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ABSTRACT

The challenge in learning from dynamic graphs for predictive tasks lies in ex-
tracting fine-grained temporal motifs from an ever-evolving graph. Moreover,
task labels are often scarce, costly to obtain, and highly imbalanced for large dy-
namic graphs. Recent advances in self-supervised learning on graphs demonstrate
great potential, but focus on static graphs. State-of-the-art (SoTA) models for dy-
namic graphs are not only incompatible with the self-supervised learning (SSL)
paradigm but also fail to forecast interactions beyond the very near future. To ad-
dress these limitations, we present DyG2Vec, an SSL-compatible, efficient model
for representation learning on dynamic graphs. DyG2Vec uses a window-based
mechanism to generate task-agnostic node embeddings that can be used to fore-
cast future interactions. DyG2Vec significantly outperforms SoTA baselines on
benchmark datasets for downstream tasks while only requiring a fraction of the
training/inference time. We adapt two SSL evaluation mechanisms to make them
applicable to dynamic graphs and thus show that SSL pre-training helps learn
more robust temporal node representations, especially for scenarios with few la-
bels.

1 INTRODUCTION

Graph Neural Networks (GNNs) have recently found great success in representation learning for
complex networks of interactions, as present in recommendation systems, transaction networks, and
social media (Wu et al., 2020; Zhang et al., 2019; Qiu et al., 2018). However, most approaches
ignore the dynamic nature of graphs encountered in many real-world domains. Dynamic graphs
model complex, time-evolving interactions between entities (Kazemi et al., 2020; Skarding et al.,
2021; Xue et al., 2022). Multiple works have revealed that real-world dynamic graphs possess fine-
grained temporal patterns known as temporal motifs (Toivonen et al., 2007; Paranjape et al., 2017).
For example, a simple pattern in social networks specifies that two users who share many friends
are likely to interact in the future. A robust representation learning approach must be able to extract
such temporal patterns from an ever-evolving dynamic graph in order to make accurate predictions.

Self-Supervised Representation Learning (SSL) has shown promise in achieving competitive per-
formance for different data modalities on multiple predictive tasks (Liu et al., 2021). Given a large
corpus of unlabelled data, SSL postulates that unsupervised pre-training is sufficient to learn ro-
bust representations that are predictive for downstream tasks with minimal fine-tuning. However,
it is important to specify a pre-training objective function that induces good performance for the
downstream tasks. Contrastive SSL methods, despite their early success, rely heavily on negative
samples, extensive data augmentation, and large batch sizes (Jing et al., 2022; Garrido et al., 2022).
Non-contrastive methods address these shortcomings, incorporating information theoretic principles
through architectural innovations or regularization methods. These closely resemble strategies em-
ployed in manifold learning and spectral embedding methods (Balestriero & LeCun, 2022). The
success of such SSL methods on sequential data (Tong et al., 2022; Eldele et al., 2021; Patrick et al.,
2021) suggests that one can learn rich temporal node embeddings from dynamic graphs without
direct supervision.

SSL methods are attractive for dynamic graphs because it is often costly to generate ground truth
labels. Contrastive approaches are very sensitive to the quality of the negative samples, and these
are challenging to identify in dynamic graphs due to the temporal evolution of interactions and the
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lack of semantic labels at the contextual level. As a result, it is desirable to explore non-contrastive
techniques, but state-of-the-art models for dynamic graphs suffer from shortcomings that make them
hard to adapt to SSL paradigms. First, they heavily rely on chronological training or a full history of
interactions to construct predictions (Kumar et al., 2019; Xu et al., 2020; Rossi et al., 2020; Wang
et al., 2021b). Second, the encoding modules either use inefficient message-passing procedures (Xu
et al., 2020), memory blocks (Kumar et al., 2019; Rossi et al., 2020), or expensive random walk-
based algorithms (Wang et al., 2021b) that are designed for edge-level tasks only. As a result, while
SSL pre-training has been applied successfully for static graphs (Thakoor et al., 2022; Hassani &
Khasahmadi, 2020; You et al., 2022), there has been limited success in adapting SSL pre-training to
dynamic graphs.

In this work, we propose DyG2Vec 1, a novel encoder-decoder model for continuous-time dynamic
graphs that benefits from a window-based architecture that acts a regularizer to avoid over-fitting.
DyG2Vec is an efficient attention-based graph neural network that performs message-passing across
structure and time to output task-agnostic node embeddings. Experimental results for 7 benchmark
datasets indicate that DyG2Vec outperforms SoTA baselines on future link prediction and dynamic
node classification in terms of performance and speed, particularly in medium- and long-range fore-
casting. The novelty of our model lies in its compatibility with SoTA SSL approaches. That is, we
propose a joint-embedding architecture for DyG2Vec that can benefit from non-contrastive SSL. We
adapt two evaluation protocols (linear and semi-supervised probing) to the dynamic graph setting
and demonstrate that the proposed SSL pre-training is effective in the low-label regime.

2 RELATED WORK

Self-supervised representation learning: Multiple works explore learning visual representations
without labels (see (Liu et al., 2021) for a survey). The more recent contrastive methods generate
random views of images through data augmentations, and then force representations of positive pairs
to be similar while pushing apart representations of negative pairs (Chen et al., 2020a; He et al.,
2019). With the goal of attaining hard negative samples, such methods typically use large batch
sizes Chen et al. (2020a) or memory banks (He et al., 2019; Chen et al., 2020b). Non-contrastive
methods such as BYOL (Grill et al., 2020) and VICReg (Bardes et al., 2022) eliminate the need for
negative samples through various techniques that avoid representation collapse (Jing et al., 2022).
Recently, several SSL methods have been adapted to pre-train GNNs (Xie et al., 2022). Deep Graph
Infomax (DGI) (Velickovic et al., 2019) and InfoGCL (Xu et al., 2021)) rely on mutual information
maximization or information bottle-necking between patch-level and graph-level summaries. MV-
GRL (Hassani & Khasahmadi, 2020) incorporates multiple views, and BGRL (Thakoor et al., 2022)
adapts BYOL to graphs to eliminate the need for negative samples, which are often memory-heavy
in the graph setting. The experiments demonstrate the high degree of scalability of non-contrastive
methods and their effectiveness in leveraging both labeled and unlabeled data.

Representation learning for dynamic graphs: Early works on representation learning for
continuous-time dynamic graphs typically divide the graph into snapshots that are encoded by a
static GNN and then processed by an RNN module (Sankar et al., 2020; Pareja et al., 2020; Kazemi
et al., 2020). Such methods fail to learn fine-grained temporal patterns at smaller timescales within
each snapshot. Therefore, several RNN-based methods were introduced that sequentially update
node embeddings as new edges arrive. JODIE (Kumar et al., 2019) employs two RNN modules to
update the source and destination embeddings respectively of a arriving edge. DyRep (Trivedi et al.,
2019) adds a temporal attention layer to take into account multi-hop interactions when updating
node embeddings. TGAT (Xu et al., 2020) includes an attention-based message passing (AMP) ar-
chitecture to aggregate messages from a historical neighborhood. TGN (Rossi et al., 2020) alleviates
the expensive neighborhood aggregation of TGAT by using an RNN memory module to encode the
history of each node. CaW (Wang et al., 2021b) extracts temporal patterns through an expensive
procedure that samples temporal random walks and encodes them with an LSTM. This procedure
must be performed for every prediction. In contrast to prior works, our method operates on a fixed
window of history to generate node embeddings. Additionally, we do not recompute embeddings
for every prediction, which allows for efficient computation and memory usage.

1We are going to open-source the code upon acceptance.
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3 PROBLEM FORMULATION

A Continuous-Time Dynamic Graph (CTDG) G = (V, E ,X ) is a sequence of E = |E| interactions,
where X = (XV , XE) is the set of input features containing the node features XV ∈ RN×DV

and
the edge features XE ∈ RE×DE

. E = {e1, e2, . . . , eE} is the set of interactions. There are N = |V|
nodes, and DV and DE are the dimensions of the node and edge feature vectors, respectively. An
edge ei = (ui, vi, ti,mi) is an interaction between any two nodes ui, vi ∈ V , with ti ∈ R being
a continuous timestamp, and mi ∈ XE an edge feature vector. For simplicity, we assume that the
edges are undirected and ordered by time (i.e., ti ≤ ti+1). A temporal sub-graph Gi,j is defined as
a set of all the edges in the interval [ti, tj ], such that Eij = {ek | ti ≤ tk ≤ tj}. Any two nodes can
interact multiple times throughout the time horizon; therefore, G is a multi-graph.

Our goal is to learn a model f that maps the input graph to a representation space. The model is a
pre-trainable encoder-decoder architecture, f = (gθ, dγ). The encoder gθ maps a dynamic graph to
node embeddings H ∈ RN×DH

; the decoder dγ performs a task-specific prediction given the em-
beddings. The model is parameterized by the encoder/decoder parameters (θ, γ). More concretely,

H = gθ(G) , Z = dγ(H; Ē) , (1)

where Z ∈ RN×DY

is the prediction of task-specific labels (e.g., edge prediction or source node
classification labels) of all edges in Ē . The node embeddings H must capture the temporal and
structural dynamics of each node such that the future can be accurately predicted from the past, e.g.,
future edge prediction given past edges. The main distinction of this design is that, unlike previous
dynamic graph models (Rossi et al., 2020; Xu et al., 2020; Wang et al., 2021b), the encoder must
produce embeddings independent of the downstream task specifications. This special trait can allow
the model to be compatible with the SSL paradigm where an encoder is pre-trained separately and
then fine-tuned together with a task-specific decoder to predict the labels.

To this end, we present a novel DyG2Vec framework, that can learn rich node embeddings at any
timestamp t independent of the downstream task. DyG2Vec is formulated as a two-stage framework.
In the first stage, we use a non-contrastive SSL method to learn the model fSSL = (gθ, dψ) over
various sampled dynamic sub-graphs with self-supervision. dψ is an SSL decoder that is only used
in the SSL pre-training stage. In the second stage, a task-specific decoder dγ is trained on top of the
pre-trained encoder gθ to compute the outputs for the downstream tasks, e.g., future edge prediction
or dynamic node classification (Xu et al., 2020; Wang et al., 2021b).

We consider two example downstream tasks: future link prediction (FLP), and dynamic node clas-
sification (DNC). In each case, there is a prediction horizon of the next K interactions. The test
window for FLP starting at time ti is Ē = {(uj , vj , tj ,mj)|j ∈ [i, i + K]}. This is augmented
by a set of K negative edges. Each negative edge (uj , v

′
j , tj ,mj) differs from its corresponding

positive edge only in the destination node, v′j ̸= vj , which is selected at random from all nodes.
The FLP task is then binary classification for the test set of 2K edges. In the DNC task, a dy-
namic label is associated with each node that participates in an interaction. We are provided with
{(uj , tj)|j ∈ [i, i+K]}, i.e., the source node and interaction time. The goal is to predict the source
node labels for the next K interactions. The performance metrics are detailed in Appendix A.4.

4 METHODOLOGY

We now introduce our novel dynamic graph learning framework DyG2Vec, which can achieve
downstream task-agnostic representation. We first present the SSL pre-training approach with a
non-contrastive loss function for dynamic graphs. We then introduce the novel window-based down-
stream training approach. Finally, we outline the encoder architecture.

Given the full dynamic graph G0,E , a set of intervals I is generated by dividing the entire time-span
{t0, tE} into M = ⌈E/S⌉ − 1 intervals with stride S and interval length W (See Appendix A.4 for
details). Let B ⊂ I be the mini-batch of intervals. Given B, the sub-graph sampler m (G, B;W )

constructs the mini-batch of input graphs: Ĝ = {Gi,j | [i, j) ∈ B}. The corresponding mini-batch
of target graphs is denoted by Ḡ = {Gj,j+K | [i, j) ∈ B}. In principle, Gi,j ∈ Ĝ is an input (history)
graph used to predict the target labels of the corresponding target (future) graph Gj,j+K ∈ Ḡ. The
parameter W controls the size of the history while K controls how far the model is predicting into
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Figure 1: The joint embedding architecture for the non-contrastive SSL Framework. Each slice of
the input dynamic graph contains edges arriving at the same continuous timestamp. B is a batch of
intervals of size W . Ĝ is a batch of the corresponding input graphs of each interval.

the future. S controls the stride between intervals. In practice, we set S = K so that each edge is
only predicted once in each epoch. Since Ḡ is only provided for training in the downstream task,
SSL pre-training only operates on Ĝ, as seen in Figure 2.

4.1 STAGE 1: PRE-TRAINING ON DYNAMIC GRAPHS WITH SELF-SUPERVISION

We formulate a joint-embedding architecture (Bromley et al., 1993) for DyG2Vec in which two
views of a mini-batch of sub-graphs are generated through random transformations. The trans-
formations are randomly sampled from a distribution defined by a distortion pipeline. The encoder
maps the views to node embeddings which are processed by the predictor to generate node represen-
tations. We minimize an SSL objective (Eq. 2, described below) to optimize the model parameters
end-to-end in the pre-training stage. See Figure 1 for an overall design of the SSL framework.

Views: The temporal distortion module generates two views of the input graphs Ĝ′
= t

′
(Ĝ) and

Ĝ′′
= t

′′
(Ĝ) where the transformations t

′
and t

′′
are sampled from a distribution T over a pre-

defined set of candidate graph transformations. In this work, we use edge dropout and edge feature
masking (Thakoor et al., 2022) in the transformation pipeline. See Appendix A.4 for more details.

Embedding: The encoding model gθ is an attention-based message-passing (AMP) neural network
that produces node embeddings H

′
and H

′′
for the views Ĝ′

and Ĝ′′
of the input graphs Ĝi,j . We

elaborate on the details of the encoder in Sec. 4.3.

Prediction: The decoding head dγ for our self-supervised learning design consists of a node-level
predictor pϕ that outputs the final representations Z

′
and Z

′′
, where Z = pϕ(H).

SSL Objective: In order to learn useful representations, we minimize the VICReg regularization-
based SSL loss function from (Bardes et al., 2022):

LSSL = l(Z
′
,Z

′′
) = λs(Z

′
,Z

′′
) + µ[v(Z

′
) + v(Z

′′
)] + ν[c(Z

′
) + c(Z

′′
)] . (2)

In this loss function, the weights λ, µ, and ν control the emphasis placed on each of three regu-
larization terms. The invariance term s encourages representations of the two views to be similar.
The variance term v is included to prevent the well-known collapse problem (Jing et al., 2022). The
covariance term c promotes maximization of the information content of the representations. More
details and complete expressions for s, v and c are provided in Appendix A.3.

Unlike previous regularization-based SSL approaches (Chen et al., 2020a; Bardes et al., 2022) in
computer vision, we do not use a projector network because the embedding dimensions are relatively
small in the graph domain. The full pre-training procedure is illustrated in Figure 1. Following the
pre-training stage, we replace the SSL decoder with a task-specific downstream decoder dψ that is
trained on top of the frozen pre-trained encoder.
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Figure 2: DyG2Vec Window Framework. Every slice of the dynamic graph G contains edges that
arrived at the same continuous timestamp. The blue interval represents the history graph Gi−W,i that
is encoded to make a prediction on the next K edges (yellow interval). B is a batch of intervals
of size W edges. Ĝ is batch of input graphs. Ḡ is batch of target graphs that is only used in the
downstream stage.

4.2 STAGE 2: DYG2VEC DOWNSTREAM TRAINING

In the downstream training stage, the DyG2Vec model f = (gθ, dψ) consists of the SSL pre-trained
encoder gθ and a task-specific decoder dψ which is trained using a similar window-based training
strategy. The model is trained to make predictions depending on the downstream tasks (e.g. link
prediction or node classification) given the input and target graphs Ĝ and Ḡ as follows: H = gθ(Ĝ)
is the node embeddings returned by the encoder, and Z = dψ(H; Ē) is the prediction output of the
decoder. Here Ē is a set of (partial) edges for which predictions are requested from the decoder. The
model parameters are optimized by training with a loss function LD(Z,O), where LD is defined
depending on the downstream task and O contains task-specific labels (See Section 3).

The window-based training strategy has several major advantages. First, the window acts as a regu-
larizer by providing a natural inductive bias towards recent edges, which are often more predictive of
the future. It also avoids costly time-based neighborhood sampling techniques (Wang et al., 2021b).
Second, relying on a fixed window-size for message-passing allows for constant memory and com-
putational complexity, which is well-suited to the practical online streaming data scenario. Third,
unlike previous works (Xu et al., 2020; Wang et al., 2021b) which generate separate node embed-
dings for each target edge, a generic encoder allows us to use the same set of embeddings for any
prediction. This dramatically reduces the training/inference overhead. Another advantage of this
design is that it allows the model to forecast unseen edges relatively far into the future, in contrast to
existing works (Xu et al., 2020; Rossi et al., 2020) that focus on predicting the next occurring edge.

4.3 DYG2VEC ENCODER ARCHITECTURE

Our encoder combines a self-attention mechanism for message-passing with the Time2Vec module
(Kazemi et al., 2019) that provides relative time encoding. We also introduce a novel temporal edge
encoding that efficiently captures the temporal structural relationship between nodes.

Temporal Attention Embedding: Given a dynamic graph G, the encoder gθ computes the embed-
ding hLi of node i through a series of L multi-head attention (MHA) layers (Vaswani et al., 2017)
that aggregate messages from its L-hop neighborhood (Xu et al., 2020; Velickovic et al., 2018).
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Given a node embedding hl−1
i at layer l−1, we uniformly sample N 1-hop neighborhood interac-

tions of node i, N (i) = {ep, . . . , ek} ⊆ E . The embedding hli at layer l is calculated by:

hli = W1h
l−1
i + MHAl(ql,Kl,Vl), (3)

ql = hl−1
i , (4)

Kl = Vl = [Φp(tp), . . . ,Φk(tk)] . (5)

Here, W1 is a learnable mapping matrix, MHAl(·) is a multi-head dot-product attention layer, and
Φp(tp) represents the edge feature vector of edge ep = (up, vp, tp,mp) ∈ N (i) at time tp:

Φp(tp) = [hl−1
up

|| fp(tp) || mp], (6)

fp(tp) = ϕ(t̄i − tp) + Θp(tp) , (7)
t̄i = max {tl | el ∈ N (vp) .} , (8)

where || denotes concatenation and ϕ(.) is a learnable Time2Vec module that helps the model be
aware of the relative timespan between a sampled interaction and the most recent interaction of
node vp in the input graph. Θp(.) is a temporal edge encoding function, described in more detail
below. In contrast to TGAT’s recursive message passing procedure (Xu et al., 2020), the message
passing in our encoder is ‘flat’: at every iteration, the same set of node embeddings is used to
propagate messages to neighbors. Our encoder performs message passing once to generate a set of
node embeddings H used for all target predictions on Ḡ.

Temporal Edge Encoding: Dynamic graphs often follow evolutionary patterns that reflect how
nodes interact over time (Kovanen et al., 2011). For example, in social networks, two people who
share many friends are likely to interact in the future. Therefore, we incorporate two simple yet
effective temporal encoding methods that provide inductive biases to capture common structural
and temporal evolutionary behaviour of dynamic graphs. The temporal edge encoding function is
then:

Θp(tp) = W2[zp(tp)||cp(tp)] , (9)
where we incorporate (i) Temporal Degree Centrality zp(tp) ∈ R2: the concatenated current degrees
of nodes up and vp at time tp; and (ii) Common Neighbors cp(tp) ∈ R: the number of common 1-hop
neighbors between nodes up and vp at time tp.

By using the degree centrality as an edge feature, the model is able to learn any bias towards more
frequent interactions with high-degree nodes. The number of common neighbors helps capture
temporal motifs, and it is known to often have a strong positive correlation with the likelihood of a
future interaction (Yao et al., 2016).

5 EXPERIMENTAL EVALUATION

5.1 EXPERIMENTAL SETUP

Baselines: We compare DyG2Vec to five state-of-the-art baseline models: DyRep (Trivedi et al.,
2019), JODIE (Kumar et al., 2019), TGAT (Xu et al., 2020), TGN (Rossi et al., 2020), and
CaW (Wang et al., 2021b). DyRep, JODIE, and TGN sequentially update node embeddings us-
ing an RNN. TGAT applies message passing via attention on a sampled temporal subgraph. CaW
samples temporal random walks and learns temporal motifs by counting node occurrences in each
walk.

Downstream Tasks: We evaluate all models on two temporal tasks: future link prediction (FLP),
and dynamic node classification (DNC). In FLP, the goal is to predict the probability of future
edges occurring given the source, destination, and timestamp. For each positive edge, we sample a
negative edge that the model is trained to predict as negative. The DNC task involves predicting the
label of the source node of a future interaction. Both tasks are trained using binary cross entropy
loss. Contrary to prior works which only evaluate under the K = 1 setting, we evaluate all models
under K ∈ {1, 200, 2000}. This is a more challenging evaluation scheme as it tests the forecasting
capabilities of the models across multiple time horizons. See Appendix A.4 for details.

For the FLP task, we report both classification and recommendation metrics: Average Precision
(AP), Mean Reciprocal-Rank (MRR), and Rec@10. For the DNC task, we report the area under the
curve (AUC) metric due to the prevailing issue of class imbalance in dynamic graphs.
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Figure 3: Transductive FLP Performance (Test AP for K = 200) vs Inference runtime (s) on 3
datasets. Inference time represents the time it takes to predict the whole test set.

Table 1: Transductive Future link Prediction Performance in AP (Mean ± Std). Avg. Rank reports
the mean rank of DyG2Vec across all datasets. Bold font and underline font represent first- and
second-best performance respectively.

K Model Wikipedia Reddit MOOC LastFM Enron UCI SocialEvol. Avg Rank

1

JODIE 0.956± 0.002 0.979± 0.001 0.797± 0.01 0.691± 0.010 0.785± 0.020 0.869± 0.010 0.847± 0.014 4.71
DyRep 0.955± 0.004 0.981± 1e-4 0.840± 0.004 0.683± 0.033 0.795± 0.042 0.524± 0.076 0.885± 0.004 4.85
TGAT 0.968± 0.001 0.986± 3e-4 0.793± 0.006 0.633± 0.002 0.637± 0.002 0.835± 0.003 0.631± 9e-4 5.14
TGN 0.986± 0.001 0.985± 0.001 0.911± 0.010 0.743± 0.030 0.866± 0.006 0.843± 0.090 0.966± 0.001 2.57
CaW 0.976± 0.007 0.988± 2e-4 0.940± 0.014 0.903± 1e-4 0.970± 0.001 0.939± 0.008 0.947± 1e-4 1.57

DyG2Vec 0.977± 0.001 0.987± 0.001 0.892± 0.005 0.843± 0.007 0.911± 0.006 0.953± 0.002 0.939± 0.001 2.14

20
0

JODIE 0.956± 0.003 0.979± 1e-4 0.796± 0.02 0.689± 0.018 0.786± 0.02 0.870± 0.009 0.860± 0.01 4.42
DyRep 0.954± 0.003 0.981± 0.001 0.839± 0.005 0.684± 0.034 0.788± 0.042 0.522± 0.081 0.856± 0.020 4.71
TGAT 0.958± 0.002 0.985± 1e-4 0.703± 0.007 0.519± 0.002 0.616± 0.004 0.727± 0.010 0.516± 0.001 5.14
TGN 0.969± 0.001 0.985± 0.001 0.834± 0.010 0.709± 0.030 0.858± 0.008 0.762± 0.110 0.907± 1e-4 3
CaW 0.980± 2e-4 0.985± 0.001 0.822± 0.001 0.829± 2e-4 0.929± 0.001 0.856± 0.001 0.869± 0.001 2.28

DyG2Vec 0.968± 0.001 0.986± 0.001 0.878± 0.004 0.844± 0.005 0.894± 0.006 0.918± 0.002 0.938± 0.001 1.42

20
00

JODIE 0.924± 0.004 0.960± 0.001 0.740± 0.020 0.614± 0.010 0.729± 0.010 0.676± 0.040 0.691± 0.023 4.92
DyRep 0.966± 0.002 0.966± 0.002 0.776± 0.005 0.590± 0.032 0.729± 0.042 0.511± 0.072 0.704± 0.044 4.07
TGAT 0.951± 0.001 0.985± 1e-4 0.686± 0.007 0.513± 0.003 0.618± 0.004 0.702± 0.010 0.509± 0.001 5
TGN 0.955± 0.001 0.984± 0.001 0.760± 0.010 0.689± 0.030 0.842± 0.010 0.746± 0.020 0.839± 0.007 3.28
CaW 0.971± 3e-4 0.984± 2e-4 0.732± 0.001 0.811± 1e-4 0.929± 0.001 0.766± 0.003 0.847± 0.001 2

DyG2Vec 0.956± 0.001 0.984± 0.002 0.798± 0.002 0.829± 0.004 0.879± 0.006 0.866± 0.002 0.908± 0.001 1.71

Datasets: We use 7 real-world datasets: Wikipedia, Reddit, MOOC, and LastFM (Kumar et al.,
2019); SocialEvolution, Enron, and UCI (Wang et al., 2021b). These datasets span a wide range in
terms of number of nodes and interactions, time range, and repetition ratio. We perform the same
70%-15%-15% chronological split for all datasets as in (Wang et al., 2021b). The datasets are split
differently under two settings: Transductive and Inductive. More details can be found in Appendix
A.1. The code and datasets will be publicly available upon publication.

Training Protocols and Hyper-parameters: We train and evaluate the models under three dif-
ferent settings commonly used in vision SSL works (Grill et al., 2020; Bardes et al., 2022). In the
supervised setting, DyG2Vec is initialized with random parameters and trained directly on the down-
stream tasks and compared to all supervised baselines. In the self-supervised setting, the encoder is
pre-trained using our SSL framework, and the performance is measured under two evaluation proto-
cols: Linear and Semi-supervised Probing. In the linear evaluation setting, the decoder is trained on
top of the frozen encoder and compared to the supervised counterpart. In the semi-supervised eval-
uation setting, the decoder is trained on top of the frozen pre-trained encoder on a random portion
of the dataset (i.e., a fraction of the intervals I). The DyG2Vec encoder performs L = 3 layers of
message passing. We sample N = 20 temporal neighbors at each hop as in Xu et al. (2020). Other
hyperparameters are discussed in Appendix A.5.

For the DNC task, following prior work Rossi et al. (2020), the decoder is trained on top of the frozen
encoder that is pre-trained on the future link prediction task unless otherwise explicitly stated.

5.2 EXPERIMENTAL RESULTS

Future Link Prediction: We report the tranductive test AP scores for future link prediction in Table
1. Unlike previous work which focuses on K = 1, we evaluate all models under K ∈ {1, 200, 2000}
to test their medium- and longer-term forecasting capabilities. Unsurprisingly, all methods degrade
as K increases. Our model significantly outperforms all sequential and message-passing baselines
on 5/7 of the datasets for K > 1 and is on par with SoTA (CaW) for K = 1. The gap is particularly
large on the UCI and SocialEvol. datasets for K = 2000, where DyG2Vec outperforms the second-
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Figure 5: Semi-Supervised Learning on Dy-
namic Node Classification. For each setting,
DyG2Vec was trained on a varying random por-
tion of the training data.

Table 2: Transductive Dynamic Node Classifica-
tion Performance in AUC (Mean ± Std) for K ∈
{1, 200, 2000}.

Model Wikipedia Reddit MOOC
TGAT 0.800± 0.01 0.664± 0.009 0.673± 0.006
JODIE 0.843± 0.003 0.566± 0.016 0.672± 0.002
Dyrep 0.873± 0.002 0.633± 0.008 0.661± 0.012
TGN 0.828± 0.004 0.655± 0.009 0.674± 0.007

DyG2Vec 0.833± 0.008 0.744± 0.01 0.716± 0.006
TGAT 0.819± 0.014 0.654± 0.011 0.664± 0.004
JODIE 0.843± 0.003 0.566± 0.016 0.672± 0.002
Dyrep 0.872± 0.002 0.633± 0.009 0.664± 0.011
TGN 0.834± 0.003 0.655± 0.011 0.641± 0.009

DyG2Vec 0.927± 0.004 0.745± 0.006 0.683± 0.002
TGAT 0.828± 0.017 0.650± 0.020 0.667± 0.010
JODIE 0.867± 0.002 0.554± 0.019 0.652± 0.008
Dyrep 0.873± 0.002 0.597± 0.012 0.692± 0.002
TGN 0.840± 0.003 0.646± 0.009 0.638± 0.030

DyG2Vec 0.915± 0.003 0.743± 0.007 0.609± 0.002

best method (CaW) by over 10% and 6% respectively. Interestingly, while SocialEvol. is the largest
dataset with ∼ 2M edges, our model is able to achieve this performance while only using the last
1000 edges (See Table 9) to predict any future edge. This further cements the findings by Xu et al.
(2020) that capturing recent interactions may be more important for certain tasks. Our window-based
framework offers a good trade-off between capturing recent interactions and recurrent patterns which
both have a major influence on future interactions. Appendix A.2 contains results in the Inductive
setting which show that DyG2Vec is competitive with CaW for 4/7 of the datasets while using a
small fraction of the computation (See Figure 3).

Dynamic Node classification: We evaluate DyG2Vec on 3 datasets for node classification where
the labels indicate whether a user will be banned from editing/posting after an interaction. This
task is challenging both due to its dynamic nature (i.e., nodes can change labels) and the high class
imbalance (only 217 of 157K interactions result in a ban). We measure performance using the AUC
metric to deal with the class imbalance. Table 2 shows that DyG2Vec outperforms all baselines on
7/9 of the tasks for different K. Interestingly, the performance of all methods does not always drop
as K increases. This could be explained by the fact that depending on slightly out-of-date history
can help make less noisy and more consistent predictions; thus, increasing performance.

Training/Inference Speed: Relying on a fixed window of history to produce task-agnostic node
embeddings gives DyG2Vec a significant advantage in speed and memory. Figure 3 shows the per-
formance and runtime per epoch of all methods on the three large datasets: LastFM, SocialEvolution
and MOOC, with K = 200. DyG2Vec is many orders of magnitude faster than CaW due to the lat-
ter’s expensive random walk sampling procedure. RNN-based methods such as TGN have a good
runtime on LastFM and MOOC; however, they are significantly slower on SocialEvol. which has a
small number of nodes (74) but a large number of interactions (∼ 2M ). This suggests that memory-
based methods are slower for settings where a node’s memory is updated frequently. Furthermore,
while TGAT has a similar AMP encoder, DyG2Vec improves the efficiency and performance signif-
icantly. This reveals the significance of the window-based mechanism and the encoder architecture.
Overall, DyG2Vec presents the best trade-off between speed and performance.

Table 3: Linear probing AP results (Mean ± Std) on Trans-
ductive Future Link Prediction for K ∈ {1, 200, 2000}

Setting UCI Enron MOOC LastFM
Random-init 0.927± 0.001 0.848± 0.004 0.785± 0.007 0.784± 0.001
Supervised 0.953± 0.002 0.911± 0.006 0.892± 0.005 0.843± 0.007

SSL-init 0.945± 0.001 0.902± 0.002 0.861± 0.003 0.798± 0.01
Random-init 0.904± 0.001 0.839± 0.005 0.787± 0.002 0.784± 0.002
Supervised 0.918± 0.002 0.894± 0.006 0.878± 0.004 0.844± 0.005

SSL-init 0.915± 0.001 0.887± 0.003 0.859± 0.002 0.792± 0.01
Random-init 0.851± 0.001 0.832± 0.007 0.742± 0.003 0.776± 0.001
Supervised 0.866± 0.002 0.879± 0.006 0.798± 0.002 0.829± 0.004

SSL-init 0.863± 0.002 0.876± 0.007 0.789± 0.003 0.785± 0.01

SSL for Future Link Prediction:
Table 3 reports the transductive AP
results for DyG2Vec under 3 differ-
ent settings. Namely, we compare
a random frozen encoder (Random-
init) and an SSL pre-trained encoder
(SSL-init) with the supervised base-
line. The results reveal that our SSL
pre-training learns informative node
embeddings that are almost on par
with the fully supervised baseline.
This supports the capability of the
non-contrastive methods to learn generic representations across unlabelled large-scale dynamic
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graphs, which is in line with the findings for other data modalities (Bardes et al., 2022). The
Random-init baseline is surprisingly good, as observed by recent works (Thakoor et al., 2022), but
is outperformed by the SSL pre-trained encoder.

Semi-supervised Learning on Dynamic Node Classification: The DNC task is challenging due
to its highly imbalanced labels. Previous works alleviate this issue by pre-training the encoder on
future link prediction. In Figure 5, we show that SSL is a more effective pre-training strategy for
dynamic graphs than FLP, particularly in the low-label data regime where each model is trained on
a portion of the target intervals I . This further cements the findings that reconstruction-based tasks
such as link prediction overemphasize proximity which can be limiting for some downstream tasks
(Velickovic et al., 2019; You et al., 2020).

5.3 ABLATION STUDIES

512 2k 4K 8K 16K 32K 64K
Window Size

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Te
st

 A
P Dataset

Wikipedia
MOOC
UCI

1 2 3
Number of Layers

0.83

0.85

0.88

0.90

0.93

0.95

0.98

Dataset
Wikipedia
MOOC
UCI

Wikipedia MOOC UCI
Dataset

0.75

0.80

0.85

0.90

0.95

1.00 w/ Temporal Edge Features
w/o Temporal Edge Features

Figure 6: Ablation studies on 3 datasets for the FLP transductive task.

We perform a detailed study on different instances of our framework with 3 datasets. All ablation
results are reported in Figure 6.

Window Size: We observe that each dataset has its own optimal window size W due to the inher-
ently different recurring temporal patterns. As observed by Xu et al. (2020), recent and/or recurrent
interactions are often the most predictive of future interactions. Therefore, datasets with long range
dependencies favor larger window sizes to capture the recurrent patterns while some datasets benefit
from an increased bias towards recent interactions. Our window-based framework coupled with uni-
form neighbor sampling strikes a balance between the two. Moreover, increasing the window size
to 64K for UCI, which is effectively full history as it has 60K edges in total, results in a 4% drop in
performance. This shows that the fixed window size also contributes to the performance as it helps
limit irrelevant information that is not highly predictive of future interactions.

Number of Layers: Most datasets benefit from more embedding layers, and some (e.g. MOOC)
more than others. This suggests that these datasets contain higher order temporal correlations among
nodes that must be learned using long-range message passing. Overall, the results show that one can
choose to sacrifice some performance to further improve the speed of DyG2Vec by decreasing the
window size and the number of layers.

Temporal Edge Features: The results show a significant decrease in performance for MOOC when
temporal edge features are removed (i.e. 1-5% drop). This indicates that such temporal edge features
provide useful multi-hop information about the evolution of the dynamic graph (Yao et al., 2016).

6 CONCLUSION

In this paper, we introduce DyG2Vec, a novel window-based encoder-decoder model for dynamic
graphs. We present an efficient attention-based message-passing model that utilizes hierarchical
multi-head attention modules to encode node embeddings across time. Furthermore, we present
a joint-embedding architecture for dynamic graphs in which two views of temporal sub-graphs
are encoded to minimize a non-contrastive loss function. We evaluate the SSL pre-training of
DyG2Vec under both linear and semi-supervised protocols and demonstrate the effectiveness of such
pre-training on benchmark datasets. Our window-based architecture allows for efficient message-
passing and robust forecasting abilities. We aim to further explore ways to improve the capacity of
the dynamic graph models to learn long-range dependencies. Additionally, other SSL paradigms
such as masked auto-encoders are worthwhile future explorations for dynamic graphs given their
success on sequential tasks.
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7 ETHICS STATEMENT

Dynamic graph neural network techniques have been commonly used for prediction tasks in social
networks and recommender systems. Our techniques, as an efficient and effective variant of dy-
namic graph representation technique, can be used in those scenarios to further improve the model
performance. However, having such an ability is a double-edged sword. On one hand, it can be
beneficial to greatly improve user experience. On the other hand, there may be some concerns about
the potential use of the model to exploit data relating to user behaviour and thus invade privacy.
Overall, our paper does not include content which has immediate ethical concerns.

8 REPRODUCIBILITY STATEMENT

We describe the details of the benchmarks we used in Appendix A.1. We also include the full
implementation details in Appendix A.4, including our detailed model design for decoder, negative
sampler, distortion pipeline for view generations and etc. Besides, we provide a justification for
our choice of hyperparameters in Appendix A.5. Additionally, we elaborate on the baselines we
consider in our paper as well as their hyper-parameter details in Appendix A.6. We believe with
the code open-sourced upon acceptance and the detailed description of our model and the baselines
provided in the paper, our work is fully reproducible.
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A APPENDIX

A.1 DATASETS

Table 4: Dynamic Graph Datasets. % Repetitive Edges: percentage of edges which appear more
than once in the dynamic graph. The labels column specifies whether the dataset contains dynamic
node labels or not.

# Nodes # Edges # Unique Edges Edge Features Labels Bipartite % Repetitive Edges
Reddit 11,000 672,447 78,516 ✓ ✓ ✓ 54%
Wikipedia 9,227 157,474 18,257 ✓ ✓ ✓ 48%
MOOC 7,047 411,749 178,443 ✓ ✓ 53%
LastFM 2,000 1,293,103 154,993 ✓ 68%
UCI 1899 59,835 20,296 ✓ 62%
Enron 184 125,235 3,125 92%
SocialEvolution 74 2,099,519 4,486 97%

We describe several real-world dynamic graph datasets which we train on:

Reddit (Kumar et al., 2019): A dataset tracking active users posting in subreddits. Data is repre-
sented as a bipartite graph with nodes being the users or subreddit communities. An edge represents
a user posting on a subreddit. Each user’s post is mapped to an embedding vector which is used
as an edge feature. A Dynamic label indicates whether a user u is banned from posting after an
interaction (post) at time t.

Wikipedia (Kumar et al., 2019): A dataset tracking user edits on Wikipedia pages. The data is also
represented as a bipartite graph involving interactions (edits) between users and Wikipedia pages.
Each user edit is mapped to an embedding vector which is treated as an edge feature. A dynamic
label indicates whether a user u is banned from posting after an interaction (edit) at time t.

MOOC (Kumar et al., 2019): This dataset tracks actions performed by students on the MOOC
online course platform. Nodes represent students or items (i.e., videos, questions, etc.). A dynamic
label indicates whether a student u drops out after performing an action at time t.

LastFM (Kumar et al., 2019): This dataset tracks songs that users listen to throughout one month.
Nodes represent users or songs. Dynamic labels are not present.

UCI (Wang et al., 2021b): A dataset that records online posts made by university students on a
forum.

Enron (Wang et al., 2021b): A dataset that records email communication between employees in a
company over several years.

SocialEvolve (Wang et al., 2021b): A dataset tracking the evolving physical proximity between
students in a dormitory over a year.

Dataset Splitting: As mentioned earlier, we follow the setup of (Wang et al., 2021b) to perform
70%-15%-15% chronological split for each dataset. The datasets are split differently under two
settings: Transductive and Inductive. Under the transductive setting, a dataset is split normally by
time, i.e., the model is trained on the first 70% of links and tested on the rest. In the inductive
setting, we strive to test the model’s prediction performance on edges with unseen nodes. Therefore,
following (Wang et al., 2021b), we randomly assign 10% of the nodes to the validation and test sets
and remove any interactions involving them in the training set. Additionally, to ensure an inductive
setting, we remove any interactions not involving these nodes from the test set.

A.2 ADDITIONAL RESULTS

A.2.1 INDUCTIVE SETTING AND RANKING METRICS

Table 5 reports the future link prediction results in the inductive setting. DyG2Vec is generally
competitive with CaW while using 50-100× less inference and training runtime (See 3 and 7 re-
spectively). Tables 6 and 7 report the future link prediction ranking performance for K = 1 on
the transductive and inductive tasks, respectively. While ranking metrics should provide more fine-
grained analysis, the results are consistent with the AP results (See Tables 1 and 5).
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Table 5: Inductive Future link Prediction Performance in AP (Mean ± Std) for K ∈ {1, 200, 2000}.
Avg. Rank reports the mean rank of DyG2Vec across all datasets. Bold font and underline font
represent first- and second-best performance respectively.

K Model Wikipedia Reddit MOOC LastFM Enron UCI SocialEvolve Avg Rank

1

JODIE 0.891± 0.014 0.865± 0.021 0.707± 0.029 0.865± 0.03 0.747± 0.041 0.753± 0.011 0.791± 0.031 4.85
DyRep 0.890± 0.002 0.921± 0.003 0.723± 0.009 0.869± 0.015 0.666± 0.059 0.437± 0.021 0.904± 3e-4 4.71
TGAT 0.954± 0.001 0.979± 0.001 0.805± 0.006 0.644± 0.002 0.693± 0.004 0.820± 0.005 0.632± 0.005 4.14
TGN 0.974± 0.001 0.954± 0.002 0.855± 0.014 0.789± 0.050 0.746± 0.013 0.791± 0.057 0.904± 0.023 3.42
CaW 0.977± 0.006 0.984± 2e-4 0.933± 0.014 0.890± 0.001 0.962± 0.001 0.931± 0.002 0.950± 1e-4 1.28

DyG2Vec 0.964± 0.002 0.969± 0.001 0.799± 0.010 0.910± 0.010 0.827± 0.023 0.945± 0.005 0.850± 0.038 2.57

200

JODIE 0.891± 0.012 0.865± 0.021 0.704± 0.028 0.866± 0.031 0.748± 0.040 0.762± 0.010 0.824± 0.025 4.14
DyRep 0.884± 0.002 0.919± 0.003 0.723± 0.019 0.864± 0.016 0.648± 0.071 0.431± 0.021 0.86± 0.024 4.57
TGAT 0.932± 0.002 0.977± 0.001 0.724± 0.006 0.532± 0.002 0.5993± 0.009 0.698± 0.009 0.5178± 0.003 4.14
TGN 0.923± 0.005 0.948± 0.003 0.745± 0.016 0.769± 0.063 0.701± 0.019 0.683± 0.083 0.601± 0.028 4.28
CaW 0.978± 0.001 0.975± 0.001 0.812± 0.009 0.787± 0.003 0.905± 0.004 0.819± 0.003 0.871± 0.001 1.71

DyG2Vec 0.925± 0.004 0.963± 0.001 0.774± 0.009 0.901± 0.020 0.773± 0.047 0.880± 0.007 0.836± 0.038 2.14

2000

JODIE 0.718± 0.029 0.712± 0.028 0.588± 0.013 0.755± 0.034 0.423± 0.032 0.727± 0.045 0.687± 0.110 4.57
DyRep 0.757± 0.006 0.842± 0.006 0.599± 0.010 0.682± 0.032 0.402± 0.012 0.483± 0.011 0.687± 0.049 5.00
TGAT 0.912± 0.002 0.976± 0.001 0.699± 0.004 0.528± 0.001 0.578± 0.007 0.660± 0.008 0.511± 0.003 3.14
TGN 0.857± 0.003 0.895± 0.005 0.655± 0.018 0.737± 0.068 0.478± 0.024 0.531± 0.039 0.483± 0.002 4.43
CaW 0.976± 0.001 0.975± 0.001 0.742± 0.011 0.759± 3e-4 0.865± 0.003 0.737± 0.007 0.833± 0.001 1.28

DyG2Vec 0.860± 0.007 0.942± 0.003 0.71± 0.015 0.890± 0.02 0.498± 0.033 0.533± 0.007 0.789± 0.035 2.57

Table 6: Tranductive Setting. Ranking metrics, Recall@10 and Mean Reciprocal Rank (MRR), for
future link prediction K = 1. Avg. Rank reports the mean rank of DyG2Vec across all datasets

Metric Model Wikipedia Reddit MOOC LastFM Enron UCI SocialEvol. Avg Rank

Recall@10

JODIE 0.686± 0.010 0.800± 0.003 0.443± 0.040 0.131± 0.030 0.262± 0.050 0.258± 0.040 0.728± 0.026 5.00
DyRep 0.667± 0.019 0.815± 0.005 0.562± 0.013 0.139± 0.049 0.288± 0.079 0.010± 0.014 0.786± 0.010 4.57
TGAT 0.717± 0.010 0.840± 0.003 0.297± 0.013 0.023± 0.001 0.106± 0.002 0.154± 0.004 0.147± 0.001 5.00
TGN 0.865± 0.003 0.861± 0.004 0.751± 0.050 0.208± 0.040 0.470± 0.030 0.339± 0.100 0.947± 0.003 2.14
CaW 0.888± 0.001 0.833± 0.001 0.706± 0.012 0.411± 0.002 0.720± 0.002 0.72± 0.008 0.752± 2e-4 2.14

DyG2Vec 0.797± 0.005 0.837± 0.002 0.753± 0.009 0.365± 0.007 0.696± 0.008 0.670± 0.010 0.922± 0.003 2.14

MRR

JODIE 0.371± 0.040 0.499± 0.030 0.183± 0.010 0.057± 0.010 0.108± 0.020 0.101± 0.010 0.301± 0.019 5.28
DyRep 0.422± 0.015 0.558± 0.009 0.224± 0.007 0.066± 0.022 0.118± 0.03 0.010± 0.006 0.353± 0.010 4.42
TGAT 0.464± 0.016 0.609± 0.004 0.131± 0.006 0.015± 3e-4 0.053± 0.001 0.111± 0.002 0.071± 0.0005 4.85
TGN 0.684± 0.030 0.594± 0.030 0.364± 0.030 0.100± 0.020 0.206± 0.010 0.242± 0.070 0.666± 0.017 2.42
CaW 0.717± 0.001 0.603± 0.002 0.314± 0.010 0.191± 0.001 0.315± 0.003 0.601± 0.004 0.323± 2e-4 1.85

DyG2Vec 0.596± 0.009 0.636± 0.011 0.272± 0.004 0.164± 0.002 0.254± 0.009 0.360± 0.010 0.404± 0.002 2.14

A.2.2 EFFECT OF K DURING TRAINING

One of the advantages of the DyG2Vec framework is that, unlike prior work, it is trained to forecast
with K > 1. In fact, the parameter K can be set during training based on how much long-range
range forecasting is favored. In our experiments, we found that training with K = 200 achieves a
good balance between long and short-range forecasting capabilities. Moreover, the limited history of
W edges forces the model to be more inductive as it is predicting based on limited long-range histor-
ical information. To better understand this, we trained both DyG2Vec and CaW under K = {1, 200}
and evaluate on K = {1, 200, 2000}. Table 8 shows that training DyG2Vec with short-range predic-
tion (K = 1) improves performance to be on par with CaW on K = 1 and outperform it for K > 1.
However, as expected, this comes at a cost of ∼ 2% drop for long-range forecasting (K > 1) when
compared to DyG2Vec trained with K = 200. On the other hand, CaW’s performance drops sig-
nificantly when trained with K = 200 (i.e. over 10% drop for UCI and MOOC). We believe this is
due to the sampling bias α which may be incorrectly favoring recent edges over edges that occurred
further in the past but can help for long-range forecasting. Unfortunately, we were unable to address
this by re-tuning α. An interesting direction for future research would be to study training settings
under which all models can have improved forecasting abilities.

Table 7: Inductive Setting. Ranking metrics, Recall@10 and Mean Reciprocal Rank (MRR), for
future link prediction K = 1. Avg. Rank reports the mean rank of DyG2Vec across all datasets

Metric Model Wikipedia Reddit MOOC LastFM Enron UCI SocialEvol. Avg Rank

Recall@10

JODIE 0.450± 0.068 0.275± 0.048 0.291± 0.048 0.475± 0.065 0.231± 0.099 0.086± 0.031 0.658± 0.082 5.00
DyRep 0.487± 0.009 0.534± 0.016 0.327± 0.019 0.479± 0.057 0.144± 0.073 0.003± 0.001 0.833± 0.006 4.14
TGAT 0.634± 0.002 0.792± 0.005 0.326± 0.011 0.026± 4e-4 0.103± 0.006 0.175± 0.007 0.147± 0.002 4.57
TGN 0.776± 0.012 0.681± 0.009 0.585± 0.025 0.451± 0.034 0.234± 0.016 0.261± 0.043 0.860± 0.021 2.71
CaW 0.894± 0.002 0.770± 0.005 0.688± 0.016 0.327± 0.0023 0.687± 0.010 0.709± 0.003 0.773± 0.0001 2.14

DyG2Vec 0.742± 0.017 0.734± 0.004 0.543± 0.030 0.535± 0.020 0.269± 0.017 0.616± 0.020 0.774± 0.057 2.42

MRR

JODIE 0.192± 0.048 0.098± 0.020 0.121± 0.017 0.186± 0.028 0.084± 0.029 0.043± 0.009 0.301± 0.067 4.85
DyRep 0.322± 0.015 0.301± 0.016 0.130± 0.007 0.179± 0.039 0.061± 0.025 0.006± 0.001 0.427± 0.012 4.28
TGAT 0.404± 0.004 0.528± 0.009 0.146± 0.004 0.016± 2e-4 0.052± 0.003 0.133± 0.008 0.071± 3e-4 4.42
TGN 0.606± 0.005 0.440± 0.009 0.295± 0.019 0.127± 0.015 0.115± 0.011 0.186± 0.025 0.423± 0.075 2.71
CaW 0.712± 0.004 0.521± 0.002 0.292± 0.013 0.158± 0.001 0.298± 0.005 0.584± 0.004 0.351± 0.001 2.28

DyG2Vec 0.564± 0.025 0.523± 0.030 0.198± 0.010 0.204± 0.008 0.105± 0.006 0.290± 0.019 0.362± 0.035 2.42
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Table 8: Future link prediction test AP Results with different K during training. Both CaW and
DyG2Vec were run with optimal hyperparameters for each dataset.

Training K Model MOOC UCI Enron

1 200 2000 1 200 2000 1 200 2000

K = 1
DyG2Vec 93.0 84.3 74.5 97.2 89.6 84.03 96.2 91.9 90.3

CaW 94.0 82.2 73.2 93.9 85.6 76.6 97.0 92.9 92.9

K = 200
DyG2Vec 89.2 87.8 79.8 95.3 91.8 86.6 91.1 89.4 87.9

CaW 81.9 61.2 60.8 84.2 63.6 58.0 91.8 78.6 78.0
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Figure 7: Transductive FLP performance (Test AP for K = 200) vs Training Time (s) on 3 datasets.
Training time represents the time it takes to train on the whole training set.

A.2.3 RUNTIME AND COMPUTATIONAL COMPLEXITY

Figure 7 shows the training time per method for 3 datasets. DyG2Vec is orders-of-magnitude faster
than CaW and is on par with memory-based methods in terms of speed.

The main runtime overhead lies in how each of the baselines processes the input graph to predict
a batch of K target edges. CaW samples M L-hop random walks for each target edge. This is
followed by an expensive set-based anonymization scheme. To achieve good performance, CaW
can require relatively long walks (e.g., for Enron, L = 5). On the other hand, memory-based
methods and TGAT sample a different L-hop subgraph for each target edge. DyG2Vec samples a
single L-hop subgraph within a constant window size W for all target edges.

Thus, assuming we use sparse operations in Pytorch Geometric (Fey & Lenssen, 2019) for message-
passing, the encoding computational complexities are: DyG2Vec = O(LW ); CaW = O(LMNsK)
and TGN and variants = O(KLNs). Here, Ns represents the maximum number of sampled nodes
in an L-hop subgraph and K is the number of target edges to predict. We can see that the main
difference is the factor M and the fact that this sampling is done for each of the K target edges. The
factor Ns comes from the complexity of message passing at each hop (assuming sparse operations).
Note that DyG2Vec is limited to O(W ) nodes so it does not have this factor.

A.3 PRELIMINARY: VICREG

We outline the details of the VICReg (Bardes et al., 2022) method used in our SSL pre-training
stage. Given z

′ ∈ Rd and z
′′ ∈ Rd, the representations of two random views of an object (e.g.,

image) generated through random distortions, the objective of non-contrastive SSL is two-fold. First,
the output representation of one view should be maximally informative of the input representation
of the view. Second, the representation of one view should be maximally predictable from the
representation of the other view. These two aspects are formulated by VICReg (Bardes et al., 2022)
where a combination of 3 loss terms (i.e. Variance, Covariance, Invariance) is minimized to learn
useful representations while also avoiding the well-known problem of collapse (Jing et al., 2022) in
the mapping space. More concretely, let Z

′
= [z′

1, . . . ,z
′
n] and Z

′′
= [z′′

1 , . . . ,z
′′
n] be the batches

composed of n representations of dimension d.

Variance term: The variance regularization term v is the mean over the representation dimension
of the hinge function on the standard deviation of the representations along the batch dimension:
v(Z) = 1

D

∑D
j=1 max(0, γ − S(Z:,j , ϵ)). Here Z:,j is the column j of matrix Z. S is the regu-
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larized standard deviation defined by S(z, ϵ) =
√

Var(z) + ϵ, γ is a constant value set to 1 in our
experiments, and ϵ is a small scalar that helps to prevent numerical instability. This term avoids
dimensional collapse by maximizing the volume of the distribution of the mapped views in all di-
mensions. In other words, it prevents the well-known trivial solution where the representations of
the two views of a sample collapse to the same representation (Jing et al., 2022).

Covariance term: The covariance regularization terms C decorrelates different dimensions of the
representations and prevents them from encoding similar information. The covariance matrix of
Z is C(Z) = 1

n

∑n
i=1(zi − z̄)(zi − z̄)T where z̄ = 1

N

∑i=1
n zi. The covariance regularization

term c is then defined as the sum of the squared off-diagonal coefficients of the covariance matrix
as follows c(Z) = 1

d

∑
i̸=j [C(Z)]2i,j where [C(Z)]2i,j is the element at row i and column j of the

matrix C(Z). Both the variance and covariance terms helps to maximize the information encoded
by the model in the representation space.

Invariance criterion: The invariance criterion s between Z
′

and Z
′′

is defined as the mean
squared Euclidean distance between the representation vectors in the two views s(Z

′
,Z

′′
) =

1
n

∑
i ∥z

′

i − z
′′

i ∥
2

2. The invariance term encourages the parametric mapping to ensure that the views
of an object remain close in the latent space.

Finally, the SSL loss function LSSL over a batch of representations is a weighted average of the
invariance, variance, and covariance terms:

LSSL = l(Z
′
,Z

′′
) = λs(Z

′
,Z

′′
) + µ[v(Z

′
) + v(Z

′′
)] + ν[c(Z

′
) + c(Z

′′
)] (10)

In our experiments, we set λ = µ = 25 and ν = 1, following Bardes et al. (2022).

A.4 IMPLEMENTATION DETAILS

We train our model using the Pytorch framework (Paszke et al., 2019). The dynamic graph data and
GNN encoder architecture are implemented using Pytorch Geometric (Fey & Lenssen, 2019). The
ReLU activation function is used for all models. The code and datasets are publicly available 2.

Window-based framework: As mentioned in Section 4, the full dynamic graph G0,E is divided
into a set of intervals I that is generated by dividing the entire time-span into M = ⌈E/S⌉ − 1
intervals with stride S and interval length W :

I =

{[
max(0, jS −W ), min(jS,E)

)
| j ∈ {1, 2, . . . ,M}

}
. (11)

Here, W defines the number of edges in an interval and S defines the stride. Note that we include
all intervals up to but not including [E −W,E) so that the target interval contains at least one edge.

Negative Sampling: For future link prediction, we sample an equal number of negative interactions
and positive (target) interactions. Negative interactions are sampled by sampling a random negative
destination node from the set of all possible nodes. For the Recall@10 and MRR metrics, we sample
500 random negative destinations for each positive target edge.

Decoder Architecture:

Denote by tmax the timestamp of the latest interaction, within the provided history, incident to node
u. For future link prediction, to predict a target interaction (u, v, t), our decoder maps the sum of
the two node embeddings of u and v and a time embedding of t − tmax to an edge probability.
Following Xu et al. (2020), the FLP decoder is a 2-layer MLP.

For dynamic node classification, to predict the label of node u for interaction (u, v, t), the decoder
maps the source node embedding and time embedding of t− tmax to class probabilities. Following
Xu et al. (2020), the DNC decoder is a 3-layer MLP with a dropout layer with p = 0.1.

The time embedding is calculated using a trainable Time2Vec module (Kazemi et al., 2019). The
time embedding allows the decoder to be time-aware; hence, possibly output different predictions
for the same nodes/edges at different timestamps.

2https://github.com/anon/anon.git
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For SSL pre-training, the predictor pϕ is a simple 2-layer MLP that maps node embeddings H to
node representations Z.

Distortion Pipeline: Following static graph SSL methods such as Thakoor et al. (2022), we use
edge dropout and edge feature dropout as distortions. Both distortions are applied with dropout
probability pd = 0.3 which we have found to work best in a validation experiment exploring the
values pd ∈ {0.1, 0.15, 0.2, 0.3}. The edge feature dropout is applied on the temporal edge encod-
ings introduced in Section 4.3, i.e., zp(tp) and cp(tp). More advanced temporal distortions could be
explored such as time distortions or edge shuffling, but we leave those for future work.

A.5 HYPER-PARAMETERS

Hyper-parameters: We use a constant learning rate of 0.0001 for all datasets and tasks. DyG2Vec
is trained for 100 epochs for both downstream and SSL pre-training. The model from the last epoch
of pre-training is used for downstream training. For downstream evaluation, we pick the model
with the best validation AP performance. Overall, we found that DyG2Vec converges within ∼ 50
epochs.

For downstream training, the window size W is tuned on the validation set from the range
{1K, 4K, 8K, 12K, 32K, 65K}. The best window sizes per dataset can be found in Table 9. The
target window size K is fixed to 200 during training. The stride is always fixed to be equal to K, so
that each edge is only predicted once. One could augment the dataset by changing S but we leave
this for future work. The batch size is always set to 1; hence, we only predict one target interval of
size K at a time. However, the model could be sped up by increasing batch size at the cost of higher
memory.

During SSL pre-training, we use a constant window size of 32K with stride 200. The DyG2Vec
encoder hyperparameters can be found in Table 10.

Table 9: Optimal Window size W for downstream training.

Dataset Window Size W
Wikipedia 65K

Reddit 65K
MOOC 12K
LastFM 32K

UCI 4K
Enron 8K

SocialEvolution 1K

Following previous work (Rossi et al., 2020; Xu et al., 2020), all dynamic node classification training
experiments are performed with L2-decay parameter λ = 0.00001 to alleviate over-fitting.

A.6 BASELINES

Baselines: Following prior work (Rossi et al., 2020; Xu et al., 2020), all baselines are trained with a
constant learning rate of 0.0001 using the Adam optimizer (Kingma & Ba, 2014) on batch-size 200
for a total of 50 epochs. The early stopping strategy is used to stop training if validation AP does
not improve for 5 epochs. For JODIE (Kumar et al., 2019), DyRep (Trivedi et al., 2019), and TGN
(Rossi et al., 2020), we use the general framework3 implemented by Rossi et al. (2020). The node
memory dimension is set to 172. Other encoder hyperparameters are specified in Table 10.

For TGAT4, we use the default hyperparameters of 2 layer neighbor sampling with 20 neighbors
sampled at each hop. Other hyperparameters are specified in Table 10. For the CaW5 method, we
tune the time decay parameter α ∈ {0.01, 0.1, 0.3, 0.5, 1, 2, 4, 10} × 10−6, and length of the walks
m ∈ {2, 3, 4, 5} on the validation set. The optimal hyperparameters for each dataset are specified in
Table 11. The number of heads for the walking-based attention is fixed to 8.

3https://github.com/twitter-research/tgn
4https://github.com/StatsDLMathsRecomSys/Inductive-representation-learning-on-temporal-graphs
5https://github.com/snap-stanford/CAW
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Table 10: Hyperparameters for DyG2Vec, RNN-based methods (JODIE, DyRep, and TGN), and
TGAT.

Param Value
Node Embedding Dim 100
Time Embedding Dim 100

# Attention Heads 2
# Sampled Neighbors 20

Dropout 0.1

Table 11: Hyperparameters for CaW.

Dataset Time Decay α Walk Length m
Wikipedia 4e-6 4

Reddit 1e-8 3
MOOC 1e-4 3
LastFM 1e-6 3

UCI 1e-5 2
Enron 1e-6 5

SocialEvolution 3e-5 3

A.7 COMPUTING INFRASTRUCTURE

All experiments were done on a Ubuntu 20.4 server with 72 Intel(R) Xeon(R) Gold 6140 CPU @
2.30GHz cores and a RAM of size 755 Gb. We use a NVIDIA Tesla V100-PCIE-32GB GPU.

A.8 ADDITIONAL RELATED WORK

Self-supervised learning for dynamic graphs: Most adaptations of SSL for dynamic graphs have
focused on improving downstream task performance via auxiliary losses rather than learning general
pre-trained models. Jiang et al. (2021) adapt a sub-graph contrastive learning method (Jiao et al.,
2020) where a node representation is contrasted in both structure and time. That is, for each node in
the graph, a GNN encoder is trained to contrast its real temporal subgraph to its fake temporal sub-
graph . This is done by constructing a positive sample, a structural negative sample and a temporal
negative sample. The positive sample is a time-weighted subgraph representation. The margin triplet
loss is proposed to maximize the mutual information with the positive sample while maximizing dis-
tance with the structural and temporal negative samples. Experiments on downstream link prediction
task under the freeze setting show improvement over baselines. However, their approach comes with
several shortcomings. First, initial node features are computed as one-hot encodings which makes
the method not suitable for the inductive scenario (i.e. predicting on new nodes). Second, the use
of contrastive learning method is known to result in high memory and computation due to negative
sampling (Thakoor et al., 2022). This makes the method less desirable for large-scale graphs. Third,
they do not include results on other downstream tasks (e.g. dynamic node classification). Lastly,
they do not compare to the SoTA CaW method (Wang et al., 2021b).

Cong et al. (2022) propose the dynamic graph transformer (DGT) which is a transformer-based
graph encoder for discrete-time dynamic graphs. DGT is composed of two-tower networks that
embed the temporal evolution and topological information of the input graph. Moreover, a temporal-
union graph structure is proposed to efficiently summarize the temporal evolution into one graph.
DGT is trained to encode the temporal-union graph using two complementary self-supervised pretext
tasks. Namely, temporal reconstruction and multi-view contrasting. The first aims to reconstruct a
snapshot given the past and present similar to how language models are trained. On the other hand,
the latter is trained via non-contrastive learning on two views with randomly masked nodes. All
together, DGT outperforms SOTA discrete-time baselines on several datasets for link prediction
tasks. While they operate in a different domain, an interesting direction for future work would be to
adapt their pre-training strategy for continuous-time dynamic graphs.
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Table 12: Downstream Freeze test AP Results (after pre-training) for K=1. DDGCL pre-training
and downstream training were run with default parameters described in the work. DyG2Vec was run
with parameters described in A.5.

Model MOOC Enron UCI LastFM
DyG2Vec 86.1 90.1 94.5 79.8
DDGCL 84.3 83.0 85.3 78.8

Tian et al. (2021) adapt the TGAT encoder with a self-supervised contrastive framework across
time. That is, they propose an extension to the classic contrastive learning paradigm by contrasting
two nearby temporal views of the same node using a time-dependent similarity metric. Moreover,
a de-basied contrastive loss is utilized to correct the typical negative sampling bias in contrastive
learning. Experiments on the fine-tune and mutli-task learning settings show that the simple TGAT
encoder can be significantly improved on both future link prediction and dynamic node classifica-
tion. Nonetheless, their approach comes with several shortcomings. First, it is built on the TGAT
encoder which, as seen in Tables 1 and 5, is a weak encoder; particularly, for large datasets. Second,
experiments for the FLP task are limited to the Reddit and Wikipedia datasets which are relatively
easy. Lastly, the authors do not experiment under the standard settings in graph SSL literature such
as the freeze and semi-supervised settings. Table 12 shows the results for downstream future link
prediction under the freeze setting. The results show up to 10% gap compared to DyG2Vec, partic-
ularly for datasets where the TGAT encoder under-performs (e.g. Enron, UCI).

More encoders for temporal graphs: Souza et al. (2022) is a concurrent work that establishes a
series of theoretical results on temporal graph encoders. Their analysis exposes several weakness
of both memory-based methods (e.g. TGN) and walk-based methods (e.g. CaW). Given these
insights, they propose PINT, a memory-based method that leverages injective message-passing and
novel relative positional encodings. The relative positional encodings count how many temporal
walks of a given length exist between two nodes. Experiments show significant improvement over
SoTA baselines on the link prediction task. An interesting direction for future research would be to
evaluate the expressive power of DyG2Vec compared to baselines using their theoretical framework
(e.g. temporal WL test).

Wang et al. (2021a) adapt the vanilla transformer architecture to dynamic graphs by designing a two-
stream encoder that extracts temporal and structural information from the temporal neighborhoods
associated with any two interaction nodes. Rather than treating link prediction as a binary classifica-
tion task, the authors leverage a contrastive learning strategy that maximizes the mutual information
between the representations of future interaction nodes. Experiments show improved performance
on future link prediction due to the more robust contrastive training strategy. Nonetheless, the pa-
per does not compare to the SoTA CaW method (Wang et al., 2021b). Moreover, experiments are
limited to the future link prediction task.
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