
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

POSTERIOR BEHAVIORAL CLONING: PRETRAINING
BC POLICIES FOR EFFICIENT RL FINETUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Standard practice across domains from robotics to language is to first pretrain a
policy on a large-scale demonstration dataset, and then finetune this policy, typ-
ically with reinforcement learning (RL), in order to improve performance on de-
ployment domains. This finetuning step has proved critical in achieving human or
super-human performance, yet while much attention has been given to developing
more effective finetuning algorithms, little attention has been given to ensuring the
pretrained policy is an effective initialization for RL finetuning. In this work we
seek to understand how the pretrained policy affects finetuning performance, and
how to pretrain policies in order to ensure they are effective initializations for fine-
tuning. We first show theoretically that, by training a policy to clone the demon-
strator’s posterior distribution given the demonstration dataset—rather than sim-
ply the demonstrations themselves—we can obtain a policy that ensures coverage
over the demonstrator’s actions—a minimal condition for effective finetuning—
without hurting the performance of the pretrained policy. Furthermore, we show
that standard behavioral cloning (BC) pretraining fails to achieve this without sig-
nificant tradeoffs in terms of sampling costs. Motivated by this, we then show
that this approach is practically implementable with modern generative policies
in robotic control domains, in particular diffusion policies, and leads to signifi-
cantly improved finetuning performance on realistic robotic control benchmarks,
as compared to standard behavioral cloning.

1 INTRODUCTION

Across domains—from language, to vision, to robotics—a common paradigm has emerged for train-
ing highly effective “policies”: collect a large set of demonstrations, “pretrain” a policy via behav-
ioral cloning (BC) to mimic these demonstrations, then “finetune” the pretrained policy on a deploy-
ment domain of interest. While pretraining can endow the policy with generally useful abilities, the
finetuning step has proved critical in obtaining effective performance, enabling human value align-
ment and reasoning capabilities in language domains (Ouyang et al., 2022; Bai et al., 2022a; Team
et al., 2025; Guo et al., 2025a), and improving task solving precision and generalization to unseen
tasks in robotic domains (Nakamoto et al., 2024; Chen et al., 2025; Kim et al., 2025; Wagenmaker
et al., 2025). In particular, reinforcement learning (RL)-based finetuning—where the pretrained pol-
icy is deployed in a setting of interest and its behavior updated based on the outcomes of these online
rollouts—is especially crucial in improving the performance of a pretrained policy.

Critical to achieving successful RL-based finetuning performance in many domains—particularly in
settings when policy deployment is costly and time-consuming, such as robotic control—is sample
efficiency; effectively modifying the behavior of the pretrained model using as few deployment roll-
outs as possible. While significant attention has been given to developing more efficient finetuning
algorithms, this ignores a primary ingredient in the RL finetuning process: the pretrained policy it-
self. Though generally accepted that a stronger pretrained policy is a better initialization for finetun-
ing (Guo et al., 2025a; Yue et al., 2025), it is not well understood how pretraining impacts finetuning
performance beyond this, and how we might pretrain policies to enable more efficient RL finetuning.

In this work we seek to understand the role of the pretrained policy in RL finetuning, and how we
might pretrain policies that (a) enable efficient RL finetuning, and (b) before finetuning, perform no
worse than the standard BC policy. We propose a novel pretraining approach—posterior behavioral

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Demonstration data BC policy RL finetuned policy

Demonstration data Posterior BC policy RL finetuned policy
B

C
 p

re
tra

in
in

g

+
R

L
fin

et
un

in
g

Po
st

er
io

r
B

C

pr
et

ra
in

in
g

+
R

L
fin

et
un

in
g

(a) (b) (c)

(a) (d) (e)

Figure 1: We consider the setting where we are given demonstration data for some tasks of interest,
(a). (b) Standard BC pretraining fits the behaviors in the demonstrations, leading to effective perfor-
mance in regions with high demonstration data density, yet poor performance in regions with low
data density. (c) This leads to ineffective RL finetuning, since rollouts from the BC policy provide
little meaningful reward signal in such low data density regions, which is typically necessary to en-
able effective improvement. (d) In contrast, we propose posterior behavioral cloning, which instead
of directly mimicking the demonstrations, trains a generative policy to fit the posterior distribution
of the demonstrator’s actions. This endows the pretrained policy with a wider distribution of ac-
tions in regions of low demonstrator data density, while in regions of high data density it reduces to
approximately the standard BC policy. (e) This wider action distribution allows for collection of di-
verse observations with more informative reward signal, allowing for more effective RL finetuning.

cloning—which, rather than fitting the empirical distribution of demonstrations as standard BC does,
instead fits the posterior distribution over the demonstrator’s behavior. This enables the pretrained
policy to take into account its potential uncertainty about the demonstrator’s behavior, and adjust the
entropy of its action distribution based on this uncertainty. In states where it is uncertain about the
demonstrator’s actions, posterior BC samples from a high-entropy distribution, allowing for a more
diverse set of actions that may enable further policy improvement, while in states where it is certain
about the demonstrator’s actions, it samples from a low-entropy distribution, simply mimicking what
it knows to be the (correct) demonstrator behavior (see Figure 1).

Theoretically, we show that posterior BC leads to provable improvements over standard BC in terms
of the potential for downstream RL performance. In particular, we focus on the ability of the pre-
trained policy to cover the demonstrator policy’s actions—whether it samples all actions the demon-
strator policy might sample—which, for finetuning approaches that rely on rolling out the pretrained
policy, is a prerequisite for ensuring finetuning can even match the performance of the demonstrator.
We show that standard BC can provably fail to cover the demonstrator’s distribution, while posterior
BC does cover the demonstrator’s distribution, incurs no suboptimality in the performance of the
pretrained policy as compared to the standard BC policy, and achieves a near-optimal sampling cost
out of all policy estimators which have suboptimality no more than the BC policy’s.

Inspired by this, we develop a practical approach to approximating the posterior of the demonstra-
tor in continuous action domains, and instantiate posterior BC with modern generative models—
diffusion models—on robotic control tasks. We demonstrate experimentally that posterior BC pre-
training can lead to significant performance gains in terms of the efficiency and effectiveness of
RL finetuning, as compared to running RL finetuning on a policy pretrained with standard BC, and
achieves these gains without decreasing the performance of the pretrained policy itself. We show
that this holds for a variety of finetuning algorithms—both policy-gradient-style algorithms, and al-
gorithms which explicitly refine or filter the distribution of the pretrained policy—enabling effective
finetuning performance across a variety of challenging robotic tasks.

2 RELATED WORK

BC and pretraining for downstream finetuning. BC training of expressive generative models
—where the model is trained to predict the next “action” of the demonstrator—forms the backbone
of pretraining for LLMs (Radford et al., 2018) and robotic control policies (Bojarski, 2016; Zhang
et al., 2018; Rahmatizadeh et al., 2018; Stepputtis et al., 2020; Shafiullah et al., 2022; Gu et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2023; Team et al., 2024; Zhao et al., 2024; Black et al., 2024; Kim et al., 2024). We focus in
particular on policies parameterized as diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2020), which have seen much attention in the robotics community (Chi et al.,
2023; Ankile et al., 2024a; Zhao et al., 2024; Ze et al., 2024; Sridhar et al., 2024; Dasari et al., 2024;
Team et al., 2024; Black et al., 2024; Bjorck et al., 2025). These works, however, simply pretrain
with standard BC, and do not consider how the pretraining may affect RL finetuning performance.

To the best of our knowledge, no existing work considers how to pretrain policies on reward-free data
with BC-like objectives to ensure they are an effective initialization for RL finetuning. In the RL lit-
erature, however, two lines of work bear some resemblance to ours. The offline-to-online RL setting
aims to train policies with RL on offline datasets that can then be improved with further online inter-
action (Lee et al., 2022; Ghosh et al., 2022; Kumar et al., 2022; Zhang et al., 2023; Uchendu et al.,
2023; Zheng et al., 2023; Ball et al., 2023; Nakamoto et al., 2023), and the meta-RL setting aims to
meta-learn a policy on some set of tasks which can then be quickly adapted to a new task (Wang et al.,
2016; Duan et al., 2016; Finn et al., 2017; 2018). While similar to our work in that these works also
aim to learn behaviors that can be efficiently improved online, the settings differ significantly in that
the offline- or meta-pretraining typically requires reward labels (rather than unlabeled demonstra-
tions) and are performed with RL (rather than BC)—in contrast, we study how BC-like pretraining
(as noted, the workhorse of most modern applications) can enable efficient online adaptation.

RL finetuning of pretrained policies. RL finetuning of pretrained policies is a critical step in both
language and robotic domains. In language domains, RL finetuning has proved crucial in aligning
LLMs to human values (Ziegler et al., 2019; Ouyang et al., 2022; Bai et al., 2022a; Ramamurthy
et al., 2022; Touvron et al., 2023), and enabling reasoning abilities (Shao et al., 2024; Team et al.,
2025; Guo et al., 2025a). A host of finetuning algorithms have been developed, both online (Bai
et al., 2022b; Bakker et al., 2022; Dumoulin et al., 2023; Lee et al., 2023; Munos et al., 2023; Swamy
et al., 2024; Chakraborty et al., 2024; Chang et al., 2024) and offline (Rafailov et al., 2023; Azar
et al., 2024; Rosset et al., 2024; Tang et al., 2024; Yin et al., 2024). In robotic and control domains,
RL finetuning methods include directly modifying the weights of the base pretrained policy (Zhang
et al., 2024; Xu et al., 2024; Mark et al., 2024; Ren et al., 2024; Hu et al., 2025; Guo et al., 2025b;
Lu et al., 2025; Chen et al., 2025; Liu et al., 2025), Best-of-N sampling-style approaches that filter
the output of the pretrained policy with a learned value function (Chen et al., 2022; Hansen-Estruch
et al., 2023; He et al., 2024; Nakamoto et al., 2024; Dong et al., 2025b), “steering” the pretrained
policy by altering its sampling process (Wagenmaker et al., 2025), and learning smaller residual
policies to augment the pretrained policy’s actions (Ankile et al., 2024b; Yuan et al., 2024; Jülg
et al., 2025; Dong et al., 2025a). Our work is tangential to this line of work: rather than improving
the finetuning algorithm, we aim to ensure the pretrained policy is amenable to RL finetuning.

Posterior sampling and exploration. Our proposed approach relies on modeling the posterior
distribution of the demonstrator’s actions. While this is, to the best of our knowledge, the first
example of applying posterior sampling to BC, posterior methods have a long history in RL, going
back to the work of Thompson (1933). This works spans applied (Osband et al., 2016a;b; 2018;
Zintgraf et al., 2019) and theoretical (Agrawal & Goyal, 2012; Russo & Van Roy, 2014; Russo et al.,
2018; Janz et al., 2024; Kveton et al., 2020; Russo, 2019) settings. More generally, our approach can
be seen as enabling BC-trained policies to explore more effectively. Exploration is a well-studied
problem in the RL community (Stadie et al., 2015; Bellemare et al., 2016; Burda et al., 2018; Choi
et al., 2018; Ecoffet et al., 2019; Shyam et al., 2019; Lee et al., 2021; Henaff et al., 2022), with
several works considering learning exploration strategies from offline data (Hu et al., 2023; Li et al.,
2023; Wilcoxson et al., 2024; Wagenmaker et al.). These works, however, either consider RL-based
pretraining (while we focus on BC) or do not consider the question of online finetuning.

3 PRELIMINARIES

Mathematical notation. Let ≲ denote inequality up to absolute constants,△X the simplex over X ,
and unif(X) the uniform distribution over X . I[·] denotes the indicator function, Eπ[·] the expecta-
tion under policy π and, unless otherwise noted, E[·] the expectation over the demonstrator dataset.

Markov decision processes. We consider decision-making in the context of episodic, fixed-horizon
Markov decision processes (MDPs). An MDPM is denoted by a tuple (S,A, {Ph}Hh=1, P0, r,H),
where S is the set of states,A the set of actions, Ph : S×A → △S the next-state distribution at step
h, P0 ∈ △S the initial state distribution, rh : S × A → △[0,1] the reward distribution, and H the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

horizon. Interaction withM proceeds in episodes of length H . At step 1, we sample a state s1 ∼ P0,
take an action a1 ∈ A, receive reward r1(s1, a1), and transition to state s2 ∼ P1(· | s1, a1). This
continues for H steps until the MDP resets. We let J (π) := Eπ[

∑H
h=1 rh(sh, ah)] denote the

expected reward for policy π over one episode. In general, our goal is to maximize J (π).
Behavioral cloning. We assume we are given some dataset D = {(st1, at1, . . . , stH , atH)}Tt=1 col-
lected by running a demonstrator policy πβ onM, so that (st1, a

t
1, . . . , s

t
H , atH) denotes a full tra-

jectory rollout of πβ onM, with ath ∼ πβ
h(· | sth). We assume that πβ is Markovian but otherwise

make no further assumptions on it (so in particular, πβ may be stochastic and suboptimal). Our
demonstrator dataset does not include reward labels—preventing standard offline RL approaches
from applying—but we assume that we have access to reward labels during online interactions.

Behavioral cloning (BC) attempts to fit a policy π̂β to match the action distribution of πβ using
D. Typically this is achieved via supervised learning, where π̂β is trained to predict a given s for
(s, a) ∈ D. In the tabular setting, which we consider in Section 4, the natural choice for π̂β simply
fits the empirical distribution of actions in D:

π̂β
h(a | s) :=

{
Th(s,a)
Th(s)

Th(s) > 0

unif(A) Th(s) = 0,
(1)

where Th(s, a) =
∑T

t=1 I{(sth, ath) = (s, a)} and Th(s) =
∑T

t=1 I{sth = s}. The following result
bounds the suboptimality of this estimator, and shows that it is optimal estimator, up to log factors.
Proposition 1 (Rajaraman et al. (2020)). If D contains T demonstrator trajectories, we have

J (πβ)− E[J (π̂β)] ≲ H2S log T
T .

Furthermore, for any estimator π̂, there exists some MDPM and demonstrator πβ such that

J (πβ)− E[J (π̂)] ≳ min
{
H, H2S

T

}
.

In other words, without additional reward information, we cannot in general hope to obtain a policy
from D that does better than (1), if our goal is to maximize the performance of the pretrained policy.

4 DEMONSTRATOR ACTION COVERAGE VIA POSTERIOR SAMPLING

In this section we seek to understand how pretraining affects the ability to further improve the down-
stream policy with RL finetuning, and how we might pretrain to enable downstream improvement.
For simplicity, here we assume that our MDP M is tabular, and let S and A denote the cardinal-
ities of the state and action spaces, respectively; we will show how our proposed approach can be
extended to more general settings in the following section.

4.1 DEMONSTRATOR ACTION COVERAGE AS A PREREQUISITE FOR FINETUNING

The performance of RL finetuning depends significantly on the RL algorithm applied. Rather than
limiting our results to a particular RL algorithm, we instead focus on what is often a prerequisite
for effective application of any such approach—demonstrating that the support of the pretrained
policy is sufficient to enable improvement. In particular, we consider the following definition for the
“effective” support of a policy, relative to the demonstrator policy πβ .
Definition 4.1 (γ-sampler). We say that policy π is a γ-sampler of πβ if, for all (s, h) ∈ S × [H]

and a ∈ A, we have that πβ
h(a | s) ≥ γ · πh(a | s).

The majority of RL finetuning approaches rely on rolling out the pretrained policy—which we de-
note as π̂pt—online, and using the collected observations to finetune its behavior. If our pretrained
policy is a γ-sampler of πβ , then this ensures that any action sampled by πβ will also be sampled
by π̂pt in these rollouts (with some probability). While this is not a sufficient condition for online
improvement, it is a necessary condition, in some cases, for performing as well as the demonstra-
tor πβ (as Proposition 2 demonstrates), and is therefore a necessary condition for improving over
πβ . Furthermore, the value of γ also has impact on the computational cost of RL finetuning. A
γ-sampler requires a factor of 1

γ more samples than πβ to ensure it samples some action in the sup-
port of πβ . For approaches such as Best-of-N sampling that rely on sampling many actions from

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the pretrained policy and then taking the best one, a large value of γ therefore ensures that we can
efficiently sample actions likely to be sampled by the demonstrator policy πβ , while if γ is small, it
may require taking a significant number of samples from π̂pt to ensure we cover the behavior of πβ ,
greatly increasing the computational cost due to this sampling.

In the following, we aim to understand how we can pretrain policies that are γ-samplers, and to
do this with large values of γ. Furthermore, we aim to achieve this without incurring significant
additional suboptimality as compared to π̂β—we would like to ensure that π̂pt is an effective initial-
ization for finetuning while still itself achieving effective online performance.

4.2 BEHAVIORAL CLONING FAILS TO ACHIEVE ACTION COVERAGE

We first consider standard BC, i.e. (1). The following result shows that the estimator in (1), despite
achieving the optimal suboptimality rate, can fail to achieve sufficient action coverage, and that this
fundamentally limits its ability to serve as an effective initialization for finetuning.

Proposition 2 (Informal). Fix any ϵ ∈ (0, 1/8]. Then there exists some MDPM and demonstrator
policy πβ such that, unless T ≥ 1

20ϵ , we have that, with probability at least 1/2:

J (πβ)− ϵ > maxπ∈Π̂ J (π) for Π̂ := {π : πh(a | s) = 0 if π̂β
h(a | s) = 0, ∀s, a, h}.

Furthermore, if we collect samples with π̂β onM we will not be able to identify an ϵ-optimal policy.

Proposition 2 shows that, unless we have a sufficiently large demonstrator dataset (T ≥ 1
20ϵ), half of

the time (i.e. half of the random draws of the demonstrator dataset) the policy returned by standard
BC will not contain a near-optimal policy in its support and, furthermore, that rolling out π̂β on
M will therefore not allow us to learn a near-optimal policy onM. In other words, some fraction
of the time standard BC produces a policy which will simply never play actions required to solve
the task at the level of the demonstrator policy, and any online improvement approach that relies
on rolling out the BC pretrained policy to collect observations will therefore fail to identify an ϵ-
optimal policy—online improvement is not possible with this pretrained policy. This implies that
pretraining a policy that matches the demonstrator’s empirical action distribution as represented in
D—the typical goal of behavioral cloning—is insufficient for downstream RL finetuning.

A straightforward solution to this is to simply add exploration noise to our pretrained policy—rather
than playing π̂β at every step, with some probability play a random action. While this will clearly ad-
dress the shortcoming of generative BC outlined above—every action will now be in the support—as
the following result shows, there is a fundamental tradeoff between the suboptimality of this policy
and the number of samples from the policy required to ensure we cover our demonstrator’s behavior.

Proposition 3. Fix T > 0, H ≥ 2, S ≥ ⌈log2 4T ⌉ + 2, ξ ≥ 0, define ϵ := H2S log T
T + ξ, and

assume ϵ ≤ 1
2 . Define the policy π̂u,α as π̂u,α

h (· | s) := (1−α) · π̂β
h(· | s)+α ·unif(A). Then there

exists some MDPM with S states, 2 actions, and horizon H where, in order to ensure that:

1. J (πβ)− E[J (π̂u,α)] ≤ ϵ,

2. π̂u,α is a γ-sampler of πβ with probability at least 1− δ, for δ ∈ (0, 1/4e),

we must have α ≤ 32ϵ and γ ≤ 64
A · ϵ. Furthermore, with probability at least 1/4e, we have

J (πβ)− 1
T · ϵ > maxπ∈Π̂ J (π) for Π̂ := {π : πh(a | s) = 0 if π̂β

h(a | s) = 0, ∀s, a, h}.

In order to achieve the H2S log T
T suboptimality rate achieved by standard BC, Proposition 3 then

shows that we must have γ ≲ 1
A ·

H2S log T
T or, in other words, to ensure we sample a particular

action from π̂u,α that is sampled by πβ , it will require sampling a factor of AT
H2S log T more samples

from π̂u,α than it would require from πβ . While this does enable approaches like Best-of-N to
improve the policy, in settings where T is large, this requires a significant number of samples from
the pretrained policy, greatly increasing the computational burden of such an approach. Furthermore,
Proposition 3 shows that this limitation is critical—if we seek to shortcut this exploration and set
α← 0, we will fail to match the performance of πβ on this instance completely.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.3 DEMONSTRATOR’S POSTERIOR POLICY ACHIEVES ACTION COVERAGE

Can we do better than BC or BC augmented with uniform noise? Here we show that a mixture of the
standard BC policy and the posterior on the demonstrator’s policy achieves a near optimal balance
between policy suboptimality and action coverage.

Definition 4.2 (Posterior Demonstrator Policy). Given prior distribution P β
prior ∈ △Π over demon-

strator policies, let P β
post(· | D) denote the posterior distribution given demonstration dataset D. We

then define the posterior demonstrator policy π̂post as π̂post
h (a | s) := Eπ∼Pβ

post(·|D)[πh(a | s)].

π̂post is therefore the expected policy of the demonstrator under prior P β
prior given observations D.

In practice, we require a slightly regularized version of π̂post, π̂post,λ, which is identical to π̂post if
HT ≲ eA, and otherwise adds a small amount of additional regularization (see Section A.3 for a
precise definition). We have the following.

Theorem 1. Let P β
prior be the uniform distribution over Markovian policies, and set π̂pt to

π̂pt
h (a | s) = (1− α) · π̂β

h(a | s) + α · π̂post,λ
h (a | s) (2)

for α = 1
max{A,H,log(HT)} . Then

J (πβ)− E[J (π̂pt)] ≲ H2S log T
T ,

and with probability at least 1− δ, for all (s, a, h),

π̂pt
h (a | s) ≳ 1

A+H+log(HT) ·min
{

πβ
h(a|s)

log(SH/δ) ,
1

A+log(HT)

}
.

Theorem 2. Fix any A > 1 and T > 1. Then there exists a family of MDPs {Mi}i∈[A] such that
eachMi has A actions and S = H = 1, and if any estimator π̂ satisfiesJMi

(πβ,i)−EMi

[J (π̂)] ≤
c · H2S log T

T for all i ∈ [A] and some constant c > 0, then for π̂ to be a γ-sampler of πβ,i on each
Mi with probability at least δ ∈ (0, 1/4], we must have γ ≤ c · log T

A .

Theorem 1 shows that our choice of π̂pt achieves the same suboptimality guarantee as π̂β—it per-
forms no worse that π̂β—and requires only a factor of≈ A+H more samples to ensure we sample a
particular action from πβ than πβ itself does for actions a such that πβ

h(a | s) ≲ 1/A (and otherwise
requires at most a factor of A(A +H) more). Furthermore, Theorem 2 shows that, to achieve this
optimal suboptimality guarantee, any estimator must take a factor of A more samples than πβ . In
other words, if we want a policy that preserves the optimality of π̂β while playing a diverse enough
distribution to enable further online improvement, mixing the posterior demonstrator policy with
the BC policy achieves the near-optimal tradeoff, and plays all actions taken by πβ with minimal
computational overhead and without incurring additional suboptimality over the BC policy.

5 POSTERIOR BEHAVIORAL CLONING

The previous section suggests a simple recipe to obtain a pretrained policy amenable to online im-
provement: compute the posterior demonstrator policy given the demonstration data, then mix the
posterior demonstrator policy with the generative BC policy. In this section we show how this can
be instantiated in continuous control settings using expressive generative policy classes.

To motivate our approach, consider the setting where:

πβ
h(· | s) = N (µh(s), σ

2
h(s) · I),

for some (unknown) µh(s) ∈ Rd and (known) σh(s) ∈ R. Assume we have observations D =

{a1, . . . , ak} ∼ πβ
h(· | s), and that we have a N (0, I) prior on µh(s). The following result, an

extension of Osband et al. (2018), shows that we can approximate samples from the posterior on
µh(s) by solving an optimization problem over our (noised) observations.

Proposition 4. We have P β
post(· | D) = N (1

σ2
h(s)+k

·∑k
t=1 at,

σ2
h(s)

σ2
h(s)+k

· I) and, if we set

µ̂h(s) = argminµ
∑k

i=1 ∥µ− ãi∥22 + σ2
h(s) · ∥µ− µ̃h(s)∥22,

for ãt = at + wt, wt ∼ N (0, σ2
h(s) · I), and µ̃ ∼ N (0, I), then µ̂h(s) ∼ P β

post(· | D).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Proposition 4 shows that we can compute samples from the posterior on µh(s) by simply fitting a
“noised” version of our demonstrations. While in practice our data likely does not satisfy this Gaus-
sianity assumption, the above argument nonetheless suggests a simple recipe to capture the behavior
of π̂post

h (· | s) in more general, non-Gaussian settings, which we summarize in Algorithm 1.

Algorithm 1 Posterior Variance Approximation via Ensembled Prediction
1: input: demonstration dataset D, ensemble size K, function class F
2: for ℓ = 1, 2, . . . ,K do
3: Set Dℓ ← {(s, a+ wℓ

sa) : ∀(s, a) ∈ D} where wℓ
sa ∼ N (0, I)

4: Fit fℓ by solving fℓ ← argminf∈F
∑

(s,ã)∈Dℓ
∥fℓ(s)− ã∥22

5: return {fℓ}ℓ∈[K]

By the above argument, each fℓ(s) is an approximate sample from the posterior of our demonstra-
tor’s behavior at state s. Our theory suggests, however, that we should sample not simply from the
posterior, but from π̂post, the expected policy under the posterior. In the Gaussian setting of Propo-
sition 4, to sample from π̂post

h (· | s) it suffices to perturb a sample from the posterior, µ̂h(s), by
0-mean noise with the demonstrator’s covariance: µ̂h(s)+w ∼ π̂post

h (· | s) if w ∼ N (0, σ2
h(s) · I).

If we do not know the demonstrator’s covariance, as is usually the case in practice, and so cannot
directly generate a sample w ∼ N (0, σ2

h(s) · I), we can approximate it by sampling, for (s, a) ∈ D:

ã = a+ w, w ∼ N (0,
σ2
h(s)

σ2
h(s)+k

· I).

Note that the covariance of a’s distribution is precisely the demonstrator’s covariance, since a ∼
πβ
h(· | s). Therefore, ã will be distributed with the demonstrator’s mean and covariance, plus 0-mean

noise sampled with the posterior’s covariance. While the mean of this distribution differs from that
of π̂post

h (· | s), its covariance matches the covariance of π̂post
h (· | s). As we show in Lemma 9, the

difference in mean between π̂post
h (· | s) and πβ

h(· | s) is distributed approximately as the posterior’s
covariance, suggesting that the difference in mean between ã and π̂post

h (· | s) is therefore effectively
washed out by the posterior’s randomness—ã is sampled approximately as π̂post

h (· | s). To produce
an approximate sample from π̂post(· | s) in the general case, then, we sample:

ã = a+ α · w, w ∼ N (0, cov(s)), (3)

for any (s, a) ∈ D, and where cov(s) :=
∑K

ℓ=1(fℓ(s) − f̄(s))(fℓ(s) − f̄(s))⊤ for
f̄(s)← 1

K

∑K
ℓ=1 fℓ(s), and α is some weighting we can tune as desired.

5.1 POSTERIOR BEHAVIORAL CLONING

Applying Algorithm 1 and Equation (3), we can generate approximate samples from π̂post(· | s) for
any s in our demonstration dataset. Theorem 1 suggests that, to obtain a pretrained policy π̂pt that is
an effective initialization for RL finetuning, it suffices to fit π̂pt to a mixture distribution of the BC
policy and π̂post. Approximating this mixture by modulating α in (3), we arrive at the following.

Algorithm 2 Posterior Behavioral Cloning (POSTBC)
1: input: demonstration dataset D, generative model class π̂θ, posterior weight α
2: Fit {fℓ}ℓ∈[K] by running Algorithm 1 on D, and compute cov(·) from {fℓ}ℓ∈[K] as above
3: for i = 1, 2, 3, . . . do
4: Draw batch Di ∼ unif(D)

5: For all (s, a) ∈ Di, compute ã as in (3) using cov(·) and α, and set D̃i ← {(s, ã) : s ∈ D}
6: Take gradient step on π̂θ on loss of D̃i

With π̂θ an expressive generative model, Algorithm 2 will produce a policy which, instead of fitting
the empirical distribution of the demonstrator, fits the full expected posterior of the demonstrator’s
behavior. This approximates the posterior mixture in Equation (2), and, Theorem 1 suggests, leads
to a more effective initialization for RL finetuning, instantiating the behavior illustrated in Figure 1.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

6 EXPERIMENTS

Finally, we seek to demonstrate that in practice posterior behavioral cloning (a) enables more ef-
ficient RL finetuning of pretrained policies, and (b) leads to a pretrained policy that performs well
itself, on par with the BC pretrained policy. We focus on continuous control domains, in particular
robotic control. We test on both the Robomimic (Mandlekar et al., 2021) and Libero (Liu et al.,
2023) simulators. Robomimic is comprised of several robotic manipulation tasks, providing a set
of human demonstrations on each task, and enables training and finetuning of single-task BC poli-
cies. We consider the Lift, Can, and Square tasks on Robomimic. Libero similarly contains
a variety of robotic manipulation tasks with provided human demonstrations, but enables multi-task
training, allowing for pretraining on large corpora of data and then finetuning on particular tasks of
interest. In particular, we rely on a subset of the Libero 90 suite of tasks, training and evaluating
on the first 21 tasks, corresponding to three different kitchen manipulation scenes. See Figure 2 for
a visualization of our settings.

We instantiate π̂pt with a diffusion model, which has become the de-facto standard for parameter-
izing BC policies in continuous control settings (Chi et al., 2023; Ankile et al., 2024a; Dasari et al.,
2024; Team et al., 2024; Black et al., 2024; Bjorck et al., 2025). For the Robomimic experiments,
we use an MLP-based architecture, trained on a single-task demonstration dataset, and rely on state-
based observations. For Libero, we utilize a diffusion transformer architecture due to Dasari et al.
(2024) and rely on image-based observations and language task conditioning. In Libero, we pre-
train a single π̂pt policy on the demonstration data from all 21 tasks (Black et al., 2024; Kim et al.,
2024; Khazatsky et al., 2024), and then run RL finetuning on each individual task. In order to leave
room for RL improvement (i.e. to ensure that task performance is not saturated by the BC pretrained
policy) we limit the number of demos per task in the pretraining dataset.

In principle, POSTBC can be combined with any RL finetuning algorithm, and we seek to demon-
strate that it improves performance on a representative set of approaches. In particular, we consider
DSRL (Wagenmaker et al., 2025), which refines a pretrained diffusion policy’s distribution by run-
ning RL over its latent-noise space, DPPO (Ren et al., 2024), an on-policy policy-gradient-style
algorithm for finetuning diffusion policies, and Best-of-N sampling. Best-of-N is a generic proce-
dure which can be instantiated in a variety of ways (see e.g. (Chen et al., 2022; Hansen-Estruch et al.,
2023; He et al., 2024; Nakamoto et al., 2024; Dong et al., 2025b))—here we instantiate it by rolling
out the pretrained policy some number of times on the task of interest, training a Q-function via IQL
(Kostrikov et al., 2021) on the rollouts, then at test time sampling N actions from the pretrained
policy at each state, and taking the action with the largest Q-value.

To the best of our knowledge, there do not exist any approaches which aim to pretrain policies with
a BC-like objective on (reward-free) demonstration data, with the aim of obtaining an initialization
that is an effective starting point for finetuning. As baselines, then, we consider running standard BC
pretraining on D (the typical initialization for RL finetuning), as well as what we refer to as σ-BC,
where instead of perturbing the actions in D by the posterior variance as in (3), we instead perturb
them by uniform, state-independent noise with variance σ2. This is then equivalent to POSTBC,
except we set cov(s) = σ2 · I for some fixed σ > 0 in (3) (note that this is a continuous analog to
the approach considered in Proposition 3). This itself is a novel approach and our theory predicts it
too may lead to improved performance over pretraining with standard BC. For all experiments, error
bars denote 1 standard error. All results are averaged over from 3-5 seeds and policies are evaluated
with 200 rollouts for Robomimic and 100 for Libero. Please see Section C for additional details.

6.1 POSTERIOR BC ENABLES EFFICIENT RL FINETUNING

Our results from running DSRL on Libero are given in Figure 3 and on Robomimic in Figure 4.
For Libero, we run DSRL on three tasks from scene 2: “open the top drawer of the cabinet”, “put
the black bowl at the front on the plate”, and “put the middle black bowl on the plate”. We see
that POSTBC pretraining leads to significant gains for Libero, enabling efficient RL finetuning
in settings where both standard BC pretraining and σ-BC pretraining fail. On Robomimic we
observe more modest gains, yet note that POSTBC pretraining does no worse than other pretraining
approaches, and on Square does lead to notable gains over BC pretraining. Our results for DPPO
are given in Figure 4 where we see that POSTBC pretraining again leads to modest gains on Square.

Our Best-of-N results are given in Table 1. We see that across settings, POSTBC-pretraining leads
to consistent improvements over both BC- and σ-BC-pretrained policies. In particular, on Libero,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 2: Robomimic
and Libero settings

0 5
Timesteps ×104

0.0

0.5

1.0

Su
cc
es
s
R
at
e

Libero Task 1

PostBC
BC
σ-BC

0 1 2
Timesteps ×105

Libero Task 2

0 1 2
Timesteps ×105

Libero Task 3

Figure 3: Comparison of DSRL finetuning performance combined with
different BC pretraining approaches on Libero.

0 2 4
Timesteps ×105

0.00

0.25

0.50

0.75

1.00

Su
cc
es
s
R
at
e

Lift

0.0 0.5 1.0
Timesteps ×106

Can

0 1 2
Timesteps ×106

Square

Figure 4: Comparison of DSRL finetuning perfor-
mance combined with different BC pretraining ap-
proaches on Robomimic.

0 1
Timesteps ×107

Lift

0 2
Timesteps ×106

Can

0 1 2
Timesteps ×107

Square

Figure 5: Comparison of DPPO finetuning per-
formance combined with different BC pretrain-
ing approaches on Libero.

Pretrained Performance Best-of-N (1000 Rollouts) Best-of-N (2000 Rollouts)
Task BC σ-BC POSTBC BC σ-BC POSTBC BC σ-BC POSTBC

Robomimic Lift 70.1 ±1.7 66.7 ±0.8 68.1 ±0.7 55.6 ±2.4 52.3 ±3.7 63.3 ±2.1 63.8 ±3.6 73.5 ±1.1 75.7 ±2.0

Robomimic Can 43.4 ±0.6 44.3 ±0.9 42.2 ±1.2 69.8 ±2.9 72.8 ±3.0 70.6 ±2.7 76.6 ±2.4 80.7 ±1.4 79.3 ±2.4

Robomimic Square 18.8 ±0.3 18.3 ±0.3 17.0 ±0.5 37.9 ±2.3 45.7 ±1.4 40.6 ±1.7 48.4 ±1.0 50.0 ±3.2 51.6 ±2.9

Libero Scene 1 (5 tasks) 22.1 ±8.3 23.2 ±6.2 24.4 ±6.1 38.0 ±7.2 63.9 ±3.8 60.8 ±4.5 - - -
Libero Scene 2 (7 tasks) 11.5 ±3.4 10.3 ±4.1 13.1 ±3.9 21.7 ±3.6 26.7 ±5.0 44.4 ±5.7 - - -
Libero Scene 3 (4 tasks) 40.1 ±10.4 37.4 ±7.6 42.0 ±10.2 49.2 ±7.0 51.8 ±7.1 65.5 ±6.8 - - -
Libero All (21 tasks) 22.2 ±4.3 21.1 ±3.7 23.0 ±3.9 33.5 ±3.5 43.7 ±3.6 54.6 ±3.5 - - -

Table 1: Comparison of performance of pretrained policies and Best-of-N sampling on
Robomimic and Libero, for different BC pretraining approaches.

POSTBC improves by approximately 20% over BC, and 10% over σ-BC. Table 1 also provides
the performance of the pretrained policies, where we see that, in general, the POSTBC-pretrained
policy performs on par with the BC-pretrained policy, demonstrating that POSTBC-pretraining
produces a policy which performs as well as the BC pretrained policy—POSTBC-pretraining does
not hurt pretrained policy performance. Together these results show that in realistic continuous
control settings, pretraining with POSTBC can lead to significant improvements over standard BC
pretraining in terms of RL finetuning performance, without sacrificing the performance of the
pretrained policy itself.

Understanding how POSTBC improves RL finetuning performance. Finally, we seek to provide
insight into how POSTBC improves RL finetuning performance. In particular, we aim to disam-
biguate the role of the additional exploration a POSTBC policy may provide over a BC policy, versus
the role that having access to a larger action distribution at test time might play. While these factors
are intimately coupled for DSRL and DPPO, for Best-of-N sampling we can decouple them by se-
lecting the rollout policy (the “exploration” policy) that collects data to learn the filtering function,
and the policy whose actions we filter with the learned function at test-time (the “steering” policy).

BC rollouts + BC rollouts + POSTBC rollouts + POSTBC rollouts +
BC steering POSTBC steering BC steering POSTBC steering

63.8 ±3.6 78.6 ±1.4 65.0 ±4.4 75.7 ±2.0

Table 2: Best-of-N sampling on Robomimic Lift, vary-
ing the rollout policy and the steering policy.

We consider mixing the role of
the BC and POSTBC policy on
Robomimic Lift in this way, and
provide our results in Table 2. We
find that the choice of rollout policy
has little impact on performance, but
the steering policy can impact perfor-
mance significantly. This suggests that the utility of POSTBC is primarily in its ability to provide
a wider range of actions that can be sampled from the pretrained policy, enabling RL finetuning
approaches to easily select the maximizing action.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

Full proofs for all theoretical results are given in the appendix, allowing our results to be checked.
For the experimental results, we have stated hyperparameters used in the appendix, and plan to also
release our code publicly.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural informa-
tion processing systems, 34:29304–29320, 2021.

Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit prob-
lem. In Conference on learning theory, pp. 39–1. JMLR Workshop and Conference Proceedings,
2012.

Lars Ankile, Anthony Simeonov, Idan Shenfeld, and Pulkit Agrawal. Juicer: Data-efficient imitation
learning for robotic assembly. In 2024 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 5096–5103. IEEE, 2024a.

Lars Ankile, Anthony Simeonov, Idan Shenfeld, Marcel Torne, and Pulkit Agrawal. From imitation
to refinement–residual rl for precise assembly. arXiv preprint arXiv:2407.16677, 2024b.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learn-
ing from human preferences. In International Conference on Artificial Intelligence and Statistics,
pp. 4447–4455. PMLR, 2024.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022a.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
lessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022b.

Michiel Bakker, Martin Chadwick, Hannah Sheahan, Michael Tessler, Lucy Campbell-Gillingham,
Jan Balaguer, Nat McAleese, Amelia Glaese, John Aslanides, Matt Botvinick, et al. Fine-tuning
language models to find agreement among humans with diverse preferences. Advances in Neural
Information Processing Systems, 35:38176–38189, 2022.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learn-
ing with offline data. In International Conference on Machine Learning, pp. 1577–1594. PMLR,
2023.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information pro-
cessing systems, 29, 2016.

Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model
for generalist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Mariusz Bojarski. End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Souradip Chakraborty, Jiahao Qiu, Hui Yuan, Alec Koppel, Furong Huang, Dinesh Manocha, Am-
rit Singh Bedi, and Mengdi Wang. Maxmin-rlhf: Towards equitable alignment of large language
models with diverse human preferences. arXiv preprint arXiv:2402.08925, 2024.

Jonathan D Chang, Wenhao Shan, Owen Oertell, Kianté Brantley, Dipendra Misra, Jason D Lee,
and Wen Sun. Dataset reset policy optimization for rlhf. arXiv preprint arXiv:2404.08495, 2024.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

Yuhui Chen, Shuai Tian, Shugao Liu, Yingting Zhou, Haoran Li, and Dongbin Zhao. Con-
rft: A reinforced fine-tuning method for vla models via consistency policy. arXiv preprint
arXiv:2502.05450, 2025.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The Inter-
national Journal of Robotics Research, pp. 02783649241273668, 2023.

Jongwook Choi, Yijie Guo, Marcin Moczulski, Junhyuk Oh, Neal Wu, Mohammad Norouzi,
and Honglak Lee. Contingency-aware exploration in reinforcement learning. arXiv preprint
arXiv:1811.01483, 2018.

Sudeep Dasari, Oier Mees, Sebastian Zhao, Mohan Kumar Srirama, and Sergey Levine. The ingre-
dients for robotic diffusion transformers. arXiv preprint arXiv:2410.10088, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Perry Dong, Qiyang Li, Dorsa Sadigh, and Chelsea Finn. Expo: Stable reinforcement learning with
expressive policies. arXiv preprint arXiv:2507.07986, 2025a.

Perry Dong, Suvir Mirchandani, Dorsa Sadigh, and Chelsea Finn. What matters for batch online
reinforcement learning in robotics? arXiv preprint arXiv:2505.08078, 2025b.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Vincent Dumoulin, Daniel D Johnson, Pablo Samuel Castro, Hugo Larochelle, and Yann Dauphin.
A density estimation perspective on learning from pairwise human preferences. arXiv preprint
arXiv:2311.14115, 2023.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a
new approach for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. Advances
in neural information processing systems, 31, 2018.

Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity of
interactive decision making. arXiv preprint arXiv:2112.13487, 2021.

Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, and Sergey Levine. Offline rl policies should be trained
to be adaptive. In International Conference on Machine Learning, pp. 7513–7530. PMLR, 2022.

Jiayuan Gu, Sean Kirmani, Paul Wohlhart, Yao Lu, Montserrat Gonzalez Arenas, Kanishka Rao,
Wenhao Yu, Chuyuan Fu, Keerthana Gopalakrishnan, Zhuo Xu, et al. Rt-trajectory: Robotic task
generalization via hindsight trajectory sketches. arXiv preprint arXiv:2311.01977, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yanjiang Guo, Jianke Zhang, Xiaoyu Chen, Xiang Ji, Yen-Jen Wang, Yucheng Hu, and Jianyu Chen.
Improving vision-language-action model with online reinforcement learning. arXiv preprint
arXiv:2501.16664, 2025b.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Longxiang He, Li Shen, Junbo Tan, and Xueqian Wang. Aligniql: Policy alignment in implicit
q-learning through constrained optimization. arXiv preprint arXiv:2405.18187, 2024.

Joey Hejna, Rafael Rafailov, Harshit Sikchi, Chelsea Finn, Scott Niekum, W Bradley Knox, and
Dorsa Sadigh. Contrastive prefence learning: Learning from human feedback without rl. arXiv
preprint arXiv:2310.13639, 2023.

Mikael Henaff, Roberta Raileanu, Minqi Jiang, and Tim Rocktäschel. Exploration via elliptical
episodic bonuses. Advances in Neural Information Processing Systems, 35:37631–37646, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Hao Hu, Yiqin Yang, Jianing Ye, Ziqing Mai, and Chongjie Zhang. Unsupervised behavior extrac-
tion via random intent priors. Advances in Neural Information Processing Systems, 36:51491–
51514, 2023.

Jiaheng Hu, Rose Hendrix, Ali Farhadi, Aniruddha Kembhavi, Roberto Martı́n-Martı́n, Peter Stone,
Kuo-Hao Zeng, and Kiana Ehsani. Flare: Achieving masterful and adaptive robot policies
with large-scale reinforcement learning fine-tuning. In 2025 IEEE International Conference on
Robotics and Automation (ICRA), pp. 3617–3624. IEEE, 2025.

David Janz, Shuai Liu, Alex Ayoub, and Csaba Szepesvári. Exploration via linearly perturbed loss
minimisation. In International Conference on Artificial Intelligence and Statistics, pp. 721–729.
PMLR, 2024.

Tobias Jülg, Wolfram Burgard, and Florian Walter. Refined policy distillation: From vla generalists
to rl experts. arXiv preprint arXiv:2503.05833, 2025.

Alexander Khazatsky, Karl Pertsch, Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama, Lawrence Yunliang Chen, Kirsty El-
lis, et al. Droid: A large-scale in-the-wild robot manipulation dataset. arXiv preprint
arXiv:2403.12945, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
mizing speed and success. arXiv preprint arXiv:2502.19645, 2025.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Anikait Singh, Frederik Ebert, Mitsuhiko Nakamoto, Yanlai Yang, Chelsea Finn, and
Sergey Levine. Pre-training for robots: Offline rl enables learning new tasks from a handful of
trials. arXiv preprint arXiv:2210.05178, 2022.

Branislav Kveton, Manzil Zaheer, Csaba Szepesvari, Lihong Li, Mohammad Ghavamzadeh, and
Craig Boutilier. Randomized exploration in generalized linear bandits. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 2066–2076. PMLR, 2020.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Lu, Thomas Mesnard, Colton Bishop, Victor
Carbune, and Abhinav Rastogi. Rlaif: Scaling reinforcement learning from human feedback with
ai feedback. arXiv preprint arXiv:2309.00267, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified frame-
work for ensemble learning in deep reinforcement learning. In International Conference on Ma-
chine Learning, pp. 6131–6141. PMLR, 2021.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot
Learning, pp. 1702–1712. PMLR, 2022.

Qiyang Li, Jason Zhang, Dibya Ghosh, Amy Zhang, and Sergey Levine. Accelerating exploration
with unlabeled prior data. Advances in Neural Information Processing Systems, 36:67434–67458,
2023.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information
Processing Systems, 36:44776–44791, 2023.

Jijia Liu, Feng Gao, Bingwen Wei, Xinlei Chen, Qingmin Liao, Yi Wu, Chao Yu, and Yu Wang.
What can rl bring to vla generalization? an empirical study. arXiv preprint arXiv:2505.19789,
2025.

Guanxing Lu, Wenkai Guo, Chubin Zhang, Yuheng Zhou, Haonan Jiang, Zifeng Gao, Yansong
Tang, and Ziwei Wang. Vla-rl: Towards masterful and general robotic manipulation with scalable
reinforcement learning. arXiv preprint arXiv:2505.18719, 2025.

Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun Kulkarni, Li Fei-
Fei, Silvio Savarese, Yuke Zhu, and Roberto Martı́n-Martı́n. What matters in learning from offline
human demonstrations for robot manipulation. arXiv preprint arXiv:2108.03298, 2021.

Max Sobol Mark, Tian Gao, Georgia Gabriela Sampaio, Mohan Kumar Srirama, Archit Sharma,
Chelsea Finn, and Aviral Kumar. Policy agnostic rl: Offline rl and online rl fine-tuning of any
class and backbone. arXiv preprint arXiv:2412.06685, 2024.

Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al. Nash
learning from human feedback. arXiv preprint arXiv:2312.00886, 2023.

Mitsuhiko Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
tuning. Advances in Neural Information Processing Systems, 36:62244–62269, 2023.

Mitsuhiko Nakamoto, Oier Mees, Aviral Kumar, and Sergey Levine. Steering your generalists:
Improving robotic foundation models via value guidance. arXiv preprint arXiv:2410.13816, 2024.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016a.

Ian Osband, Benjamin Van Roy, and Zheng Wen. Generalization and exploration via random-
ized value functions. In International Conference on Machine Learning, pp. 2377–2386. PMLR,
2016b.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. Advances in neural information processing systems, 31, 2018.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
standing by generative pre-training. 2018.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in neural information processing systems, 36:53728–53741, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Rouhollah Rahmatizadeh, Pooya Abolghasemi, Ladislau Bölöni, and Sergey Levine. Vision-based
multi-task manipulation for inexpensive robots using end-to-end learning from demonstration. In
2018 IEEE international conference on robotics and automation (ICRA), pp. 3758–3765. IEEE,
2018.

Nived Rajaraman, Lin Yang, Jiantao Jiao, and Kannan Ramchandran. Toward the fundamental limits
of imitation learning. Advances in Neural Information Processing Systems, 33:2914–2924, 2020.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Chris-
tian Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
language processing: Benchmarks, baselines, and building blocks for natural language policy
optimization. arXiv preprint arXiv:2210.01241, 2022.

Allen Z Ren, Justin Lidard, Lars L Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Majum-
dar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy optimiza-
tion. arXiv preprint arXiv:2409.00588, 2024.

Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with general
preferences. arXiv preprint arXiv:2404.03715, 2024.

Daniel Russo. Worst-case regret bounds for exploration via randomized value functions. Advances
in neural information processing systems, 32, 2019.

Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. Mathematics of
Operations Research, 39(4):1221–1243, 2014.

Daniel J Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, Zheng Wen, et al. A tutorial on
thompson sampling. Foundations and Trends® in Machine Learning, 11(1):1–96, 2018.

Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning k modes with one stone. Advances in neural information processing sys-
tems, 35:22955–22968, 2022.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Pranav Shyam, Wojciech Jaśkowski, and Faustino Gomez. Model-based active exploration. In
International conference on machine learning, pp. 5779–5788. PMLR, 2019.

Anand Siththaranjan, Cassidy Laidlaw, and Dylan Hadfield-Menell. Distributional preference learn-
ing: Understanding and accounting for hidden context in rlhf. arXiv preprint arXiv:2312.08358,
2023.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020.

Ajay Sridhar, Dhruv Shah, Catherine Glossop, and Sergey Levine. Nomad: Goal masked diffusion
policies for navigation and exploration. In 2024 IEEE International Conference on Robotics and
Automation (ICRA), pp. 63–70. IEEE, 2024.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Simon Stepputtis, Joseph Campbell, Mariano Phielipp, Stefan Lee, Chitta Baral, and Heni
Ben Amor. Language-conditioned imitation learning for robot manipulation tasks. Advances
in Neural Information Processing Systems, 33:13139–13150, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Gokul Swamy, Christoph Dann, Rahul Kidambi, Zhiwei Steven Wu, and Alekh Agarwal. A
minimaximalist approach to reinforcement learning from human feedback. arXiv preprint
arXiv:2401.04056, 2024.

Yunhao Tang, Zhaohan Daniel Guo, Zeyu Zheng, Daniele Calandriello, Rémi Munos, Mark Row-
land, Pierre Harvey Richemond, Michal Valko, Bernardo Ávila Pires, and Bilal Piot. Gen-
eralized preference optimization: A unified approach to offline alignment. arXiv preprint
arXiv:2402.05749, 2024.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew
Bennice, Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. In Inter-
national Conference on Machine Learning, pp. 34556–34583. PMLR, 2023.

Andrew Wagenmaker, Zhiyuan Zhou, and Sergey Levine. Behavioral exploration: Learning to ex-
plore via in-context adaptation. In Forty-second International Conference on Machine Learning.

Andrew Wagenmaker, Mitsuhiko Nakamoto, Yunchu Zhang, Seohong Park, Waleed Yagoub,
Anusha Nagabandi, Abhishek Gupta, and Sergey Levine. Steering your diffusion policy with
latent space reinforcement learning. arXiv preprint arXiv:2506.15799, 2025.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn.
arXiv preprint arXiv:1611.05763, 2016.

Max Wilcoxson, Qiyang Li, Kevin Frans, and Sergey Levine. Leveraging skills from unlabeled prior
data for efficient online exploration. arXiv preprint arXiv:2410.18076, 2024.

Charles Xu, Qiyang Li, Jianlan Luo, and Sergey Levine. Rldg: Robotic generalist policy distillation
via reinforcement learning. arXiv preprint arXiv:2412.09858, 2024.

Yueqin Yin, Zhendong Wang, Yi Gu, Hai Huang, Weizhu Chen, and Mingyuan Zhou. Relative
preference optimization: Enhancing llm alignment through contrasting responses across identical
and diverse prompts. arXiv preprint arXiv:2402.10958, 2024.

Xiu Yuan, Tongzhou Mu, Stone Tao, Yunhao Fang, Mengke Zhang, and Hao Su. Policy decorator:
Model-agnostic online refinement for large policy model. arXiv preprint arXiv:2412.13630, 2024.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
policy: Generalizable visuomotor policy learning via simple 3d representations. arXiv preprint
arXiv:2403.03954, 2024.

Haichao Zhang, We Xu, and Haonan Yu. Policy expansion for bridging offline-to-online reinforce-
ment learning. arXiv preprint arXiv:2302.00935, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee, Xi Chen, Ken Goldberg, and Pieter Abbeel.
Deep imitation learning for complex manipulation tasks from virtual reality teleoperation. In
2018 IEEE international conference on robotics and automation (ICRA), pp. 5628–5635. IEEE,
2018.

Zijian Zhang, Kaiyuan Zheng, Zhaorun Chen, Joel Jang, Yi Li, Siwei Han, Chaoqi Wang, Mingyu
Ding, Dieter Fox, and Huaxiu Yao. Grape: Generalizing robot policy via preference alignment.
arXiv preprint arXiv:2411.19309, 2024.

Tony Z Zhao, Jonathan Tompson, Danny Driess, Pete Florence, Kamyar Ghasemipour, Chelsea
Finn, and Ayzaan Wahid. Aloha unleashed: A simple recipe for robot dexterity. arXiv preprint
arXiv:2410.13126, 2024.

Han Zheng, Xufang Luo, Pengfei Wei, Xuan Song, Dongsheng Li, and Jing Jiang. Adaptive policy
learning for offline-to-online reinforcement learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 11372–11380, 2023.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann,
and Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-
learning. arXiv preprint arXiv:1910.08348, 2019.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A PROOFS

Some algebra shows that in the tabular setting, under the uniform prior, we have

π̂post
h (a | s) :=

{
Th(s,a)+1
Th(s)+A Th(s) > 0

unif(A) o.w.

A.1 BC POLICY FAILS TO COVER ACTIONS

Proposition 5 (Full version of Proposition 2). Fix any ϵ ∈ (0, 1/8]. Then there exist some MDPs
M1,M2 and demonstrator policy πβ such that, ifM∈ {M1,M2}, unless T ≥ 1

20ϵ , we have that,
with probability at least 1/2:

J (πβ)− ϵ > max
π∈Π̂
J (π) for Π̂ := {π : πh(a | s) = 0 if π̂β

h(a | s) = 0, ∀s, a, h}.

Furthermore,

min
π̂

max
i∈{1,2}

EMi,π̂β

[max
π
JMi

(π)− JMi

(π̂)] ≥ 1

2
.

Proof. LetM1 andM2 denote multi-armed bandits with 3 arms and reward functions r1 and r2:

r1(a1) = 0, r1(a2) = 1, r1(a3) = 0

r2(a1) = 0, r2(a2) = 0, r2(a3) = 1.

Let πβ(a1) = 1− 4ϵ, πβ(a2) = 2ϵ, πβ(a3) = 2ϵ.

By construction of π̂β , if T (a2) = 0 then we will have π̂β(a2) = 0, and if T (a3) = 0 we will have
π̂β(a3) = 0. By the definition of bothM1 andM2, we have

PMi

[T (a2) = 0, T (a3) = 0] = (1− 4ϵ)T .

As we have assumed that T ≤ 1
20ϵ and ϵ ∈ (0, 1/8], some calculation shows that we can lower

bound this as 1/2. Note that for bothM1 andM2, we have J (πβ) = 2ϵ, while for policies π̂β that
only play a1, we have J (π̂β) = 0. This proves the first part of the result.

For the second part, note that the optimal policy onM1 plays only a2 and has expected reward of
1, while the optimal policy on M2 plays only a2 and has expected reward of 1. Let π̂ denote an
estimate of the optimal policy and EMi,π̂β

[·] the expectation induced by playing the policy π̂β from
the first part on instanceMi. Then:

min
π̂

max
i∈{1,2}

EMi,π̂β

[max
π
JMi

(π)− JMi

(π̂)] = min
π̂

max
i∈{1,2}

EMi,π̂β

[1− π̂(a1+i)].

Note that 1− π̂(a2) = π̂(a1) + π̂(a3) ≥ π̂(a3). Thus we can lower bound the above as

≥ min
π̂

max{EM1,π̂β

[π̂(a3)],EM2,π̂β

[1− π̂(a3)]}

≥ min
π̂

1

2

(
EM1,π̂β

[π̂(a3)] + EM2,π̂β

[1− π̂(a3)]
)

≥ 1

2
− 1

2
min
π̂

∣∣∣EM1,π̂β

[π̂(a3)]− EM2,π̂β

[π̂(a3)]
∣∣∣ .

We can bound ∣∣∣EM1,π̂β

[π̂(a3)]− EM2,π̂β

[π̂(a3)]
∣∣∣ ≤ TV(PM1,π̂β

,PM2,π̂β

).

Since M1 and M2 only differ on a2 and a3, and since π̂β(a2) = π̂β(a3) = 0, we have
TV(PM1,π̂β

,PM2,π̂β

) = 0. Thus, we conclude that

min
π̂

max
i∈{1,2}

EMi,π̂β

[max
π
JMi

(π)− JMi

(π̂)] ≥ 1

2
.

This proves the second part of the result.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.2 UNIFORM NOISE FAILS

Proof of Proposition 3. Construction. Let M be the MDP with state space {s̃1, . . . , s̃k, s1, s2},
actions {a1, a2}, horizon H ≥ 2 with initial state distribution:

P0(s1) = 1/2, P0(s̃1) = 2−2 + 2−k, P0(s̃i) = 2−i−1, i ≥ 2,

transition function, for all h ∈ [H]:

Ph(s̃i | s̃i, a) = 1, ∀a ∈ A, Ph(s1 | s1, a1) = 1,

Ph(s2 | s1, a2) = 1, Ph(s2 | s2, a) = 1, ∀a ∈ A,

and reward that is 0 everywhere except

r1(s̃i, a1) = rH(s1, a1) = 1, r1(s̃i, a2) = 1− 2∆,

for some ∆ > 0 to be specified. We consider πβ defined as

πβ
h(a1 | s̃i) = πβ

h(a2 | s̃i) =
1

2
, πβ

h(a1 | s1) = 1.

Let ϵ := H2S log T
T + ξ, and set ∆← 2ϵ.

Upper bound on α. Note that J (πβ) = 1 − 1
2∆, and that the value of the optimal policy π⋆ is

J (π⋆) = maxπ J (π) = 1. Let π̃u,α denote the policy that, on all s̃i plays π⋆, and on other states
plays π⋆ with probability 1−α, and otherwise plays unif(A). Note then that, regardless of the value
of π̂β , we have that J (π̃u,α) ≥ J (π̂u,α). Thus,

J (πβ)− E[J (π̂u,α)] ≥ J (πβ)− J (π̃u,α)

If we are in s1 at h = 2, the only way we can receive any reward on the episode is if we take action
a1 for the last H − 1 steps, and we then receive a reward of 1. Under π̃u,α, we take a1 at each step
with probability 1 − α + α/A, so our probability of getting a reward of 1 is (1 − α + α/A)H−1.
Note that in contrast πβ will always play a1 and receive a reward of 1 in this situation. If we are in
s̃i at h = 2 for any i, then πβ will incur a loss of ∆ more than π̃u,α. Thus, we can lower bound

J (πβ)− J (π̃u,α) ≥ −1

2
∆ +

1

2
· (1− (1− α+ α/A)H−1)

By assumption we have that 1
2∆ = ϵ. Thus, if we want J (πβ)− E[J (π̂u,α)] ≤ ϵ, we need

1

2
· (1− (1− α+ α/A)H−1) ≤ 2ϵ.

Rearranging this, we have

1− 4ϵ ≤ (1− α+ α/A)H−1 ⇐⇒ 1

H − 1
log (1− 4ϵ) ≤ log(1− α+ α/A).

From the Taylor decomposition of log(1 − x), we see that log(1 − α + α/A) ≤ −(1 − 1/A)α.
Furthermore, we can lower bound

log(1− 4ϵ) ≥ −8ϵ

as long as ϵ ≤ 1/2. Altogether, then, we have

−8ϵ
H − 1

≤ −(1− 1/A)α =⇒ α ≤ 8ϵ

(H − 1)(1− 1/A)
=⇒ α ≤ 32ϵ

where the last inequality follows since H ≥ 2, A = 2.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Upper bound on γ. Let iT := argmaxi{2−i−1 | 2−i−1 ≤ 1/T}, so that 1/2T ≤ P0(s̃iT) ≤
1/T , and note that such an s̃iT exists by construction. Let E be the event E := {T1(s̃iT) =
T1(s̃iT , a2) = 1}. We have

P[E] = P[T1(s̃iT , a2) = 1 | T1(s̃iT) = 1]P[T1(s̃iT) = 1]

=
1

2
· TP0(s̃iT)(1− P0(s̃iT))

T−1

=
1

2
· T · 1

2T
· (1− 1

T
)T−1

≥ 1

4e
.

Note that on the event E , we have π̂β
1 (a1 | s̃iT) = 0, but πβ

1 (a1 | s̃iT) = 1/2. Thus,

π̂u,α
1 (a1 | s̃iT) = α/A ≤ 32ϵ/A = 64ϵ/A · πβ

1 (a1 | s̃iT)
where we have used the bound on α shown above. Thus, on E , we will only have that π̂u,α is a
γ-sampler for γ ≤ 64ϵ/A. Since E occurs with probability at least 1/4e, it follows that if we want to
guarantee π̂u,α is a γ-sampler with probability at least 1−δ for δ < 1/4e, we must have γ ≤ 64ϵ/A.

Note as well that, since π̂β
1 (a2 | s̃iT) = 1, any policy in the support of π̂β will be suboptimal by a

factor of at least P0(s̃iT) · 2∆ ≥ ∆/T .

A.3 ANALYSIS OF POSTERIOR POLICY

Throughout this section we denote

π̃h(a | s) :=
{
(1− α) · Th(s,a)

Th(s)
+ α · Th(s,a)+λ/A

Th(s)+λ Th(s) > 0

unif(A) Th(s) = 0

for some α ∈ [0, 1].

We also denote wπ
h(s, a) := Pπ[sh = s, ah = a]. Qπ

h(s, a) := Eπ[
∑

h′≥h rh′(sh′ , ah′) | sh =

s, ah = a] denotes the standard Q-function. J (π; r) denotes the expected return of policy π for
reward r.
Lemma 1. As long as δ ≤ 0.9 and λ ≥ A, we have

P

[
π̃h(a | s) ≥ α ·min

{
πβ
h(a | s)

64 logSH/δ
,
1

2λ

}
, ∀a ∈ A, s ∈ S, h ∈ [H]

]
≥ 1− δ.

Proof. Consider some (s, h). By Bernstein’s inequality, if Th(s) > 0, we have that with probability
at least 1− δ,

Th(s, a)

Th(s)
≥ πβ

h(a | s)−
√

2πβ
h(a | s) log 1/δ

Th(s)
− 2 log 1/δ

3Th(s)
. (4)

From some algebra, we see that as long as Th(s) ≥ 32 log 1/δ

πβ
h(a|s)

, we have that Th(s,a)
Th(s)

≥ 1
2π

β
h(a | s).

By the definition of π̃, under the good event of (4) we can then lower bound

π̃h(a | s) ≥
{

α
1+λ/Th(s)

· 12π
β
h(a | s) Th(s) ≥ 32 log 1/δ

πβ
h(a|s)

αλ/A
Th(s)+A o.w.

≥


α·32 log 1/δ

32 log 1/δ+λ·πβ
h(a|s)

· 12π
β
h(a | s) Nh(s) ≥ 32 log 1/δ

πβ
h(a|s)

αλ/A·πβ
h(a|s)

32 log 1/δ+λ·πβ
h(a|s)

o.w.

(a)

≥ α · πβ
h(a | s)

32 log 1/δ + λ · πβ
h(a | s)

≥ α ·min

{
πβ
h(a | s)

64 log 1/δ
,
1

2λ

}

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where (a) follows as long as δ ≤ 0.9 and λ ≥ A. In the case when Th(s) = 0 we have π̃h(a | s) =
1/A ≥ 1/λ, so this lower bound still holds. Taking a union bound over arms proves the result.

Lemma 2. As long as λ ≥ 4 log(HT), we have

E[J (π̂β)− J (π̃)] ≲ (1 + αH) · H
2S log T

T
+ α · H

2Sλ

T
.

Proof. By the Performance-Difference Lemma we have:

J (π̂β)− J (π̃) =
H∑

h=1

∑
s∈S

wπ̂β

h (s) ·
(
Ea∼π̂β

h(s)
[Qπ̃

h(s, a)]− Ea∼π̃h(s)[Q
π̃
h(s, a)]

)

≤
H∑

h=1

∑
s∈S

wπ̂β

h (s) ·
∣∣∣Ea∼π̂β

h(s)
[Qπ̃

h(s, a)]− Ea∼π̃h(s)[Q
π̃
h(s, a)]

∣∣∣ . (5)

For (s, h) with Nh(s) > 0, we have∣∣∣Ea∼π̂β
h(s)

[Qπ̃
h(s, a)]− Ea∼π̃h(s)[Q

π̃
h(s, a)]

∣∣∣ ≤∑
a∈A

H · |π̂β
h(a | s)− π̃h(a | s)|,

where we have used that Qπ̂post

h (s, a) ∈ [0, H]. Then, using the definition of π̂β and π̃ we can bound
this as

≤
∑
a∈A

αH ·
∣∣∣∣Th(s, a)

Th(s)
− Th(s, a) + λ/A

Th(s) + λ

∣∣∣∣
=
∑
a∈A

αλH

A
·
∣∣∣∣ATh(s, a)− Th(s)

Th(s)(Th(s) + λ)

∣∣∣∣
≤
∑
a∈A

αλH

A
· ATh(s, a) + Th(s)

Th(s)(Th(s) + λ)

=
2αλH

Th(s) + λ
.

Since Ea∼π̂β
h(s)

[Qπ̃
h(s, a)]−Ea∼π̃h(s)[Q

π̃
h(s, a)] = 0 by construction when Th(s) = 0, we then have

(5) ≤
H∑

h=1

∑
s∈S

wπ̂β

h (s) · 2αλH

Th(s) + λ
.

Let E denote the good event from Lemma 3 with δ = S
T . Then as long as λ ≥ 4 log(HT) we can

bound the above as

≤
H∑

h=1

∑
s∈S

wπ̂β

h (s) · 2αλH

Th(s) + λ
I{E}+ 2H2 · I{Ec}

≤
H∑

h=1

∑
s∈S

wπ̂β

h (s) · 4αλH

wπβ

h (s) · T + λ
+ 2H2 · I{Ec}.

Let r̃ denote the reward function:

r̃h(s, a) :=
λ

wπβ

h (s) · T + λ

and note that r̃ ∈ [0, 1], and

H∑
h=1

∑
s∈S

wπ̂β

h (s) · 4αλH

wπβ

h (s) · T + λ
= 4αH · J (π̂β ; r̃).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

By Theorem 4.4 of Rajaraman et al. (2020), we have1

E[J (π̂β ; r̃)] ≲ J (πβ ; r̃) +
H2S log T

T

=

H∑
h=1

∑
s∈S

wπβ

h (s) · λ

wπβ

h (s) · T + λ
+

H2S log T

T

≤ HSλ

T
+

H2S log T

T
.

Noting that E[2H2 · I{Ec}] ≤ 2H2δ ≤ 2H2S
T completes the proof.

Lemma 3. With probability at least 1− δ, for all (s, h), we have

Th(s) + λ ≥ 1

2
wπβ

h (s) · T +
1

2
λ

as long as λ ≥ 4 log SH
δ .

Proof. Consider some (s, h) and note that E[Th(s)/T] = wπβ

h (s). By Bernstein’s inequality, we
have with probability 1− δ/SH:

Th(s) ≥ wπβ

h (s) · T −
√
2wπβ

h (s) · T · log SH

δ
− 2

3
log

SH

δ
.

We would then like to show that

wπβ

h (s) · T −
√

2wπβ

h (s) · T · log SH

δ
− 2

3
log

SH

δ
+ λ ≥ 1

2
(wπβ

h (s) · T + λ)

⇐⇒ 1

2
wπβ

h (s) · T +
1

2
λ ≥

√
2wπβ

h (s) · T · log SH

δ
+

2

3
log

SH

δ

As we have assumed λ ≥ 4 log SH
δ , it suffices to show

1

2
wπβ

h (s) · T + log
SH

δ
≥
√
2wπβ

h (s) · T · log SH

δ
.

However, this is true by the AM-GM inequality. A union bound proves the result.

Lemma 4 (Reversed version of Lemma A.8 of Rajaraman et al. (2020)). Adopting the notation from
Rajaraman et al. (2020), we have

E[Prπfirst [E]] ≤ SH logN

N

for Ec the event that within a trajectory, the policy only visits states for which Th(s) > 0.

Proof. Let Es,h denote the event that the state s is visited at step h and Th(s) = 0, and Eh :=
∪s∈SEs,h. Then, by simple set inclusions, we have:

E =
⋃

h∈[H]

⋃
s∈S
Es,h =

⋃
h∈[H]

⋃
s∈S

(
Es,h ∩

⋂
h′<h

Ech′

)
.

By a union bound it follows that

E[Prπfirst [E]] ≤
∑

h∈[H]

∑
s∈S

E[Prπfirst [Es,h ∩
⋂

h′<h

Ech′]].

1Note that Theorem 4.4 of Rajaraman et al. (2020) shows an inequality in the opposite direction of what we
show here: they bound J (πβ ; r̃)−E[J (π̂β ; r̃)] instead of E[J (π̂β ; r̃)]−J (πβ ; r̃). However, we see that the
only place in their proof where their argument relied on this ordering is in Lemma A.8. We show in Lemma 4
that a reverse version of their Lemma A.8 holds, allowing us to instead bound E[J (π̂β ; r̃)]− J (πβ ; r̃).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Now note that
Prπfirst [Es,h ∩

⋂
h′<h

Ech′] = Prπfirst [Es,h |
⋂

h′<h

Ech′]Prπfirst [
⋂

h′<h

Ech′]

= Prπfirst [Es,h |
⋂

h′<h

Ech′]Prπfirst [Ech−1 |
⋂

h′<h−1

Ech′]Prπfirst [
⋂

h′<h−1

Ech′]

...

= Prπfirst [Es,h |
⋂

h′<h

Ech′] ·
∏
h′<h

Prπfirst [Ech′ |
⋂

h′′<h′

Ech′′].

If the event
⋂

h′<h Ech′ holds, then up to step h no states are encountered for which Th′(s) = 0.
Thus, on such states, πfirst and πorc−first will behave identically. It follows that E[Prπfirst [Es,h |⋂

h′<h Ech′]] = E[Prπorc−first [Es,h |
⋂

h′<h Ech′]]. By a similar argument, we have Prπorc−first [Ech′ |⋂
h′′<h′ Ech′′] = Prπfirst [Ech′ |

⋂
h′′<h′ Ech′′] for each h′ < h. Thus,

Prπfirst [Es,h ∩
⋂

h′<h

Ech′] = Prπorc−first [Es,h ∩
⋂

h′<h

Ech′].

It follows that
E[Prπfirst [E]] ≤

∑
h∈[H]

∑
s∈S

E[Prπorc−first [Es,h ∩
⋂

h′<h

Ech′]] ≤
∑

h∈[H]

∑
s∈S

E[Prπorc−first [Es,h]].

From here the proof follows identically to the proof of Lemma A.8 of Rajaraman et al. (2020).

Proof of Theorem 1. Set λ = max{A, 4 log(HT)} and α = 1
max{A,H,log(HT)} . We have

J (πβ)− E[J (π̂β)] + E[J (π̂β)]− E[J (π̃)] ≲ H2S log T

T
+ (1 + αH) · H

2S log T

T
+ α · H

2Sλ

T

where we bound J (πβ) − E[J (π̂β)] by Theorem 4.4 of Rajaraman et al. (2020), and E[J (π̂β)] −
E[J (π̃)] by Lemma 2 since λ ≥ 4 log(HT). By our choice of α = 1

max{A,H,log(HT)} , we can
bound all of this as

≲
H2S log T

T
.

This proves the suboptimality guarantee. To show that π̃ is a γ-sampler, we applying Lemma 1 using
our values of λ and α

A.4 OPTIMALITY OF POSTERIOR SAMPLING

LetM denote a multi-armed bandit with A actions where r(a1) = 1 and r(ai) = 0 for i > 1. Let
πβ,i denote the policy defined as

πβ,i(a) =


1− α a = 1

α a = i

0 o.w.

for i > 1 and α some value we will set, and πβ,1(1) = 1. We letMi = (M, πβ,i) the instance-
demonstrator pair, Ei[·] the expectation on this instance, Pi the distribution on this instance, and
Pi,T = ⊗T

t=1Pi.
Lemma 5. Consider the instance constructed above. Then we have that, for j ̸= i:

Pi[π̂(i) ≥ γ · α] ≤ 2 · Pj [π̂(i) ≥ γ · α] + T · α.

Proof. This follows from Lemma A.11 of Foster et al. (2021), which immediately gives that:

Pi[{π̂(i) ≥ γ · α] ≤ 2 · Pj [π̂(i) ≥ γ · α] +D2
H(Pi,T ,Pj,T),

where DH(·, ·) denotes the Hellinger distance. Since the squared Hellinger distance is subadditive
we have

D2
H(Pi,T ,Pj,T) ≤ T ·D2

H(Pi,Pj).

By elementary calculations we see that D2
H(Pi,Pj) = α, which proves the result.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Lemma 6 (Full version of Theorem 2). Let π̂ be a γ-sampler of πβ for eachMi, i ∈ [A], and some
δ ∈ (0, 1/4], and assume that

J (πβ,i)− Ei[J (π̂)] ≤ ξ, ∀i ≥ 1

for some ξ > 0. Then if T ≤ 1
4α , it must be the case that

γ ≤ ξ

4Aα
.

In particular, setting ξ = c · log T
T and if α = 1

4T , we have

γ ≤ c · log T
A

.

Proof. Our goal is to find the maximum value of γ such that our constraint on the optimality of π̂ is
met, for eachMi. In particular, this can be upper bounded as

max
π̂,γ

γ s.t. Pi[{π̂(a) ≥ γ · πβ(a), ∀a ∈ A}] ≥ 1− δ, J (πβ,i)− Ei[J (π̂)] ≤ ξ, ∀i ≥ 1. (6)

Note that forMi, i ≥ 1, the event {π̂(a) ≥ γ · πβ,i(a), ∀a ∈ A} is a subset of the event {π̂(i) ≥
γ · α}. This allows us to bound (6) as

max
π̂,γ

γ s.t. Pi[π̂(i) ≥ γ · α] ≥ 1− δ, J (πβ,i)− Ei[J (π̂)] ≤ ξ, ∀i ≥ 1. (7)

By Lemma 5, we have that for each i > 1,

Pi[π̂(i) ≥ γ · α] ≤ 2 · P1[π̂(i) ≥ γ · α] + T · α.
Furthermore, on M1 we have J (πβ,1) − E1[J (π̂)] = E1[

∑
i>1 π̂(i)]. Given this, we can upper

bound (7) as

max
π̂,γ

γ s.t. P1[π̂(i) ≥ γ · α] ≥ 1

2
· (1− δ − T · α), ∀i > 1, E1[

∑
i>1

π̂(i)] ≤ ξ. (8)

By Markov’s inequality, we have

P1[π̂(i) ≥ γ · α] ≤ E1[π̂(i)]

γ · α .

Furthermore, since we have assumed δ ≤ 1/4 and T ≤ 1
4α , we have 1

2 · (1 − δ − T · α) ≥ 1
4 . We

can therefore bound (8) as

max
π̂,γ

γ s.t. E1[π̂(i)] ≥ 1

4
· γα,∀i > 1, E1[

∑
i>1

π̂(i)] ≤ ξ. (9)

However, we see then that we immediately have that

γ ≤ ξ

4Aα
.

This proves the result.

B APPROXIMATE POSTERIOR

Let P (· | µ) denote the distribution N (µ,Σ), where we assume µ is unknown and Σ is known.
Assume that we have samples D = {x1, . . . , xT } ∼ P (· | µ⋆). Let Qprior = N (0,Λ0) denote the
prior on µ. Throughout this section we let =d denote equality in distribution.
Lemma 7. Under Qprior, we have that the posterior Qpost on µ is:

Qpost(· | D) = N
(
ΛpostΣ

−1 ·
T∑

t=1

xt,Λpost

)
,

for Λ−1
post = Λ−1

0 + T · Σ−1.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof. Dropping terms that do not depend on µ, we have

Qpost(µ | D) =
P (D | µ)Qprior(µ)

P (D)

∝ exp

(
−1

2

T∑
t=1

(xt − µ)⊤Σ−1(xt − µ)

)
· exp

(
−1

2
µ⊤Λ0µ

)

∝ exp

(
−1

2
Tµ⊤Σ−1µ− 1

2
µ⊤Q−1

priorµ+ µ⊤Σ−1 ·
T∑

t=1

xt

)

= exp

(
−1

2
(µ− Λpostv)

⊤Λ−1
post(µ− Λpostv) +

1

2
v⊤Λpostv

)
for Λ−1

post = Λ−1
0 + T · Σ−1, and v = Σ−1 ·∑T

t=1 xt.

Lemma 8 (General version of Proposition 4). Let

µ̂ = argmin
µ

T∑
t=1

(µ− x̃t)
⊤Σ−1(µ− x̃t) + (µ− µ̃)⊤Λ−1

0 (µ− µ̃),

for x̃t = xt + wt, wt ∼ N (0,Σ), and µ̃ ∼ Qprior. Then µ̂ =d Qpost(· | D).

Proof. By computing the gradient of the objective, setting it equal to 0, and solving for µ, we see
that

µ̂ = (Λ−1
0 + TΣ−1)−1 ·

(
Σ−1 ·

T∑
t=1

x̃t + Λ−1
0 µ̃

)

= (Λ−1
0 + TΣ−1)−1 · Σ−1 ·

T∑
t=1

xt + (Λ−1
0 + TΣ−1)−1 ·

(
Σ−1 ·

T∑
t=1

wt + Λ−1
0 µ̃

)
.

Note that the first term in the above is deterministic conditioned on D, and the second term is mean
0 and has covariance (Λ−1

0 + TΣ−1)−1. We see then that the mean and covariance of µ̂ match the
mean the covariance of Qpost(· | D) given in Lemma 7, which proves the result.

Lemma 9. Let x̃ be distributed as

x̃ ∼ N (µ̂,Σ) for µ̂ ∼ Qpost(· | D) and D ∼ P (· | µ⋆).

Then

x̃ =d xT+1 + 2w + z

for xT+1 ∼ P (· | µ⋆), w ∼ N (0,Λpost), and z some random variable satisfying E[∥z∥22] ≤
O(1/T 2).

Proof. Note that xt = µ⋆ + ηt, for ηt ∼ N (0,Σ). We then have

µ⋆ − ΛpostΣ
−1 ·

T∑
t=1

xt = µ⋆ − TΛpostΣ
−1µ⋆ − ΛpostΣ

−1 ·
T∑

t=1

ηt. (10)

Note that

TΛpostΣ
−1µ⋆ = Λpost(TΣ

−1 + Λ−1
0)µ⋆ − ΛpostΛ

−1
0 µ⋆ = µ⋆ − ΛpostΛ

−1
0 µ⋆.

Furthermore, we have that

−ΛpostΣ
−1 ·

T∑
t=1

ηt =
d N (0, TΛpostΣ

−1Λpost) =
d N (0,Λpost − ΛpostΛ

−1
0 Λpost).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

It follows that

(10) =d N
(
ΛpostΛ

−1
0 µ⋆,Λpost − ΛpostΛ

−1
0 Λpost

)
.

Note that by construction, ΛpostΛ
−1
0 µ⋆ ≤ O(1/T). Furthermore, ∥ΛpostΛ

−1
0 Λpost∥2 = O(1/T 2).

Thus,

(10) =d N
(
0,Λpost −O(1/T 2)

)
+Od(1/T)

where here we let Od(1/T) denote some term X such that E[∥X∥22] ≤ O(1/T). As a perturbation
of O(1/T 2) to the covariance will result in a perturbation whose norm is bounded in expectation as
O(1/T), we have

(10) =d N (0,Λpost) +Od(1/T).

Let w ∼ N (0,Λpost) and η ∼ N (0,Σ). Then, by Lemmas 7 and 8:

µ̂+ η =d ΛpostΣ
−1 ·

T∑
t=1

xt + w + η

=d µ⋆ +N (0,Λpost) + w + η +Od(1/T)

=d µ⋆ + 2w + η +Od(1/T)

=d xT+1 + 2w +Od(1/T)

for xT+1 ∼ P (· | µ⋆).

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 ROBOMIMIC EXPERIMENTS

For all Robomimic experiments, we run POSTBC as stated in Algorithm 2 however, instead of com-
puting the full covariance of the posterior, we only compute the diagonal covariance. We instantiate
π̂θ with a diffusion policy that uses an MLP architecture. For fℓ, we train an MLP to simply predict
the noised action directly in Di (i.e. we do not use a diffusion model for fℓ), but use the same
architecture and dimensions for fℓ as the diffusion policies.

For each RL finetuning method, we sweep over the same hyperparameters for each pretrained policy
method (i.e. BC, σ-BC, POSTBC), and include results for the best one. For σ-BC, we swept over
values of σ and included results for the best-performing one. With the exception of DSRL Square,
for every Robomimic experiment, we train 5 diffusion policies per pertraining method, and perform
a single RL finetuning run on it, so that each stated values is averaged over 5 seeds; For DSRL Square
we only average over 3 seeds. For each evaluation, we roll out the policy 200 times. For DPPO we
utilize the default hyperparameters as stated in Ren et al. (2024), and utilize DDPM sampling. We
provide hyperparameters for the individual experiments below.

Table 3: Common DSRL hyperparameters for all experiments.

Hyperparameter Value
Learning rate 0.0003
Batch size 256
Activation Tanh
Target entropy 0
Target update rate (τ) 0.005
Number of actor and critic layers 3
Number of critics 2
Number of environments 4

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 4: DSRL hyperparameters for Robomimic experiments.

Hyperparameter Lift Can Square

Hidden size 2048 2048 2048
Gradient steps per update 20 (σ-BC), 10 (BC,POSTBC) 20 20
Noise critic update steps 10 10 10
Discount factor 0.99 0.99 0.999
Action magnitude 1.5 1.5 1.5
Initial steps 24000 24000 32000

Table 5: Hyperparameters for pretrained policies for Robomimic DSRL experiments.

Hyperparameter Lift Can Square

Dataset size (number trajectories) 5 10 40
Action chunk size 4 4 4
train denoising steps 100 20 100
inference denoising steps 8 8 8
Hidden size 512 1024 1024
Hidden layers 3 3 3
Training epochs 3000 3000 3000
Ensemble size (POSTBC) 10 10 10
Ensemble noise σ (POSTBC) 0.1 0.5 0.5
Ensemble training epochs (POSTBC) 3000 500 500
Posterior noise weight α (POSTBC) 3 1 1
Uniform noise σ (σ-BC) 0.1 0.05 0.05

Table 6: Common Best-of-N hyperparameters for all Robomimic experiments.

Hyperparameter Value
IQL learning rate 0.0003
IQL batch size 256
IQL β 3
Activation Tanh
Target update rate 0.005
Q and V number of layers 2
Q and V layer size 256
Number of critics 2
N (Best-of-N samples) 32

Table 7: Best-of-N hyperparameters for Robomimic experiments.

Hyperparameter Lift Can Square

Total gradient steps 3000000 2000000 2000000
IQL τ (1000 rollouts) 0.7 0.7 (BC, σ-BC), 0.9 (POSTBC) 0.7
IQL τ (2000 rollouts) 0.7 (BC, σ-BC), 0.9 (POSTBC) 0.7 0.7
Discount factor 0.99 0.999 0.999

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 8: Hyperparameters for pretrained policies for Robomimic Best-of-N experiments.

Hyperparameter Lift Can Square

Dataset size (number trajectories) 20 10 40
Action chunk size 1 4 4
train denoising steps 100 20 100
inference denoising steps 8 8 8
Hidden size 512 1024 1024
Hidden layers 3 3 3
Training epochs 3000 3000 3000
Ensemble size (POSTBC) 10 10 10
Ensemble noise σ (POSTBC) 0.5 0.5 0.5
Ensemble training epochs (POSTBC) 500 500 500
Posterior noise weight α (POSTBC) 2 1 1
Uniform noise σ (σ-BC) 0.1 0.05 0.05

Table 9: Hyperparameters for pretrained policies for Robomimic DPPO experiments.

Hyperparameter Lift Can Square

Dataset size (number trajectories) 5 50 30
Action chunk size 4 1 4
train denoising steps 100 20 100
Hidden size 512 1024 1024
Hidden layers 3 3 3
Training epochs 3000 3000 3000
Ensemble size (POSTBC) 10 10 10
Ensemble noise σ (POSTBC) 0.1 0.5 0.5
Ensemble training epochs (POSTBC) 3000 500 500
Posterior noise weight α (POSTBC) 3 1 1
Uniform noise σ (σ-BC) 0.1 0.05 0.05

C.2 LIBERO EXPERIMENTS

For Libero, we utilize the transformer architecture from Dasari et al. (2024) for π̂θ. We run POSTBC
as stated in Algorithm 2, but instead of approximating the posterior by adding noise to actions, we
instead used a bootstrap estimate, where we sample from D with replacement, and fit fℓ to the boot-
strapped samples (we note that this is another common strategy for uncertainty estimation in RL,
see e.g. Osband et al. (2016a)). For fℓ, we utilize the same ResNet and tokenizer as π̂θ, but simply
utilize a 3-layer MLP head on top of it—trained to predict the actions directly—rather than a full
diffusion transformer. For the Best-of-N experiments, POSTBC utilizes a diagonal posterior covari-
ance estimate, while for the DSRL runs it is trained with the full matrix posterior covariance estimate.
We train on Libero-90 data from the first 3 scenes of Libero-90—KITCHEN-SCENE1, KITCHEN-
SCENE2, and KITCHEN-SCENE3—and use 25 trajectories from each task in each scene. For task
conditioning, we conditioning π̂θ on the BERT language embedding (Devlin et al., 2019) of the
corresponding text given for that task in the Libero dataset.

For each RL finetuning method, we sweep over the same hyperparameters for each pretrained policy
method (i.e. BC, σ-BC, POSTBC), and include results for the best one. For σ-BC, we swept over
values of σ and included results for the best-performing one. The DSRL experiments are averaged
over 3 different pretraining runs per method, and one DSRL run per pretrained run. The Best-of-N
experiments are averaged over 2 different pretraining runs per method, and 2 Best-of-N runs per
pretrained run. For each evaluation, we roll out the policy 100 times.

We provide hyperparameters for the individual experiments below.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 10: DSRL hyperparameters for all Libero experiments.

Hyperparameter Value
Learning rate 0.0003
Batch size 256
Activation Tanh
Target entropy 0
Target update rate (τ) 0.005
Number of actor and critic layers 3
Layer size 1024
Number of critics 2
Number of environments 1
Gradient steps per update 20
Discount factor 0.99
Action magnitude 1.5
Initial episode rollouts 20

Table 11: Best-of-N hyperparameters for all Libero experiments.

Hyperparameter Value
IQL learning rate 0.0003
IQL batch size 256
IQL β 3
Activation Tanh
Target update rate 0.005
Q and V number of layers 2
Q and V layer size 256
Number of critics 2
N (Best-of-N samples) 32
IQL gradient steps 50000
IQL τ 0.9
Discount factor 0.99

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 12: Hyperparameters for DiT diffusion policy in Libero experiments.

Hyperparameter Value

Batch size 150
Learning rate 0.0003
Training steps 50000
LR scheduler cosine
Warmup steps 2000
Action chunk size 4
Train denoising steps 100
Inference denoising steps 8
Image encoder ResNet-18
Hidden size 256
Number of Heads 8
Number of Layers 4
Feedforward dimension 512
Token dimension 256
Ensemble size (POSTBC) 5
Ensemble training steps (POSTBC) 25000
Ensemble layer size 512
Ensemble number of layers 3
Posterior noise weight (POSTBC) 2 (DSRL run), 4 (Best-of-N run)
Uniform noice σ (σ-BC) 0.05

29

	Introduction
	Related Work
	Preliminaries
	Demonstrator Action Coverage via Posterior Sampling
	Demonstrator Action Coverage as a Prerequisite for Finetuning
	Behavioral Cloning Fails to Achieve Action Coverage
	Demonstrator's Posterior Policy Achieves Action Coverage

	Posterior Behavioral Cloning
	Posterior Behavioral Cloning

	Experiments
	Posterior BC Enables Efficient RL Finetuning

	Proofs
	BC Policy Fails to Cover Actions
	Uniform Noise Fails
	Analysis of Posterior Policy
	Optimality of Posterior Sampling

	Approximate Posterior
	Additional Experimental Details
	Robomimic Experiments
	Libero Experiments

