Under review as a conference paper at ICLR 2026

POSTERIOR BEHAVIORAL CLONING: PRETRAINING
BC POLICIES FOR EFFICIENT RL FINETUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Standard practice across domains from robotics to language is to first pretrain a
policy on a large-scale demonstration dataset, and then finetune this policy, typ-
ically with reinforcement learning (RL), in order to improve performance on de-
ployment domains. This finetuning step has proved critical in achieving human or
super-human performance, yet while much attention has been given to developing
more effective finetuning algorithms, little attention has been given to ensuring the
pretrained policy is an effective initialization for RL finetuning. In this work we
seek to understand how the pretrained policy affects finetuning performance, and
how to pretrain policies in order to ensure they are effective initializations for fine-
tuning. We first show theoretically that, by training a policy to clone the demon-
strator’s posterior distribution given the demonstration dataset—rather than sim-
ply the demonstrations themselves—we can obtain a policy that ensures coverage
over the demonstrator’s actions—a minimal condition for effective finetuning—
without hurting the performance of the pretrained policy. Furthermore, we show
that standard behavioral cloning (BC) pretraining fails to achieve this without sig-
nificant tradeoffs in terms of sampling costs. Motivated by this, we then show
that this approach is practically implementable with modern generative policies
in robotic control domains, in particular diffusion policies, and leads to signifi-
cantly improved finetuning performance on realistic robotic control benchmarks,
as compared to standard behavioral cloning.

1 INTRODUCTION

Across domains—from language, to vision, to robotics—a common paradigm has emerged for train-
ing highly effective “policies”: collect a large set of demonstrations, “pretrain” a policy via behav-
ioral cloning (BC) to mimic these demonstrations, then “finetune” the pretrained policy on a deploy-
ment domain of interest. While pretraining can endow the policy with generally useful abilities, the
finetuning step has proved critical in obtaining effective performance, enabling human value align-
ment and reasoning capabilities in language domains (Ouyang et al.| 2022} [Bai et al., [2022a; Team
et al., 20255 |Guo et al., 2025a), and improving task solving precision and generalization to unseen
tasks in robotic domains (Nakamoto et al.| 2024; |Chen et al., 2025} |Kim et al., 2025; [Wagenmaker,
et al.,[2025). In particular, reinforcement learning (RL)-based finetuning—where the pretrained pol-
icy is deployed in a setting of interest and its behavior updated based on the outcomes of these online
rollouts—is especially crucial in improving the performance of a pretrained policy.

Critical to achieving successful RL-based finetuning performance in many domains—particularly in
settings when policy deployment is costly and time-consuming, such as robotic control—is sample
efficiency; effectively modifying the behavior of the pretrained model using as few deployment roll-
outs as possible. While significant attention has been given to developing more efficient finetuning
algorithms, this ignores a primary ingredient in the RL finetuning process: the pretrained policy it-
self. Though generally accepted that a stronger pretrained policy is a better initialization for finetun-
ing (Guo et al.,2025a;[Yue et al., 2023)), it is not well understood how pretraining impacts finetuning
performance beyond this, and how we might pretrain policies to enable more efficient RL finetuning.

In this work we seek to understand the role of the pretrained policy in RL finetuning, and how we
might pretrain policies that (a) enable efficient RL finetuning, and (b) before finetuning, perform no
worse than the standard BC policy. We propose a novel pretraining approach—posterior behavioral

Under review as a conference paper at ICLR 2026

a) = Demonstration data—\ (b) =——BC policy—\ (C) =RL finetuned policy—\
WA
e (= e o e
(a) =Demonstration data — (d) = Posterior BC policy _— (e) =RL finetuned policy ™
L AL N
= J G 3l 3

Figure 1: We consider the setting where we are given demonstration data for some tasks of interest,
(a). (b) Standard BC pretraining fits the behaviors in the demonstrations, leading to effective perfor-
mance in regions with high demonstration data density, yet poor performance in regions with low
data density. (c) This leads to ineffective RL finetuning, since rollouts from the BC policy provide
little meaningful reward signal in such low data density regions, which is typically necessary to en-
able effective improvement. (d) In contrast, we propose posterior behavioral cloning, which instead
of directly mimicking the demonstrations, trains a generative policy to fit the posterior distribution
of the demonstrator’s actions. This endows the pretrained policy with a wider distribution of ac-
tions in regions of low demonstrator data density, while in regions of high data density it reduces to
approximately the standard BC policy. (e) This wider action distribution allows for collection of di-
verse observations with more informative reward signal, allowing for more effective RL finetuning.

BC pretraining
+ RL finetuning

Posterior BC
pretraining
+ RL finetuning

cloning—which, rather than fitting the empirical distribution of demonstrations as standard BC does,
instead fits the posterior distribution over the demonstrator’s behavior. This enables the pretrained
policy to take into account its potential uncertainty about the demonstrator’s behavior, and adjust the
entropy of its action distribution based on this uncertainty. In states where it is uncertain about the
demonstrator’s actions, posterior BC samples from a high-entropy distribution, allowing for a more
diverse set of actions that may enable further policy improvement, while in states where it is certain
about the demonstrator’s actions, it samples from a low-entropy distribution, simply mimicking what
it knows to be the (correct) demonstrator behavior (see Figure |I[)

Theoretically, we show that posterior BC leads to provable improvements over standard BC in terms
of the potential for downstream RL performance. In particular, we focus on the ability of the pre-
trained policy to cover the demonstrator policy’s actions—whether it samples all actions the demon-
strator policy might sample—which, for finetuning approaches that rely on rolling out the pretrained
policy, is a prerequisite for ensuring finetuning can even match the performance of the demonstrator.
We show that standard BC can provably fail to cover the demonstrator’s distribution, while posterior
BC does cover the demonstrator’s distribution, incurs no suboptimality in the performance of the
pretrained policy as compared to the standard BC policy, and achieves a near-optimal sampling cost
out of all policy estimators which have suboptimality no more than the BC policy’s.

Inspired by this, we develop a practical approach to approximating the posterior of the demonstra-
tor in continuous action domains, and instantiate posterior BC with modern generative models—
diffusion models—on robotic control tasks. We demonstrate experimentally that posterior BC pre-
training can lead to significant performance gains in terms of the efficiency and effectiveness of
RL finetuning, as compared to running RL finetuning on a policy pretrained with standard BC, and
achieves these gains without decreasing the performance of the pretrained policy itself. We show
that this holds for a variety of finetuning algorithms—both policy-gradient-style algorithms, and al-
gorithms which explicitly refine or filter the distribution of the pretrained policy—enabling effective
finetuning performance across a variety of challenging robotic tasks.

2 RELATED WORK

BC and pretraining for downstream finetuning. BC training of expressive generative models
—where the model is trained to predict the next “action” of the demonstrator—forms the backbone
of pretraining for LLMs (Radford et al., 2018]) and robotic control policies (Bojarskil, |2016; [Zhang
et al., 2018} |Rahmatizadeh et al.l 2018; [Stepputtis et al., [2020; [Shafiullah et al., [2022} |Gu et al.,

Under review as a conference paper at ICLR 2026

2023 [Team et al.| 2024} [Zhao et al.| [2024; Black et al.| [2024; [Kim et al.l 2024). We focus in
particular on policies parameterized as diffusion models (Sohl-Dickstein et al., |2015; Ho et al.|
2020; Song et al., 2020), which have seen much attention in the robotics community (Chi et al.,
2023 |Ankile et al., [2024a; [Zhao et al.| 2024} |Ze et al., [2024; Sridhar et al.| 2024 [Dasari et al.| 2024}
Team et al., 2024} Black et al., 2024} Bjorck et al.l [2025)). These works, however, simply pretrain
with standard BC, and do not consider how the pretraining may affect RL finetuning performance.

To the best of our knowledge, no existing work considers how to pretrain policies on reward-free data
with BC-like objectives to ensure they are an effective initialization for RL finetuning. In the RL lit-
erature, however, two lines of work bear some resemblance to ours. The offline-to-online RL setting
aims to train policies with RL on offline datasets that can then be improved with further online inter-
action (Lee et al.,|2022; \Ghosh et al., 2022} [Kumar et al., [2022} [Zhang et al., [2023} [Uchendu et al.,
2023 Zheng et al.| 2023} Ball et al.| 2023} [Nakamoto et al.l 2023)), and the mera-RL setting aims to
meta-learn a policy on some set of tasks which can then be quickly adapted to a new task (Wang et al.,
20165 |Duan et al., {2016} [Finn et al., 2017;2018)). While similar to our work in that these works also
aim to learn behaviors that can be efficiently improved online, the settings differ significantly in that
the offline- or meta-pretraining typically requires reward labels (rather than unlabeled demonstra-
tions) and are performed with RL (rather than BC)—in contrast, we study how BC-like pretraining
(as noted, the workhorse of most modern applications) can enable efficient online adaptation.

RL finetuning of pretrained policies. RL finetuning of pretrained policies is a critical step in both
language and robotic domains. In language domains, RL finetuning has proved crucial in aligning
LLMs to human values (Ziegler et al.l [2019; |Ouyang et al.l 2022} Bai et al., [2022a; Ramamurthy
et al., 2022} [Touvron et al., [2023), and enabling reasoning abilities (Shao et al., [2024} Team et al.,
20255 |Guo et al., 2025a). A host of finetuning algorithms have been developed, both online (Bai
et al.,2022b; Bakker et al.,|2022;[Dumoulin et al.;,|2023;|Lee et al.,|2023;/Munos et al.|[2023; Swamy
et al.} 2024; (Chakraborty et al., |2024} (Chang et al., 2024) and offline (Rafailov et al., [2023; |Azar
et al.,[2024} |Rosset et al.| 2024; Tang et al., 2024; |Yin et al.,|2024). In robotic and control domains,
RL finetuning methods include directly modifying the weights of the base pretrained policy (Zhang
et al., 2024} Xu et al.| [2024; Mark et al., 2024; Ren et al., 2024; |Hu et al., [2025; |Guo et al., 2025b;
Lu et al.| 2025} |Chen et al.| 2025} [Liu et al.l 2025)), Best-of-/V sampling-style approaches that filter
the output of the pretrained policy with a learned value function (Chen et al., [2022; |Hansen-Estruch
et al., 2023} He et al., [2024; Nakamoto et al., 2024; |Dong et al., |2025b)), “steering” the pretrained
policy by altering its sampling process (Wagenmaker et al.l 2025)), and learning smaller residual
policies to augment the pretrained policy’s actions (Ankile et al., |2024b; [Yuan et al., [2024; Jilg
et al., 2025; Dong et al.| 2025a). Our work is tangential to this line of work: rather than improving
the finetuning algorithm, we aim to ensure the pretrained policy is amenable to RL finetuning.

Posterior sampling and exploration. Our proposed approach relies on modeling the posterior
distribution of the demonstrator’s actions. While this is, to the best of our knowledge, the first
example of applying posterior sampling to BC, posterior methods have a long history in RL, going
back to the work of Thompson| (1933). This works spans applied (Osband et al.l 2016agb}; |2018;
Zintgraf et al.|[2019) and theoretical (Agrawal & Goyal, [2012; Russo & Van Royl|[2014;/Russo et al.,
2018 Janz et al.L[2024; [Kveton et al.,|2020; Russo, 2019) settings. More generally, our approach can
be seen as enabling BC-trained policies to explore more effectively. Exploration is a well-studied
problem in the RL community (Stadie et al., 2015; Bellemare et al.l|2016; |Burda et al., 2018 |Choi
et al.l 2018} [Ecoffet et al., [2019; |Shyam et all 2019} [Lee et all 2021} Henaff et al., [2022), with
several works considering learning exploration strategies from offline data (Hu et al.|[2023; [Li et al.}
2023 Wilcoxson et al., 2024} (Wagenmaker et al.). These works, however, either consider RL-based
pretraining (while we focus on BC) or do not consider the question of online finetuning.

3 PRELIMINARIES

Mathematical notation. Let < denote inequality up to absolute constants, A y the simplex over X,
and unif (X’) the uniform distribution over X'. I]-] denotes the indicator function, E™[-] the expecta-
tion under policy 7 and, unless otherwise noted, E[-] the expectation over the demonstrator dataset.

Markov decision processes. We consider decision-making in the context of episodic, fixed-horizon
Markov decision processes (MDPs). An MDP M is denoted by a tuple (S, A, {P,}HL,, Py, r, H),
where S is the set of states, A the set of actions, Py, : S x A — Ag the next-state distribution at step
h, Py € As the initial state distribution, rj, : S x A — Ajg 1) the reward distribution, and H the

Under review as a conference paper at ICLR 2026

horizon. Interaction with M proceeds in episodes of length H. At step 1, we sample a state s1 ~ P,
take an action a1 € A, receive reward 71(s1, a1), and transition to state sa ~ Py(- | $1,a1). This

continues for H steps until the MDP resets. We let J(7) := E™ [Zthl rr(sn,an)] denote the
expected reward for policy 7 over one episode. In general, our goal is to maximize J ().

Behavioral cloning. We assume we are given some dataset ® = {(s},al,..., s, al;)} col-
lected by running a demonstrator policy 77 on M, so that (st at, ..., s, a%;) denotes a full tra-
jectory rollout of 7% on M, with af, ~ 70 (- | s!). We assume that 7 is Markovian but otherwise
make no further assumptions on it (so in particular, 7 may be stochastic and suboptimal). Our
demonstrator dataset does not include reward labels—preventing standard offline RL approaches
from applying—but we assume that we have access to reward labels during online interactions.

Behavioral cloning (BC) attempts to fit a policy 77 to match the action distribution of 7° using
D. Typically this is achieved via supervised learning, where 7 is trained to predict a given s for
(s,a) € ®. In the tabular setting, which we consider in Section E], the natural choice for 7° simply
fits the empirical distribution of actions in ©:

Ty (s,a)
%S(a | s) := Th(s) Th(s) >0 N
unif(A) Tp(s) =0,

where Tj,(s,a) = S7_, T{(s}, a%) = (s,a)} and Tj,(s) = S, I{s, = s}. The following result
bounds the suboptimality of this estimator, and shows that it is optimal estimator, up to log factors.

Proposition 1 (Rajaraman et al|(2020)). If® contains T' demonstrator trajectories, we have
~ H?SlogT
J(n?) —E[J (@) S =52,
Furthermore, for any estimator 7, there exists some MDP M and demonstrator 8 such that

J(1%) — E[J (%)) = min {H H;S} .

In other words, without additional reward information, we cannot in general hope to obtain a policy
from D that does better than (T)), if our goal is to maximize the performance of the pretrained policy.

4 DEMONSTRATOR ACTION COVERAGE VIA POSTERIOR SAMPLING

In this section we seek to understand how pretraining affects the ability to further improve the down-
stream policy with RL finetuning, and how we might pretrain to enable downstream improvement.
For simplicity, here we assume that our MDP M is tabular, and let S and A denote the cardinal-
ities of the state and action spaces, respectively; we will show how our proposed approach can be
extended to more general settings in the following section.

4.1 DEMONSTRATOR ACTION COVERAGE AS A PREREQUISITE FOR FINETUNING

The performance of RL finetuning depends significantly on the RL algorithm applied. Rather than
limiting our results to a particular RL algorithm, we instead focus on what is often a prerequisite
for effective application of any such approach—demonstrating that the support of the pretrained
policy is sufficient to enable improvement. In particular, we consider the following definition for the
“effective” support of a policy, relative to the demonstrator policy 7.

Definition 4.1 (y-sampler). We say that policy 7 is a y-sampler of 7 if, for all (s,h) € S x [H]
and a € A, we have that wf(a | s) >~ mr(als).

The majority of RL finetuning approaches rely on rolling out the pretrained policy—which we de-
note as 7P —online, and using the collected observations to finetune its behavior. If our pretrained
policy is a -sampler of 7°, then this ensures that any action sampled by 7% will also be sampled
by 7P* in these rollouts (with some probability). While this is not a sufficient condition for online
improvement, it is a necessary condition, in some cases, for performing as well as the demonstra-
tor 7 (as Proposition [2{ demonstrates), and is therefore a necessary condition for improving over
7P, Furthermore, the value of vy also has impact on the computational cost of RL finetuning. A
~-sampler requires a factor of % more samples than 7° to ensure it samples some action in the sup-

port of 72, For approaches such as Best-of-N sampling that rely on sampling many actions from

Under review as a conference paper at ICLR 2026

the pretrained policy and then taking the best one, a large value of v therefore ensures that we can
efficiently sample actions likely to be sampled by the demonstrator policy 7, while if + is small, it
may require taking a significant number of samples from 7P* to ensure we cover the behavior of 7,
greatly increasing the computational cost due to this sampling.

In the following, we aim to understand how we can pretrain policies that are y-samplers, and to
do this with large values of . Furthermore, we aim to achieve this without incurring significant
additional suboptimality as compared to 7°—we would like to ensure that 7P* is an effective initial-
ization for finetuning while still itself achieving effective online performance.

4.2 BEHAVIORAL CLONING FAILS TO ACHIEVE ACTION COVERAGE

We first consider standard BC, i.e. @ The following result shows that the estimator in @]), despite
achieving the optimal suboptimality rate, can fail to achieve sufficient action coverage, and that this
fundamentally limits its ability to serve as an effective initialization for finetuning.

Proposition 2 (Informal). Fix any ¢ € (0,1/8]. Then there exists some MDP M and demonstrator
policy ©° such that, unless T > ﬁ, we have that, with probability at least 1/2:

J(1?) —e>max, g J(r) for T:={r:m(al|s)=0if7,(al]s)=0,Ysah}.
Furthermore, if we collect samples with T2 on M we will not be able to identify an e-optimal policy.

Proposition shows that, unless we have a sufficiently large demonstrator dataset (7' > ﬁ), half of
the time (i.e. half of the random draws of the demonstrator dataset) the policy returned by standard
BC will not contain a near-optimal policy in its support and, furthermore, that rolling out 7 on
M will therefore not allow us to learn a near-optimal policy on M. In other words, some fraction
of the time standard BC produces a policy which will simply never play actions required to solve
the task at the level of the demonstrator policy, and any online improvement approach that relies
on rolling out the BC pretrained policy to collect observations will therefore fail to identify an e-
optimal policy—online improvement is not possible with this pretrained policy. This implies that
pretraining a policy that matches the demonstrator’s empirical action distribution as represented in
©—the typical goal of behavioral cloning—is insufficient for downstream RL finetuning.

A straightforward solution to this is to simply add exploration noise to our pretrained policy—rather
than playing 7° at every step, with some probability play a random action. While this will clearly ad-
dress the shortcoming of generative BC outlined above—every action will now be in the support—as
the following result shows, there is a fundamental tradeoff between the suboptimality of this policy
and the number of samples from the policy required to ensure we cover our demonstrator’s behavior.

Proposition 3. Fix T > 0, H > 2, § > [logo 4T + 2, £ > 0, define € := LS18T o ¢ 4ng

assume € < %. Define the policy T as T, " (- |) :== (1 —) - %f(| s) + - unif(A). Then there

exists some MDP M with S states, 2 actions, and horizon H where, in order to ensure that:
1 () — BT ()] < ¢
2. T is a y-sampler of ™ with probability at least 1 — 6, for § € (0,1/4e),

we must have o < 32¢ and v < % - €. Furthermore, with probability at least 1/4e, we have

J(@P)— % e> max_ g J(m) for Il := {m:mn(als) :Ozf%f(a | s) =0,Vs,a,h}.

2
In order to achieve the %

suboptimality rate achieved by standard BC, Proposition [3| then

2
shows that we must have v < % . % or, in other words, to ensure we sample a particular

action from 7% that is sampled by 77, it will require sampling a factor of #ﬁgT more samples

from 7 than it would require from 7. While this does enable approaches like Best-of-N to
improve the policy, in settings where 7' is large, this requires a significant number of samples from
the pretrained policy, greatly increasing the computational burden of such an approach. Furthermore,
Proposition 3| shows that this limitation is critical—if we seek to shortcut this exploration and set
o < 0, we will fail to match the performance of 7° on this instance completely.

Under review as a conference paper at ICLR 2026

4.3 DEMONSTRATOR’S POSTERIOR POLICY ACHIEVES ACTION COVERAGE

Can we do better than BC or BC augmented with uniform noise? Here we show that a mixture of the
standard BC policy and the posterior on the demonstrator’s policy achieves a near optimal balance
between policy suboptimality and action coverage.

Definition 4.2 (Posterior Demonstrator Policy). Given prior distribution PP ¢ /A1 over demon-

prior

strator policies, let P’

ost (| D) denote the posterior distribution given demonstration dataset D. We

then define the posterior demonstrator policy 7% as 73 °* (a | 5) :==E__ s (1o lmnla | s)].
post

7Post is therefore the expected policy of the demonstrator under prior Pfrior given observations ©.

In practice, we require a slightly regularized version of 7P, 7Pt which is identical to 7Pt if
HT < e*, and otherwise adds a small amount of additional regularization (see Section for a
precise definition). We have the following.

Theorem 1. Let P°

orior € the uniform distribution over Markovian policies, and set 7Pt 10

wals)=1—a) 7 (als)+a-7>Nals) 2)
. Then

~ H2SlogT
J(r%) = E[T (7P)] S 775,
and with probability at least 1 — 0, for all (s, a, h),

_ 1
for = max{A,H,log(HT)}

B
~pt 1 . f wlals)
m, (a]s) 2 AtH+log(@T) ~ 1N { Tog(SH/9)* Atlog(HT) [-

Theorem 2. Fix any A > 1 and T > 1. Then there exists a family of MDPs {M"};c|] such that

each M® has A actions and S = H = 1, and if any estimator 7 satisfies T (mh1) —EM' [T ()] <
H2SlogT
T

c- for all i € [A] and some constant ¢ > 0, then for T to be a y-sampler of 7" on each

i 1. logT
M with probability at least § € (0,1/4], we must have v < ¢ - =5=.

Theorem shows that our choice of 7P* achieves the same suboptimality guarantee as 7°—it per-
forms no worse that 7°—and requires only a factor of ~ A+ H more samples to ensure we sample a
particular action from 7° than 7 itself does for actions a such that wf a | s) < 1/A (and otherwise
requires at most a factor of A(A + H) more). Furthermore, Theorem |2| shows that, to achieve this
optimal suboptimality guarantee, any estimator must take a factor of A more samples than 7”. In
other words, if we want a policy that preserves the optimality of 7 while playing a diverse enough
distribution to enable further online improvement, mixing the posterior demonstrator policy with
the BC policy achieves the near-optimal tradeoff, and plays all actions taken by 77 with minimal
computational overhead and without incurring additional suboptimality over the BC policy.

5 POSTERIOR BEHAVIORAL CLONING

The previous section suggests a simple recipe to obtain a pretrained policy amenable to online im-
provement: compute the posterior demonstrator policy given the demonstration data, then mix the
posterior demonstrator policy with the generative BC policy. In this section we show how this can
be instantiated in continuous control settings using expressive generative policy classes.

To motivate our approach, consider the setting where:

Th (| 8) = N(un(s), 07(s) - 1),
for some (unknown) p,(s) € R? and (known) o, (s) € R. Assume we have observations D =
{a,...,ap} ~ 71'5(| s), and that we have a N/ (0,) prior on up(s). The following result, an
extension of (Osband et al.| (2018), shows that we can approximate samples from the posterior on
1n(s) by solving an optimization problem over our (noised) observations.

Proposition 4. We have Pfost(~ | D) =N (W : Zle ag, U??S(i)_ 7+ 1) and, if we set

~ . k ~ ~
fin(s) = argmin,, 377 [l — @13 + o (s) - | — ()13,
foray = at +wy, wy ~ N(0,0%(s) - I), and i ~ N(0, 1), then [in(s) ~ Pfost(- | D).

Under review as a conference paper at ICLR 2026

Proposition shows that we can compute samples from the posterior on u(s) by simply fitting a
“noised” version of our demonstrations. While in practice our data likely does not satisfy this Gaus-
sianity assumption, the above argument nonetheless suggests a simple recipe to capture the behavior

~ +
of 7,°*"(- | s) in more general, non-Gaussian settings, which we summarize in Algorlthm

Algorithm 1 Posterior Variance Approximation via Ensembled Prediction

1: input: demonstration dataset ®, ensemble size K, function class F
cfort=1,2,...,Kdo

Set Dy + {(s,a +w’,) : V(s,a) € D} where w’, ~ N(0,1)
Fit fy by solving fo <= argmingc 7>~ 5yen, [1fe(s) — al|3

return {fg}ge K]

AN

By the above argument, each f;(s) is an approximate sample from the posterior of our demonstra-
tor’s behavior at state s. Our theory suggests, however, that we should sample not simply from the
posterior, but from 7wP°5¢, the expected policy under the posterior. In the Gaussian setting of Propo-

sition |4} to sample from %EOSt(' | s) it suffices to perturb a sample from the posterior, fij(s), by

0-mean noise with the demonstrator’s covariance: fip (s) +w ~ 7L (- | s) if w ~ N(0,07(s) - I).
If we do not know the demonstrator’s covariance, as is usually the case in practice, and so cannot
directly generate a sample w ~ N(0, 0% (s) - I), we can approximate it by sampling, for (s, a) € D:

~ a7 (s)
a=a+w, ww./\/'(O,Ui(hSHk -I).

Note that the covariance of a’s distribution is precisely the demonstrator’s covariance, since a ~

775 (-] s). Therefore, @ will be distributed with the demonstrator’s mean and covariance, plus 0-mean
noise sampled with the posterior’s covariance. While the mean of this distribution differs from that

~post . R . —bost X
of 7% (- |), its covariance matches the covariance of 7, "' (- |). As we show in Lemma@, the

difference in mean between 75°*(- | s) and 775 (-]) is distributed approximately as the posterior’s

covariance, suggesting that the difference in mean between a and %EOSt (-] s) is therefore effectively
washed out by the posterior’s randomness—a is sampled approximately as %20“(- | s). To produce

an approximate sample from 7P°5*(. |) in the general case, then, we sample:

a=a+a-w, w~N(0,cov(s)), 3)

for any (s,a) € ®, and where cov(s) := Y0 (fe(s) — F(s))(fe(s) — f(s)T for
F(s) « L3205 fe(s), and « is some weighting we can tune as desired.

5.1 POSTERIOR BEHAVIORAL CLONING

Applying Algorithm [1]and Equation (3), we can generate approximate samples from 7Pt (- | s) for
any s in our demonstration dataset. Theorem suggests that, to obtain a pretrained policy 7P* that is
an effective initialization for RL finetuning, it suffices to fit 7P to a mixture distribution of the BC
policy and 7P°5*, Approximating this mixture by modulating « in (B)), we arrive at the following.

Algorithm 2 Posterior Behavioral Cloning (POSTBC)

1: input: demonstration dataset ®, generative model class 77, posterior weight o

- Fit { fr}oe[x) by running Algorithmon D, and compute cov(-) from { f; }sc(x] as above
fori=1,2,3,...do

Draw batch ©; ~ unif (D)

For all (s,a) € ©;, compute a as in (@) using cov(-) and o, and set ©; < {(s,a) : s € D}
Take gradient step on 77 on loss of ®;

AN AN

With 7% an expressive generative model, Algorithm will produce a policy which, instead of fitting
the empirical distribution of the demonstrator, fits the full expected posterior of the demonstrator’s
behavior. This approximates the posterior mixture in Equation (2, and, Theorem [T| suggests, leads
to a more effective initialization for RL finetuning, instantiating the behavior illustrated in Figure[T]

Under review as a conference paper at ICLR 2026

6 EXPERIMENTS

Finally, we seek to demonstrate that in practice posterior behavioral cloning (a) enables more ef-
ficient RL finetuning of pretrained policies, and (b) leads to a pretrained policy that performs well
itself, on par with the BC pretrained policy. We focus on continuous control domains, in particular
robotic control. We test on both the Robomimic (Mandlekar et al.| [2021) and Libero (Liu et al.,
2023) simulators. Robomimic is comprised of several robotic manipulation tasks, providing a set
of human demonstrations on each task, and enables training and finetuning of single-task BC poli-
cies. We consider the Lift, Can, and Square tasks on Robomimic. Libero similarly contains
a variety of robotic manipulation tasks with provided human demonstrations, but enables multi-task
training, allowing for pretraining on large corpora of data and then finetuning on particular tasks of
interest. In particular, we rely on a subset of the Libero 90 suite of tasks, training and evaluating
on the first 21 tasks, corresponding to three different kitchen manipulation scenes. See Figure 2] for
a visualization of our settings.

We instantiate 7P* with a diffusion model, which has become the de-facto standard for parameter-
izing BC policies in continuous control settings (Chi et al., 2023} |Ankile et al., [2024a; Dasari et al.}
2024; Team et al.| 2024} Black et al.| 2024} Bjorck et al.l 2025)). For the Robomimic experiments,
we use an MLP-based architecture, trained on a single-task demonstration dataset, and rely on state-
based observations. For L.ibero, we utilize a diffusion transformer architecture due to|Dasari et al.
(2024) and rely on image-based observations and language task conditioning. In Libero, we pre-
train a single 7t policy on the demonstration data from all 21 tasks (Black et al.l[2024; |Kim et al.,
2024} |[Khazatsky et al.| 2024), and then run RL finetuning on each individual task. In order to leave
room for RL improvement (i.e. to ensure that task performance is not saturated by the BC pretrained
policy) we limit the number of demos per task in the pretraining dataset.

In principle, POSTBC can be combined with any RL finetuning algorithm, and we seek to demon-
strate that it improves performance on a representative set of approaches. In particular, we consider
DsRL (Wagenmaker et al., 2025), which refines a pretrained diffusion policy’s distribution by run-
ning RL over its latent-noise space, DPPO (Ren et al., |2024), an on-policy policy-gradient-style
algorithm for finetuning diffusion policies, and Best-of-/N sampling. Best-of-/V is a generic proce-
dure which can be instantiated in a variety of ways (see e.g. (Chen et al.}|[2022;|Hansen-Estruch et al.}
2023; He et al.| 2024; |Nakamoto et al.,|2024; |Dong et al., [2025b))—here we instantiate it by rolling
out the pretrained policy some number of times on the task of interest, training a ()-function via IQL
(Kostrikov et al.l 2021) on the rollouts, then at test time sampling N actions from the pretrained
policy at each state, and taking the action with the largest (Q-value.

To the best of our knowledge, there do not exist any approaches which aim to pretrain policies with
a BC-like objective on (reward-free) demonstration data, with the aim of obtaining an initialization
that is an effective starting point for finetuning. As baselines, then, we consider running standard BC
pretraining on © (the typical initialization for RL finetuning), as well as what we refer to as o-BC,
where instead of perturbing the actions in © by the posterior variance as in (3)), we instead perturb
them by uniform, state-independent noise with variance o2. This is then equivalent to POSTBC,
except we set cov(s) = o2 - I for some fixed o > 0 in (@) (note that this is a continuous analog to
the approach considered in Proposition [3). This itself is a novel approach and our theory predicts it
too may lead to improved performance over pretraining with standard BC. For all experiments, error
bars denote 1 standard error. All results are averaged over from 3-5 seeds and policies are evaluated
with 200 rollouts for Robomimic and 100 for Libero. Please see Section[dfor additional details.

6.1 POSTERIOR BC ENABLES EFFICIENT RL FINETUNING

Our results from running DSRL on Libero are given in Figure [3|and on Robomimic in Figure[d]
For Libero, we run DSRL on three tasks from scene 2: “open the top drawer of the cabinet”, “put
the black bowl at the front on the plate”, and “put the middle black bowl on the plate”. We see
that POSTBC pretraining leads to significant gains for Libero, enabling efficient RL finetuning
in settings where both standard BC pretraining and o-BC pretraining fail. On Robomimic we
observe more modest gains, yet note that POSTBC pretraining does no worse than other pretraining
approaches, and on Square does lead to notable gains over BC pretraining. Our results for DPPO

are given in Figure] where we see that POSTBC pretraining again leads to modest gains on Square.

Our Best-of-N results are given in Table[T} We see that across settings, POSTBC-pretraining leads
to consistent improvements over both BC- and o-BC-pretrained policies. In particular, on Libero,

Under review as a conference paper at ICLR 2026

Libero Task 1 Libero Task 2 Libero Task 3

FF

. —— PoSTBC ——

&

P
;J
Success Rate
o
Ut

| =
[REEEE
o o @F S 00
b X 0 5 0 i 50 i 2
Timesteps x 10 Timesteps x10° Timesteps x10°

Figure 2: Robomimic Figure 3: Comparison of DSRL finetuning performance combined with
and Libero settings different BC pretraining approaches on Libero.

Lift Can Square Lift Can Square
1.00;
2 0.75
£0.50
T:’l)AZE)
0.001
0 2 4 _0.0 0.5 100 1 2 0 1 0 2 0 1 2
Timesteps x10° Timesteps ~ x10° Timesteps x10° Timesteps x 107 Timesteps x10° Timesteps x 107

Figure 4: Comparison of DSRL finetuning perfor- Figure 5: Comparison of DPPO finetuning per-
mance combined with different BC pretraining ap- formance combined with different BC pretrain-

proaches on Robomimic. ing approaches on Libero.
Pretrained Performance Best-of-N (1000 Rollouts) Best-of-N (2000 Rollouts)
Task BC o-Bc PosTtBC BC o-Bc PosTBC BC o-Bc PosTBC
Robomimic Lift 70.1 17 66.7+0s 68.1+07 | 55.6 +2.4 523 +37 63.3 +21 | 63.8+36 T3.5+11 75.7 +20
Robomimic Can 43.4 +0.6 443 00 422112 | 69.8 20 T2.8 130 70.6 £27 | 76.6 24 80.7 x1.4 79.3 +24
Robomimic Square 18.8 03 183 +03 17.0+05 | 37.9 423 45.7+14 40.6 1.7 | 48.4 110 50.0 +3.2 51.6 429

Libero Scene 1 (5 tasks) 221 +83 23.2+62 24.4461 | 38.0+72 639438 60.8 £a5 - -
Libero Scene 2 (7 tasks) 11.5 434 10.3 +41 13.1 139 21.7 +36 26.7 x50 44.4 157

Libero Scene 3 (4 tasks) 40.1 104 374176 42.0 1102 | 492170 51.8+71 65.5 168 - -
Libero All (21 tasks) 22.2 +43 21.1 437 23.0x39 | 33.5+35 43.T+36 54.6 35 - -

Table 1: Comparison of performance of pretrained policies and Best-of-N sampling on
Robomimic and Libero, for different BC pretraining approaches.

POSTBC improves by approximately 20% over BC, and 10% over o-Bc. Table [T also provides
the performance of the pretrained policies, where we see that, in general, the POSTBC-pretrained
policy performs on par with the BC-pretrained policy, demonstrating that POSTBC-pretraining
produces a policy which performs as well as the BC pretrained policy—POSTB C-pretraining does
not hurt pretrained policy performance. Together these results show that in realistic continuous
control settings, pretraining with POSTBC can lead to significant improvements over standard BC
pretraining in terms of RL finetuning performance, without sacrificing the performance of the
pretrained policy itself.

Understanding how POSTBC improves RL finetuning performance. Finally, we seek to provide
insight into how POSTBC improves RL finetuning performance. In particular, we aim to disam-
biguate the role of the additional exploration a POSTBC policy may provide over a BC policy, versus
the role that having access to a larger action distribution at test time might play. While these factors
are intimately coupled for DSRL and DPPO, for Best-of-N sampling we can decouple them by se-
lecting the rollout policy (the “exploration” policy) that collects data to learn the filtering function,
and the policy whose actions we filter with the learned function at test-time (the “steering” policy).

We consider leIHg the role of BC rollouts + BC rollouts + PoSTBC rollouts + POSTBC rollouts +

the BC and PoOSTBC pOhCy on BC steering POSTBC steering BC steering POSTBC steering
Robomimic Lift in this way, and 63.8 +3.6 78.6 +1.4 65.0 +4.4 75.7 +2.0
provide our results in Table 2] We

find that the choice of rollout pohcy Table 2: Best-of-IN Sampling onRobomimic Lift, vary-
has little impact on performance, but ing the rollout policy and the steering policy.

the steering policy can impact perfor-

mance significantly. This suggests that the utility of POSTBC is primarily in its ability to provide
a wider range of actions that can be sampled from the pretrained policy, enabling RL finetuning
approaches to easily select the maximizing action.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Full proofs for all theoretical results are given in the appendix, allowing our results to be checked.
For the experimental results, we have stated hyperparameters used in the appendix, and plan to also
release our code publicly.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural informa-
tion processing systems, 34:29304-29320, 2021.

Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit prob-
lem. In Conference on learning theory, pp. 39-1. JMLR Workshop and Conference Proceedings,
2012.

Lars Ankile, Anthony Simeonov, Idan Shenfeld, and Pulkit Agrawal. Juicer: Data-efficient imitation
learning for robotic assembly. In 2024 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 5096-5103. IEEE, 2024a.

Lars Ankile, Anthony Simeonov, Idan Shenfeld, Marcel Torne, and Pulkit Agrawal. From imitation
to refinement-residual rl for precise assembly. arXiv preprint arXiv:2407.16677, 2024b.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learn-
ing from human preferences. In International Conference on Artificial Intelligence and Statistics,
pp. 4447-4455. PMLR, 2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022a.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
lessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022b.

Michiel Bakker, Martin Chadwick, Hannah Sheahan, Michael Tessler, Lucy Campbell-Gillingham,
Jan Balaguer, Nat McAleese, Amelia Glaese, John Aslanides, Matt Botvinick, et al. Fine-tuning
language models to find agreement among humans with diverse preferences. Advances in Neural
Information Processing Systems, 35:38176-38189, 2022.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. In International Conference on Machine Learning, pp. 1577-1594. PMLR,
2023.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information pro-
cessing systems, 29, 2016.

Johan Bjorck, Fernando Castafieda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. GrOOt nl: An open foundation model
for generalist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. my: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Mariusz Bojarski. End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

10

Under review as a conference paper at ICLR 2026

Souradip Chakraborty, Jiahao Qiu, Hui Yuan, Alec Koppel, Furong Huang, Dinesh Manocha, Am-
rit Singh Bedi, and Mengdi Wang. Maxmin-rlhf: Towards equitable alignment of large language
models with diverse human preferences. arXiv preprint arXiv:2402.08925, 2024.

Jonathan D Chang, Wenhao Shan, Owen Oertell, Kianté Brantley, Dipendra Misra, Jason D Lee,
and Wen Sun. Dataset reset policy optimization for rlhf. arXiv preprint arXiv:2404.08495, 2024.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

Yuhui Chen, Shuai Tian, Shugao Liu, Yingting Zhou, Haoran Li, and Dongbin Zhao. Con-
rft: A reinforced fine-tuning method for vla models via consistency policy. arXiv preprint
arXiv:2502.05450, 2025.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, pp. 02783649241273668, 2023.

Jongwook Choi, Yijie Guo, Marcin Moczulski, Junhyuk Oh, Neal Wu, Mohammad Norouzi,
and Honglak Lee. Contingency-aware exploration in reinforcement learning. arXiv preprint
arXiv:1811.01483, 2018.

Sudeep Dasari, Oier Mees, Sebastian Zhao, Mohan Kumar Srirama, and Sergey Levine. The ingre-
dients for robotic diffusion transformers. arXiv preprint arXiv:2410.10088, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171-4186, 2019.

Perry Dong, Qiyang Li, Dorsa Sadigh, and Chelsea Finn. Expo: Stable reinforcement learning with
expressive policies. arXiv preprint arXiv:2507.07986, 2025a.

Perry Dong, Suvir Mirchandani, Dorsa Sadigh, and Chelsea Finn. What matters for batch online
reinforcement learning in robotics? arXiv preprint arXiv:2505.08078, 2025b.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RI12: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Vincent Dumoulin, Daniel D Johnson, Pablo Samuel Castro, Hugo Larochelle, and Yann Dauphin.
A density estimation perspective on learning from pairwise human preferences. arXiv preprint
arXiv:2311.14115, 2023.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a
new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126—-1135. PMLR, 2017.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. Advances
in neural information processing systems, 31, 2018.

Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity of
interactive decision making. arXiv preprint arXiv:2112.13487, 2021.

Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, and Sergey Levine. Offline rl policies should be trained
to be adaptive. In International Conference on Machine Learning, pp. 7513-7530. PMLR, 2022.

Jiayuan Gu, Sean Kirmani, Paul Wohlhart, Yao Lu, Montserrat Gonzalez Arenas, Kanishka Rao,
Wenhao Yu, Chuyuan Fu, Keerthana Gopalakrishnan, Zhuo Xu, et al. Rt-trajectory: Robotic task
generalization via hindsight trajectory sketches. arXiv preprint arXiv:2311.01977, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025a.

11

Under review as a conference paper at ICLR 2026

Yanjiang Guo, Jianke Zhang, Xiaoyu Chen, Xiang Ji, Yen-Jen Wang, Yucheng Hu, and Jianyu Chen.
Improving vision-language-action model with online reinforcement learning. arXiv preprint
arXiv:2501.16664, 2025b.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit g-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Longxiang He, Li Shen, Junbo Tan, and Xueqian Wang. Aligniql: Policy alignment in implicit
g-learning through constrained optimization. arXiv preprint arXiv:2405.18187, 2024.

Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W Bradley Knox, and
Dorsa Sadigh. Contrastive prefence learning: Learning from human feedback without rl. arXiv
preprint arXiv:2310.13639, 2023.

Mikael Henaff, Roberta Raileanu, Mingqi Jiang, and Tim Rocktédschel. Exploration via elliptical
episodic bonuses. Advances in Neural Information Processing Systems, 35:37631-37646, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Hao Hu, Yiqin Yang, Jianing Ye, Ziqing Mai, and Chongjie Zhang. Unsupervised behavior extrac-
tion via random intent priors. Advances in Neural Information Processing Systems, 36:51491—
51514, 2023.

Jiaheng Hu, Rose Hendrix, Ali Farhadi, Aniruddha Kembhavi, Roberto Martin-Martin, Peter Stone,
Kuo-Hao Zeng, and Kiana Ehsani. Flare: Achieving masterful and adaptive robot policies
with large-scale reinforcement learning fine-tuning. In 2025 IEEE International Conference on
Robotics and Automation (ICRA), pp. 3617-3624. IEEE, 2025.

David Janz, Shuai Liu, Alex Ayoub, and Csaba Szepesvari. Exploration via linearly perturbed loss
minimisation. In International Conference on Artificial Intelligence and Statistics, pp. 721-729.
PMLR, 2024.

Tobias Jiilg, Wolfram Burgard, and Florian Walter. Refined policy distillation: From vla generalists
to rl experts. arXiv preprint arXiv:2503.05833, 2025.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty El-
lis, et al. Droid: A large-scale in-the-wild robot manipulation dataset. arXiv preprint
arXiv:2403.12945, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
mizing speed and success. arXiv preprint arXiv:2502.19645, 2025.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit g-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Anikait Singh, Frederik Ebert, Mitsuhiko Nakamoto, Yanlai Yang, Chelsea Finn, and
Sergey Levine. Pre-training for robots: Offline 1l enables learning new tasks from a handful of
trials. arXiv preprint arXiv:2210.05178, 2022.

Branislav Kveton, Manzil Zaheer, Csaba Szepesvari, Lihong Li, Mohammad Ghavamzadeh, and
Craig Boutilier. Randomized exploration in generalized linear bandits. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 2066-2076. PMLR, 2020.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, Colton Bishop, Victor
Carbune, and Abhinav Rastogi. Rlaif: Scaling reinforcement learning from human feedback with
ai feedback. arXiv preprint arXiv:2309.00267, 2023.

12

Under review as a conference paper at ICLR 2026

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified frame-
work for ensemble learning in deep reinforcement learning. In International Conference on Ma-
chine Learning, pp. 6131-6141. PMLR, 2021.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic g-ensemble. In Conference on Robot
Learning, pp. 1702-1712. PMLR, 2022.

Qiyang Li, Jason Zhang, Dibya Ghosh, Amy Zhang, and Sergey Levine. Accelerating exploration
with unlabeled prior data. Advances in Neural Information Processing Systems, 36:67434—-67458,
2023.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information
Processing Systems, 36:44776-44791, 2023.

Jijia Liu, Feng Gao, Bingwen Wei, Xinlei Chen, Qingmin Liao, Yi Wu, Chao Yu, and Yu Wang.
What can rl bring to vla generalization? an empirical study. arXiv preprint arXiv:2505.19789,
2025.

Guanxing Lu, Wenkai Guo, Chubin Zhang, Yuheng Zhou, Haonan Jiang, Zifeng Gao, Yansong
Tang, and Ziwei Wang. Vla-rl: Towards masterful and general robotic manipulation with scalable
reinforcement learning. arXiv preprint arXiv:2505.18719, 2025.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martin-Martin. What matters in learning from offline
human demonstrations for robot manipulation. arXiv preprint arXiv:2108.03298, 2021.

Max Sobol Mark, Tian Gao, Georgia Gabriela Sampaio, Mohan Kumar Srirama, Archit Sharma,
Chelsea Finn, and Aviral Kumar. Policy agnostic rl: Offline rl and online rl fine-tuning of any
class and backbone. arXiv preprint arXiv:2412.06685, 2024.

Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al. Nash
learning from human feedback. arXiv preprint arXiv:2312.00886, 2023.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36:62244—-62269, 2023.

Mitsuhiko Nakamoto, Oier Mees, Aviral Kumar, and Sergey Levine. Steering your generalists:
Improving robotic foundation models via value guidance. arXiv preprint arXiv:2410.13816, 2024.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016a.

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via random-
ized value functions. In International Conference on Machine Learning, pp. 2377-2386. PMLR,
2016b.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. Advances in neural information processing systems, 31, 2018.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730-27744, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728-53741, 2023.

13

Under review as a conference paper at ICLR 2026

Rouhollah Rahmatizadeh, Pooya Abolghasemi, Ladislau B616ni, and Sergey Levine. Vision-based
multi-task manipulation for inexpensive robots using end-to-end learning from demonstration. In
2018 IEEE international conference on robotics and automation (ICRA), pp. 3758-3765. IEEE,
2018.

Nived Rajaraman, Lin Yang, Jiantao Jiao, and Kannan Ramchandran. Toward the fundamental limits
of imitation learning. Advances in Neural Information Processing Systems, 33:2914-2924, 2020.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Chris-
tian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
language processing: Benchmarks, baselines, and building blocks for natural language policy
optimization. arXiv preprint arXiv:2210.01241, 2022.

Allen Z Ren, Justin Lidard, Lars L. Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majum-
dar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimiza-
tion. arXiv preprint arXiv:2409.00588, 2024.

Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with general
preferences. arXiv preprint arXiv:2404.03715, 2024.

Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. Advances
in neural information processing systems, 32, 2019.

Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. Mathematics of
Operations Research, 39(4):1221-1243, 2014.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on
thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1-96, 2018.

Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning k£ modes with one stone. Advances in neural information processing sys-
tems, 35:22955-22968, 2022.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Pranav Shyam, Wojciech Jaskowski, and Faustino Gomez. Model-based active exploration. In
International conference on machine learning, pp. 5779-5788. PMLR, 2019.

Anand Siththaranjan, Cassidy Laidlaw, and Dylan Hadfield-Menell. Distributional preference learn-
ing: Understanding and accounting for hidden context in rlhf. arXiv preprint arXiv:2312.08358,
2023.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-

ing, pp. 2256-2265. pmlr, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Ajay Sridhar, Dhruv Shah, Catherine Glossop, and Sergey Levine. Nomad: Goal masked diffusion
policies for navigation and exploration. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pp. 63-70. IEEE, 2024.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Simon Stepputtis, Joseph Campbell, Mariano Phielipp, Stefan Lee, Chitta Baral, and Heni
Ben Amor. Language-conditioned imitation learning for robot manipulation tasks. Advances
in Neural Information Processing Systems, 33:13139-13150, 2020.

14

Under review as a conference paper at ICLR 2026

Gokul Swamy, Christoph Dann, Rahul Kidambi, Zhiwei Steven Wu, and Alekh Agarwal. A
minimaximalist approach to reinforcement learning from human feedback. arXiv preprint
arXiv:2401.04056, 2024.

Yunhao Tang, Zhaohan Daniel Guo, Zeyu Zheng, Daniele Calandriello, Rémi Munos, Mark Row-
land, Pierre Harvey Richemond, Michal Valko, Bernardo Avila Pires, and Bilal Piot. Gen-
eralized preference optimization: A unified approach to offline alignment. arXiv preprint
arXiv:2402.05749, 2024.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285-294, 1933.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 34556-34583. PMLR, 2023.

Andrew Wagenmaker, Zhiyuan Zhou, and Sergey Levine. Behavioral exploration: Learning to ex-
plore via in-context adaptation. In Forty-second International Conference on Machine Learning.

Andrew Wagenmaker, Mitsuhiko Nakamoto, Yunchu Zhang, Seohong Park, Waleed Yagoub,
Anusha Nagabandi, Abhishek Gupta, and Sergey Levine. Steering your diffusion policy with
latent space reinforcement learning. arXiv preprint arXiv:2506.15799, 2025.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

Max Wilcoxson, Qiyang Li, Kevin Frans, and Sergey Levine. Leveraging skills from unlabeled prior
data for efficient online exploration. arXiv preprint arXiv:2410.18076, 2024.

Charles Xu, Qiyang Li, Jianlan Luo, and Sergey Levine. Rldg: Robotic generalist policy distillation
via reinforcement learning. arXiv preprint arXiv:2412.09858, 2024.

Yueqin Yin, Zhendong Wang, Yi Gu, Hai Huang, Weizhu Chen, and Mingyuan Zhou. Relative
preference optimization: Enhancing 1lm alignment through contrasting responses across identical
and diverse prompts. arXiv preprint arXiv:2402.10958, 2024.

Xiu Yuan, Tongzhou Mu, Stone Tao, Yunhao Fang, Mengke Zhang, and Hao Su. Policy decorator:
Model-agnostic online refinement for large policy model. arXiv preprint arXiv:2412.13630, 2024.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
policy: Generalizable visuomotor policy learning via simple 3d representations. arXiv preprint
arXiv:2403.03954, 2024.

Haichao Zhang, We Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforce-
ment learning. arXiv preprint arXiv:2302.00935, 2023.

15

Under review as a conference paper at ICLR 2026

Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg, and Pieter Abbeel.
Deep imitation learning for complex manipulation tasks from virtual reality teleoperation. In
2018 IEEE international conference on robotics and automation (ICRA), pp. 5628-5635. IEEE,
2018.

Zijian Zhang, Kaiyuan Zheng, Zhaorun Chen, Joel Jang, Yi Li, Siwei Han, Chaoqi Wang, Mingyu
Ding, Dieter Fox, and Huaxiu Yao. Grape: Generalizing robot policy via preference alignment.
arXiv preprint arXiv:2411.19309, 2024.

Tony Z Zhao, Jonathan Tompson, Danny Driess, Pete Florence, Kamyar Ghasemipour, Chelsea
Finn, and Ayzaan Wahid. Aloha unleashed: A simple recipe for robot dexterity. arXiv preprint
arXiv:2410.13126, 2024.

Han Zheng, Xufang Luo, Pengfei Wei, Xuan Song, Dongsheng Li, and Jing Jiang. Adaptive policy
learning for offline-to-online reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 11372-11380, 2023.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann,
and Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-
learning. arXiv preprint arXiv:1910.08348, 2019.

16

Under review as a conference paper at ICLR 2026

A PROOFS

Some algebra shows that in the tabular setting, under the uniform prior, we have

Th(s,a)+1
7P a | s) = oA 1h(s) >0
h unif(A4) o.w.

A.1 BC PoLicYy FAILS TO COVER ACTIONS

Proposition 5 (Full version of Proposmon R). Fix any e € (0,1/8]. Then there exlst some MDPs
MY, M? and demonstrator policy ©° such that, if M € {MY, M2}, unless T > W’ we have that,
with probability at least 1/2:
T (@) — e >max T (r) for = {m:m(a]s)=0 ifﬁf(a | s) =0,Vs,a,h}.
well
Furthermore,

min max EM' 7 [maxJM (m) — JMi(%)] >
7 ie{1,2}

DO =

Proof. Let M! and M? denote multi-armed bandits with 3 arms and reward functions 7! and r?:
r(a1) = 0,7 (as) = 1,7 (az) = 0
r2(a1) = 0,7%(as) = 0,7%(a3) = 1.
Let 77(ay) = 1 — 4e, 7 (as) = 2¢, 7 (a3) = 2e.
By construction of 77, if T'(az) = 0 then we will have 77 (az) = 0, and if T'(a3) = 0 we will have
77 (as) = 0. By the definition of both M and M2, we have
PM[T(az) = 0,T(a3) = 0] = (1 — 4)7.

As we have assumed that 7' < ﬁ and € € (0,1/8], some calculation shows that we can lower
bound this as 1/2. Note that for both M* and M2, we have 7 (7”) = 2¢, while for policies 7 that

only play a;, we have 7 (77) = 0. This proves the first part of the result.

For the second part, note that the optimal policy on M! plays only as and has expected reward of
1, while the optimal policy on M? plays only as and has expected reward of 1. Let 7 denote an
estimate of the optimal policy and EM' 7" [] the expectation induced by playing the policy 7° from
the first part on instance M". Then:
min max M A [maX M (m) — JM (7)] = min max EM' A [1—7(a14i)]-
7 ie{1,2} 7 ie{1,2}

Note that 1 — 7(ag) = @(a1) + 7(as) > 7(as). Thus we can lower bound the above as

> min max{EM 7 [#(a3)], EMF (1 — 7(a3)]}

> min J (BN [7(ag)] + EM 1 - 7(a3)])
> ¢ — 5 min [EA 7 f(ag)] — BACF i (as)]|.

We can bound
EM (7 (a3)] — MO [7(as)]| < TV(EM A PR,

Since M! and M? only differ on ap and a3, and since 7°(az) = 7”(az) = 0, we have
TV(PM' 7 pM*F) = 0. Thus, we conclude that
i i 1
]EM 78 M M~ > 2
m;nlg{l?g} [max 7 (m) = T ()] 2 5

This proves the second part of the result.

17

Under review as a conference paper at ICLR 2026

A.2 UNIFORM NOISE FAILS

Proof of Proposition[3] Construction. Let M be the MDP with state space {S1,..., Sk, 1,82},
actions {ay, as}, horizon H > 2 with initial state distribution:

Po(s1)=1/2, Py(51)=2"2+27F PRGE)=2""1i>2
transition function, for all h € [H|:

Pyp(si] 8i,a) = L,Va € A, Py(s1]s1,a1) =1,
Py(s2 | s1,a2) =1, Pp(sa] s2,a) =1,Va € A,

and reward that is 0 everywhere except
rl(g’hal) :TH(817G1) = 17 r1(§i7a2) = 1_2A7

for some A > 0 to be specified. We consider 7 defined as
~ ~ 1
oy | &) = m) (a2 | 5:) = 5. mj(aa [1) = 1.

H2SlogT

Lete := T

+ &, and set A + 2e.

Upper bound on a. Note that J(7”) = 1 — 1A, and that the value of the optimal policy 7* is
J(m*) = max, J(m) = 1. Let 7 denote the policy that, on all 5; plays 7*, and on other states
plays 7* with probability 1 — «, and otherwise plays unif(.4). Note then that, regardless of the value
of 7%, we have that 7 (7®) > J (7). Thus,

J () = E[T (7)) = T (x%) - T (7°)
If we are in s; at h = 2, the only way we can receive any reward on the episode is if we take action
a1 for the last H — 1 steps, and we then receive a reward of 1. Under 7%¢, we take a; at each step
with probability 1 — o + «/A, so our probability of getting a reward of 1 is (1 — a + o/A)H 1,

Note that in contrast 7 will always play a; and receive a reward of 1 in this situation. If we are in
s; at h = 2 for any 4, then 78 will incur a loss of A more than 7. Thus, we can lower bound

~ 1 1
T = TE) > —2a+ L - (- at o/
By assumption we have that A = e. Thus, if we want 7 (77) — E[J (7"*)] < €, we need

(1= —-a+a/A)f71) <2

N |

Rearranging this, we have

l—4e<(l-a+a/A)7! = log (1 — 4¢) <log(l — a+ a/A).

H-1

From the Taylor decomposition of log(1 — x), we see that log(1 — o + a/A) < —(1 — 1/A)c.
Furthermore, we can lower bound

log(1 — 4e) > —8e
as long as ¢ < 1/2. Altogether, then, we have

—8e¢ 8e

1< (1-1/A)a = aS(H—l)(l—l/A) = a <32

where the last inequality follows since H > 2, A = 2.

18

Under review as a conference paper at ICLR 2026

Upper bound on ~. Letir := argmax, {27~ | 2771 < 1/T}, so that 1/2T < Py(3:,)
1/T, and note that such an §;,. exists by construction. Let £ be the event £ := {T1(5;,)
T (Siy,az) = 1}. We have

PE] = P11 (Sir,a2) = 1| T1(8iy) = 1P[T1(8i,) = 1]

A

1 _ - _
= 5 . TPQ(SZT)(l - PO(SiT))T !
1 1 1
=T — . (1-=)"1!
2 2T T
1
> —.
~ 4e

Note that on the event &£, we have %f (a1] Sip) =0, but wf (a1] Siy) = 1/2. Thus,
F%ay | 5ip) = /A < 32¢/A = 64¢/A -7 (ay | 5ip)
where we have used the bound on « shown above. Thus, on &, we will only have that 7% is a

~-sampler for v < 64¢/A. Since £ occurs with probability at least 1/4e, it follows that if we want to
guarantee 7% is a y-sampler with probability at least 1 — ¢ for § < 1/4e, we must have v < 64¢/A.

Note as well that, since 7, (as | 3;,,) = 1, any policy in the support of 7 will be suboptimal by a
factor of at least Py(S;,.) - 2A > A/T. O

A.3 ANALYSIS OF POSTERIOR POLICY

Throughout this section we denote

Th(s,a Th(s,a)+M/A
(1-a) 55 +a- BEEtSE Tu(s) >0

Thlals) = {unif(A) Th(s) =0

for some « € [0, 1].

We also denote w] (s,a) := P™[s;, = s,an, = a]. Qf(s,a) := E"[Zh,zhrh/(sh/,ah/) | sp, =
s,ap = a] denotes the standard Q-function. J(m;r) denotes the expected return of policy 7 for
reward 7.

Lemma 1. Aslong as § < 0.9 and A\ > A, we have

B
~ . m(a]s) 1
> o _hATTS) 2 >1-—90.
Plﬂh(aS)_a mln{64logSH/§,QA},VGE/LSESWE[H} Z 0

Proof. Consider some (s, h). By Bernstein’s inequality, if 7}, (s) > 0, we have that with probability
atleast 1 — 6,

Ti5,0) o oy) \/27r,€(a |s)log1/s 2log1/s W

Th(s) Th(s) 3Th(s) '

From some algebra, we see that as long as Tj,(s) > 22 }f;i ‘1 S/)‘S, we have that Tj’i}ffg) > %wf (a| s).
ﬂ'h & 3
By the definition of 7, under the good event of (@) we can then lower bound
«a 1,8 32log1/8
_ e 2™ h(als) Th(s) > “5 752
Futa)2 { TR A7) Th0) 2 S
IO O.W.
h
a-32logl/8 1. B 32log1/é
321og 1/6+ AP (als) amp(als) Ni(s) 2 2 (als)
= a)\/A~7r5 (a]s) oW

32log 1/6+\-) (als)

@ a-7mh(a)s)
N 3210g1/6+)\~775(a |)

B
) m(a]s) 1
> - ZhA\PVP)
=« mm{64log1/5’2)\}

19

Under review as a conference paper at ICLR 2026

where (a) follows as long as 6 < 0.9 and A > A. In the case when T},(s) = 0 we have 7, (a | s) =
1/A > 1/, so this lower bound still holds. Taking a union bound over arms proves the result. [

Lemma 2. As long as A > 4log(HT), we have

HQS'logT+ H2S)\

E[J7) - T(@)] < (1+aH)- T “ T

Proof. By the Performance-Difference Lemma we have:

H
TE) = T@ =3 3wl (5) (Bt (o [QR (5. 0)] — Ba, (4 [QF (5,0)])

h=1seS
H L, -
<SS Y0l) B QR (5 @)~ Banr 0 [Q(5,0)] [)
h=1seS
For (s, h) with Ny, (s) > 0, we have
Bt (o) Q7 (5:0)] = B, () [QF (5, 0)]| < ZAH 5) =~ Fnla | s)],

where we have used that Q7" (s, a) € [0, H]. Then, using the definition of 7 and 7 we can bound
this as

T (s, a) Th(s a) +)\/A
=2 MG T T e+ ‘
a\H | ATy(s,a) — Th(s)

- ZA A ’ T0(s)(T(s) + V)

< aAH AT)(s,a) + Th(s)

T A Th(8)(Th(s) + N
200 H

- Th(s) + A

Since an%ﬁ(s) Q7 (s,a)] — Eqny(s) [Q7 (s,a)] = 0 by construction when T}, (s) = 0, we then have
h

20\H
©<y Tl ﬁ

h=1s€eS

Let £ denote the good event from Lemma I with 6 = 2. Then as long as A > 4log(HT) we can
bound the above as

i 2y 20
< Z Z (s) 7)11{5} +2H? - T{&°)
h=1s€S
ul da\H
< — T 4 9oH?.T{&°L.
<SSl) ey 1)
Let 7 denote the reward function:
_ A
rn(s,a) i = —————
n(s,a) wi’ (s) - T+ A
and note that 7 € [0, 1], and
4o \H ~
ZZ’U) ~a—:4aH-j(7rﬁ;?j.
h=1seS (8) T + A

20

Under review as a conference paper at ICLR 2026

By Theorem 4.4 of [Rajaraman et al.|(2020), we haveﬂ

H?SlogT
BTG M) S T(r%57) + T

H
T ot ST
= -

h=1s€S wi’(s) - T+ A T

HSX n H2SlogT
T T '

Noting that E[2H? - 1{£¢}] < 2H?§ < % completes the proof. O

<

Lemma 3. With probability at least 1 — 6, for all (s, h), we have
1 1
Th(s) + A > 510}:[3 (s) - T+ 5)\

as long as A > 4log %

Proof. Consider some (s, h) and note that E[T}(s)/T] = wgﬂ (s). By Bernstein’s inequality, we
have with probability 1 — §/SH:

SH 2 SH

Th(s)zwgﬁ(s)-T—\/mug (s)-T-log — 5 —glogT.

‘We would then like to show that

H 2 H 1
wZB(s)-T—\/Qw}{ () T log 28— 210g 5H L3 s L™ (s) -7 4)
5 3°°7% 2
1 s 5 SH 2 SH
T . -\ > 77 . . - —
= Sup (s) T+2)_\/2wh (s)-T-log 5 +31 5

As we have assumed A\ > 4log STH, it suffices to show

1
§wh ()-T +log S;I > \/ngﬁ(s)~T~logS’f.

However, this is true by the AM-GM inequality. A union bound proves the result. O

Lemma 4 (Reversed version of Lemma A.8 of Rajaraman et al.|(2020)). Adopting the notation from
Rajaraman et al.|(2020), we have

SHlog N
N

Sor E€ the event that within a trajectory, the policy only visits states for which Ty (s) > 0.

E[Prﬂ.ﬁrst [SH S

Proof. Let &), denote the event that the state s is visited at step h and Ty, (s) = 0, and &), :=
Uses&s,n. Then, by simple set inclusions, we have:

e= U Uew= U U (enn N i)
he[H] s€S s€S h'<h
By a union bound it follows that

E[Pr st [€ Z > EPrane[Enn () .

]s€S h'<h

'"Note that Theorem 4.4 of Rajaraman et al.|(2020) shows an inequality in the opposite direction of what we
show here: they bound 7 (7°;7) — E[J (7";)] instead of E[7 (7°;7)] — J (=#; 7). However, we see that the
only place in their proof where their argument relied on this ordering is in Lemma A. 8 We show in Lemma 4]
that a reverse version of their Lemma A.8 holds, allowing us to instead bound E[7 (7%;7)] — J (7?; 7).

21

Under review as a conference paper at ICLR 2026

Now note that

Prssce [Ean O (1) 5] = Prose[Ean | (1) EFPranese] [&)

h'<h h'<h h'<h
=Prooet[€an | () EnlPran (€51 | () ElProseal [&
h'<h h'<h—1 h'/<h—1

= Prﬂfirst [gs,h | m gh’ H Prﬂ-fnst Sh’ ﬂ gh//

h'<h h'<h h'" <h’
If the event [,,_;, & holds, then up to step h no states are encountered for which T}, (s) = 0.

Thus, on such states, 7't and 7°r°~frst will behave identically. It follows that E[Pr st [Es 1, |
Mpr<n Eirll = E[Prrore— hm[s | (p<p El]- By a similar argument, we have Pt ore—siret [Ef |
Mnircn Eir] = Prosest (€5 | Ny cpy Eiv] for each ' < h. Thus,

Prﬂ.f‘irst s,h 1 n Eh/ = Prﬂorcfﬁrst s,h ﬂ E}‘H
h'<h h'<h
It follows that

E[Pr et [€ Z D EPrroc-m[Een N () ERNS Y Y E[Prrorc-nm [Ex]].

H]seS h'<h he[H] s€S
From here the proof follows identically to the proof of Lemma A.8 of Rajaraman et al.[(2020). [

Proof of Theorem[l] Set A = max{A,4log(HT)} and o = m. We have
~ ~ ~ . H?SlogT H?SlogT H?S\
(%) ~ BT (7)) + BT 7)) - BT ()] § T8 4+ (1 4+ ab) - 8L g o I

where we bound 7 (7%) — E[J(77)] by Theorem 4.4 of Rajaraman et al. (2020) and E[J (77)] —

E[J(7)] by Lemmasmce A > 4log(HT). By our choice of a = W, we can
bound all of this as

< H?SlogT '

~ T
This proves the suboptimality guarantee. To show that 7 is a y-sampler, we applying Lemma[T|using
our values of \ and « O

A.4 OPTIMALITY OF POSTERIOR SAMPLING

Let M denote a multi-armed bandit with A actions where (a;) = 1 and r(a;) = 0 for i > 1. Let
7P denote the policy defined as

l—-a a=1
i) =4 a a=1
0 0.W.

for i > 1 and some value we will set, and 771(1) = 1. We let M? = (M, 7) the instance-
demonstrator pair, E*[-] the expectation on this instance, P* the distribution on this instance, and
PoT = @I Pt
Lemma 5. Consider the instance constructed above. Then we have that, for j # i:

PRGE) >y -] <2-PIR@E) >~y -a]+T-a.

Proof. This follows from Lemma A.11 of [Foster et al.[(2021)), which immediately gives that:
P{7(i) >v-a] <2-PI[R(i) > v o] + DE(P"T,PIT),

where Dy (-,) denotes the Hellinger distance. Since the squared Hellinger distance is subadditive
we have

D (PHT 3Ty < T . DE (P, PY).

By elementary calculations we see that D (P?,P7) = «, which proves the result. O

22

Under review as a conference paper at ICLR 2026

Lemma 6 (Full version of Theorem . Let 7 be a y-sampler of ™ for each M?,i € [A], and some
d € (0,1/4), and assume that

J(@*) BT <€ Vi1
for some & > 0. Then if T' < i, it must be the case that

§
< ——.
7_4A04

ifa= 4T, we have

logT

In particular, setting £ =

y<c-

Proof. Our goal is to find the maximum value of -y such that our constraint on the optimality of 7 is
met, for each M*. In particular, this can be upper bounded as

maxy st P{#(a) >~ 7°(a),Ya € A}] > 10, J(x») —E T @) <& Vi>1. (6)
oy

Note that for M?,i > 1, the event {7(a) > 7 - 77(a),Va € A} is a subset of the event {7 () >
~ - a}. This allows us to bound (6) as

maxy st PR() >v-a] > 16, J(@?) BT (7)) <€ Vi>1. (7)

™Y

By Lemma[5] we have that for each i > 1,
PR@) >y o] <2-PUR() 27] + T -0

Furthermore, on M! we have J (7?!) — E}[7 ()] = E'[>,., 7(i)]. Given this, we can upper
bound (7) as
1

maxy st PUR()>~y-a]>= - (1-6-T-a),Vi>1, El[z (1)) <&. (8)

el 2 i>1
By Markov’s inequality, we have

~ E!'[7(i
Pl[ﬂ'(i) 2 - Oé} S [T((Z)]
7 ‘a
Furthermore, since we have assumed § < 1/4and T < -, wehave 3 - (1 -6 —T-«a) > 1. We
can therefore bound (8)) as
s 1
maxy st EY7()] > = ya,Vi > 1, E! [Z (1)) <¢&.)
7y 4
i>1
However, we see then that we immediately have that
£
< ——.
7= 1 Aa

This proves the result. O

B APPROXIMATE POSTERIOR
Let P(- | p) denote the distribution A(u,X), where we assume g is unknown and X is known.

Assume that we have samples © = {z1,..., 27} ~ P(- |). Let Qprior = N (0, Ag) denote the
prior on z. Throughout this section we let =¢ denote equality in distribution.

Lemma 7. Under Qprior, we have that the posterior Qpost on [is:

onst(' | :D) (postZ tha post) ,

for Al =Agt+T 570

23

Under review as a conference paper at ICLR 2026

Proof. Dropping terms that do not depend on u, we have

(/D | U) Prior(u)
9)

P(
T
X exp < %Z (20— p) TS (@ — M)) - exp <—;NTAON>

t=1

onat 1 | ;D)

1
O<exp< ST S - u T Qo+ 127 Z%)
t=1

—_

_ 1
= exp <_2< - Apostv)TApolst(M — Apostv) + 2UTApostU>
forApost =A'+ T2 Landv =571 '23:1 Zs. O

Lemma 8 (General version of Proposition[d). Let
~_ . ~\Ty—1 ~ T A1 ~
p=argmind (n—3)" S (n—F) + (u— 1) A (n—7),
I —
for T, = x4 +wy, wy ~ N(0,%), and i ~ Qprior- Then fi =% Qpost (- | D).

Proof. By computing the gradient of the objective, setting it equal to 0, and solving for u, we see
that

= (At + T2t < th+A0 u)

T T
=M+ TR)T Ty (A 4+ TR <21 Dy we+ A51ﬁ> .

t=1 t=1

Note that the first term in the above i 1s deterministic conditioned on ®, and the second term is mean
0 and has covariance (Ay ' + TX~1)~!. We see then that the mean and covariance of [i match the
mean the covariance of Qpost (- | ©) given in Lemma' 7| which proves the result. [

Lemma 9. Let T be distributed as
FAN@S) for i~ Qpon(-|D) and D~ P(|).
Then
?E:deH + 2w+ 2
for xri1 ~ P(- | p*), w ~ N(0,Apost), and z some random variable satisfying E[||z]3] <

O(1/T?).

Proof. Note that x; = p* + ny, for n, ~ N(0,X). We then have

T
/14* - Apostz_1 . th = ,U* - TApostE_lﬂ* - Apostz_1 . Znt~ (10)

t=1
Note that
TApostzil,U* = Apost(Tzi1 + Aal)ﬂ* - ApostAo_lﬂ* = :u* - ApostAalﬂ*-

Furthermore, we have that

postE Z e = 0 TApostE 1Apost) N(07 Apost - ApostAalApost)~

24

Under review as a conference paper at ICLR 2026

It follows that
=4 N (ApostAo_llf‘*y Apost - ApostAo_lApost) .

Note that by construction, APOStAalu* < O(1/T). Furthermore, ||ApostAalApost||2 = 0(1/T?).
Thus,

M) = N (0, Aposs — O(1/T?)) + O%(1/T)

where here we let O%(1/T') denote some term X such that E[|| X[|3] < O(1/T). As a perturbation
of O(1/T?) to the covariance will result in a perturbation whose norm is bounded in expectation as
O(1/T), we have

(T =* N (0, Apost) + O*(1/T).
Let w ~ N(0, Apost) and n ~ N(0,). Then, by Lemmas 7 and [8}

T

ﬁ‘f'?? =1 Apostz_1 : th +w+n
t=1

=L 1+ N (0, Apost) +w + 1+ O (1/T)
=1 p* + 2w+ 1+ O4Y1/T)
=4 zpi1 4+ 2w+ O41/T)

for xpyq ~ P(- | p*). O

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 ROBOMIMIC EXPERIMENTS

For all Robomimic experiments, we run POSTBC as stated in Algorithm@]however, instead of com-
puting the full covariance of the posterior, we only compute the diagonal covariance. We instantiate
7% with a diffusion policy that uses an MLP architecture. For f;, we train an MLP to simply predict
the noised action directly in ©; (i.e. we do not use a diffusion model for f;), but use the same
architecture and dimensions for f; as the diffusion policies.

For each RL finetuning method, we sweep over the same hyperparameters for each pretrained policy
method (i.e. BC, o-Bc, POSTBC), and include results for the best one. For o-BC, we swept over
values of ¢ and included results for the best-performing one. With the exception of DSRL Square,
for every Robomimic experiment, we train 5 diffusion policies per pertraining method, and perform
a single RL finetuning run on it, so that each stated values is averaged over 5 seeds; For DSRL Square
we only average over 3 seeds. For each evaluation, we roll out the policy 200 times. For DPPO we
utilize the default hyperparameters as stated in Ren et al.|(2024), and utilize DDPM sampling. We
provide hyperparameters for the individual experiments below.

Table 3: Common DSRL hyperparameters for all experiments.

Hyperparameter Value
Learning rate 0.0003
Batch size 256
Activation Tanh
Target entropy 0
Target update rate (7) 0.005
Number of actor and critic layers 3
Number of critics 2
Number of environments 4

25

Under review as a conference paper at ICLR 2026

Table 4: DSRL hyperparameters for Robomimic experiments.

Hyperparameter Lift Can Square
Hidden size 2048 2048 2048
Gradient steps per update 20 (0-BcC), 10 (BC,POSTBC) 20 20
Noise critic update steps 10 10 10
Discount factor 0.99 0.99 0.999
Action magnitude 1.5 1.5 1.5
Initial steps 24000 24000 32000

Table 5: Hyperparameters for pretrained policies for Robomimic DSRL experiments.

Hyperparameter Lift Can Square
Dataset size (number trajectories) 5 10 40
Action chunk size 4 4 4
train denoising steps 100 20 100
inference denoising steps 8 8 8
Hidden size 512 1024 1024
Hidden layers 3 3 3
Training epochs 3000 3000 3000
Ensemble size (POSTBC) 10 10 10
Ensemble noise o (POSTBC) 0.1 0.5 0.5
Ensemble training epochs (PoSTBc) 3000 500 500
Posterior noise weight o (POSTBC) 3 1 1
Uniform noise o (o-BC) 0.1 0.05 0.05

Table 6: Common Best-of- N hyperparameters for all Robomimic experiments.

Hyperparameter Value
IQL learning rate 0.0003
IQL batch size 256
IQL 8 3
Activation Tanh
Target update rate 0.005
Q@ and V number of layers 2

Q@ and V layer size 256
Number of critics 2

N (Best-of-N samples) 32

Table 7: Best-of-N hyperparameters for Robomimic experiments.

Hyperparameter Lift Can Square
Total gradient steps 3000000 2000000 2000000
IQL 7 (1000 rollouts) 0.7 0.7 (BC, 0-BcC), 0.9 (PosTBC) 0.7

IQL 7 (2000 rollouts) 0.7 (BC, 0-BC), 0.9 (PosTBC) 0.7 0.7
Discount factor 0.99 0.999 0.999

26

Under review as a conference paper at ICLR 2026

Table 8: Hyperparameters for pretrained policies for Robomimic Best-of-/N experiments.

Hyperparameter Lift Can Square
Dataset size (number trajectories) 20 10 40
Action chunk size 1 4 4
train denoising steps 100 20 100
inference denoising steps 8 8 8
Hidden size 512 1024 1024
Hidden layers 3 3 3
Training epochs 3000 3000 3000
Ensemble size (POSTBC) 10 10 10
Ensemble noise o (POSTBC) 0.5 0.5 0.5
Ensemble training epochs (POSTBC) 500 500 500
Posterior noise weight oo (POSTBC) 2 1 1
Uniform noise o (o-BC) 0.1 0.05 0.05

Table 9: Hyperparameters for pretrained policies for Robomimic DPPO experiments.

Hyperparameter Lift Can Square
Dataset size (number trajectories) 5 50 30
Action chunk size 4 1 4
train denoising steps 100 20 100
Hidden size 512 1024 1024
Hidden layers 3 3 3
Training epochs 3000 3000 3000
Ensemble size (POSTBC) 10 10 10
Ensemble noise o (POSTBC) 0.1 0.5 0.5
Ensemble training epochs (POSTBC) 3000 500 500
Posterior noise weight o (POSTBC) 3 1 1
Uniform noise o (6-BC) 0.1 0.05 0.05

C.2 LIBERO EXPERIMENTS

For Libero, we utilize the transformer architecture from|Dasari et al.|(2024) for 7¢. We run POSTBC
as stated in Algorithm [2} but instead of approximating the posterior by adding noise to actions, we
instead used a bootstrap estimate, where we sample from © with replacement, and fit f, to the boot-
strapped samples (we note that this is another common strategy for uncertainty estimation in RL,
see e.g. Osband et al.|(2016a)). For f,, we utilize the same ResNet and tokenizer as 77, but simply
utilize a 3-layer MLP head on top of it—trained to predict the actions directly—rather than a full
diffusion transformer. For the Best-of-/V experiments, POSTBC utilizes a diagonal posterior covari-
ance estimate, while for the DSRL runs it is trained with the full matrix posterior covariance estimate.
We train on Libero-90 data from the first 3 scenes of Libero-90—KITCHEN-SCENE1, KITCHEN-
SCENE2, and KITCHEN-SCENE3—and use 25 trajectories from each task in each scene. For task
conditioning, we conditioning 7 on the BERT language embedding (Devlin et al., 2019) of the
corresponding text given for that task in the Libero dataset.

For each RL finetuning method, we sweep over the same hyperparameters for each pretrained policy
method (i.e. BC, o-BC, POSTBC), and include results for the best one. For o-BC, we swept over
values of ¢ and included results for the best-performing one. The DSRL experiments are averaged
over 3 different pretraining runs per method, and one DSRL run per pretrained run. The Best-of-IV
experiments are averaged over 2 different pretraining runs per method, and 2 Best-of-IV runs per
pretrained run. For each evaluation, we roll out the policy 100 times.

We provide hyperparameters for the individual experiments below.

27

Under review as a conference paper at ICLR 2026

Table 10: DSRL hyperparameters for all Libero experiments.

Hyperparameter Value
Learning rate 0.0003
Batch size 256
Activation Tanh
Target entropy 0
Target update rate (7) 0.005
Number of actor and critic layers 3
Layer size 1024
Number of critics 2
Number of environments 1
Gradient steps per update 20
Discount factor 0.99
Action magnitude 1.5
Initial episode rollouts 20

Table 11: Best-of-N hyperparameters for all Libero experiments.

Hyperparameter Value
IQL learning rate 0.0003
IQL batch size 256
IQL 8 3
Activation Tanh
Target update rate 0.005
@ and V number of layers 2

@ and V layer size 256
Number of critics 2

N (Best-of-N samples) 32
IQL gradient steps 50000
IQL 7 0.9
Discount factor 0.99

28

Under review as a conference paper at ICLR 2026

Table 12: Hyperparameters for DiT diffusion policy in Libero experiments.

Hyperparameter Value
Batch size 150
Learning rate 0.0003
Training steps 50000
LR scheduler cosine
Warmup steps 2000
Action chunk size 4
Train denoising steps 100
Inference denoising steps 8
Image encoder ResNet-18
Hidden size 256
Number of Heads 8
Number of Layers 4
Feedforward dimension 512
Token dimension 256
Ensemble size (POSTBC) 5
Ensemble training steps (PoSTBC) 25000
Ensemble layer size 512
Ensemble number of layers 3
Posterior noise weight (POSTBC) 2 (DSRL run), 4 (Best-of-N run)
Uniform noice ¢ (6-BC) 0.05

29

	Introduction
	Related Work
	Preliminaries
	Demonstrator Action Coverage via Posterior Sampling
	Demonstrator Action Coverage as a Prerequisite for Finetuning
	Behavioral Cloning Fails to Achieve Action Coverage
	Demonstrator's Posterior Policy Achieves Action Coverage

	Posterior Behavioral Cloning
	Posterior Behavioral Cloning

	Experiments
	Posterior BC Enables Efficient RL Finetuning

	Proofs
	BC Policy Fails to Cover Actions
	Uniform Noise Fails
	Analysis of Posterior Policy
	Optimality of Posterior Sampling

	Approximate Posterior
	Additional Experimental Details
	Robomimic Experiments
	Libero Experiments

