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ABSTRACT

The Fréchet Video Distance (FVD) is a widely adopted metric for evaluating video
generation distribution quality. However, its effectiveness relies on critical assump-
tions. Our analysis reveals three significant limitations: (1) the non-Gaussianity of
the Inflated 3D ConvNet (I3D) feature space; (2) the insensitivity of I3D features
to temporal distortions; (3) the impractical sample sizes required for reliable esti-
mation. These findings undermine FVD’s reliability and show that FVD falls short
as a standalone metric for video generation evaluation. After extensive analysis of
a wide range of metrics and backbone architectures, we propose JEDi, the JEPA
Embedding Distance, based on features derived from a Joint Embedding Predic-
tive Architecture, measured using Maximum Mean Discrepancy with polynomial
kernel. Our experiments on multiple open-source datasets show clear evidence
that it is a superior alternative to the widely used FVD metric, requiring only 16%
of the samples to reach its steady value, while increasing alignment with human
evaluation by 34%, on average.
Project page: https://oooolga.github.io/JEDi.github.io/.

1 INTRODUCTION

Figure 1: Comparing the number of samples that Fréchet Distance (FD), Energy, and MMDPOLY
need to converge against its alignment with human evaluation on the UCF-101 dataset. JEDi, the
feature space of a V-JEPA model (V-JEPASSv2) in combination with a Maximum Mean Discrepancy
(MMD) metric, is a vastly more efficient framework for evaluating distributions of generated videos
than conventional methods. The current standard, FVD (FD+I3D), underperforms in terms of both
sample efficiency and alignment with human evaluation.
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Video generation research has experienced a significant surge recently, yielding cutting-edge models
that produce high-quality videos (Liu et al., 2024; Blattmann et al., 2023; Zeng et al., 2023; He et al.,
2023). However, evaluating their generation quality poses a substantial challenge.

A good video generation model must produce high-quality frames, maintain temporal consistency,
and generate varied content. For instance, at the object level, it is undesirable to have exclusively cars
of specific brands or colors when generating automobile videos; at the motion level, it is undesirable
to observe the same type of motion repeatedly when generating human action videos. Therefore, a
robust evaluation metric must address multiple facets to reliably assess generative video models.

Researchers have created a range of evaluation metrics and tools to assess the quality of individual
outputs from video generation models. Many of the older video generation metrics are derived from
image quality assessments: LPIPS, MSE, SSIM, PSNR. These metrics fail to quantify the temporal
consistency between frames (Zhang et al., 2018; Horé & Ziou, 2010). Recent video distance metrics
focus on assessing both temporal and spatial qualities, as well as diversity, by measuring distances in
distribution with respect to the real videos. The most popular such metric for video is the Fréchet
Video Distance (FVD) (Unterthiner et al., 2019)1. An analog exists for measuring image quality (but
not temporal consistency): the Fréchet Inception Distance (FID) (Heusel et al., 2017). These metrics
have emerged as a leading tool for assessing the quality of video and image generation models.

FID, primarily a image metric, is also used in video generation to compare key-frames. It computes
the Fréchet distances of the frame features from Inception v3 (Szegedy et al., 2014; Ioffe &
Szegedy, 2015) trained on ImageNet. Building upon the principles of FID metrics, FVD evaluates
the FD between the generated and data distributions in the Inflated 3D ConvNet (I3D)’s feature
space (Carreira & Zisserman, 2018), which is trained on the Kinetics dataset (Kay et al., 2017).
FVD’s use of features extracted from 3D-ConvNet allows it to capture a more comprehensive range
of visual and temporal information compared to FID.

Recent studies have highlighted limitations in the reliability of the FVD measure. Specifically, Brooks
et al. (2022) demonstrated that FVD is not effective in capturing long-term realism and is more
suitable for comparing generation model variants of the same architecture. Moreover, Skorokhodov
et al. (2021) showed that FVD overlooks motion collapse and is biased towards image quality,
rather than video quality. Additionally, they pointed out that FVD is excessively sensitive to minor
implementation details, such as the specific image storage formats used (e.g., JPEG compression
levels or file encoding), which can lead to inconsistent and non-comparable results across different
studies.

A comprehensive study on FVD was conducted by Ge et al. (2024), which compares Fréchet distances
of features extracted by the I3D network (Carreira & Zisserman, 2018) and VideoMAE network (Wang
et al., 2023a). The study shows that the FVD prioritizes per-frame quality over temporal consistency
when using I3D features, which they refer to as content-bias. Further, they suggest that using features
from self-supervised models trained on content-debiased data can effectively mitigate this bias in
FVD. Our methodology draws inspiration from previous analysis that highlights shortcomings with
FID (Borji, 2021; Kynkäänniemi et al., 2023; Soloveitchik et al., 2022; Sajjadi et al., 2018).

A separate and distinct method of evaluating videos is on the sample level, rather than the distribu-
tional level. For example, (Huang et al., 2023) recently developed VBench, a comprehensive video
benchmark that analyzes the evaluation of individual generated outputs on subject consistency, back-
ground consistency, temporal flickering, motion smoothness, aesthetic quality, among others. VBench
addresses the challenge of evaluating both temporal and spatial consistency in video generation, but
naturally fails at efficiently evaluating the generational capabilities of a model on a distributional
level, or the robustness of a model in generating videos outside its benchmark distribution.

In our proposed framework, JEDi, we address many of the problems affecting existing evaluation
strategies:
1. JEDi employs a Maximum Mean Discrepancy (MMD) metric with a polynomial kernel, elimi-

nating the need for parametric assumptions about the underlying video distribution, unlike FVD
which relies on the Gaussianity assumption to make its metric feasible.

1 Unterthiner et al.’s work introduced Fréchet Video Distance (FVD) and Kernel Video Distance (KVD),
both operating in the I3D feature space. FVD uses the Fréchet distance, while KVD employs a polynomial
kernel-based method, and Unterthiner et al. found that FVD aligns more closely with human judgment.
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2. JEDi significantly reduces the number of samples needed to make an accurate estimate by using
an MMD metric in a V-JEPA feature space, enabling reliable use in smaller datasets that do not
meet the requirement when using FVD.

3. JEDi leverages the robust representations of a V-JEPA model, which are found to be more aligned
with human evaluations compared to FVD.

2 BACKGROUND AND NOTATIONS

2.1 VIDEO FEATURE REPRESENTATION

Inflated 3D ConvNet: The Inflated 3D ConvNet (I3D) (Carreira & Zisserman, 2018) is a convolu-
tional neural network model based on the pre-trained Inception-v1. It extends the 2D convolutional
filters to 3D by replicating them along the temporal dimension. I3D, pre-trained on Kinetics, has
demonstrated excellent classification performance on UCF-101 (Soomro et al., 2012), HMDB-
51 (Kuehne et al., 2011), and Kinetics datasets (Kay et al., 2017), proving to be a valuable network
for video recognition tasks.

The original FVD work by Unterthiner et al. (2019) explores the use of I3D features trained on the
Kinetics datasets. They analyze the features from the logits layer, as well as the features from the
last pooling layer trained on the Kinetics-400 and Kinetics-600 datasets. Their experiments suggest
that the features from the logits layer trained on the Kinetics-400 dataset are the most suitable for the
FVD metric.

Video Masked Autoencoder: The Video Masked Autoencoder (VideoMAE-v2) (Wang et al.,
2023a) is a self-supervised pre-training method that leverages a vision transformer (ViT) back-
bone (Dosovitskiy et al., 2020) to learn efficient video representations. According to Ge et al.,
the giant-VideoMAE-v2 model, pretrained on a diverse set of unlabeled datasets and fine-tuned
on Something-something-v2 (Goyal et al., 2017) with a masked autoencoder objective, effectively
captures both spatial and temporal distortions in its encoded feature space. We leverage two variants
of the VideoMAE-v2 model in our study: (1) VideoMAEPT: the self-supervised pre-trained giant
VideoMAE-v2 model and (2) VideoMAESSv2: the fine-tuned giant VideoMAE-v2 model.

Video Joint Embedding Predictive Architecture: Video Joint Embedding Predictive Architecture
(V-JEPA) (Bardes et al., 2024) is a self-supervised training paradigm that learns by predicting
missing or masked parts of a video in an abstract representation space. V-JEPA excels in “frozen
evaluations”, where its encoder and predictor are pre-trained through self-supervised learning and
then left unchanged. For new tasks, only a small, lightweight layer or network is trained on top
of the pre-trained components, enabling quick and efficient adaptation to new environments. In
this study, we employ both (1) the pre-trained variant of the model trained with the self-supervised
objective, V-JEPAPT, as well as (2) a version that was fine-tuned on Something-something-v2 (Goyal
et al., 2017) with an attentive classification probe such that its pre-logit features could be used for
distributional analysis metrics, V-JEPASSv2.

2.2 FRÉCHET DISTANCE AND FRÉCHET VIDEO DISTANCE

Fréchet Distance (FD), also known as 2-Wasserstein distance (W2), is a way of measuring how
similar two distributions are (Frechet, 1957; Dowson & Landau, 1982; Zilly et al., 2020). The Fréchet
distance between two distributions P and Q is defined as the minimum distance between all pairs
of random variables x and y from the distributions. Assuming P and Q are multivariate Gaussian
distributions, it can be expressed as:

D2
Fréchet(P,Q) = (µP − µQ)

2 +Tr(ΣP +ΣQ − 2(ΣPΣQ)
1
2 ) (1)

where µP and µQ are the means, while ΣP and ΣQ are the covariance matrices of the two Gaussian
distributions. Without making this assumption, the Fréchet Distance is intractable and becomes much
more arduous to obtain.

The Fréchet Inception Distance (FID) and Fréchet Video Distance (FVD) correspond to the above
equations, but the distance is applied in the space of InceptionV3 and I3D network features, respec-
tively, instead of directly in raw image space in order to obtain more meanful distance that better
align with human preferences (Szegedy et al., 2014; Unterthiner et al., 2019).
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2.3 OTHER DISTRIBUTION DISTANCE METRICS

This study also explores the application of alternative statistical methods to compute probability dis-
tribution distances in video feature spaces, including Mixture Wasserstein (MW2), Energy Statistics,
and kernel-based methods such as Maximum Mean Discrepancy (MMD). The detailed backgrounds
of these metrics are provided in Appendix A.4.

3 EXAMINING FVD: FEATURE SPACES AND THE GAUSSIANITY ASSUMPTION

The Fréchet distance (FD) measures the difference between means and covariances. This can offer
insights into the first two moments of the distributions, but fails to do so with respect to higher-order
moments (e.g., skewness, kurtosis) that arise when either the real or generated data distribution is
non-Gaussian. According to Jayasumana et al. (2024), the reliance on Gaussianity assumptions in FID
research can lead to substantial inaccuracies when the underlying image distribution does not come
from such a distribution. This part of the study focuses on the video feature spaces, investigating the
accuracy of Gaussian assumptions and considering the consequences of the Fréchet Video Distance
(FVD) when those assumptions are not met.

Using each of the I3D, VideoMAE, and V-JEPA networks under comparison, we extract 48,501
features from 11 distinct video datasets, with each feature representing a 32-frame clip. Specifically,
we extract a maximum of 5000 features from the training set of each dataset, which include: Anime-
Run-v2 (Siyao et al., 2022), BAIR (Ebert et al., 2017), BDD100k (Yu et al., 2020), DAVIS (Pont-
Tuset et al., 2018), Fashion Modeling (Zablotskaia et al., 2019), HMDB-51 (Kuehne et al., 2011),
How2Sign (Duarte et al., 2021), KITTI (Geiger et al., 2013), Something-Something-v2 (Goyal et al.,
2017), Sky Scene (Xiong et al., 2018), and UCF-101 (Soomro et al., 2012).

The notion that I3D video features do not follow multivariate Gaussian distributions is investigated
using the widely-accepted Mardia’s Skewness (Mardia, 1970), Mardia’s Kurtosis (Mardia, 1970), and
Henze-Zirkler normality tests (Henze & Zirkler, 1990), following (Jayasumana et al., 2024). The null
hypothesis that I3D features follow a multivariate Gaussian distribution is strongly rejected (p = 0)
across all datasets and normality tests.

We then normalize the aggregated training-set features and fit a Principal Component Analysis
(PCA) model and a Linear Discriminant Analysis (LDA) model using dataset labels as classes. We
apply the same pipelines to transform 5,256 I3D features (up to 500 samples from each of the
eleven datasets’ testing sets) into lower-dimensional spaces for visualizations. As demonstrated in
Appendix A.3, applying PCA or LDA transformations to Gaussian-distributed data preserves their
Gaussian properties. Figure 2 shows that the I3D features don’t follow a single multivariate Gaussian
distribution; rather, they cluster by dataset.

I3D VideoMAEPT VideoMAESSv2 V-JEPAPT V-JEPASSv2

LDA

PCA

Figure 2: The dimensionally reduced video features of the 11 datasets using LDA and PCA indicate
that the video features are non-Gaussian in the combined dataset space. While individual dataset
clusters may appear Gaussian in these plots, the low explained variance ratios (0.134-0.231) of the
PCA-reduced spaces suggest that 2D projections in these plots may not capture the complexity of
higher-dimensional feature distributions within individual datasets. Figures 7 and 8 contain dataset-
specific LDA and PCA plots, which reveal non-Gaussian characteristics within the datasets.
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Moreover, we conduct a PCA on individual datasets and apply a LDA to the HMDB-51 and UCF-101
datasets, incorporating classification labels and varying frame counts per clip. Our analysis shows
that I3D clip features deviate from Gaussian distributions within each dataset. More notably, we
observe a positive correlation between clip duration and increase in FVD between the train and
test sets from the same dataset, suggesting that higher-order moments may be essential for accurate
characterization.

We replicate our experiments in the VideoMAE and V-JEPA feature spaces using the same datasets.
Our results in these feature spaces mirror our findings in the I3D feature space. Additional details on
the setup and results are provided in Appendix D.

4 THE DUAL CHALLENGE OF CONVERGENCE: HIGH-DIMENSIONAL
FEATURE SPACES AND LIMITED SAMPLES

The following section addresses two pivotal challenges in evaluating video distribution distances:

1. The Dimensionality Problem (Section 4.1): We examine the limitations of metrics relying on
distribution assumptions (e.g., Fréchet distance, Mixture Wasserstein distance), highlighting the
adverse impact of high dimensionality.

2. Sample Efficiency and Convergence (Section 4.2): We discuss the sample efficiency issue affecting
all metrics and the necessary sample size for trustworthy measurements.

4.1 CHALLENGE #1: THE CURSE OF DIMENSIONALITY

IMPACT OF DATA DIMENSION ON FRÉCHET DISTANCE METRIC

In the previous section, we have shown that the Fréchet Distance (FD) can be used as a metric for
comparing the discrepancy between the first two moments of two distributions. Consequently, the
accuracy of the mean and covariance estimators is crucial for ensuring the validity of FD as a metric.
In the following part, we will explore the impact of data dimensionality and sample size on the quality
and precision of these estimators, and examine how this affects the reliability of distribution distance
metrics.

The rank of the empirical covariance matrix (Σ̂) is tied to the number of samples (n) and the
dimension (k). Given a matrix X containing n observations, where each column vector represents a
k-dimensional multivariate sample, the empirical covariance matrix can serve as a reliable estimator
for the true covariance matrix. The empirical covariance matrix is calculated using the formula:
Σ̂ = 1

n

∑n
i=1

(
Xi − X̄

)(
Xi − X̄

)⊺
, and it consistently converges to the true Σ at a rate of 1√

n
.

It is crucial to recognize that when the number of samples is less than the number of variables
(n < k), the covariance matrix becomes singular. A good covariance estimator requires a sample
size that is sufficiently large, ideally at least several times greater than the data dimension. This is
because estimating the covariance matrix involves estimating k(k+1)/2 parameters, which requires a
sufficiently large number of samples to achieve accurate estimates (Bickel & Levina, 2008; Marčenko
& Pastur, 1967; Wang; Jonsson, 1982). Unfortunately, the high-dimensional nature of I3D (400),
VideoMAE (1408), and V-JEPA (1280) representation spaces exacerbates this issue.

Furthermore, optimal transport methods with complex distributional assumptions require more
samples yet. The Mixture Wasserstein (MW2) experiment described in Appendix E.1 highlights
significant computational and practical limitations of optimal-transport type metrics, making them
impractical for this project. See Appendix E.1 for further discussion.

DATA TRANSFORMATION: DIMENSIONALITY REDUCTION

To address the challenges posed by the curse of dimensionality, dimension reduction techniques such
as PCA and autoencoders (Lecun, 1987) can be applied. Our preliminary investigation from Appendix
E.1 suggests that decreasing the representation dimension could enable the metric to converge with a
smaller number of samples using metrics like Fréchet Distance. We test that hypothesis by training
autoencoders in various feature spaces to reduce dimensionality.
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Our autoencoder architectures consist of simple multilayer perceptron networks, which compress
feature dimensionality to either 1

6 of original size for I3D features or 1
8 of original size for Video-

MAE and V-JEPA features. Additional information about the autoencoder training is available in
Appendix E.2.

Interestingly, dimension reduction significantly enhances the sample efficiency of the Fréchet Distance
and energy statistic metrics in our experiments with Gaussian data (Figure 10). However, its benefits
are less pronounced for video features, resulting in only marginal improvements (Figures 11 and
12). Nonetheless, we retained autoencoder features in subsequent experiments to investigate other
possible benefits.

4.2 CHALLENGE #2: SAMPLE EFFICIENCY AND DATA SCARCITY

Building on the insights from Sections 4.1, we recognize the critical importance of sufficient sampling
for accurate estimation of metrics. This section delves into the relationship between sample size and
convergence rate for each metric, exploring its impact across various feature spaces. Here, we define
convergence rate as the rate at which the distance between training and testing set feature stabilizes
as the number of video sample increases. It is a measure of sample efficiency.

Previous studies in the image and audio domains have shown that as the sample sizes N decrease,
Fréchet Distances increase (Bińkowski et al., 2021; Gui et al., 2024; Jayasumana et al., 2024; Chong
& Forsyth, 2019). This sensitivity to sample size is a common phenomenon among distributional
distance metrics: As sample sizes increase, distance metrics become more reliable and accurate.
However, while all metrics benefit from additional data, some converge to the true underlying distance
more quickly than others.

We investigate the sample size required to achieve convergence within a 5% error margin to average
metric distance measured at 5,000 samples. Our comparative analysis in Figure 3 spans two diverse
types of datasets: UCF-101, HMDB (human action recognition) and Something-Something-v2 (SSv2,
hand gesture recognition). An extended analysis on more datasets, feature spaces, and metrics is
found in Appendix E.3. Our key findings include:

1. The sample sizes needed for convergence within the same feature space are similar across datasets.
For instance, 4,350 samples on UCF-101 and 4,700 samples on SSv2 are required for FVD
(I3D+FD) to converge, while 700 samples on UCF-101 and 800 samples on SSv2 are required for
JEDi (MMDPOLY+V-JEPASSv2) to converge.

2. MMDPOLY demonstrates the quickest convergence rate across non-I3D feature spaces. For ex-
ample, it requires only 1,500 and 700 samples to reach a steady metric value on UCF-101 in
V-JEPAPT and V-JEPASSv2 feature spaces, respectively (Figure 14).

3. Fréchet Distance has the worst sample efficiency among metrics, while I3D features exhibit the
worst sample efficiency across feature spaces (Figure 14, 16, 15).

Figure 3: The number of samples required to achieve a 5% error margin in the distance measured
from 5,000 samples using the training and testing sets of the 3 listed datasets. We assess the number of
samples required for convergence at 100 sample intervals. Convergence at sample size N is achieved
if: (1) the average metric value from 5 repeated samplings of N features falls within a 5% error
margin, and (2) all subsequent interval evaluations maintain an average metric value within the 5%
error margin. The results for other metrics, feature spaces, and different datasets are provided in the
Appendix (Figure 14-15). We find that Fréchet Distance (FD) converges slowest, while MMDPOLY
shows the highest sample efficiency.

As shown in Figure 3, it often takes thousands of video clips for FVD features to converge; however,
many datasets contain insufficient amount of unique videos to reach this convergence, making
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it challenging to define a robust distribution in such high-dimensional spaces (Pont-Tuset et al.,
2018; Geiger et al., 2013; Ebert et al., 2017). This is often worked around by transforming videos
into shorter, partly overlapping clips. This method is problematic and biases the metric due to
the repetitiveness of the data. This fault has remained largely challenged. For instance, as shown
in Figure 16, the BAIR dataset’s size and sample efficiency issues are particularly noteworthy.
Despite these limitations, BAIR dataset remains a widely-used benchmark for video generation, with
numerous studies reporting FVD results on it (Yu et al., 2023; Wu et al., 2021; Voleti et al., 2022).

We note three key hurdles stemming from this sample efficiency issue in video generation: (1) Data
size: Limited samples compromise estimate reliability, undermining robust statistical analysis; (2)
Computational resources: Generating samples is computationally expensive and time-demanding;
(3) Metric convergence speed: Slow convergence rates hinder accurate assessments. While dataset
size and computational resources are largely beyond our control, we can address the third concern by
selecting metrics with higher sample efficiency where convergence happens with less samples.

5 METRIC DISTANCE ANALYSIS: NOISE, GENERATIVE MODELS, AND
HUMAN STUDY

This section explores the effects of videos distorted with noise and videos generated at varying model
training checkpoints on metric reliability, assessing their impact on: (1) metric accuracy, (2) sample
efficiency and (3) human metric alignment.

5.1 NOISE & GENERATION MODELS AND THEIR IMPACTS ON METRIC MEASUREMENT

Metric No Noise Blur (low) Blur (medium) Blur (high)
FVD 69.0± 0.187 68.1± 0.087 97.4± 0.151 177.3± 0.221
JEDi 0.017± 0.000 0.038± 0.000 0.256± 0.000 0.571± 0.000

Table 1: The table shows average FVD and JEDi distances between training and testing set feature
distributions under various blur distortions. The testing video dataset is subjected to noise distortions,
including low blur (σ ∼ [0.05, 0.75]), medium blur (σ ∼ [0.1, 1.5]), and high blur (σ ∼ [0.01, 3]),
where σ represents the per-frame blur intensity, and a larger range indicates greater temporal inconsis-
tency. The experiment is replicated 10 times to account for variability. Our analysis reveals that FVD
fails to detect low blur noise and incorrectly suggests an improvement in video quality (highlighted
in gray). Note: To improve readability, we standardize JEDi by applying a scaling factor of 100 to
the V-JEPASSv2+MMD polynomial distance.

This study investigates metric reliability when presented with videos affected by three noise distortion
types (salt and pepper noise, temporal blur and elastic distortion) and two image-to-video generation
models (I2V-Stable Video Diffusion and Open-Sora).

Salt and pepper noise, a type of impulsive noise, spatially corrupts visual data by randomly altering
pixel values to extreme intensities. Elastic noise distortion from (Ge et al., 2024) primarily introduces
temporal distortions and occasionally deforms object shapes. In addition, we introduce temporal
blur noise which involves applying Gaussian kernels of varying strengths to blur frames, preserving
appearance and shape integrity while focusing on temporal distortion. The two generative models we
used were adopted from open-source repositories, utilizing the provided checkpoints (Zheng et al.,
2024; von Platen et al., 2022). Detailed inference configurations for these models are in Appendix G.

We highlight some of our results in Table 1, and the remaining results are in Figures 17 and 18. The
key findings in these experiments include:

1. Metrics in the I3D feature space are impacted by salt and pepper noise (a spatial distortion)
significantly more than by other types of distortions. This aligns with the findings of Ge et al.,
demonstrating that the I3D feature space is highly sensitive to spatial distortions but less responsive
to temporal distortions. As shown in Section 5.4, I3D does not align with human preferences with
respect to distortions.

2. I3D and VideoMAEPT are not ideal feature spaces for building video quality metrics, as they do not
capture blur distortion well. Notably, they perceive a testing distribution with slight artificial blur
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added to the frames as more similar to the training distribution than the original testing distribution.
In fact, they estimate the low-blur distorted videos are 10%-20% closer to the ground-truth training
distribution.

3. Our experimental evaluation reveals that the choice of feature space have a greater impact on
distance values than the choice of distribution distance metric. Moreover, the metrics exhibit
consistent performance across diverse datasets, demonstrating robustness.

5.2 METRIC ROBUSTNESS ASSESSMENT WITH PROGRESSIVE DISTORTION LEVEL AND
TRAINING DURATION

Distortion Level In Figure 4, we conduct a study to evaluate the performance of metrics in assessing
various blur noise distortions on the UCF-101 dataset. All metrics identified the decline in video
quality as noise levels increased.

(a) FVD vs JEDi (b) FVD vs VMAESSv2+MMDPOLY (c) FVD vs V-JEPAPT+MMDPOLY

Figure 4: How metric distance changes as temporal blur increases. Specifically, temporal blur
distortion is controlled by varying the sigma range (σ) using the distortion level (λ), with σ =
[0.1− 0.01λ, 0.75 + 0.8λ]. The study is carried out on the UCF-101 dataset.

Training Duration We further aim to evaluate metrics for generative models, focusing on their
ability to track changes in video quality throughout training (Figure 5). Due to the computational
expense of training video generation models from scratch, we fine-tune Stable Video Diffusion’s
weights on the BDD dataset using Ctrl-V’s code (Luo et al., 2024). Ctrl-V uses a pre-trained SVD
model but modifies the input padding strategy to enable multi-frame conditioning. Initially, the visual
quality of generated videos is poor, but it improves over the training time. We utilize these fine-tuning
steps to assess our metrics’ robustness in evaluating fine-tuned model checkpoints. We expect a good
metric to decrease steadily over time and thus have a negative correlation close to 1 in magnitude.
We visualize several checkpoint generations in Figure 22.

(a) FVD vs JEDi (b) FVD vs VMAESSv2+MMDPOLY (c) FVD vs V-JEPAPT+MMDPOLY

Figure 5: Ctrl-V is fine-tuned on BDD. Visual inspection show incremental improvements in gen-
eration quality at each training step. This is captured by, JEDi (V-JEPASSv2+MMDPOLY). However,
FVD (I3D+FD), VideoMAESSv2+MMDPOLY and V-JEPAPT+MMDPOLY fail to detect incremental
improvements. The Spearman coefficient correlation values for the X and Y axes are -1, -0.6, -0.9
and -0.8 for JEDi, FVD, VideoMAESSv2+MMDPOLY and V-JEPAPT+MMDPOLY, respectively, with
only JEDi showing statistical significance.

Results Only JEDi (V-JEPASSv2+MMDPOLY) successfully tracks incremental gains in all check-
points, whereas FVD (I3D+FD), VideoMAESSv2+MMDPOLY and V-JEPAPT+MMDPOLY do not.
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5.3 SAMPLE EFFICIENCY UNDER NOISE DISTORTION

Alongside Section 5.1, we investigate the sample efficiency of various metrics under noisy conditions.
Specifically, we measure the number of samples it takes for the distance between the original training
distribution and the noise-added testing distribution to stabilize/converge. The noise-added testing set
essentially simulates a set of generations. Our findings indicate that: JEDi remains much more sample
efficient compared to FVD in this condition. We present our experiment results in Appendix F.2.

5.4 HUMAN EVALUATION

To examine human perception of video quality degradation due to noise distortions, we conduct a
small-scale survey using 24 randomly selected videos from the UCF-101 and Sky Scene test sets,
originally at 30 fps, subsampled to 3-second clips at 7 fps. We apply four noise distortions: two levels
of blur, elastic distortion, and salt and pepper noise, with parameters detailed in Appendix F.3. To
reduce border effects from elastic distortion, all videos are center-cropped to 230× 310 pixels.

Surveys for the UCF-101 and Sky Scene datasets are conducted randomly, with participants evaluating
anonymized video pairs that differ only in noise type. They rate each pair under four comparisons,
choosing one video as superior or noting no difference. Each comparison is assessed by 20 indepen-
dent raters from an academic community, who focus solely on visual quality without knowledge of
the datasets or distortions.

The Analytic Hierarchy Process (AHP) Saaty (1987) aggregates responses using a pairwise com-
parison matrix to derive a priority vector for noise distortion types. This vector is normalized and
inverted to align with distribution distance metrics, where 0 represents ideal quality. Scores for each
distance metric-feature space combination are normalized and compared to human survey results
using cosine similarity. Evaluation results are summarized in Figure 6 and more details can be found
in Appendix F.3.

(a) UCF-101 (b) Sky Scene

Figure 6: Alignment of human evaluation with distribution distance metrics. Metrics computed in
V-JEPA feature spaces surpass that of both I3D and VideoMAE in terms of alignment with human
evaluation.

Results While metrics within a feature space generally perform at the same level, distances
calculated in the feature space of V-JEPASSv2 or V-JEPAPT model resoundingly outperform both
I3D and VideoMAE-based metrics in terms of alignment with human evaluation. Among raters,
there were agreements of 83.70% and 53.54% on the UCF-101 and Sky Scene datasets, respectively.
Perhaps intuitively, humans are much more confident assessing content with human activity than with
more abstract visuals, where subjective interpretations can vary significantly.

5.5 STUDY ON ARTIFICIAL INTELLIGENCE GENERATED CONTENT

To further evaluate our model’s performance on Artificial Intelligence Generated Content (AIGC),
we leveraged the Text-to-Video Quality Assessment Database (T2VQA-DB) (Kou et al., 2024) and
Text and Image Prompt Dataset for Image-to-Video Generation (TIP-I2V) (Wang & Yang, 2024).
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Tune-A-Video Show-1 LaVie
MOS Rank Worst Median Best

JEDi (#. conv samples) 4.427 (100) 2.164 (200) 0.722 (300)
FVD (#. conv samples) 884.1 (600) 445.6 (800) 279.9 (900)

Table 2: Quantitative comparison of JEDi and FVD Metrics for T2VQA-DB models, stratified by
MOS (Worst, Median, Best). Values represent measured distances; numbers in parentheses indicate
sample sizes needed to achieve a 5% error margin (estimated from 1,000 samples).

T2VQA-DB comprises 10,000 AI-generated videos by 10 Text-to-Video (T2V) AI models, each
associated with a Mean Opinion Score (MOS) reflecting text-video alignment and fidelity (Section
3.2 (Kou et al., 2024)). In particular, (1) MOS scores display substantial variance (µ = 50, σ = 16.6),
(2) model rankings are ambiguous due to score overlap (Figure 3 from (Kou et al., 2024)), and (3) No
“ground-truth” video set exists; we addressed this using WebVid10M (Bain et al., 2021) videos with
matching prompts.

We assessed the outputs of three models from T2VQA-DB (Tune-A-Video (Wu et al., 2023), Show-
1 (Zhang et al., 2024), LaVie (Wang et al., 2023b)) with varying video quality, ranked 10 (worst), 5,
and 1 (best) based on MOS scores. Both FVD and JEDi scores ranked these models consistently, with
Tune-A-Video as the worst and LaVie as the best. The quantitative findings are presented in Table 2.
Notably, JEDi achieved convergence with significantly fewer samples on T2VQA-DB compared to
FVD, requiring only 100, 200, and 300 samples to converge, while FVD required 600, 800, and 900
samples.

TIP-I2V provides the videos generated by Pika (Pika-AI, 2024), SVD (Blattmann et al., 2023) and
Open-SORA (Zheng et al., 2024), which we use for our subsequent analysis of the video feature
spaces. Specifically, if video sets A and B are from the same distribution, their features extracted
using any feature extractor should remain in a same distribution. However, if video sets A and B
come from different distributions, a robust feature extractor designed for evaluating distributional
differences would highlight these distinctions. The results in Appendix H demonstrate that V-JEPA
extracted features reveal clear distributional distinctions between 3 AIGC video sets and 1 real video
dataset, whereas I3D features do not exhibit such distinct clustering.

6 CONCLUSION

In this study, we carefully look at many aspects of video metrics and find JEDi to be the best choice.

First, we show that the normality assumption made by the Fréchet Distance (FD) does not hold true
in the video feature spaces, and this becomes more evident as the duration of the videos increases.
Second, we discuss two challenges with FD: 1) Estimating the covariance matrix for FD is difficult
due to high latent space dimensionality, and reducing this dimension with autoencoders showed
no improvement; 2) The sample efficiency of FD is low; through extensive comparison, we find
that Maximum Mean Discrepancy (MMD) with V-JEPA exhibits much higher sample efficiency
across all datasets tested. Third, we investigate the impact of noise on feature spaces and found
that I3D was more sensitive to image quality distortion than temporal distortion, and that I3D
and VideoMAESSv2 does not capture blur distortion well. On the other hand, V-JEPASSv2 stands
out as the more robust feature space among them. Fourth, we observe the correlation between
metric with distortion level and training duration. We show that while both FVD (FD+I3D) and
JEDi (MMDPOLY+V-JEPASSv2) are positively correlated with distortion level (higher distance with
higher distortion), only JEDi is highly negatively correlated to training duration (lower distance with
more training). Finally, our human study results indicate that our proposed metric aligns most closely
with human preferences. Also, we utilize the AIGC databases with human opinion scores to show
that JEDi is a more sample-efficient metric with a superior feature space for analysis.

Based on our comprehensive analysis, JEDi emerges as the most effective and practical metric for
guiding the current surge in video generation research. To facilitate the usage of JEDi, we provide
simple and easy-to-use code that, given its striking benefits, hope the community will embrace.
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Alain Horé and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th International
Conference on Pattern Recognition, pp. 2366–2369, 2010. doi: 10.1109/ICPR.2010.579.

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing
Wu, Qingyang Jin, Nattapol Chanpaisit, Yaohui Wang, Xinyuan Chen, Limin Wang, Dahua Lin,
Yu Qiao, and Ziwei Liu. Vbench: Comprehensive benchmark suite for video generative models,
2023.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. CoRR, abs/1502.03167, 2015. URL http://arxiv.org/
abs/1502.03167.

Sadeep Jayasumana, Srikumar Ramalingam, Andreas Veit, Daniel Glasner, Ayan Chakrabarti, and
Sanjiv Kumar. Rethinking fid: Towards a better evaluation metric for image generation, 2024.

12

https://arxiv.org/abs/2008.08143
http://arxiv.org/abs/1710.05268
http://arxiv.org/abs/1710.05268
https://api.semanticscholar.org/CorpusID:10742222
https://api.semanticscholar.org/CorpusID:10742222
https://arxiv.org/abs/2311.01616
https://arxiv.org/abs/2311.01616
http://arxiv.org/abs/1706.08500
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167


Published as a conference paper at ICLR 2025

Dag Jonsson. Some limit theorems for the eigenvalues of a sample covariance matrix. Jour-
nal of Multivariate Analysis, 12(1):1–38, 1982. ISSN 0047-259X. doi: https://doi.org/10.
1016/0047-259X(82)90080-X. URL https://www.sciencedirect.com/science/
article/pii/0047259X8290080X.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan,
Fabio Viola, Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman, and Andrew Zisserman.
The kinetics human action video dataset, 2017.

Tengchuan Kou, Xiaohong Liu, Zicheng Zhang, Chunyi Li, Haoning Wu, Xiongkuo Min, Guangtao
Zhai, and Ning Liu. Subjective-aligned dataset and metric for text-to-video quality assessment,
2024. URL https://arxiv.org/abs/2403.11956.

H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. Hmdb: A large video database for human
motion recognition. In 2011 International Conference on Computer Vision, pp. 2556–2563, 2011.
doi: 10.1109/ICCV.2011.6126543.

Tuomas Kynkäänniemi, Tero Karras, Miika Aittala, Timo Aila, and Jaakko Lehtinen. The role of
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A STATISTICAL DISTRIBUTIONS

A.1 MULTIVARIATE GAUSSIAN DISTRIBUTION

The probability density function of a k-dimensional multivariate Gaussian is given by:

P (x) =
1

(2π)k/2|Σ|1/2
exp

(
− 1

2

(
x − µ

)⊺
Σ−1

(
x − µ

))
(2)

where x ∈ Rk is the k-dimensional random sample, µ ∈ Rk is the mean vector, Σ ∈ Rk×k is
the covariance matrix which is symmetric and positive definite, |Σ| denotes the determinant of the
covariance matrix, and Σ−1 denotes the inverse of the covariance matrix.

A.2 GAUSSIAN MIXTURE MODELS

A Gaussian Mixture Models (GMM) with c clusters is a probabilistic model that assumes the data is
generated from a mixture of c Gaussian distributions, each with its own mean and covariance. The
probability density function of the GMM is given by: P (x) =

∑c
i=1 πiN (x|µi,Σi) where the cluster

weights πi sum up to 1. The parameters of GMMs are often estimated using iterative algorithms, such
as Expectation-Maximization (EM) algorithm (Dempster et al., 1977), as there is no closed-form
solution to maximize its likelihood function.

A.3 PRELIMINARY: LINEAR TRANSFORMATION OF MULTIVARIATE GAUSSIAN DISTRIBUTION
AND LINEAR DIMENSIONALITY REDUCTION METHODS

Back to paper

Let x ∼ N (µ,Σ) follow a multivariate Gaussian distribution with mean vector µ and covariance
matrix Σ. Let A be a matrix and b be a vector. We are interested in the linear transformation
y = Ax + b. The following is the proof of y is also a multivariate Gaussian distribution. Specifically,
y ∼ N (Aµ+ b,AΣA⊺).

The moment generating function for x is

Mx(t) = E(exp[tT x]) = exp
[
tTµ+

1

2
tTΣt

]
(3)

and the moment generating function for y is given by

My(t) = E
(
exp

[
tT (Ax + b)

])
= exp[tT b]E

(
exp[tTAx]

)
= exp[tT b]Mx(A

T t)

= exp
[
tT (Aµ+ b) +

1

2
tT
(
AΣAT

)
t
] (4)

This indicates that the moment generating function of y aligns with the moment generating function
of the multivariate Gaussian distribution. Therefore, y is a random variable that follows a multivariate
Gaussian distribution (detailed proof can be found in Soch & et al. (2024)).

Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are statistical meth-
ods used to reduce the number of variable dimensions in a dataset. PCA is a process of linear
transformation that involves mapping data from a higher dimensional space to a lower dimensional
space by identifying the directions in which the data varies the most (F.R.S., 1901). LDA entails a
linear transformation that maps data from a higher-dimensional space to a lower-dimensional space in
order to effectively separate multi-class objects (Martı́nez & Kak, 2001). Because PCA and LDA are
linear transformations, and we’ve shown that data from a multivariate Gaussian distribution remains
Gaussian after linear transformations, we can conclude that applying PCA or LDA to data from a
multivariate Gaussian distribution preserves its Gaussian properties.
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A.4 DISTRIBUTION DISTANCE METRICS OVERVIEW

Back to paper

Mixture Wasserstein (MW2) (Delon & Desolneux, 2020): Optimal transport is a mathematical field
that deals with finding a transport plan that minimizes the total cost of moving the mass from the
source distribution to the target distribution (Monge, 1781; Montesuma et al., 2023). Recently,
Delon & Desolneux (2020) proposed a Wasserstein-type distance within a novel optimal transport
framework for Gaussian Mixture Models (GMMs) with restricted couplings. By confining the set
of possible coupling measures to GMMs, they derive a simple, discrete formulation of the distance
metric, making it computationally efficient for problems with high dimensions. The distance is
called Mixture Wasserstein and is denoted as MW2. The MW2 distance is always upper bounded
by Wasserstein distance (W2) plus the variances of the Gaussian components. In addition, its
computational complexity is solely determined by the number of clusters.

Energy Statistic (Baringhaus & Franz, 2004; Szekely & Rizzo, 2004): Energy statistic measures the
difference between distributions based on pairwise distances between points. Given {x1, . . . , xm}
are random samples generated from distribution P and {y1, . . . , yn} are random samples generated
from distribution Q, the energy distance E(P,Q) is given by:

E(P,Q) =
2

mn

m∑
i=1

n∑
j=1

∥xi − yj∥ −
1

m2

m∑
i=1

m∑
j=1

∥xi − xj∥ −
1

n2

n∑
i=1

n∑
j=1

∥yi − yj∥. (5)

The energy statistic is appropriate for comparing complex distributions without making assumptions
about a particular underlying distribution.

Maximum Mean Discrepancy (MMDs) (Gretton et al., 2012): MMD is a general class of kernel-based
sample tests that maximize the mean difference between samples from two distributions by optimizing
over all data transformations f within a function space F . Some popular kernel functions used for
MMD include: linear, polynomial, sigmoid, Laplace and RBF (Gaussian) kernels.

Given two sets of features, X = {x1,x2, . . . ,xm} and Y = {y1,y2, . . . ,yn}, sampled from P and
Q, d2MMD(P,Q) with a given kernel, k, is given by (Jayasumana et al., 2024):

d̂2MMD(X,Y ) =
1

m(m− 1)

m∑
i=1

m∑
j=1
j ̸=i

k(xi,xj)+
1

n(n− 1)

n∑
i=1

n∑
j=1
j ̸=i

k(yi,yj)−
2

mn

m∑
i=1

n∑
j=1

k(xi,yj).

(6)

Like the energy statistic, MMD is distribution-free, requiring no assumptions about the underlying
distributions of P or Q.

B COMPUTATION CONFIGURATIONS

B.1 FEATURE EXTRACTORS

Feature extraction is performed on a single NVIDIA RTX 4080 GPU with float32 precision. However,
VideoMAE-v2 features require a more specialized setup: a single NVIDIA RTX A100 GPU with 80G
memory. Notably, VideoMAE-v2 precision varies by clip length: float32 for clips under 64 frames
and float16 for longer clips. We use batch sizes of 10 (clips < 64 frames) and 2 (clips ≥ 64 frames)
for feature extraction.

I3D Configuration2 We adopt the recommended feature extractor from the FVD paper (Unterthiner
et al., 2019): I3D logits features pre-trained on Kinetics-400.

VideoMAEPT and VideoMAESSv2 We compute VideoMAE features using the official PyTorch
implementation (Wang et al., 2023a), following the guidelines outlined in Ge et al..

2Feature extractor for FVD
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V-JEPAPT Configuration We compute V-JEPA features using the official PyTorch implementa-
tion (Bardes et al., 2024). Specifically, our V-JEPA pretrained model, referred to as
V-JEPAPT, consists solely of the V-JPEA encoder. Consistent with previous research (Ge
et al., 2024), we extract features from the encoder and average them across all feature tokens.

V-JEPASSv2 Configuration3 We compute V-JEPA features using the official PyTorch implementa-
tion (Bardes et al., 2024). Specifically, our V-JEPA classifier model, referred to as V-JEPA
SSv2 fine-tuned model or V-JEPASSv2, consists of two components: (1) a V-JEPA encoder,
and (2) an adaptive probe with attentive pooler. Consistent with previous research (Ge et al.,
2024), we exploit the pre-logit features generated by the attentive pooler.

B.2 DISTRIBUTION METRIC CONFIGURATIONS

Fréchet Distance4 We calculate the Fréchet Distance using torchaudio’s functional API, passing
mean and covariance statistics to frechet distance.

Energy statistic We utilize the https://github.com/josipd/torch-two-sample/
repository to calculate the energy statistic.

Mixture Wasserstein We utilized the official implementation from Delon & Desolneux’s repository
to calculate the Mixture Wasserstein distance.

Mean Maximum Discrepancy We compute MMD distances using code from (Wang et al.), with
kernel-specific parameters:

• RBF/Laplacian: γ = 1/ndim

• Polynomial5: degree = 2, γ = 1, coef = 0.

C FRÉCHET VIDEO DISTANCE: A SEMI-METRIC

A distance metric on a set X is a function d : X × X → R that satisfies the following prop-
erties for all points x, y, z ∈ X: 1. Non-negativity: d(x, y) ≥ 0; 2. Identity of indiscernible:
d(x, y) = 0 ⇐⇒ x = y; 3. Symmetry: d(x, y) = d(y, x); and 4. Triangle inequality:
d(x, z) ≤ d(x, y) + d(y + z).

Fréchet Distance (FD) satisfies all the properties of a metric, except for the triangle inequality, which
establishes it as a semi-metric. The triangle inequality is a crucial property that underpins the linearity
of a metric and offers valuable interpretability. We will explore this aspect in greater detail later. For
now, we will demonstrate the proof for FD being a semi-metric.

The FD of multivariate Gaussian distributions, represented by Equation 1, is composed of two
terms: the squared-Euclidean distance between the mean vectors and a term involving the covariance
matrices. In order to demonstrate that FD is a semi-metric, we will examine these two components
individually.

The first-term, (µP − µQ)
2: By definition, the squared Euclidean distance between the mean vectors

is non-negative and equals zero if and only if the mean vectors are identical, i.e., (µP − µQ)
2 ≥

0 with equality iff µP = µQ. Also, the squared Euclidean distance is a symmetric operation. Thus,
it satisfies the first three properties. However, the triangle inequality is not satisfied. A counter-
example to prove this is: let µA = [0, 0]⊺, µB = [1, 1]⊺, µC = [5, 5]⊺ , and (µA − µC)

2 = 50 ≥
(µA − µB)

2 + (µB − µC)
2 = 34.

The second-term, Tr
(
ΣP +ΣQ − 2(ΣPΣQ)

1
2

)
: According to Dowson & Landau (1982), the square

root of the second term is considered a natural metric on the space of real covariance matrices of a
given order. This implies that the first three properties should hold. Below are the corresponding

3Feature extractor for JEDi
4Distribution metric for FVD
5Distribution metric for JEDi
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proofs:

Tr

(
ΣP +ΣQ

2

)
≥ Tr

(√
ΣPΣQ

)
Arithmetic mean is greater than or equal to geometric mean.

ΣP = ΣQ ⇒ Tr

(
ΣP +ΣP

2

)
= Tr

(√
ΣPΣP

)
= Tr(ΣP ) If the covariance matrices are the same, the 2nd-term becomes 0.

Tr

(
ΣP +ΣQ

2

)
= Tr

(√
ΣPΣQ

)
⇒ ΣP = ΣQ Arithemetic mean equals geometric mean when covari-

ance matrices are identical.
(7)

To illustrate the symmetric property of the second term, let’s assume µP = µQ = 0 for simplicity.
Let X represent column vectors sampled from a normal distribution with mean µP and covariance ΣP ,
and Y represent column vectors sampled from a normal distribution with mean µQ and covariance ΣQ.
There exists a linear transformation Γ such that Y = ΓX. According to Chafai (2010), D2

Fréchet(P,Q)
can be derived as:

D2
Fréchet(P,Q) = Tr(ΣP ) + Tr(ΣQ)− E(⟨X,ΓX⟩) (8)

To prove the symmetric property, we only need to demonstrate that E(⟨X,ΓX⟩) = E(⟨ΓX,X⟩)
because the remaining terms are symmetric. Below is the corresponding proof:
E(⟨X,ΓX⟩) = E(X(ΓX)⊺) = E(XX⊺Γ⊺) = ΣPΓ

⊺, E(⟨ΓX,X⟩) = E(ΓXX⊺) = ΓΣP

ΣPΓ
⊺ = Σ⊺

PΓ
⊺ = ΓΣP ⇒ E(⟨X,ΓX⟩) = E(⟨ΓX,X⟩) Covariance matrices are symmetric: ΣP = Σ⊺

P

(9)

Lastly, the triangle inequality is not satisfied. A counter-example to prove this is: let ΣA =
(
1 0
0 1

)
,

ΣB =
(
4 0
0 4

)
, ΣC =

(
9 0
0 9

)
,

Tr(ΣA+ΣC−2(ΣAΣC)
1
2 ) = 8 ≥ Tr(ΣA+ΣB−2(ΣAΣB)

1
2 )+Tr(ΣB+ΣC−2(ΣBΣC)

1
2 ) = 4

When combining the first and second terms with addition, their mathematical properties still hold
because their input parameters are different and do not affect each other.

The triangle inequality property is crucial, as it ensures that the distance between two points remains
consistent and intuitive. In video generation, models aim to learn the underlying patterns of a real
data distribution (R) by training on an empirical dataset (Rempirical). This involves understanding a
probability distribution over potential videos, allowing newly generated videos to closely resemble the
structure and content of the observed data. Note that the empirical distribution is an approximation,
potentially biased towards the specific sample. The discrepancy between the true distribution and
empirical distribution can be quantified using metrics, such as:

Rempirical
N→∞−−−−→ R =⇒ D(Rempirical, R)

N→∞−−−−→ 0 (10)
where N is the number of samples. The equation demonstrates that as the sample size approaches
infinity, the discrepancy between the empirical and true distributions converges to zero. However, in
practice, most datasets are finite, and training is typically done on a limited number of samples. As a
result, the difference between the empirical and true distributions is bounded by a specific value, rather
than reaching zero. Triangle inequality provides insight into the upper-bound of the model generation
quality based on the true distribution, expressed as D(Rempirical, R) +D(G,Rempirical) ≥ D(G,R).

On the other hand, much of the video generation work involves using pre-trained models to perform
zero-shot inference on different datasets in order to test the models’ performance and domain
adaptation abilities (Hong et al., 2022; Singer et al., 2022; Blattmann et al., 2023; Zhou et al., 2023).
However, measuring a model’s generation quality on another dataset requires setting up the model
for the new dataset and generating numerous samples, which demands significant time, effort, and
computational resources. If a distribution distance metric follows the triangle inequality and one only
wants to compute an upper bound to validate a model’s generation quality on another dataset, it is
sufficient to compute: D(RdataA

empirical, G) +D(RdataA
empirical, R

dataB
empirical) ≥ D(G,RdataB

empirical).

Finally, and most importantly, triangle inequality provides valuable insights into the magnitude of
metric distances. Consider the example where D(GmodelA, Rempirical) = 2D(GmodelB, Rempirical). With
the triangle inequality constraint, we can deduce that model A’s performance is at least twice as
suboptimal as model B’s. Without this constraint, we could only conclude that model A underperforms
model B, but without a precise measure of the extent of this underperformance.
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D NON-GAUSSIAN CHARACTERISTICS OF I3D FEATURES

Back to paper

D.1 VISUALIZATION IN LOWER DIMENSIONALITY

Figure 7 displays 2D PCA and LDA projections of I3D features, highlighting non-Gaussian charac-
teristics within individual datasets. The numbers listed in the first column represent the quantity of
frames per clip utilized for the experiments in the respective row. In each experiment, we randomly
selected 5,000 video clips from each dataset and obtained their I3D features. We performed principal
component analysis on each set of 5,000 samples, and the red point clouds in columns 2-5 represent
the I3D features projected onto their first 2 principal components.

The point clouds displayed in the last two columns depict the LDA dimensionally-reduced I3D
features using the classification labels from the dataset. The markers’ colors represent the class labels
in the dataset. In each figure, we superimpose blue contour lines on the plot, which delineate the
ellipsoidal contours of a 2D Gaussian distribution. Specifically, these contours are computed directly
from the mean and covariance matrices of the 2D point clouds, providing a visual representation of
the multivariate Gaussian distribution suggested by the Fréchet Video Distance (FVD) metric. We
conducted a similar analysis for V-JEPAPT and V-JEPASSv2 features, as shown in Figure 8 and Figure
9.

# F. BDD HMDB Sky UCF HMDB UCF

16

32

64

128

Figure 7: This figure provides empirical evidence of non-Gaussianity in I3D feature space across
individual datasets.

Back to paper

# F. BDD HMDB Sky UCF HMDB UCF

16

32

Figure 8: This figure provides empirical evidence of non-Gaussianity in V-JEPAPT feature space
across individual datasets.

Back to paper
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# F. BDD HMDB Sky UCF HMDB UCF

16

32

Figure 9: This figure provides empirical evidence of non-Gaussianity in V-JEPASSv2 feature space
across individual datasets.

D.2 MULTIVARIATE NORMALITY TESTS

The notion that I3D video features do not follow multivariate Gaussian distributions was further
investigated using Mardia’s Skewness (Mardia, 1970), Mardia’s Kurtosis (Mardia, 1970), and the
Henze-Zirkler (Henze & Zirkler, 1990) normality tests, following (Jayasumana et al., 2024). The anal-
ysis was done on 16-, 32-, and 128-frame versions of the Anime-Run-v2, BAIR, BDD100k, DAVIS,
Fashion Modeling, HMDB-51, How2Sign, KITTI, Something-Something-v2, Sky Scene (Xiong
et al., 2018), and UCF-101 datasets, as well as on a baseline dataset constructed by sampling from a
multivariate Gaussian distribution with 100 features.

The null hypothesis that the distributions of I3D features were drawn from a multivariate Gaussian
distribution was rejected for each of the datasets and normality tests. All three tests accepted the null
hypothesis for the multivariate Gaussian baseline dataset.

E EXPERIMENTAL EVALUATION: CONVERGENCE RATES OF DISTRIBUTIONAL
METRICS AND DIMENSIONALITY REDUCTION METHODS

FD Energy MW2 MMDRBF MMDPolynomial MMDLaplacian

MG

GMM

Figure 10: The figures illustrate the evolution of distance estimates between two identical distributions
as a function of sample size. The x-axes represent the number of samples drawn from each distribution,
while the y-axes corresponds to the distance measurements. The plots in the top-row experiments
employ a 100-dimensional multivariate Gaussian distribution, denoted as MG. In this distribution,
the first 50 dimensions follow a standard normal distribution (µ = 0,Σ = I), while the remaining 50
dimensions are generated as the cumulative sum of the first 50 dimensions, resulting in a structured
correlation pattern. In contrast, the bottom-row plots utilize a 100-dimensional Gaussian mixture
model comprising 5 clusters, mirroring the multivariate Gaussian setup, with the first 50 dimensions
drawn from a GMM and the last 50 dimensions representing the cumulative sum of the first 50
dimensions. The blue lines represent the metrics calculated using samples directly drawn from the
original distributions, while the orange lines represent the metrics computed using samples that have
undergone PCA-based dimensionality reduction to 50 principal components. Since the compared
distributions are identical, the ideal estimated distance between them should be zero.

Back to paper
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E.1 TOY EXPERIMENT: METRIC CONVERGENCE RATE

Back to paper

This section reports on simulated experiments analyzing two key questions: (1) How do different
metrics converge? and (2) What role does dimensionality play in shaping convergence rates?

Figure 10 illustrates the findings of a series of simulated experiments examining the empirical
distribution distances across various metrics, uncovering the intricate interplay between sample sizes,
dimensionality-reduced features, and metric convergence rates. The experimental results shown in
the figures demonstrate two key findings: (1) the accuracy of the metrics improves consistently as the
empirical sample size increases, validating the proof of concept; and (2) dimension-reduced data can
significantly enhance the convergence rate and accuracy of certain metrics (notably FD and energy),
as evidenced by the faster convergence of the orange curves relative to the blue curves.

Our simulation experiments also yielded the notable observation that kernel-based distance metrics
for distributions exhibit reduced sensitivity to data dimensionality, attributable to their inherent
feature mapping, reliance on pairwise distance calculations, and regularization properties inherent in
kernel selection. This diminished sensitivity confers a significant advantage in mitigating the curse
of dimensionality, thereby enhancing the robustness and reliability of distance metric estimates in
higher dimensional space.

In contrast, GMMOT involves fitting separate Gaussian Mixture Models (GMMs) to the sample
sets and then computing the optimal transport distance between the fitted GMMs. In the GMM
fitting process, the Expectation-Maximization (EM) algorithm updates the parameters of the Gaussian
mixtures. During the maximization step, cluster means and covariances are computed using the sample
responsibilities calculated in the expectation step. Notably, the sum of the weighted responsibilities
for each cluster is less than the total number of samples, but the number of parameters for each cluster
is the same as a single multivariate Gaussian distribution. As a result, because of the smaller effective
sample size, it is necessary to obtain more samples in order to accurately fit a GMM. Therefore,
Mixture Wasserstein (MW2) has the slowest rate of convergence compared to all other metrics,
leading us to exclude it from our subsequent video analysis.

E.2 AUTOENCODERS: MODELS AND TRAINING SPECIFICATION

Back to paper

In our study, we trained specialized autoencoders for each video representation space to account for
variations in video length. Notably, we observed a representation shift with differing video lengths:
as shown in Figures 7 and 8, features extracted from videos with different lengths have visible
differences; features from 16f and 32f videos are more similar to each other while those from 64f
and 128f videos are similar to each other. To address this,we divide the videos from 11 different
datasets (UCF, HMDB, etc) into two groups: short clips (16–32 frames) and long clips (64–128
frames). For each group, we extract up to 10,000 features using five different feature extractors
(e.g., I3D, V-JEPAPT). These results in separate collections of features for short and long clips
across all datasets. For instance, I3D yields up to 110,000 short-clip features and up to 110,000
long-clip features from the 11 datasets. We then train two autoencoders for each feature extractor:
one using the short-clip features and one using the long-clip features. This gives us a total of 10
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autoencoders. The autoencoders’ architectures are specified in Algorithm 1 and Algorithm 2.

Algorithm 1: I3D Autoencoder Config-
uration

input : in dim=400

encoder = Sequential(
Linear(in dim, in dim//2),
ReLU(),
Linear(in dim//2, in dim//4),
ReLU(),
Linear(in dim//4, in dim//6),

)
decoder = Sequential(

Linear(in dim//6, in dim//4),
ReLU(),
Linear(in dim//4, in dim//2),
ReLU(),
Linear(in dim//2, in dim),

)

Algorithm 2: VideoMAE and V-JEPA
Autoencoder Configuration

input :in dim=1408 if VideoMAE else 1280

encoder = Sequential(
Linear(in dim, in dim//3),
ReLU(),
Linear(in dim//3, in dim//4),
ReLU(),
Linear(in dim//4, in dim//8),

)
decoder = Sequential(

Linear(in dim//8, in dim//4),
ReLU(),
Linear(in dim//4, in dim//3),
ReLU(),
Linear(in dim//3, in dim),

)

E.3 SAMPLE CONVERGENCE ANALYSIS

Back to paper

Figures included in this section are:

Figure 11 The evolution of UCF-101 train-test distances for all metrics in all feature spaces.
Figure 12 A comparison of convergence rates of FVD and JEDi, comparing training and testing

sets on UCF101 and Something-Somethingv2.
Figure 13 Convergence rates UCF-101 train-test distances in VideoMAEPT and V-JEPAPT feature

spaces.
Figure 14 Visualization of the sample size required for VideoMAEPT and V-JEPAPT features to

converge to a 5% error margin compared to the distance measured from 5,000 samples using
the train and testing sets of UCF-101 and SSv2.

Figure 15 Visualization of the sample size required for V-JEPAPT and V-JEPAPT features to con-
verge to a 5% error margin compared to the distance measured using the train and testing
sets of 9 other datasets. The pink vertical lines in the plots denote the sample size used
to compute the target metric distance (ideally 5,000 samples). Note in Figures 3 and 14
that UCF-101 and SSv2 have sufficient samples (> 5, 000) in their training and testing
sets. However, many datasets in this graph have fewer samples. Importantly, convergence
estimates become less reliable as bars approach the pink line, due to fewer iterations meeting
the second convergence criterion (referring to Figure 3’s caption).

Figure 16 The BAIR dataset (Ebert et al., 2017) demonstrates a perfect example of the convergence
issue due to insufficient samples. With 250 training videos, the estimated sample size for
convergence (bars) nearly coincides with the target metric computation sample size (pink
line). As convergence estimates degrade near this threshold due to insufficient iterations
meeting the second criterion, it is difficult to confirm whether metrics truly converge at the
displayed sample sizes, especially for Fréchet Distance-based metrics.
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FD Energy MMDRBF MMDPolynomial MMDLaplacian

I3D

VMAEPT

VMAESSv2

V-JEPAPT

V-JEPASSv2

Figure 11: The figures depict the changes in distance estimates between the training and testing sets
of the UCF-101 dataset. We extract features from video clips of 32-frame duration using the models
indicated in the left-most column. The x-axes represent the number of samples drawn from each
distribution, while the y-axes corresponds to the distance measurements. We repeat each experiment
10 times. The lighter shaded area on the plots indicate the variance across these 10 runs. The
blue lines represent the metrics calculated using features directly extracted from the models, while
the orange lines represent the metrics computed using features that have been compressed by the
autoencoder’s encoder. The autoencoder’s structure is described in Appendix E.2.

Back to paper

(a) UCF-101 (b) SSv2

Figure 12: A comparison of convergence rates of FVD and JEDi, comparing training and testing sets
on UCF101 and Something-Somethingv2. We evaluate convergence rate at 100 intervals, from 50
to 5,000 samples, with 50-sample increments. The x-axes represent the number of samples drawn
from the training and test distributions, while the y-axes show the convergence rate, calculated as
D̄m(n)−D̄m(5000)

D̄m(5000)+ϵ
where ϵ is an arbitrarily small number and m is drawn from a set of metrics M. Our

methodology involves sampling n samples from the training and testing sets 10 times, computing the
distance 10 times for each sampled sets, and calculating D̄(n) as the mean distance across the 10
runs.

Back to paper
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(a) I3D (b) V-JEPASSv2

(d) VideoMAESSv2 (e) VideoMAEPT (f) V-JEPAPT

Figure 13: Convergence rates of distributional metrics on UCF-101, comparing training and testing
sets in various feature spaces. The convergence rate computation in these figures follows the same
configuration as Figure 12, with the x-axis representing the number of samples and the y-axis showing
the convergence rate.

VideoMAEPT VideoMAESSv2

UCF

SSv2

Figure 14: This figure shows the number of samples needed for VideoMAEPT and VideoMAESSv2 to
achieve a 5% error margin of the distance measured from 5,000 samples using the training and testing
sets. An “ ae” suffix indicates that the feature space has been compressed using an autoencoder. The
convergence requirement is stated in Figure 3.

Back to paper
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I3D V-JEPAPT V-JEPASSv2

UCF

SSv2

Anime

BDD

Davis

Fashion

HMDB

KITTI

Sky

Figure 15: This figure shows the number of samples needed for V-JEPAPT and V-JEPASSv2 to achieve
a 5% error margin of the distance measured from 5,000 samples using the training and testing sets on
most of the datasets presented in this study. An “ ae” suffix indicates that the feature space has been
compressed using an autoencoder. The convergence requirement is stated in Figure 3.

Back to paper
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(a) I3D (b) VideoMAEPT (c) VideoMAESSv2

(d) V-JEPAPT (e) V-JEPASSv2

Figure 16: The figures display convergence rates of distributional metrics on BAIR, comparing
training and testing sets in VideoMAEPT and V-JEPASSv2 feature spaces.

Back to paper

F NOISE DISTORTION STUDIES

F.1 COMPLIMENTARY MATERIAL FOR THE NOISE AND GENERATIVE MODEL STUDY

Figure 18 illustrates the impact of noise and generative models on the metrics in VideoMAEs and
V-JEPAs spaces. The study demonstrates a distinction in how different feature spaces rank these
noise types. In Section 5.4, the findings from a human survey to determine which model has the
closest ranking with human perception are reported.

UCF-101 Sky Scene

Figure 17: Comparing the FVD (I3D+FD) between training and test sets, using 5,000 samples from
each, under various conditions, including noise and conditional generation. The train-test distance
(gray) serves as a baseline for evaluating the reliability of the metric. For clarity, we normalize
metric values using the train-test distance. The displayed bar values represent these scaled distances.
Notably, the Sky Scene (Xiong et al., 2018) experiment shows that low blur distortion brings the test
distribution closer to the training distribution, highlighting a flaw in the FVD metric.

Back to paper
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UCF-101 Sky

VMAEPT

VMAESSv2

V-JEPAPT

V-JEPASSv2

Figure 18: Experiments were conducted on the feature spaces of VideoMAE and V-JEPA using con-
figurations analogous to those in Figure 17. The train-test distance (gray) serves as a baseline for eval-
uating the reliability of the metric. For clarity, we normalize metric values using the train-test distance.
The displayed bar values represent these scaled distances. Both the V-JEPAPT and VideoMAEPT im-
plementations require averaging across patch embeddings. Intuitively, V-JEPAPT metrics are less
affected by pixel-level salt and pepper noise as its training is done in an abstract representation space,
in direct contrast to that of a VideoMAE.

Back to paper
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F.2 NOISE AND CONVERGENCE RATE

Back to paper

Our study investigates the impact of noise and generative model outputs on the convergence speed of
FVD and our proposed metric. Figure 19 reveals two key findings:

1. Our method exhibits significantly faster convergence than FVD even with added noise.
2. The presence of noise surprisingly accelerates convergence for both metrics.

No distortion Blur (low) Blur (med) Blur (high)

UCF-101

SSv2

Figure 19: The convergence speed of FVD and the proposed metric is evaluated with blur distortion
noises on the UCF-101 and Something-Something-v2 datasets. The convergence rate computation
follows the same configuration as Figure 12, with the x-axis represnting th enumber of samples and
the y-axis showing the convergence rate. The blue line in the figure represents the convergence rate
of FVD, while the red line represents the convergence rate of the proposed metric.

F.3 HUMAN EVALUATION

Back to paper

To investigate human alignment on the perception of video quality degradation under various noise
distortions, we conduct a small scale survey. The rater population consists of 75% males, 25%
females, with 55% under the age of 25, 35% between the ages of 25-35, and 10% above the age of
50. We randomly select 24 videos from each of the UCF-101 and Sky Scene test sets, originally
captured at 30 frames per second (fps), and subsample them to 25 frames at 7 fps to generate clips
three seconds in length. Four types of noise distortions are systematically applied: high blur with a
7x7 kernel and a Gaussian standard deviation ranging from 0.01 to 3, medium blur with the same 7x7
kernel and a standard deviation ranging from 0.1 to 1.5, elastic distortion with a deformation strength
of 30, and salt-and-pepper noise applied at a rate of 1%.

Following the Analytic Hierarchy Process (AHP) (Saaty, 1987), a pairwise comparison matrix is
used to aggregate the responses. It is important to note that the sums of corresponding comparisons
may not total 100% due to the inclusion of an option indicating no discernible difference in quality
between two videos (i.e., all self-to-self comparisons yield a value of 0%). To account for this, the
columns are normalized before computing the priority vector, which captures human preference over
the different types of noise included in our study. Raw metric values can be found in Appendix F.1.

Noise Type Blur (high) Blur (medium) Elastic (medium) Salt and pepper
Blur (high) 0.00% 0.00% 12.50% 2.50%
Blur (med) 93.75% 0.00% 68.75% 16.25%

Elastic (med) 81.25% 16.25% 0.00% 3.75%
Salt and pepper 95.00% 69.68% 93.75% 0.00%

Table 3: Pairwise comparison matrix, noise distortion (UCF-101). Results are aggregated from 20
participants.
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Figure 20: An example question in the human evaluation, noise distortion survey on the UCF-101
dataset.

Figure 21: An example question in the human evaluation, noise distortion survey on the Sky Scene
dataset.

Noise Type Blur (high) Blur (medium) Elastic (medium) Salt and pepper
Blur (high) 0.00% 7.63% 33.23% 37.50%
Blur (med) 68.23% 0.00% 41.25% 48.75%

Elastic (med) 56.78% 42.50% 0.00% 41.25%
Salt and pepper 53.75% 46.25% 51.25% 0.00%

Table 4: Pairwise comparison matrix, noise distortion (Sky Scene). Results are aggregated from 20
participants.

F.4 PREVIOUS HUMAN STUDIES FOR IMAGE AND VIDEO METRICS

Video Distributions - FVD: To evaluate the alignment of FVD with human perception, Unterthiner
et al. (2019) trained many variations of four video prediction models—CDNA, SV2P, SVP-FP, and
SAVP—on the BAIR robot pushing dataset. For evaluation, they selected 256 video sequences and
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Rank Method Feature Space UCF-101 (%) Sky Scene (%)

1 Energy V-JEPAPT 83.26 84.06
2 MMDRBF V-JEPAPT 83.02 84.07
3 MMDLAP V-JEPAPT+AE 83.02 85.60
4 FD V-JEPAPT 82.31 86.82
5 MMDPOLY V-JEPAPT 81.82 81.07
6 Energy V-JEPAPT+AE 80.88 83.17
7 FD V-JEPAPT+AE 79.33 84.13
8 MMDPOLY V-JEPASSv2 78.96 78.39
9 MMDLAP V-JEPAPT 78.85 81.34

10 MMDPOLY V-JEPAPT+AE 78.78 82.33
11 MMDRBF V-JEPASSv2 75.51 79.10
12 MMDLAP V-JEPASSv2 75.49 79.98
13 Energy V-JEPASSv2 75.42 79.85
14 MMDRBF V-JEPAPT+AE 75.32 94.67
15 FD V-JEPASSv2 74.63 86.32
16 MMDRBF I3D+AE 70.32 75.43
17 MMDRBF V-JEPASSv2+AE 63.78 84.03
18 FD V-JEPASSv2+AE 61.15 84.12
19 Energy V-JEPASSv2+AE 59.12 79.09
20 MMDPOLY V-JEPASSv2+AE 58.47 78.60
21 MMDLAP V-JEPASSv2+AE 57.93 80.34
22 FD VideoMAESSv2 55.72 79.08
23 Energy VideoMAESSv2 51.76 74.15
24 MMDRBF I3D 50.93 68.07
25 MMDLAP VideoMAESSv2 50.16 72.76
26 MMDPOLY VideoMAESSv2+AE 49.76 75.54
27 MMDPOLY VideoMAESSv2 48.34 75.35
28 Energy VideoMAESSv2+AE 46.56 72.09
29 MMDRBF VideoMAESSv2 46.36 73.47
30 MMDPOLY VideoMAEPT 46.14 62.87
31 MMDRBF VideoMAEPT 45.98 62.29
32 MMDLAP VideoMAESSv2+AE 42.85 69.20
33 FD VideoMAESSv2+AE 42.38 72.42
34 Energy VideoMAEPT 40.03 60.73
35 MMDRBF VideoMAESSv2+AE 37.90 73.47
36 Energy VideoMAEPT+AE 37.64 58.12
37 MMDLAP VideoMAEPT+AE 37.47 57.99
38 MMDPOLY VideoMAEPT+AE 36.88 58.06
39 FD VideoMAEPT 35.36 61.94
40 MMDRBF VideoMAEPT+AE 32.44 57.04
41 FD VideoMAEPT+AE 32.01 57.42
42 FD I3D+AE 31.66 57.54
43 FD I3D 31.32 58.07
44 MMDLAP VideoMAEPT 29.90 57.93
45 MMDPOLY I3D+AE 25.97 67.25
46 MMDLAP I3D 25.55 54.57
47 Energy I3D+AE 25.52 48.07
48 MMDLAP I3D+AE 25.17 57.30
49 Energy I3D 23.74 47.25
50 MMDPOLY I3D 22.38 67.17

Table 5: Human Evaluation: Cosine Similarity Results (Ranked on UCF-101).
VJEPASSv2+MMDPOLY and FVD (I3D+FD) results are highlighted.

computed SSIM, PSNR, FVD, and KVD scores for each model. Both FVD and KVD metrics were
calculated in the I3D feature space to assess perceptual similarity and distributional alignment. Up to
3 humans evaluated 3 videos from each model in one metric spread, one metric equal comparisons,
where both comparison types involved 10 models. They reported that FVD was most aligned with
humans, while KVD was similar but slightly worse.
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Image Distributions - CMMD: In a study on the alignment of FID and CMMD (CLIP + MMD)
with human evaluation, Jayasumana et al. (2024) ran a survey using two Muse models trained on
the WebLI dataset, with one model (Model A) purposely trained for longer than the other (Model
B). Side-by-side evaluations were performed where human raters were presented with two images,
having to select which looked more preferable. All image pairs were rated by 3 independent raters,
with 1633 prompts used in total. They reported that human raters and CMMD preferred Model A,
while FID preferred model B.

T2V Alignment Quality - T2VQA: Kou et al. (2024) constructed a 10,000 sample dataset of AI-
generated videos from 10 Text-to-Video (T2V) AI models. To determine the Mean Opinion Score
(MOS) for each model, 27 subjects rated its perceptual quality based on two main criteria: text-video
alignment - how well the video content matches the text description - and video fidelity - covering
distortion, saturation, motion consistency, and content rationality. Subjects used a slider from 0 to
100 to assign their final score for each video. To amalgemate the results, the authors we conducted
normalization to avoid inter-subject scoring differences.

G GENERATIVE MODEL SPECIFICATIONS

Back to paper

G.1 OPEN-SORA

For videos generated from the UCF-101 dataset, a single frame was provided as the image prompt
with its corresponding video class label given as the text prompt. For videos generated from the Sky
Scene dataset, a single frame was provided as the image prompt with “A sky timelapse” provided as
the text prompt.

Videos were generated at an output resolution of 240p with an aspect ratio of 3:4. The ’4s’ preset for
the number of frames was used which translates to 102 frames at 24 fps. These videos were converted
to 16 frames at 7 fps for both the metric calculations. We used the open-source implementation
loaded with the hpcai-tech/OpenSora-VAE-v1.2 checkpoint for inference.

G.2 CTRL-V

Frame 1 Frame 5 Frame 9 Frame 13 Frame 16

Iter 0

Iter 1

Iter 1200

Figure 22: Training progression of Ctrl-v SVD generation at iteration 0, 1 and 1200.

Back to paper

We use the original code and model configuration from Ctrl-V (Luo et al., 2024)
in this study, and their Stable Video Diffusion’s model backbone is HuggingFace’s
stabilityai/stable-video-diffusion-img2vid-xt model. Figure 22 contains a
demo of samples generated from the Ctrl-v’s SVD checkpoints.
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H A STUDY OF THE FEATURE SPACE WITH AI-GENERATED CONTENT

Back to paper

In this section, we demonstrate compelling results showing that JEDi is a superior metric compared
to FVD when applied to AIGC.

To interpret these results, we need to agree on a key principle:

• If video sets A and B originate from the same distribution, their features—when extracted
using any feature extractor—should remain in the same distribution. This is because a
consistent extractor should not introduce artificial distinctions between sets that inherently
belong to the same distribution.

• On the other hand, if video sets A and B come from different distributions, a robust feature
extractor designed for evaluating distributional differences would highlight these distinctions.
A good extractor would encode the unique characteristics of each set, creating clearly
separable distributions in the feature space. This separation is critical for understanding the
underlying differences and verifying that the extractor is effectively capturing meaningful
distributional variations rather than noise or irrelevant features.

Validating a feature extractor’s ability to consistently distinguish different distributions confirms its
usefulness for evaluating distributional differences. Conversely, an extractor that fails to separate
distinct distributions would be less effective in this context.

By this framework, we show that V-JEPA extracted features reveal clear distributional distinctions
between 3 AIGC video sets and 1 real video dataset, whereas I3D features do not exhibit such distinct
clustering.

Specifically, we utilize the generated samples from the TIP-I2V (Wang & Yang, 2024) generated
by the Pika (Pika-AI, 2024), SVD (Blattmann et al., 2023), and Open-SORA (Zheng et al., 2024)
models, as well as the real video samples from the WebVid10M dataset (Bain et al., 2021), and map
them into I3D and V-JEPA feature spaces. Then, we employ LDA transformation to project these
features into a 3D space, with the model label serving as the conditioning factor. The 3D slices of the
feature space are provided in Figure 23. These illustrations show that JEPA-extracted features reveal
clear distributional distinctions between 3 AIGC video sets and 1 real video dataset, whereas I3D
features do not exhibit such distinct clustering.

I3D

VJEPA

Figure 23: The 3D slices illustrate different viewpoints of the feature spaces, where the blue points
represent Pika samples, the teal points represent SVD samples, the green points indicate Open-SORA
samples, and the orange points indicate WebVid10M samples.
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I ANALYSIS OF LONG-TERM VIDEOS

Figure 24: This figure illustrates the evaluated distances between the original training set and test
sets with varying levels of blur distortion across different clip lengths. The bars are color-coded to
represent different video clip lengths, while separate bars within each color group denote varying
levels of distortion. The bar height indicates the measured distance. Notably, FVD exhibits a
monotonic increase in measured distance with clip length within each distortion group. In contrast,
JEDi yields constant measured distances within each distortion group, irrespective of clip length.

We conducted a study to assess the FVD and JEDi metrics across various clip lengths under different
levels of blur distortion. The blur distortion settings followed those depicted in Table 1, with a
uniform application of distortion across each clip. The results in Figure 24 show that for FVD, the
evaluated distances increase as clip length grows for the same blur level. In contrast, JEDi distances
remain consistent regardless of clip length.

This demonstrates that the JEDi metric is sensitive solely to the amount of distortion applied to the
clips. When the same level of distortion is applied, JEDi evaluates the distance consistently, regardless
of the clip length. In contrast, FVD is influenced by clip length, with evaluated distributional distances
increasing as the clip becomes longer.

J LIMITATIONS

J.1 JEDI: PERFORMANCE-EFFICIENCY TRADEOFFS

While we performed extensive study of different feature space with different distance metrics on
different datasets, there are more datasets to be tested on and more types of noise distortions can
be investigated. While we choose JEDi (MMDPOLY+V-JEPASSv2) as our main proposed method,
other choices (see Table 5 for the list) such as the Energy distance with V-JEPAPT has slightly higher
alignment with human evaluation. It is a decision we made considering the large gain in sample
efficiency from JEDi.

J.2 AVENUES FOR FUTURE RESEARCH

Similar to FVD, JEDi is a distribution-based evaluation metric that measures the discrepancy between
the generated and ground-truth distributions in feature space. While our study focuses on distribution
evaluation, our findings have implications for assessing the quality of individual video samples.

In prior literature on single video quality blind assessment, the Natural Video Statistics (NVS) model,
proposed by Saad & Bovik, employed a multi-faceted approach, combining various models and
techniques to extract features relevant to different aspects of video quality. This included hand-
crafted temporal motion features, derived from differences between consecutive frames, and spatial
characteristics captured using NIQE (Mittal et al., 2013) features. Our approach, on the other hand,
integrates spatial and temporal aspects into a single, unified framework: the V-JEPA feature space.

The V-JEPA feature space is particularly well-suited for evaluating video quality, as it is sensitive
to both spatial and temporal distortions, enabling a comprehensive assessment. This characteristic
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presents a promising application: utilizing a large-scale, diverse, and high-quality video dataset
mapped to the V-JEPA feature space to establish a pre-defined guideline distribution.

The quality of individual videos can be quantitatively assessed by mapping them to the V-JEPA feature
space and computing their distance or likelihood relative to the guideline distribution, which serves
as a robust benchmark for high-quality videos. Possible evaluation methods include computing the
Mahalanobis Distance (Dodge, 2008) or the likelihood of the sample with respect to the distribution.
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