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ABSTRACT

Standard practice across domains from robotics to language is to first pretrain a
policy on a large-scale demonstration dataset, and then finetune this policy, typ-
ically with reinforcement learning (RL), in order to improve performance on de-
ployment domains. This finetuning step has proved critical in achieving human or
super-human performance, yet while much attention has been given to developing
more effective finetuning algorithms, little attention has been given to ensuring the
pretrained policy is an effective initialization for RL finetuning. In this work we
seek to understand how the pretrained policy affects finetuning performance, and
how to pretrain policies in order to ensure they are effective initializations for fine-
tuning. We first show theoretically that, by training a policy to clone the demon-
strator’s posterior distribution given the demonstration dataset—rather than sim-
ply the demonstrations themselves—we can obtain a policy that ensures coverage
over the demonstrator’s actions—a minimal condition for effective finetuning—
without hurting the performance of the pretrained policy. Furthermore, we show
that standard behavioral cloning (BC) pretraining fails to achieve this without sig-
nificant tradeoffs in terms of sampling costs. Motivated by this, we then show
that this approach is practically implementable with modern generative policies
in robotic control domains, in particular diffusion policies, and leads to signifi-
cantly improved finetuning performance on realistic robotic control benchmarks,
as compared to standard behavioral cloning.

1 INTRODUCTION

Across domains—from language, to vision, to robotics—a common paradigm has emerged for train-
ing highly effective “policies”: collect a large set of demonstrations, “pretrain” a policy via behav-
ioral cloning (BC) to mimic these demonstrations, then “finetune” the pretrained policy on a deploy-
ment domain of interest. While pretraining can endow the policy with generally useful abilities, the
finetuning step has proved critical in obtaining effective performance, enabling human value align-
ment and reasoning capabilities in language domains (Ouyang et al.| 2022} [Bai et al., [2022a; Team
et al., 20255 |Guo et al., 2025a), and improving task solving precision and generalization to unseen
tasks in robotic domains (Nakamoto et al.| 2024; |Chen et al., 2025} |Kim et al., 2025; [Wagenmaker,
et al.,[2025). In particular, reinforcement learning (RL)-based finetuning—where the pretrained pol-
icy is deployed in a setting of interest and its behavior updated based on the outcomes of these online
rollouts—is especially crucial in improving the performance of a pretrained policy.

Critical to achieving successful RL-based finetuning performance in many domains—particularly in
settings when policy deployment is costly and time-consuming, such as robotic control—is sample
efficiency; effectively modifying the behavior of the pretrained model using as few deployment roll-
outs as possible. While significant attention has been given to developing more efficient finetuning
algorithms, this ignores a primary ingredient in the RL finetuning process: the pretrained policy it-
self. Though generally accepted that a stronger pretrained policy is a better initialization for finetun-
ing (Guo et al.,2025a;[Yue et al., 2023)), it is not well understood how pretraining impacts finetuning
performance beyond this, and how we might pretrain policies to enable more efficient RL finetuning.

In this work we seek to understand the role of the pretrained policy in RL finetuning, and how we
might pretrain policies that (a) enable efficient RL finetuning, and (b) before finetuning, perform no
worse than the standard BC policy. We propose a novel pretraining approach—posterior behavioral
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Figure 1: We consider the setting where we are given demonstration data for some tasks of interest,
(a). (b) Standard BC pretraining fits the behaviors in the demonstrations, leading to effective perfor-
mance in regions with high demonstration data density, yet poor performance in regions with low
data density. (c) This leads to ineffective RL finetuning, since rollouts from the BC policy provide
little meaningful reward signal in such low data density regions, which is typically necessary to en-
able effective improvement. (d) In contrast, we propose posterior behavioral cloning, which instead
of directly mimicking the demonstrations, trains a generative policy to fit the posterior distribution
of the demonstrator’s actions. This endows the pretrained policy with a wider distribution of ac-
tions in regions of low demonstrator data density, while in regions of high data density it reduces to
approximately the standard BC policy. (e) This wider action distribution allows for collection of di-
verse observations with more informative reward signal, allowing for more effective RL finetuning.

BC pretraining
+ RL finetuning

Posterior BC
pretraining
+ RL finetuning

cloning—which, rather than fitting the empirical distribution of demonstrations as standard BC does,
instead fits the posterior distribution over the demonstrator’s behavior. This enables the pretrained
policy to take into account its potential uncertainty about the demonstrator’s behavior, and adjust the
entropy of its action distribution based on this uncertainty. In states where it is uncertain about the
demonstrator’s actions, posterior BC samples from a high-entropy distribution, allowing for a more
diverse set of actions that may enable further policy improvement, while in states where it is certain
about the demonstrator’s actions, it samples from a low-entropy distribution, simply mimicking what
it knows to be the (correct) demonstrator behavior (see Figure |I[)

Theoretically, we show that posterior BC leads to provable improvements over standard BC in terms
of the potential for downstream RL performance. In particular, we focus on the ability of the pre-
trained policy to cover the demonstrator policy’s actions—whether it samples all actions the demon-
strator policy might sample—which, for finetuning approaches that rely on rolling out the pretrained
policy, is a prerequisite for ensuring finetuning can even match the performance of the demonstrator.
We show that standard BC can provably fail to cover the demonstrator’s distribution, while posterior
BC does cover the demonstrator’s distribution, incurs no suboptimality in the performance of the
pretrained policy as compared to the standard BC policy, and achieves a near-optimal sampling cost
out of all policy estimators which have suboptimality no more than the BC policy’s.

Inspired by this, we develop a practical approach to approximating the posterior of the demonstra-
tor in continuous action domains, and instantiate posterior BC with modern generative models—
diffusion models—on robotic control tasks. We demonstrate experimentally that posterior BC pre-
training can lead to significant performance gains in terms of the efficiency and effectiveness of
RL finetuning, as compared to running RL finetuning on a policy pretrained with standard BC, and
achieves these gains without decreasing the performance of the pretrained policy itself. We show
that this holds for a variety of finetuning algorithms—both policy-gradient-style algorithms, and al-
gorithms which explicitly refine or filter the distribution of the pretrained policy—enabling effective
finetuning performance across a variety of challenging robotic tasks.

2 RELATED WORK

BC pretraining. BC training of expressive generative models—where the model is trained to pre-
dict the next “action” of the demonstrator—forms the backbone of pretraining for LLMs (Radford
et al., 2018)) and robotic control policies (Bojarskil [2016; [Zhang et al., 2018 Rahmatizadeh et al.,
2018} [Stepputtis et al., 2020; [Shafiullah et al., |2022; |Gu et al.|, 2023} [Team et al., [2024; Zhao et al.,
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[2024}, Black et al.l 2024} [Kim et all, 2024). We focus in particular on policies parameterized as
diffusion models (Sohl-Dickstein et al., 2015} [Ho et al, [2020; [Song et al} 2020), which have seen
much attention in the robotics community (Chi et al., 2023} |Ankile et al., 2024a; [Zhao et al 2024}
Ze et al., [2024; [Sridhar et al.|, 2024; Dasari et al., 2024} [Team et al.| 2024; Black et al., 2024; Bjorck]
et al.,[2025). These works, however, simply pretrain with standard BC, and do not consider how the
pretraining may affect RL finetuning performance.

Other approaches for pretraining from demonstrations. While our primary focus is on behav-
ioral cloning (as noted, the workhorse of most modern applications) other approaches to pretraining
from demonstrations exist. BC is only one possible instantiation of imitation learning; other
approaches to imitation learning include inverse RL (Ng et al., 2000} [Abbeel & Ng|, 2004} [Ziebart]
2008), methods that aim to learn a policy matching the state distribution of the demonstrator,

such as adversarial imitation learning (Ho & Ermon|, 2016} [Kostrikov et al.} 2018 2017}

Kostrikov et al.,[2019; Ni et al.| 2021}, (Garg et al., 2021; Xu et al., 2022; [Li et al., [2023b; |Yue et al.,
2024), and robust imitation learning (Chae et al., 2022} [Desai et al., [2020; [Tangkaratt et al., 2020}

ang et al., 2021} [Giammarino et al.} [2025). The majority of these works, however, either assume
access to additional data sources (e.g. suboptimal trajectories), or require online environment access
and are therefore not truly offline pretraining approaches, the focus of this work. Furthermore, none
of these works explicitly consider the role of pretraining in enabling efficient RL finetuning.

Meta-learning directly aims learn an initialization that can be quickly adapted to a new task. While
instantiations of meta-learning for imitation learning exist (Duan et al., 2017; [Finn et al 2017b}
[Tames et al,[2018} [Dasari & Guptal, 2021}, |Gao et al., [2023)), our setting differs fundamentally from
the meta-imitation learning setting. Meta-imitation learning assumes access to demonstration data
from more than one task, and attempts to learn an initialization that will allow for quickly adapting
to demonstrations from a new task. In contrast, we primarily consider learning on a single task
(though our approach does extend to multi-task learning), and aim to find an initialization that
allows for improvement on the same task, while preserving pretrained performance on this task.
Furthermore, rather than learning from new demonstrations, as meta-imitation learning does, we
aim to learn from (potentially suboptimal) data collected online and that is labeled with rewards.

RL finetuning of pretrained policies. RL finetuning of pretrained policies is a critical step in both
language and robotic domains. In language domains, RL finetuning has proved crucial in aligning
LLMs to human values 2019; [Ouyang et al., [2022} [Bai et al, 2022a}; [Ramamurthy
et al,[2022; [Touvron et al., 2023)), and enabling reasoning abilities (Shao et al., 2024} Team et al.,
2025; Guo et al., 2025a). A host of finetuning algorithms have been developed, both online (Bai
etal., |Bakker et al.,[2022} [Dumoulin et al.}, 2023} [Lee et al.,[2023} [Munos et al.,[2023}[Swamy
et al.| Chakraborty et al., [2024; |Chang et al.| and offline (Rafailov et al. 2023; |Azar
et al.,[2024; Rosset et al.,[2024} Tang et al., 2024; [Yin et al} 2024). In robotic and control domains,
RL finetuning methods include directly modifying the weights of the base pretrained policy
let al.l 2024; Xu et all [2024; Mark et al, 2024} Ren et al., 2024} [Hu et al.| 2025}, [Guo et al., [2025b;
Lu et al.} 2025}, [Chen et al.} 2025}, [Liu et al., [2025)), Best-of- N sampling-style approaches that filter
the output of the pretrained policy with a learned value function 2022, [Hansen-Estruch
let al} 2023}, [He et al.| 2024} [Nakamoto et al., 2024} [Dong et all, 2025b)), “steering” the pretrained

policy by altering its sampling process (Wagenmaker et al., [2025)), and learning smaller residual
policies to augment the pretrained policy’s actions (Ankile et al., [2024b} [Yuan et al) 2024} Jiilg|
let all}, 2025 [Dong et all,[2025a). Our work is tangential to this line of work: rather than improving
the finetuning algorithm, we aim to ensure the pretrained policy is amenable to RL finetuning.

Posterior sampling and exploration. Our proposed approach relies on modeling the posterior
distribution of the demonstrator’s actions. While this is, to the best of our knowledge, the first
example of applying posterior sampling to BC, posterior methods have a long history in RL, going

back to the work of Thompson| (1933). This works spans applied (Osband et al., 2016aib}, [2018;

Zintgraf et al.}[2019) and theoretical (Agrawal & Goyal, 2012} [Russo & Van Royl,[2014;|Russo et al.
2018; Janz et al.,[2024; [Kveton et al, [2020; Russol, 2019) settings. More generally, our approach can

be seen as enabling BC-trained policies to explore more effectively. Exploration is a well-studied
problem in the RL community (Stadie et al., 2015 Bellemare et al., 2016; Burda et al.| 2018}
let all 2018}, [Ecoffet et all 2019; [Shyam et al.| 2019; Lee et al., 2021} |Henaff et al., [2022), with
several works considering learning exploration strategies from offline data (Hu et al.l 2023}
et al, [2023a; [Wilcoxson et al, [2024; Wagenmaker et al.). These works, however, either consider
RL-based pretraining (while we focus on BC) or do not consider the question of online finetuning.
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3 PRELIMINARIES

Mathematical notation. Let < denote inequality up to absolute constants, A y the simplex over X,
and unif (") the uniform distribution over X'. I{-} denotes the indicator function, E™[-] the expecta-
tion under policy 7 and, unless otherwise noted, E[-] the expectation over the demonstrator dataset.

Markov decision processes. We consider decision-making in the context of episodic, fixed-horizon
Markov decision processes (MDPs). An MDP M is denoted by a tuple (S, A, {P,}HL,, Po,r, H),
where S is the set of states, A the set of actions, P}, : S x A — /Ag the next-state distribution at step
h, Py € As the initial state distribution, rj, : § x A — Ajg 1) the reward distribution, and H the
horizon. Interaction with M proceeds in episodes of length H. At step 1, we sample a state s1 ~ P,
take an action a; € A, receive reward 71(s1, a1 ), and transition to state sa ~ Py(- | $1,a1). This

continues for H steps until the MDP resets. We let J(m) := E™ [Zthl rr(sn,ar)] denote the
expected reward for policy 7 over one episode. In general, our goal is to maximize J ().

Behavioral cloning. We assume we are given some dataset ® = {(s},al,..., s, al;)} ; col-
lected by running a demonstrator policy 77 on M, so that (st at, ..., s, a%;) denotes a full tra-
jectory rollout of 7% on M, with af, ~ 77 (- | s!). We assume that 7 is Markovian but otherwise
make no further assumptions on it (so in particular, 7 may be stochastic and suboptimal). Our
demonstrator dataset does not include reward labels—preventing standard offline RL approaches
from applying—but we assume that we have access to reward labels during online interactions.

Behavioral cloning (BC) attempts to fit a policy 77 to match the action distribution of 7° using
D. Typically this is achieved via supervised learning, where 7 is trained to predict a given s for
(s,a) € ®. In the tabular setting, which we consider in Section E], the natural choice for 7° simply
fits the empirical distribution of actions in ©:

pla] s) = 1) I{Ty(s) > 0} + unif(A) - I{T,(s) = 0} (1)

where Th,(s,a) = S1_, I{(s}, al) = (s,a)} and Tj,(s) = S, I{s}, = s}. The following result
bounds the suboptimality of this estimator, and shows that it is optimal estimator, up to log factors.

Proposition 1 (Rajaraman et al.| (2020)). If ® contains T demonstrator trajectories, we have
2

J (@) —E[T(FP)] < %. Furthermore, for any estimator T, there exists some MDP M

and demonstrator ©° such that J (?) — E[J (7)] = min{H, HTZS}

In other words, without additional reward information, we cannot in general hope to obtain a policy
from D that does better than (T)), if our goal is to maximize the performance of the pretrained policy.

4 DEMONSTRATOR ACTION COVERAGE VIA POSTERIOR SAMPLING

In this section we seek to understand how pretraining affects the ability to further improve the down-
stream policy with RL finetuning, and how we might pretrain to enable downstream improvement.
For simplicity, here we assume that our MDP M is tabular, and let S and A denote the cardinal-
ities of the state and action spaces, respectively; we will show how our proposed approach can be
extended to more general settings in the following section.

4.1 DEMONSTRATOR ACTION COVERAGE AS A PREREQUISITE FOR FINETUNING

The performance of RL finetuning depends significantly on the RL algorithm applied. Rather than
limiting our results to a particular RL algorithm, we instead focus on what is often a prerequisite
for effective application of any such approach—demonstrating that the support of the pretrained
policy is sufficient to enable improvement. In particular, we consider the following definition for the
“effective” support of a policy, relative to the demonstrator policy 7.

Definition 4.1 (y-sampler). We say that policy  is a y-sampler of 7 if, for all (s,h) € S x [H]
and a € A, we have that wf(a | s) >~ -mr(als).

The majority of RL finetuning approaches rely on rolling out the pretrained policy—which we de-
note as 7P*—online, and using the collected observations to finetune its behavior. If our pretrained
policy is a -sampler of 7°, then this ensures that any action sampled by 77 will also be sampled
by 7P* in these rollouts (with some probability). While this is not a sufficient condition for online
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improvement, it is a necessary condition, in some cases, for performing as well as the demonstra-
tor 7 (as Proposition [2{ demonstrates), and is therefore a necessary condition for improving over
7P, Furthermore, the value of ~ also has impact on the computational cost of RL finetuning. A
~-sampler requires a factor of % more samples than 7° to ensure it samples some action in the sup-

port of 7”. For approaches such as Best-of-N sampling that rely on sampling many actions from
the pretrained policy and then taking the best one, a large value of  therefore ensures that we can
efficiently sample actions likely to be sampled by the demonstrator policy 7, while if + is small, it
may require taking a significant number of samples from 7P* to ensure we cover the behavior of 77,
greatly increasing the computational cost due to this sampling.

In the following, we aim to understand how we can pretrain policies that are y-samplers, and to
do this with large values of . Furthermore, we aim to achieve this without incurring significant
additional suboptimality as compared to 7°—we would like to ensure that 7P* is an effective initial-
ization for finetuning while still itself achieving effective online performance.

4.2 BEHAVIORAL CLONING FAILS TO ACHIEVE ACTION COVERAGE

We first consider standard BC, i.e. (1. The following result shows that the estimator in (TJ), despite
achieving the optimal suboptimality rate, can fail to achieve sufficient action coverage, and that this
fundamentally limits its ability to serve as an effective initialization for finetuning.

Proposition 2 (Informal). Fix any ¢ € (0, 1/8]. Then there exists some MDP M and demonstrator

policy 78 such that, unless T > ﬁ, we have that, with probability at least 1/2:

J(mP) —e> max_.g J(7) for I = {m:7mp(a]s)=0 if%ﬁ(a | s) =0,Vs,a,h}.
Furthermore, if we collect samples with ©° on M we will not be able to identify an e-optimal policy.

We state the full version of Proposition 2] as Proposition [5]in the appendix. Proposition[2]shows that,
unless we have a sufficiently large demonstrator dataset (7' > %06), half of the time (i.e. half of
the random draws of the demonstrator dataset) the policy returned by standard BC will not contain
a near-optimal policy in its support and, furthermore, that rolling out 7° on M will therefore not
allow us to learn a near-optimal policy on M. In other words, some fraction of the time standard
BC produces a policy which will simply never play actions required to solve the task at the level
of the demonstrator policy, and any online improvement approach that relies on rolling out the BC
pretrained policy to collect observations will therefore fail to identify an e-optimal policy—online
improvement is not possible with this pretrained policy. This implies that pretraining a policy that
matches the demonstrator’s empirical action distribution as represented in ®—the typical goal of
behavioral cloning—is insufficient for downstream RL finetuning.

A straightforward solution to this is to simply add exploration noise to our pretrained policy—rather
than playing 7° at every step, with some probability play a random action. While this will clearly ad-
dress the shortcoming of generative BC outlined above—every action will now be in the support—as
the following result shows, there is a fundamental tradeoff between the suboptimality of this policy
and the number of samples from the policy required to ensure we cover our demonstrator’s behavior.

Proposition 3. Fix T > 0, H > 2, § > [logy 4T] + 2, £ > 0, define € := 15187 o ¢ 4ng

assume € < 3. Define the policy T as 7, " (- | 5) :== (1 — ) - ﬁf( | 8) + - unif(A). Then there
exists some MDP M with S states, 2 actions, and horizon H where, in order to ensure that:

I T8~ BTG ) < e,
2. T is a y-sampler of ™ with probability at least 1 — 6, for 6 € (0,1/4e),

we must have o < 32¢ and v < % - €. Furthermore, with probability at least 1 /4e, we have

J(@P)— % e> max_ g J(m) for Il := {m:mn(als) :Ozf%}?(a | s) =0,Vs,a,h}.

. 2
In order to achieve the %

suboptimality rate achieved by standard BC, Proposition |3| then

2
shows that we must have v < % . % or, in other words, to ensure we sample a particular

action from 7 that is sampled by 7, it will require sampling a factor of 5oL

m more Samples
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from 7% than it would require from 7”. While this does enable approaches like Best-of-N to
improve the policy, in settings where 7' is large, this requires a significant number of samples from
the pretrained policy, greatly increasing the computational burden of such an approach. Furthermore,
Proposition [3] shows that this limitation is critical—if we seek to shortcut this exploration and set
a < 0, we will fail to match the performance of 77 on this instance completely.

4.3 DEMONSTRATOR’S POSTERIOR POLICY ACHIEVES ACTION COVERAGE

Can we do better than this? Here we show that mixing the BC policy with the posterior on the
demonstrator’s policy achieves a near optimal balance between suboptimality and action coverage.

Definition 4.2 (Posterior Demonstrator Policy). Given prior distribution P?. € Aq over demon-

prior
(- | @) denote the posterior distribution given demonstration dataset ©. We

then define the posterior demonstrator policy 7% as 7> (a | 8) :==E__ s (joy[mala | s)].
post

strator policies, let Pfost

7Post is the expected policy of the demonstrator under prior Pfrior given observations . In practice,
we require a slightly regularized version of 7P°t, 7P°st:A which is identical to 7Pt if HT < e,

and otherwise adds a small amount of regularization (see Section[B.3). We have the following.
Theorem 1. Let PP

prior be the uniform distribution over Markovian policies, and set Tt to

ials)=(1—-a) 7(als) +a 75" (a]s) 2)

_ 1
fOFO[ ~ max{A,H,log(HT)}" Then

~ H2SlogT
J(r%) = E[T (7P)] € 775,
and with probability at least 1 — 0, for all (s, a, h),

B
- ) [ _mials)
™, (@] 8) 2 armriesram ‘mm{log?SH/@’ Atlos(HT) f -

Theorem 2. Fix any A > 1 and T > 1. Then there exists a family of MDPs {M"};c4) such that

each M has A actions and S = H = 1, and if any estimator 7 satisfies TM' (771)—EM'[7 (7)] <
% for all i € [A] and some constant ¢ > 0, then for T to be a y-sampler of T on each
M?" with probability at least § € (0,1/4], we must have v < ¢ - loiT.

C -

Theorem 1| shows that our choice of 7Pt achieves the same suboptimality guarantee as 7°—it per-
forms no worse that 7°—and requires only a factor of ~ A+ H more samples to ensure we sample a
particular action from 7# than 7 itself does for actions a such that ﬂf a | s) < 1/A (and otherwise
requires at most a factor of A(A + H) more). Furthermore, Theorem |2| shows that, to achieve this
optimal suboptimality guarantee, any estimator must take a factor of A more samples than 7. In
other words, if we want a policy that preserves the optimality of 7 while playing a diverse enough
distribution to enable further online improvement, mixing the posterior demonstrator policy with
the BC policy achieves the near-optimal tradeoff, and plays all actions taken by 7° with minimal
computational overhead and without incurring additional suboptimality over the BC policy.

5 POSTERIOR BEHAVIORAL CLONING

We next show this approach can be instantiated in continuous control settings with expressive gen-
erative policy classes. To motivate our instantiation, consider the setting where:
B 2
T (- | 8) = Nun(s), 0jp(s) - 1),
for (unknown) s (s) € R and (known) oy,(s) € R. Assume we have observations ©® =
{a1,...,ax} ~ 72(- | s) and a N(0,I) prior on p(s). The following result, an extension of
Osband et al.| (2018), shows we can approximate posterior samples by fitting to “noisy” actions.

Proposition 4. We have Ppﬂost(~ | D) =N (W . Zle ag, 0522;()2 7 - 1) and, if we set

~ . k ~ ~
fin(s) = argmin,, 377 [l — @13 + o (s) - | — ()13,
foray = at +wy, wy ~ N(0,02(s) - I), and i ~ N(0, I), then [in(s) ~ Pfost(- | D).



Under review as a conference paper at ICLR 2026

Proposition [4| shows that we can compute samples from the posterior on py,(s) by simply fitting
a “noised” version of our demonstrations. While in practice our data likely does not satisfy this
Gaussianity assumption, the above argument nonetheless suggests that a simple approach to capture
the behavior of 77 (- | s) is to generate a “noisy” version of D by perturbing the actions in D with
random noise, then fitting some predictor f on this noisy version of ©. By repeating this K times,
we can generate K approximate posterior samples { f¢ }se[x]-

Our theory suggests, however, that we should sample not simply from the posterior, but from 7PSt,

the expected policy under the posterior. In the Gaussian setting of Proposition ] to sample from
7P (- | s) it suffices to perturb a sample from the posterior, fij,(s), by 0-mean noise with the
demonstrator’s covariance: fiy,(s) +w ~ 72 (- | s) if w ~ N(0, 07 (s) - I). If we do not know the
demonstrator’s covariance, we can approximate it by sampling, for (s,a) € ©: @ = a + w where

w ~ N(0, 0;7 E’S( J)rk - I). Note that the covariance of a’s distribution is precisely the demonstrator’s

covariance, since a ~ 7rh( | s). Therefore, @ will be distributed with the demonstrator’s mean and
covariance, plus 0-mean noise sampled with the posterior’s covariance. While the mean of this distri-
bution differs from 75 °*! (- | s), its covariance matches the covariance of 7™ (- | s). As we show in
Lemma | the difference in mean between 72 (- | s) and 77 (- | s) is distributed approximately as
the posterior’s covariance, suggesting that the difference in mean between a and wpogt( | s)is there-

fore effectively washed out by the posterior’s randomness—a is sampled approximately as Apo“( |
s). To produce an approximate sample from 7P°5t(- | s) in the general case, then, we sample:

a=a+a-w, w~N(0,cov(s)), (3)

for any (s,a) € ©, and where cov(s) := Zle(fg(s) — F(s)(fe(s) — f(s))T for

f(s) + + Zf:l fe(s), and « is some weighting we can tune as desired.

5.1 POSTERIOR BEHAVIORAL CLONING

Applying Proposition E| and Equation (3), we can generate approximate samples from 7Pt (- | )
for any s in our demonstration dataset. Theorem |1/ suggests that, to obtain a pretrained policy 7P*
that is an effective initialization for RL finetuning, it suffices to fit 7" to a mixture distribution of the
BC policy and 7P°%*. Approximating this mixture by modulating « in (3)), we arrive at the following.

Algorithm 1 Posterior Behavioral Cloning (POSTBC)

1: input: demonstration dataset D, generative model class 7, posterior weight o

2: Generate approximate posterior samples { f/ },c|x) and compute cov(-) from { f;},¢[x] as above
3: for:=1,2,3,...do

4: Draw batch ©; ~ unif (D)

5 For all (s,a) € ©;, compute a as in (3) using cov(-) and «, and set D; < {(s,a) : s € D}
6 Take gradient step on 77 on loss of ®;

With 7% an expressive generative model, Algorithm will produce a policy which, instead of fitting
the empirical distribution of the demonstrator, fits the full expected posterior of the demonstrator’s
behavior. This approximates the posterior mixture in Equation (2)), and, Theorem [I] suggests, leads
to a more effective initialization for RL finetuning, instantiating the behavior illustrated in Figure[T}
While Proposition 4] motivates a principled method for generating approximate posterior samples,
the precise method used to generate such samples is not a critical part of our approach, and any other
method to generate posterior samples can also be combined with Algorithm [T} In particular, we
find that in many cases computing fy by fitting on a dataset generated by bootstrapped sampling—
generating a dataset by sampling with replacement from ® (Fushiki et al.l 2005} |Osband & Van Roy,
2015 |Osband et al.l 2016a)—often leads to more effective performance.

6 EXPERIMENTS

Finally, we seek to demonstrate that in practice posterior behavioral cloning (a) enables more
efficient RL finetuning of pretrained policies, and (b) leads to a pretrained policy that performs
effectively itself, on par with the BC pretrained policy. We focus on continuous control domains, in
particular robotic control. We test on both the Robomimic (Mandlekar et al., 2021) and Libero
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(Liu et al) [2023) simulators. Robomimic is comprised of several robotic manipulation tasks,
providing a set of human demonstrations on each task, and enables training and finetuning of single-
task BC policies. We consider the Lift, Can, and Square tasks on Robomimic. Libero
similarly contains a variety of robotic manipulation tasks with provided human demonstrations, but
enables multi-task training, allowing for pretraining on large corpora of data and then finetuning
on particular tasks of interest. In particular, we rely on a subset of the Libero 90 suite of tasks,
training and evaluating on the first 21 tasks, corresponding to three different kitchen manipulation
scenes. See Figure [2] for a visualization of our settings. Further details on all experiments can be
found in Section[Dland additional ablations can be found in Section [D.3l

We instantiate 7P* with a diffusion model, which has become the de-facto standard for parameter-
izing BC policies in continuous control settings (Chi et al., 2023} |Ankile et al., [2024a; Dasari et al.}
2024; Team et al.| 2024} Black et al.| 2024} Bjorck et al. 2025)). For the Robomimic experiments,
we use an MLP-based architecture, trained on a single-task demonstration dataset, and rely on state-
based observations. For Libero, we utilize a diffusion transformer architecture due to|Dasar1 et al.
(2024) and rely on image-based observations and language task conditioning. In Libero, we pre-
train a single 7t policy on the demonstration data from all 21 tasks (Black et al.l[2024; |Kim et al.,
2024} Khazatsky et al.,|2024])), and then run RL finetuning on each individual task. To leave room for
RL improvement (i.e. to ensure performance is not saturated by the pretrained policy) we limit the
number of demos per task in the pretraining dataset. In all cases, we use a binary success reward.

In principle, POSTBC can be combined with any RL finetuning algorithm, and we seek to demon-
strate that it improves performance on a representative set of approaches. In particular, we consider
DsSRL (Wagenmaker et al., 2025), which refines a pretrained diffusion policy’s distribution by run-
ning RL over its latent-noise space, DPPO (Ren et al., |2024), an on-policy policy-gradient-style
algorithm for finetuning diffusion policies, and Best-of-N sampling. For DSRL and DPPO we uti-
lize the publicly available implementations without modification. Best-of-NN can be instantiated
in a variety of ways (see e.g. (Chen et al.| (2022)); Hansen-Estruch et al.| (2023)); He et al.| (2024));
Nakamoto et al.| (2024); Dong et al.| (2025b)). Here we instantiate it by rolling out the pretrained
policy on the task of interest 7" times (where 7" is specified in our results) to collect trajectories
labeled with success and failure, and train a Q-function via IQL (Kostrikov et al.| [2021]) on these
trajectories. At test time, we again roll out the pretrained policy but at each state sample /V actions
from the policy, and play the action that has the largest value under the IQL-trained Q)-function.

As baselines, we consider running standard BC pretraining on ®, as well as what we refer to as
o-Bc, where instead of perturbing the actions in © by the posterior variance as in (3)), we instead
perturb them by uniform, state-independent noise with variance o2. This is then equivalent to
POSTBC, except we set cov(s) = o2 - I for some fixed o > 0 in (3) (note that this is a continuous
analog to the approach considered in Proposition 3). This itself is a novel approach and our
theory predicts it too may lead to improved performance over pretraining with standard BC. On
Robomimic, we also compare against VALUEDICE (Kostrikov et al.,|2019) (which we abbreviate
as DICE), a imitation learning approach that attempts to learn a policy with state distribution
matching the state distribution of the demonstrations, and only requires access to offline demonstra-
tion data. For all experiments, error bars denote 1 standard error. All results are averaged over from
3-5 seeds and policies are evaluated with 200 rollouts for Robomimic and 100 for Libero.

6.1 POSTERIOR BC ENABLES EFFICIENT RL FINETUNING

Our results from running DSRL on Libero are given in Figure [3|and on Robomimic in Figure[d]
For Libero, we run DSRL on three tasks from scene 2: “open the top drawer of the cabinet”, “put
the black bowl at the front on the plate”, and “put the middle black bowl on the plate”. We see
that POSTBC pretraining leads to significant gains for Libero, enabling efficient RL finetuning in
settings where both standard BC pretraining and o-BC pretraining fail. On Robomimic, POSTBC
significantly outperforms both baselines on Square, and achieves modest gains over BC on Lift
and Can (requiring roughly 2x fewer samples to achieve 75% performance than BC). Our results
for DPPO are given in Figure [f] where we see that POSTBC pretraining again leads to substantial
gains on Square. This illustrates that POSTBC can improve performance even of on-policy
RL-finetuning algorithms that modify the weights of the pretrained policy. We note as well that,
even in the cases when POSTBC does not yield substantial gains, it performs no worse than BC.

Our Best-of-N results are given in Table[T} We see that across settings, POSTBC-pretraining leads
to consistent improvements over both BC- and o-BC-pretrained policies, and also consistently
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Figure 2: Robomimic Figure 3: Comparison of DSRL finetuning performance combined with
and Libero settings  different BC pretraining approaches on Libero.
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Figure 4: Comparison of DSRL finetuning perfor- Figure 5: Comparison of DPPO finetuning per-
mance combined with different BC pretraining ap- formance combined with different BC pretrain-

proaches on Robomimic. mng approaches on Robomimic.
Pretrained Performance Best-of- NV (1000 Rollouts) Best-of-N (2000 Rollouts)
Task BC PosTBC BC o-BC DICE PosTBC BC o-BC DICE PosTBC
Robomimic Lift 70.1 +1.7  68.1 +o.7 | 55.6 +2.4 523 37 423 +s6 63.3 +20 | 63836 73511 578100 T75.7 +20
Robomimic Can 43.4 06 41.6 04 | 69.8 20 T2.8 30 402484 733232 | 76.6+24 80.7+14 495485 79.5+1.0
Robomimic Square | 18.8 o3 17.7 0.3 379 +23 45T +14 11.6+10 483 +12 | 484 +10 50.0+32 185+109 524424
Libero Scene 1 221 +83  24.4 +6a 38.0 7.2 63.9 +3.8 - 60.8 +4.5 | 47.0 +6.4  66.8 4.3 - 76.3 +3.0
Libero Scene 2 11.5 434 131430 | 21.7436  26.7 x50 - 44.4 157 | 23.9 242 29.7 x4 - 48.4 +a.4
Libero Scene 3 40.1 +104  42.0 102 | 49.2 170 51.8 £71 - 65.5 +t6.8 | 51.6 102 59.4 172 - 66.4 +7.3
Libero All 22.2 443  23.0+39 | 33.5+35 43.7 +36 - 54.6 +3.5 | 38.0 +3.7  48.7 34 - 61.6 +3.0

Table 1: Comparison of success rates of pretrained policies and Best-of-N sampling on
Robomimic and Libero, for different pretraining approaches. Bolded text denotes best approach.
Please see Table@for pretrained performance of o0-BC and DICE.

outperforms VALUEDICE. In particular, on Libero, POSTBC improves by approximately 20%
over Bc, and 10% over o-Bc. Table [I] also provides the performance of the pretrained policies,
where we see that, in general, the POSTB C-pretrained policy performs on par with the BC-pretrained
policy, demonstrating that POSTBC-pretraining produces a policy which performs as well as the
BC pretrained policy. Together these results show that in realistic continuous control settings, pre-
training with POSTBC can lead to significant improvements over standard BC pretraining in terms
of RL finetuning performance, without sacrificing the performance of the pretrained policy itself.

Understanding how POSTB C improves RL finetuning performance. Finally, we seek to provide
insight into how POSTBC improves RL finetuning performance. In particular, we aim to disam-
biguate the role of the additional exploration a POSTBC policy may provide over a BC policy, versus
the role that having access to a larger action distribution at test time might play. While these factors
are intimately coupled for DSRL and DPPO, for Best-of-/N sampling we can decouple them by se-
lecting the rollout policy (the “exploration” policy) that collects data to learn the filtering function,
and the policy whose actions we filter with the learned function at test-time (the “steering” policy).

We  consider lelng the role of BC rollouts + BC rollouts + PosTBC rollouts + POSTBC rollouts +

the BC and POSTBC polle on BC steering POSTBC steering BC steering POSTBC steering
Robomimic Lift in this way, and 63.8 +3.6 78.6 114 65.0 +4.4 75.7 120
provide our results in Table 2] We

find that the choice of rollout pohcy Table 2: Best-of-IV sampling onRobomimic Lift, vary-
has little impact on performance, but ing the rollout policy and the steering policy.

the steering policy can impact perfor-

mance significantly. This suggests that the utility of POSTBC is primarily in its ability to provide
a wider range of actions that can be sampled from the pretrained policy, enabling RL finetuning
approaches to easily select the maximizing action.
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REPRODUCIBILITY STATEMENT

Full proofs for all theoretical results are given in the appendix, allowing our results to be checked.
For the experimental results, we have stated hyperparameters used in the appendix, and plan to also
release our code publicly.
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A  ADDITIONAL RELATED WORK

Reinforcement Learning-Based Pretraining. In the RL literature, two lines of work bear some
resemblance to ours as well. The offline-to-online RL setting aims to train policies with RL on
offline datasets that can then be improved with further online interaction (Lee et all, 2022}
et al} 2022} [Kumar et all, 2022} [Zhang et al., 2023} [Uchendu et all 2023} [Zheng et all 2023}
Ball et al., 2023; [Nakamoto et al.l [2023)), and the meta-RL setting aims to meta-learn a policy on
some set of tasks which can then be quickly adapted to a new task (Wang et al, 2016}, [Duan et al.,
2016} [Finn et al, 2017a} [2018). While similar to our work in that these works also aim to learn
behaviors that can be efficiently improved online, the settings differ significantly in that the offline-
or meta-pretraining typically requires reward labels (rather than unlabeled demonstrations) and are
performed with RL (rather than BC)—in contrast, we study how BC-like pretraining (as noted, the
workhorse of most modern applications) can enable efficient online adaptation.

B PROOFS

Some algebra shows that in the tabular setting, under the uniform prior, we have

Th(s,a)+1
%post(a ‘ S) — %hiis()l+A Th(S) >0
h unif(A4)  o.w.

B.1 BC PoLicy FAILS TO COVER ACTIONS

Proposntlon 5 (Full version of Proposmon R). Fix any e € (0,1/8]. Then there exzst some MDPs
MY, M2 and demonstrator policy 77 such that, if M € {M*, M2}, unless T > 20 , we have that,
with probability at least 1/2:
J(1P) — € > max () for O:={r:mpla]s)=0 if%ﬁ(a | s) =0,Vs,a,h}.
mell

Furthermore,

min max EM' 7 [maijl( ) — jMi(ﬁ)] >
7 ie{l,2}

N =

Proof. Let M! and M? denote multi-armed bandits with 3 arms and reward functions 7! and r?:

r(a1) = 0,7 (az) = 1,7 (ag) = 0
r?(a1) = 0,7%(az) = 0,7%(az) = 1.

Let 71'5(0,1) =1 — 4e, 7(5(@2) = 2¢, FB(ag) = 2e.

By construction of 72, if T'(az) = 0 then we will have 7% (as) = 0, and if T'(a3) = 0 we will have
79 (a3) = 0. By the definition of both M and M?, we have

PM'[T(ag) = 0,T(as) = 0] = (1 — 4¢)7.

As we have assumed that T < 2%)6 and € € (0,1/8], some calculation shows that we can lower

bound this as 1/2. Note that for both M* and M?, we have J (ﬂ'ﬂ ) = 2¢, while for policies 768 that
only play a;, we have J (77) = 0. This proves the first part of the result.

For the second part, note that the optimal policy on M? plays only ay and has expected reward of
1, while the optimal policy on M? plays only a and has expected reward of 1. Let 7 denote an

estimate of the optimal policy and EM' 7 [-] the expectation induced by playing the policy 7 from
the first part on instance M". Then:

min max EM'F [maij (m) — jMi(%)] = min max EMi’%ﬁ[l —7(a144)]-
T 1€{1,2} T ie{1,2}
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Note that 1 — 7(a2) = 7(a1) + 7(as) > 7(as). Thus we can lower bound the above as

7 (az)], ML - R (as)]}

We can bound
B

126 2 =8 18 2 =8
EM [7(as)] — EM [7(a3)]| < TV(IP’M ’ ,]P’M .

Since M! and M? only differ on ay and a3, and since 7°(az) = 77(az) = 0, we have
TV(IP’Ml’%ﬁ7IP’Mz’%ﬁ) = 0. Thus, we conclude that
i i, 1
rrﬂnlg?g}EM 2 [max]M (m) = TM (7)) > 3

This proves the second part of the result.

B.2 UNIFORM NOISE FAILS

Proof of Proposition[3] Construction. Let M be the MDP with state space {S1, ..., Sk, 1,82},
actions {a1, as}, horizon H > 2 with initial state distribution:

Py(s1)=1/2, Py(31)=2"2+27% Py5)=2""1i>2,
transition function, for all h € [H]:
Pn(38; | $i,a) =1,Va € A, Pu(s1]s1,a1) =1,
Py(s2 | s1,a2) =1, Pp(sa] s2,a) =1,Va € A,
and reward that is 0 everywhere except
r1(85,a1) =rg(s1,a1) =1, r1(5;,a2) =1—2A,

for some A > 0 to be specified. We consider 7 defined as

~ ~ 1
ﬂf(al | 5:) = Wf(az | 5:) = 3 ﬂf(al | s1) = 1.
Lete := M+g and set A < 2e.
Upper bound on a. Note that 7 (1) = 1 — fA and that the value of the optlmal policy 7* is

J () = max, J(7) = 1. Let 7 denote the pohcy that, on all 5; plays 7*, and on other states
plays 7* with probability 1 — «, and otherwise plays unif (.A). Note then that, regardless of the value
of 7%, we have that 7 (7%) > J (7). Thus,

J (") = E[T (@) = T (x) = T (@)

If we are in s1 at h = 2, the only way we can receive any reward on the episode is if we take action
a1 for the last H — 1 steps, and we then receive a reward of 1. Under 7%¢, we take a; at each step
with probability 1 — « + a/A, so our probability of getting a reward of 1 is (1 —a+a/A)H
Note that in contrast 77 will always play a; and receive a reward of 1 in this situation. If we are in
5; at h = 2 for any i, then 77 will incur a loss of A more than 7. Thus, we can lower bound

~ 1
I () =T (@) = —*AJF* 1-(1-at+a/4)"
By assumption we have that A = e. Thus, if we want 7 (77) — E[J ()] < €, we need

(I-(1=-a+a/A)P71) <2

N
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Rearranging this, we have

l—4e<(l—a+a/A)f! = log (1 — 4e) <log(l — a+ a/A).

H-1

From the Taylor decomposition of log(1 — ), we see that log(l — a + a/A) < —(1 — 1/A)c.
Furthermore, we can lower bound

log(1 — 4¢) > —8e¢
as long as € < 1/2. Altogether, then, we have
—8e€ 8e
<—-(1-1/A)a = a<
g—1 =1 1/Ae Y= H DI -1/4)

where the last inequality follows since H > 2, A = 2.

= a < 32

Upper bound on «. Letir := argmax, {271 | 2771 < 1/T}, so that 1/2T < Py(3:,)
1/T, and note that such an s, exists by construction. Let £ be the event £ := {T1(5;,)
T (Sip,a2) = 1}. We have

PE] = P[T1(Sir, a2) = 1| T1(8iy) = 1P[T1(8i,) = 1]

A

1 - ~ _
=3 - TPy(5i,)(1 = Po(5i,))
1 1 1
:,.T.i.(l_f)T—l
2 2T T
1
> .
~ 4e

Note that on the event £, we have 7% (ay | 5;,,) = 0, but 7 (a1 | 3;,,) = 1/2. Thus,
T%ay | 5ip) = /A < 32¢/A = 64e/A - 7P (ay | 5ip)

where we have used the bound on o shown above. Thus, on £, we will only have that 7% is a
~-sampler for v < 64¢/A. Since £ occurs with probability at least 1/4e, it follows that if we want to
guarantee 7T is a y-sampler with probability at least 1 — § for § < 1/4e, we must have v < 64¢/A.

Note as well that, since 7 (as | 3;,,) = 1, any policy in the support of 7 will be suboptimal by a
factor of at least Py(S;,.) - 2A > A/T. O

B.3 ANALYSIS OF POSTERIOR POLICY

Throughout this section we denote

_ o). Iu(s,a) CTu(s,a)+A/A
Th(a] s) == {(1 a) ey tor Tnm - Th(s) >0

unif (A) Th(s) =0
for some o € [0, 1].
We also denote w (s,a) := P™[s;, = s,ar, = a]. Q%(s,a) := E“[Zh?hrh/(sh/,ah/) | sp =

s,ap = a] denotes the standard Q-function. J(7;r) denotes the expected return of policy 7 for
reward 7.

Lemma 1. Aslong as § < 0.9 and A > A, we have
B
~ . m(a]s) 1
P >a- —hit L Y helH]| >1-6.
lwh(as)a mm{64logSH/6’2/\}’ a€ AseS helH]| >

Proof. Consider some (s, h). By Bernstein’s inequality, if 7}, (s) > 0, we have that with probability
at least 1 — 6,

Th(s,a) >7T£(a|s)_\/27r,f(a5)10g1/5_210g1/6 @

Th(s) Th(s) 3Tn(s)
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32log1/d8
_ “mp(als)
By the definition of 7, under the good event of (@) we can then lower bound

From some algebra, we see that as long as T, (s) > , we have that ( T () a) >

Th(s) > 32log1/é

a 1.8
~ gy (als) =7
Fla | 5) > {121//3?“) : o
Th(s)+A e
a-32logl/8 1B 32log1/8
32log 1/6+)\-7r5(a|s) 2Th (CI, | 8) Nh( ) Z Trfj(a|s)
= aX/A-? (als) ow

32log 1/6+)\-7r5(a|s)
@ a-mp(als)
= 32log1/6+ A7) (a] s)

- [ ala]s) 1
Q-MIN S ——=, =
- 641log1/6° 2\

where (a) follows as long as § < 0.9 and A > A. In the case when T} (s) = 0 we have 7, (a | s) =
1/A > 1/, so this lower bound still holds. Taking a union bound over arms proves the result.

Lemma 2. As long as A > 4log(HT), we have
H?SlogT . H2S)\

=By _ 7(7H)) < . .
EJ ()~ I@)] < (1 +aH) - 28T 4o 2
Proof. By the Performance-Difference Lemma we have:
H ﬁ ~ ~
TE) = TE =D 3w (5) (Bt (o [QR (5. 0)] ~ Ba (4[QF (5,0)])
h=1seS ’
H L B
<N wl (6) By o [QR (5 @)] ~ Bary 0 Q5,0 )
h=1s€eS
For (s, h) with N, (s) > 0, we have
EGN%Q(S) (@ (s, a)] — Eons,(s) [Qh(s,a ’ ;H —7h(als)l,

where we have used that Q7" (s, a) € [0, H]. Then, using the definition of 7 and 7 we can bound
this as

N | Th(s,a) Th(s a)—i—)\/A
=2 T T e+ ‘
_ aNH | ATy(s,a) — Th(s)
"L | T

aXH ATp(s,a) + Th(s)

T A () (Tu(s) + )

_ 20)H
B Th(S) + )\

Since EaN%ﬁ(s) Q7 (s,a)] —Euuz, (s) [Q7 (s,a)] = 0 by construction when T}, (s) = 0, we then have
h )

O <y Xl 2ol

h=1s€eS
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Let £ denote the good event from Lemma [3|with § = % Then as long as A > 4log(HT) we can
bound the above as

| A

S wi( QQ?H I{E} + 2H? - T{£°}
€S

daH 9 c
ZS ﬁ +2H? - I{£°}.

| A

)
>

Let 7 denote the reward function:
~ A
Th(s,a) == —
wi”(s) - T+ A
and note that 7 € [0, 1], and

H

~ 4a\H ~
> whﬁ(s)'ﬂa—:ZlaH'j(ﬂﬁ;’F)'
h=1s€eS Wy, (8) T+ A

By Theorem 4.4 of |[Rajaraman et al.|(2020), we haV
H2SlogT
T
B zH: S (s A | H?SlogT
B h wi’ (s) - T + A T

h=1s€eS

HS\ H2SlogT
< + .
- T T

Noting that E[2H? - I{£°}] < 2H?§ < % completes the proof. O

ELT @) £ T (n%57) +

Lemma 3. With probability at least 1 — 6, for all (s, h), we have
1 1
Ti(s) + A > 5wg‘*(s) T+ 52

as long as A > 4log %

Proof. Consider some (s, h) and note that E[T}(s)/T] = w}[ﬁ (s). By Bernstein’s inequality, we
have with probability 1 — §/SH:

5 H 2 H
Th(s) Zw};[ (3)-T—\/2w25(5)~T~10g55—310g85.

‘We would then like to show that

SH 2 SH 1
w}f(s)-T—\/2w7{ ()T -log 75~ — Slog "= + A > i(w,’{ﬁ(s)-T—i-/\)

1 s ) SH 2. SH
T . -\ > U . . i _
= Sup (s) T—|—2)\_ \/2wh (s)-T-log 5 —|-31 5

As we have assumed A\ > 4log STH, it suffices to show

%w;{ﬁ(s) -T + log % > \/ngﬁ(g) -T -log %

However, this is true by the AM-GM inequality. A union bound proves the result. O

'"Note that Theorem 4.4 of Rajaraman et al.|(2020) shows an inequality in the opposite direction of what we
show here: they bound 7 (7°;7) — E[J (7"; )] instead of E[7 (7°;7)] — J (=#; 7). However, we see that the
only place in their proof where their argument relied on this ordering is in Lemma A. 8 We show in Lemma 4]
that a reverse version of their Lemma A.8 holds, allowing us to instead bound E[7 (7%;7)] — J (7?; 7).

22



Under review as a conference paper at ICLR 2026

Lemma 4 (Reversed version of Lemma A.8 of Rajaraman et al.|(2020)). Adopting the notation from
Rajaraman et al.| (2020), we have

SHlog N

E[Prset €] < T

for E€ the event that within a trajectory, the policy only visits states for which Ty, (s) > 0.

Proof. Let &, 5, denote the event that the state s is visited at step h and Tj,(s) = 0, and &, =
Uses&s,n- Then, by simple set inclusions, we have:

e= U Uew= U U (en N i)
he[H] s€S s€ES h'<h

By a union bound it follows that

E[Pr, e [€]] < Z > EPraaalEenn [ €.

H] seS h'<h

Now note that

Prosicet [Eon 0[] Ef] = Prose[Ean | (] EfPrase] [] &)

h'<h h'<h h'/<h
=Prooet[Ean | () EnlPranee €5y | () ElProsea| [) &
h'<h h'/<h—1 h'/<h—1

=Proaet[Ean | () Enl- [ Praseli | () &kl

h'<h h'<h h'"<h!

If the event [,,_;, & holds, then up to step h no states are encountered for which T}, (s) = 0.

Thus, on such states, 7t and 7°r¢~frst will behave identically. It follows that E[Pr st [E5 1, |
i <n &l = E[Prjore—tivee [Es n | p<p, Eiv]]- By a similar argument, we have Prore—sivst [Ef) |
i < Ein] = Prsst [EF | ﬂh/,<h Egy] for each i/ < h. Thus,

Pr ivse [5s7h N ﬂ 52/] = Prorc—first [gs,h N ﬂ Eﬁ,]
h'<h h'<h

It follows that

E[Pr st [€ Z > EPrmec-ss[Ean N [ ER S D D> E[Prroc-nm[Esn]].

| s€S h'<h he[H] s€S

From here the proof follows identically to the proof of Lemma A.8 of Rajaraman et al.| (2020). [

Proof of Theorem(l] Set A = max{A,4log(HT)} and o = We have

H?Slog T LT, .
T T tT
where we bound j(?TB) E[J(7 )] by Theorem 4.4 of Rajaraman et al. (2020) and E[J (7 )] -

J (%) —E[J 7))+ E[J (7)) - BT (7)] < +(1+aH)-

E[J(7)] by Lemmasmce A > 4log(HT). By our choice of o = W’ we can
bound all of this as
2
< H*Slog T.
~ T
This proves the suboptimality guarantee. To show that 7 is a y-sampler, we applying Lemma[T|using
our values of A and o ]
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B.4 OPTIMALITY OF POSTERIOR SAMPLING

Let M denote a multi-armed bandit with A actions where r(a;) = 1 and r(a;) = 0 for i > 1. Let
78+ denote the policy defined as

l—a a=1
™ia) =4 a a=1
0 0.W.

for i > 1 and a some value we will set, and 771(1) = 1. We let M? = (M, 7”%) the instance-

demonstrator pair, El[] the expectation on this instance, P the distribution on this instance, and
]P)i’T = ®Z—‘:1]PM

Lemma 5. Consider the instance constructed above. Then we have that, for j # i:

Pir(i) >v-o] <2-Pa(i) >y -] +T-a

Proof. This follows from Lemma A.11 of [Foster et al.| (2021}, which immediately gives that:
PI[{7(i) > v-a] <2 -PIR>) > v - o] + DE(PPT, PIT),

where Dy (-, ) denotes the Hellinger distance. Since the squared Hellinger distance is subadditive
we have

DIQJ(Pi’Ta Pj7T) <T- DIQ{(Isz HDJ)
By elementary calculations we see that D% (P*, P7) = «, which proves the result. O

Theorem 3 (Full version of Theorem . Let 7 be a y-sampler of ©° for each M?,i € [A], and
some 6 € (0,1/4], and assume that

T —EJ@)]<¢ Vi>1

for some & > 0. Then if T < i, it must be the case that

£
<>
7= 140
In particular, setting £ = ¢ - IO%T and if o = 7, we have
logT
7 — A :

Proof. Our goal is to find the maximum value of -y such that our constraint on the optimality of 7 is
met, for each M". In particular, this can be upper bounded as

maxy st P{F(a) >y 7%(a),Va € A} > 16, (@) —E(J(®)] <& Vi>1. (6)
oy

Note that for M?,i > 1, the event {7(a) > 7 - 77(a),Va € A} is a subset of the event {7 () >
~ - a}. This allows us to bound (6) as

maxy st PUR() >v-a] >1-6, J(@?) —E(J(7)] <€ Vi>1. (7)

w7
By Lemma[5] we have that for each i > 1,

PiR() >~ -] <2-PUR({) > v -] + T a.
Furthermore, on M! we have J (7?!) — E}[7 ()] = E'[>,., 7(i)]. Given this, we can upper
bound (7) as

c(1=6-T-a),Vi>1, E')_#(i)] <& (8)

i>1

NN

maxy st PUR() >v-a] >
Ty
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By Markov’s inequality, we have

~ E!'[7(i
Pl[ﬂ'(i) 2 - Oé} S [T((Z)]
7 o
Furthermore, since we have assumed § < 1/4and T < -, wehave 5 - (1 -6 —T-a) > 1. We
can therefore bound () as
. 1
maxy st E'R()] > 1 -ye,¥i> 1, BN 7)) <& )
e 4 >1
However, we see then that we immediately have that
§
<=,
7= 444
This proves the result. O

C APPROXIMATE POSTERIOR
Let P(- | p) denote the distribution A (11, ¥), where we assume p is unknown and ¥ is known.

Assume that we have samples © = {z1,..., 27} ~ P(- | u*). Let Qprior = N (0, Ag) denote the
prior on z. Throughout this section we let =¢ denote equality in distribution.

Lemma 6. Under Qprior, we have that the posterior Qpost on (i is:

onst(' | :D) ( postZ th post) )
for Al =Agt+T 570

Proof. Dropping terms that do not depend on p, we have

P(D | p)Qprior (1)

Qpost (1 | D) =
D (@ —p) TS (@ — u)) - exp <—;MTA0M>

T
_ 1 _ _
TMTZ 1:“’ - §MTQpr:§orlu + /’[/TZ L. Z mt)

t=1
1 _ 1
= exp (2( - Apost”)TApolst(N — Apostv) + 2UTAPOS‘EU>

for Aply = Ag' +T-2 L andv =" 31 . O

Lemma 7 (General version of Propositionfd). Ler
= : ~\Ty-1 ~ T A-1 ~
i =argmin Y (u—3) 57 (u—T) + (u— ) TAG (n— ),
for Ty = xy + wy, wy ~ N(0,X), and [t ~ Qprior- Then [i =d Qpost (- | D).

Proof. By computing the gradient of the objective, setting it equal to 0, and solving for p, we see
that

T
fi= Ayt +TE ) (2—1 DY d@ A01ﬁ>
t=1
T

t=1

25



Under review as a conference paper at ICLR 2026

Note that the first term in the above is deterministic conditioned on ®, and the second term is mean
0 and has covariance (A + TY 1)~ We see then that the mean and covariance of 7i match the
mean the covariance of Qpost (- | ©) given in Lemma@, which proves the result. O

Lemma 8. Let T be distributed as
T~N(L,Y) for i~ Qpost(-| D) and D ~ P(- | p*).
Then
izdxqurl + 2w + z
for xriq1 ~ P(- | p*), w ~ N(0,Apost), and z some random variable satisfying E[||z||3] <

O(1/T?).

Proof. Note that x; = p* + ny, for n, ~ N(0,X). We then have

T T
/’L* - Apostz_1 ) Z-’I;t = /J* - TApostz_lﬂ* - Apostz_1 ' Znt (10)
t=1 =

Note that
TApostzil,u* = Apost(Tvzi1 + Ao_l),u* - ApostAo_l,UJ* = ,U,* - ApostAal,Uf*-

Furthermore, we have that
pOth Z e = O TApostZ_lApost) :d N(07 Apost - ApostAalApost)~

It follows that
@ =4 N (ApostAglﬂ*a Apos‘c - ApostAalApost) .

Note that by construction, APOStAalu* < O(1/T). Furthermore, ||ApOStA51APOSt 2 = O(1/T?).
Thus,

@0 = NV (0, Apost — O(1/T?)) + O%(1/T)

where here we let O%(1/T') denote some term X such that E[|| X||3] < O(1/T). As a perturbation
of O(1/T?) to the covariance will result in a perturbation whose norm is bounded in expectation as
O(1/T), we have

(M) =" N (0, Apost) + OU(1/T).
Let w ~ N(0, Apost) and n ~ N(0, ). Then, by Lemmas [6|and 7}

T
ﬁ‘f'?? =1 Apostz_1 : Z-Tt +w+n
t=1

=4 1 £ N (0, Apost) +w + 1 + O41/T)
=1 * 2w + 0+ O 1/T)
=4 xri1 + 2w+ 0% 1/T)
for xpy1 ~ P(- | u*). O

D ADDITIONAL EXPERIMENTAL DETAILS

We summarize our approach for generating approximate posterior samples in Algorithm [2] In all
experiments, we parameterize f; with Gaussian policy. While using more expressive generative
policies to produce the final policy leads to better performance, as we only use f; to estimate the
variance at each point, a Gaussian policy suffices. Furthermore, Gaussian policies are often eas-
ier to fit than generative policies—often requiring less gradient steps than, for example, diffusion
policies—so using a Gaussian policy reduces the computation required as well.
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Algorithm 2 Posterior Variance Approximation via Ensembled Prediction

1: input: demonstration dataset ©, ensemble size K, function class JF, dataset type (&€
{noisy, bootstrapped})

2: for{=1,2,..., K do

if dataset type == noisy then
Set Dy + {(s,a +wt,) : V(s,a) € D} where w’, ~ N(0,1)

else if dataset type == bootstrapped then
Set ®, « { |D| points (s, a) sampled with replacement from D}

Fit f; by solving f, < argmingez >, 5yc0, [1fe(s) —al13
return { f¢} (k]

® k@

Pretrained Performance

Task BC o-Bc DICE PosTBC
Robomimic Lift 70.1 1.7 66.7 o8  20.0 +2.4  68.1 +o0.7
Robomimic Can 43.4 +06  44.3 00 141128  41.6 o4
Robomimic Square | 18.8 03 183 +03 6.2 06 17.7 +0.3
Libero Scene 1 221 483  23.2 +6.2 - 24.4 +6.1
Libero Scene 2 11.5 £34  10.3 241 - 13.1 +3.0
Libero Scene 3 40.1 104 374 +7.6 - 42.0 +10.2
Libero All 22.2 443  21.1 +3.7 - 23.0 +3.9

Table 3: Comparison of success rates of all pretrained policies on Robomimic and Libero, for
different pretraining approaches. Bolded text denotes best approach.

D.1 ROBOMIMIC EXPERIMENTS

For all Robomimic experiments, we run POSTBC as stated in Algorithm |I|however, instead of com-
puting the full covariance of the posterior, we only compute the diagonal covariance. We instantiate
7% with a diffusion policy that uses an MLP architecture. For f;, we train an MLP to simply predict
the noised action directly in D; (i.e. we do not use a diffusion model for fy), but use the same archi-
tecture and dimensions for f; as the diffusion policies. We used bootstrapped sampling to compute
the ensemble for all settings but Best-of-N on Lift. In all cases we pretrain on the Multi-Human
Robomimic datasets, and in cases where we use less than the full dataset, we randomly select
trajectories from the dataset to train on, using the same trajectories for each approach.

For each RL finetuning method, we sweep over the same hyperparameters for each pretrained policy
method (i.e. BC, o-BC, POSTBC), and include results for the best one. For o-BC, we swept over
values of ¢ and included results for the best-performing one. With the exception of DSRL Square,
for every Robomimic experiment, we train 5 diffusion policies per pertraining method, and perform
a single RL finetuning run on it, so that each stated values is averaged over 5 seeds; For DSRL Square
we only average over 3 seeds. For each evaluation, we roll out the policy 200 times. For DPPO we
utilize the default hyperparameters as stated in|Ren et al.|(2024), and utilize DDPM sampling. For
VALUEDICE, we use the officially published codebase, and the default hyperparameters provided
there. In all cases, we utilize a -1/0 success reward, using Robomimic’s built-in success detector to
determine the reward. We provide hyperparameters for the individual experiments below.

Table 4: Common DSRL hyperparameters for all experiments.

Hyperparameter Value
Learning rate 0.0003
Batch size 256
Activation Tanh
Target entropy 0
Target update rate (7) 0.005
Number of actor and critic layers 3
Number of critics 2
Number of environments 4
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Table 5: DSRL hyperparameters for Robomimic experiments.

Hyperparameter Lift Can Square

Hidden size 2048 2048 2048

Gradient steps per update 20 (¢-Bc), 10 (BC,POoSTBC) 20 10 (PosTBC), 20 (BC, 0-BC)
Noise critic update steps 10 10 10

Discount factor 0.99 0.99 0.999

Action magnitude 1.5 1.5 1.5

Initial steps 24000 24000 32000

Table 6: Hyperparameters for pretrained policies for Robomimic DSRL experiments.

Hyperparameter Lift Can Square
Dataset size (number trajectories) 5 10 40
Action chunk size 4 4 4
train denoising steps 100 20 100
inference denoising steps 8 8 8
Hidden size 512 1024 1024
Hidden layers 3 3 3
Training epochs 3000 3000 3000
Ensemble size (POSTBC) 100 10 100
Ensemble training epochs (POSTBC) 10000 6000 3000
Posterior noise weight a (POSTBC) 1 0.5 1
Uniform noise o (0-BC) 0.1 0.05 0.05

Table 7: Best-of-N hyperparameters for Robomimic experiments.

Hyperparameter Lift Can Square
Total gradient steps 3000000 2000000 2000000
IQL 7 (1000 rollouts) 0.7 0.7 (BC, o-Bc, 0.7
DICE), 0.9
(PosTBC)
IQL 7 (2000 rollouts) 0.7 (BC, o-Bc, 0.7 0.7 (BC, o-Bc,
DICE), 0.9 DICE), 0.9
(POSTBC) (POSTBC)
Discount factor 0.999 0.999 0.999

28



Under review as a conference paper at ICLR 2026

Table 8: Hyperparameters for pretrained policies for Robomimic Best-of-/N experiments.

Hyperparameter Lift Can Square
Dataset size (number trajectories) 20 300 300
Action chunk size 1 1 1
train denoising steps 100 20 100
inference denoising steps 8 8 8
Hidden size 512 1024 1024
Hidden layers 3 3 3
Training epochs 3000 3000 3000
Ensemble size (POSTBC) 10 10 10
Ensemble noise o (POSTBC) 0.5 - -
Ensemble training epochs (POSTBC) 500 500 500
Posterior noise weight oo (POSTBC) 2 1 1
Uniform noise o (o-BC) 0.1 0.05 0.05

Table 9: Hyperparameters for pretrained policies for Robomimic DPPO experiments.

Hyperparameter Lift Can Square
Dataset size (number trajectories) 5 10 30
Action chunk size 4 4 4
train denoising steps 100 100 100
Hidden size 512 1024 1024
Hidden layers 3 3 3
Training epochs 3000 3000 3000
Ensemble size (POSTBC) 100 100 10
Ensemble training epochs (POSTBC) 3000 6000 3000
Posterior noise weight o (POSTBC) 0.5 0.25 1
Uniform noise o (6-BC) 0.1 0.05 0.05

D.2 LIBERO EXPERIMENTS

For Libero, we utilize the transformer architecture from|Dasari et al.|(2024) for 7¢. We run POSTBC
as stated in Algorithm [T} but instead of approximating the posterior by adding noise to actions, we
instead used a bootstrap estimate, where we sample from ® with replacement, and fit f, to the boot-
strapped samples (we note that this is another common strategy for uncertainty estimation in RL,
see e.g. (Osband et al.| (2016a)). For f,, we utilize the same ResNet and tokenizer as 79 but simply
utilize a 3-layer MLP head on top of it—trained to predict the actions directly—rather than a full
diffusion transformer. For the Best-of-/V experiments, POSTBC utilizes a diagonal posterior covari-
ance estimate, while for the DSRL runs it is trained with the full matrix posterior covariance estimate.
We train on Libero-90 data from the first 3 scenes of Libero-90—KITCHEN-SCENE1, KITCHEN-
SCENE2, and KITCHEN-SCENE3—and use 25 trajectories from each task in each scene. For task
conditioning, we conditioning 7% on the BERT language embedding (Devlin et al., 2019) of the
corresponding text given for that task in the Libero dataset.

For each RL finetuning method, we sweep over the same hyperparameters for each pretrained policy
method (i.e. BC, o-BC, POSTBC), and include results for the best one. For o-BC, we swept over
values of ¢ and included results for the best-performing one. The DSRL experiments are averaged
over 3 different pretraining runs per method, and one DSRL run per pretrained run. The Best-of-N
experiments are averaged over 2 different pretraining runs per method, and 2 Best-of-N runs per
pretrained run. For each evaluation, we roll out the policy 100 times. In all cases, we utilize a -1/0
success reward, using Libero’s built-in success detector to determine the reward.

We provide hyperparameters for the individual experiments below.
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Table 10: DSRL hyperparameters for all Libero experiments.

Hyperparameter Value
Learning rate 0.0003
Batch size 256
Activation Tanh
Target entropy 0
Target update rate (7) 0.005
Number of actor and critic layers 3
Layer size 1024
Number of critics 2
Number of environments 1
Gradient steps per update 20
Discount factor 0.99
Action magnitude 1.5
Initial episode rollouts 20

Table 11: Best-of-N hyperparameters for all Libero experiments.

Hyperparameter Value
IQL learning rate 0.0003
IQL batch size 256
IQL 8 3
Activation Tanh
Target update rate 0.005
@ and V number of layers 2

@ and V layer size 256
Number of critics 2

N (Best-of-N samples) 32
IQL gradient steps 50000
IQL 7 0.9
Discount factor 0.99
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Table 12: Hyperparameters for DiT diffusion policy in Libero experiments.

Hyperparameter Value
Batch size 150
Learning rate 0.0003
Training steps 50000
LR scheduler cosine
Warmup steps 2000
Action chunk size 4
Train denoising steps 100
Inference denoising steps 8
Image encoder ResNet-18
Hidden size 256
Number of Heads 8
Number of Layers 4
Feedforward dimension 512
Token dimension 256

Ensemble size (POSTBC) 5
Ensemble training steps (POSTBC) 25000
Ensemble layer size 512
Ensemble number of layers 3
Posterior noise weight (POSTBC)

Uniform noice ¢ (6-BC) 0.05

2 (DSRL run), 4 (Best-of-N run)

D.3 ADDITIONAL ABLATIONS

We provide several additional ablations on POSTBC.

Square (30 trajectories) Square (40 trajectories)

Square (50 trajectories)

1.0 1.0 1.0
£05 £05 £05
£ £ E — PBC
“ < . —_ sBC
— BC
0.0 0.0 0.0

0 2
Timesteps

4 0 2 4
x10° Timesteps x10°

0 2

4
Timesteps x10°

Figure 6: Comparison of DSRL finetuning performance combined with different BC pretraining
approaches on Robomimic Square, varying the number of trajectories in the dataset the
policies are pretrained on. As can be seen, the finetuning performance of policies pretrained
with POSTBC is largely unaffected by the size of the pretraining dataset, while BC and o-BC
are both very sensitive to dataset size. For large enough datasets (50 trajectories), BC and
o-BcC perform as well as POSTBC. This is to be expected—if we train on enough data, our
uncertainty will be low, so POSTBC will essentially reduce to BC. These results illustrate that
PoSTBC gracefully interpolates between settings where BC overfits to small amounts of data,
hurting its finetuning performance, and settings where BC is sufficient for effective finetuning.
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Figure 7: Comparison of DSRL finetun-
ing performance on policies pretrained with
POSTBC on Robomimic Lift, varying
the ensemble size. As can be seen, POSTBC
performs best with an ensemble size around
100, but is not particularly sensitive to en-
semble size as long as the ensemble is not
too small or too large.
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Figure 8: Comparison of DSRL finetun-
ing performance on policies pretrained with
POSTBC on Robomimic Lift, varying
the noise weight . Increasing a too much
typically hurts performance, and if « is too
small performance reduces to that of BC. In
general we found that setting o« = 1.0 per-
forms well across many settings.
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