1
Uniform noise σ (σ -BC)	0.1	0.05	0.05

Table 6: Common Best-of-N hyperparameters for all Robomimic experiments.

Hyperparameter	Value
IQL learning rate	0.0003
IQL batch size	256
$\operatorname{IQL} \beta$	3
Activation	Tanh
Target update rate	0.005
Q and V number of layers	2
Q and V layer size	256
Number of critics	2
N (Best-of- N samples)	32

Table 7: Best-of-N hyperparameters for Robomimic experiments.

Hyperparameter	Lift	Can	Square
Total gradient steps	3000000	2000000	2000000
IQL τ (1000 rollouts)	0.7	$0.7 (BC, \sigma\text{-BC}), 0.9 (POSTBC)$	0.7
IQL τ (2000 rollouts)	$0.7 (BC, \sigma\text{-BC}), 0.9 (PostBC)$	0.7	0.7
Discount factor	0.99	0.999	0.999

Table 8: Hyperparameters for pretrained policies for Robomimic Best-of-N experiments.

Hyperparameter	Lift	Can	Square
Dataset size (number trajectories)	20	10	40
Action chunk size	1	4	4
train denoising steps	100	20	100
inference denoising steps	8	8	8
Hidden size	512	1024	1024
Hidden layers	3	3	3
Training epochs	3000	3000	3000
Ensemble size (POSTBC)	10	10	10
Ensemble noise σ (POSTBC)	0.5	0.5	0.5
Ensemble training epochs (POSTBC)	500	500	500
Posterior noise weight α (POSTBC)	2	1	1
Uniform noise σ (σ -BC)	0.1	0.05	0.05

Table 9: Hyperparameters for pretrained policies for Robomimic DPPO experiments.

Hyperparameter	Lift	Can	Square
Dataset size (number trajectories)	5	50	30
Action chunk size	4	1	4
train denoising steps	100	20	100
Hidden size	512	1024	1024
Hidden layers	3	3	3
Training epochs	3000	3000	3000
Ensemble size (POSTBC)	10	10	10
Ensemble noise σ (POSTBC)	0.1	0.5	0.5
Ensemble training epochs (POSTBC)	3000	500	500
Posterior noise weight α (POSTBC)	3	1	1
Uniform noise σ (σ -BC)	0.1	0.05	0.05

C.2 LIBERO EXPERIMENTS

For Libero, we utilize the transformer architecture from Dasari et al. (2024) for $\widehat{\pi}^{\theta}$. We run PostBC as stated in Algorithm 2, but instead of approximating the posterior by adding noise to actions, we instead used a bootstrap estimate, where we sample from $\mathfrak D$ with replacement, and fit f_{ℓ} to the bootstrapped samples (we note that this is another common strategy for uncertainty estimation in RL, see e.g. Osband et al. (2016a)). For f_{ℓ} , we utilize the same ResNet and tokenizer as $\widehat{\pi}^{\theta}$, but simply utilize a 3-layer MLP head on top of it—trained to predict the actions directly—rather than a full diffusion transformer. For the Best-of-N experiments, PostBC utilizes a diagonal posterior covariance estimate, while for the Dsrl runs it is trained with the full matrix posterior covariance estimate. We train on Libero-90 data from the first 3 scenes of Libero-90—KITCHEN-SCENE1, KITCHEN-SCENE2, and KITCHEN-SCENE3—and use 25 trajectories from each task in each scene. For task conditioning, we conditioning $\widehat{\pi}^{\theta}$ on the BERT language embedding (Devlin et al., 2019) of the corresponding text given for that task in the Libero dataset.

For each RL finetuning method, we sweep over the same hyperparameters for each pretrained policy method (i.e. BC, σ -Bc, PostBc), and include results for the best one. For σ -Bc, we swept over values of σ and included results for the best-performing one. The Dsrl experiments are averaged over 3 different pretraining runs per method, and one Dsrl run per pretrained run. The Best-of-N experiments are averaged over 2 different pretraining runs per method, and 2 Best-of-N runs per pretrained run. For each evaluation, we roll out the policy 100 times.

We provide hyperparameters for the individual experiments below.

Table 10: DSRL hyperparameters for all Libero experiments.

Hyperparameter	Value
Learning rate	0.0003
Batch size	256
Activation	Tanh
Target entropy	0
Target update rate (τ)	0.005
Number of actor and critic layers	3
Layer size	1024
Number of critics	2
Number of environments	1
Gradient steps per update	20
Discount factor	0.99
Action magnitude	1.5
Initial episode rollouts	20

 $\label{thm:conditional} \mbox{Table 11: Best-of-N hyperparameters for all Libero experiments.}$

Hyperparameter	Value
IQL learning rate	0.0003
IQL batch size	256
IQL β	3
Activation	Tanh
Target update rate	0.005
Q and V number of layers	2
Q and V layer size	256
Number of critics	2
N (Best-of- N samples)	32
IQL gradient steps	50000
$\operatorname{IQL} au$	0.9
Discount factor	0.99

Table 12: Hyperparameters for DiT diffusion policy in Libero experiments.

Hyperparameter	Value
Batch size	150
Learning rate	0.0003
Training steps	50000
LR scheduler	cosine
Warmup steps	2000
Action chunk size	4
Train denoising steps	100
Inference denoising steps	8
Image encoder	ResNet-18
Hidden size	256
Number of Heads	8
Number of Layers	4
Feedforward dimension	512
Token dimension	256
Ensemble size (POSTBC)	5
Ensemble training steps (POSTBC)	25000
Ensemble layer size	512
Ensemble number of layers	3
Posterior noise weight (POSTBC)	2 (DSRL run), 4 (Best-of-N run)
Uniform noice σ (σ -BC)	0.05