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ABSTRACT

Despite recent progress in vision-language models (VLMs), holistic understanding
of long-form video content remains a significant challenge, partly due to limitations
in current benchmarks. Many focus on peripheral, “needle-in-a-haystack” details,
encouraging context-insensitive retrieval over deep comprehension. Others rely on
large-scale, semi-automatically generated questions (often produced by language
models themselves) that are easier for models to answer but fail to reflect genuine
understanding. In this paper, we introduce MF2, a new benchmark for evaluating
whether models can comprehend, consolidate, and recall key narrative information—
requiring integration of both visual and linguistic modalities—from full-length
movies (50-170 minutes long). MF2 includes over 50 full-length, open-licensed
movies, each paired with manually constructed sets of claim pairs—one true (fact)
and one plausible but false (fib), totalling over 850 pairs. These claims target core
narrative elements such as character motivations and emotions, causal chains,
and event order, and refer to memorable moments that humans can recall without
rewatching the movie. Instead of multiple-choice formats, we adopt a binary claim
evaluation protocol: for each pair, models must correctly identify both the true and
false claims. This reduces biases like answer ordering and enables a more precise
assessment of reasoning. Our experiments demonstrate that both open-weight and
closed state-of-the-art models fall well short of human performance, underscoring
the relative ease of the task for humans and their superior ability to retain and
reason over critical narrative information—an ability current VLMs lack.

1 INTRODUCTION

Vision-language models (VLMs) have demonstrated strong performance across a wide range of
tasks involving both images and videos (Deitke et al., 2024; Chen et al., 2024b; Liu et al., 2024;
Zhang et al., 2024; Bai et al., 2025; Zhang et al., 2025; Xu et al., 2025; Li et al., 2025). As these
models continue to scale and improve, a natural next frontier lies in long-form video understanding,
essential for real-world applications such as education, storytelling, and other types of narrative video
analysis—where success depends on integrating and reasoning over information that unfolds over
extended periods.

Despite this progress, current evaluation benchmarks for video understanding remain limited. They
often rely on relatively short video content (Lei et al., 2018; Xiao et al., 2021; Wu et al., 2021; Parmar
et al., 2024; Rawal et al., 2024; Qiu et al., 2024; Fang et al., 2024) and even when longer videos are
available (Huang et al., 2020; Song et al., 2023; Chandrasegaran et al., 2024; Ataallah et al., 2024;
Wang et al., 2024b; Fu et al., 2024; Wu et al., 2024), they fail to access genuine comprehension.
Instead, many existing benchmarks target “needle-in-a-haystack” retrieval (Kamradt, 2024; Wang
et al., 2024a;d; Zhao et al., 2025), focusing on peripheral or low-level details that models can possibly
retrieve with long context windows, even without the abstractive understanding of the central storyline
that humans use. For example, questions such as “What color is the liquid inside the bucket in the
painting?” (Wu et al., 2024) or “Why did Player number 4 in white push down Player number 17 in
purple during the match?”(Wang et al., 2024b) primarily test narrow recall capabilities, rather than
engaging with fundamental narrative components. We argue that referring to memorable moments
that humans can recall even without rewatching the movie is key. Such moments encapsulate
critical turning points that shape the narrative trajectory (Papalampidi et al., 2019; 2020), such as
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Figure 1: Illustration of three claim pairs (each with a fact and a fib) from the movie “The Little
Princess”. Our claims target memorable events, focusing on key turning points of the narrative such
as emotional arcs and causal relationships between characters, and require reasoning across different
granularities (single-scene, multi-scene and global).

emotional arcs or causal relationships between characters and events (see Fig. 1). Other benchmarks
prioritize quantity over quality, using semi-automatically generated questions (Chandrasegaran et al.,
2024; Ataallah et al., 2024), often produced by language models themselves, which may reflect
model biases rather than robust evaluation. Evaluation formats also pose challenges: questions are
typically either free-form, making automatic and reliable assessment difficult (Bavaresco et al., 2024;
Liu & Zhang, 2025; Ye et al., 2025), or multiple choice-based, suffering from several pitfalls such
as answer selection biases based on superficial cues or poorly constructed distractors (Li & Gao,
2024; Loginova et al., 2024; Singh et al., 2025; Molfese et al., 2025). Furthermore, as we highlight
in Table 1, access to open-source video content is often restricted due to copyright issues, and even
when external links (typically to platforms such as YouTube) are provided, they are prone to becoming
inaccessible over time (Wang et al., 2024b), which limits reproducibility and long-term usability.
These limitations highlight the need for a fully open-source benchmark that goes beyond shallow
retrieval and supports rigorous evaluation of narrative understanding.

In this paper, we introduce MF2, a benchmark to evaluate genuine narrative comprehension of
full-length movies. The dataset comprises 53 full-length, open-licensed movies with an average
duration of 88.33 minutes. For each movie, we manually construct a set of contrastive claim
pairs, each consisting of one true statement (a fact) and one plausible but false counterpart (a fib).
These claim pairs target memorable events in the movie, such as character motivations, causal
links, event chronology, and other key aspects that are central to the narrative (see Table 2). Unlike
benchmarks that can be solved through brute-force memorization or naïve extensions of context
windows (e.g., “needle-in-a-haystack” style queries), MF2 requires models to consolidate, reason,
and recall fundamental narrative components across long time spans, requiring integration of both
vision and language, and reflecting more human-like understanding. Our contributions are as follows:

1. We present MF2, a benchmark designed for evaluating narrative comprehension of full-
length movies. It consists of 53 full-length, open-licensed movies, each accompanied by
corresponding subtitles, and includes over 850 human-crafted claim pairs.

2. We shift away from traditional multiple-choice formats and adopt a contrastive claim
evaluation protocol, following Karpinska et al. (2024): for each contrastive pair, models
must correctly identify both the true and false claims, avoiding biases like answer ordering
and enabling a more precise reasoning assessment.

3. We perform an extensive evaluation of state-of-the-art open and closed models as well as a
human evaluation to establish upper-bound performance, revealing a notable performance
gap between models and humans.
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Table 1: Comparison of video datasets across different aspects. MC stands for multiple-choice and
OE for open-ended questions.

Dataset Avg. Duration (mins) Annotation Evaluation Format Source Availability
CausalChaos (Parmar et al., 2024) - Auto & Manual MC & OE Source link not available
CinePile (Rawal et al., 2024) 2.67 Auto & Manual MC YouTube links
EgoSchema (Mangalam et al., 2023) 3.00 Auto & Manual MC Videos
ViMuL (Shafique et al., 2025) 4.52 Auto & Manual MC & OE Videos
EgoPlan-Bench2 (Qiu et al., 2024) up to 5 Auto & Manual MC Videos
LongVideoBench (Wu et al., 2024) 7.89 Manual MC Videos
Video-MMMU (Hu et al., 2025b) 8.44 Manual MC Videos
MovieChat-1K (Song et al., 2023) 9.40 Manual MC & OE Videos
MLVU (Zhou et al., 2024) 12.00 Auto & Manual MC & OE Videos
Neptune (Nagrani et al., 2025) up to 15 Auto & Manual MC & OE Videos
Video-MME (Long) (Fu et al., 2024) 39.76 Manual MC YouTube links
HourVideo (Chandrasegaran et al., 2024) 45.70 Auto & Manual MC Videos
InfiniBench (Ataallah et al., 2024) 52.59 Auto & Manual MC & OE Key frames
LVBench (Wang et al., 2024b) 68.35 Manual MC YouTube links

MF2 88.33 Manual Claim pairs Videos

Figure 2: Dataset construction process involving three main stages: movie collection, data annotation,
and quality control.

4. We publicly release all data and code1 to facilitate reproducibility and support future research
on long movie understanding.2

2 MF2: MOVIE FACTS AND FIBS

MF2 includes 53 full-length, open-licensed movies, each accompanied by subtitles, and 868 human-
authored contrastive claim pairs. Each pair tests whether a model can distinguish true from false
information based on its understanding of the story. Fig. 1 shows some examples. We now describe
the dataset construction process in detail, covering movie selection (§2.1), annotation methodology
including claim categorization and granularity (§2.2), and human quality control procedures used to
filter ambiguous or low-quality claims (§2.3). Fig. 2 provides an overview of these three stages.

2.1 MOVIE SELECTION AND SUBTITLES

We started by collecting a pool of movies from the Internet Archive,3 an online repository of open-
licensed media. We specifically selected titles released under the Public Domain 1.0 license to ensure
legal reusability and support open-access research. To reduce the risk of data contamination in
modern foundation models (Jacovi et al., 2023), we focused on older films released between 1920
and 1970, prioritizing those with limited online visibility, measured by the number of user reviews
on IMDb. We sourced original-language subtitles—the majority of which are in English—from
OpenSubtitles.org,4 a widely used platform that provides subtitles for a large collection of movies,
TV shows, and other video content. For one movie without available subtitles, we used whisper-1
(Radford et al., 2023)5 to generate a transcript and manually post-edited to ensure high quality. This
process yielded a final collection of 53 full-length movies with an average duration of 88.33 minutes,

1https://anonymous.4open.science/r/MF2
2We will release the movies upon acceptance.
3https://archive.org
4https://www.opensubtitles.org
5https://platform.openai.com/docs/models/whisper-1
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Figure 3: Distribution of claim pairs across reasoning granularities (left) and comprehension dimen-
sions (right).

each accompanied by audio and aligned subtitles (see §A for details about the movies, including
genre, language, and duration).

2.2 DATA ANNOTATION

The annotation process involved 26 annotators, all of whom are co-authors of this work, who watched
the full movies, identified key narrative elements, and constructed pairs of constrastive claims:
one factually correct statement (fact) and one minimally altered, false counterpart (fib). Following
Karpinska et al. (2024), annotators were instructed to minimize lexical differences between the
fact and the fib, changing only the parts needed to flip the truth value. The annotation guidelines
are presented in §B. This contrastive formulation serves two purposes: (i) it isolates the specific
narrative element being tested, reducing the chance that models rely on superficial cues (e.g., sentence
length, structure, or other lexical patterns); and (ii) it simplifies quality control (see §2.3) by making
inconsistencies easier to detect.

Claim granularity. To capture different levels of reasoning, annotators labeled each fact according
to the granularity required to verify its truth: (i) single-scene: answerable using information from
one scene; (ii) multi-scene: requiring integration across multiple scenes; and (iii) global: relying on
high-level understanding that spans the full movie, including accumulated or inferred information
(cannot be easily tied to distinct scenes). As shown in Fig. 3 (left), the dataset includes a balanced
distribution of single-scene and multi-scene facts (with a smaller proportion requiring global reason-
ing). Importantly, all claims test long-form comprehension irrespectively of the reasoning granularity:
while global claims require reasoning across the entire movie, key events can also unfold within
single or multiple scenes. Even single-scene claims are non-trivial, as they assess whether models can
extract and retain salient localized information. While humans naturally focus on important elements,
models may lack this ability (see §4.2, where we show that this is indeed the case).

Comprehension dimensions. In addition to the reasoning granularity, annotators also labeled each
claim pair with one or more comprehension dimensions, indicating the specific aspects of narrative
understanding being tested. These dimensions, informed by prior work (Xiao et al., 2021; Zhang
et al., 2023b; Wang et al., 2024b), are defined in Table 2, with their distribution shown in Fig. 3
(right). Annotators could choose multiple dimensions for the same claim.

2.3 QUALITY CONTROL

We conducted a human evaluation stage to establish a human baseline for model comparison (see
Section §3), which was also used to collect feedback on the quality of claims. For this round,
annotators first selected a subset of movies they had not previously seen during the data annotation
stage. After watching a movie, they classified the corresponding claims as either true or false using
a custom annotation interface (see §B for an example and full guidelines). Claims were presented
one at a time, and annotators were required to respond based solely on memory. To support the
identification of problematic claims, we encouraged annotators to leave comments whenever a claim
was ambiguous, poorly phrased, open to interpretation, or too fine-grained to be meaningfully tied to
narrative understanding (e.g., needle-in-a-haystack claims). The annotation guidelines emphasized
the importance of paying close attention while watching the movie, as many claims require subtle
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Table 2: Definitions of comprehension dimensions.

Comprehension Dimension Definition

Event/Entity Understanding Involves identifying key entities (e.g., people, places, or objects) and
understanding the events they participate in. This includes tracking
entities across scenes, interpreting their roles, and recognizing their
interactions and relationships throughout the narrative.

Temporal Perception Requires reasoning about the timeline of events—determining
whether actions occur before, after, or simultaneously—and may
also include counting or sequencing events. The focus is on broader
temporal relationships within the narrative.

Emotion Understanding Involves recognizing the emotional states of characters and interpret-
ing how these emotions evolve throughout the story.

Causal Reasoning Focuses on identifying cause-and-effect relationships between events
or actions, including both explicit and implicit dependencies that
may span multiple scenes.

reasoning or contextual understanding. Importantly, annotators were instructed not to use any external
tools or take notes, ensuring that all responses reflected natural human memory and comprehension.

An optional second stage allowed annotators to revisit their previous responses with access to the
movie. This stage was used exclusively to collect additional comments for validation: annotators
used it to revise earlier answers after reflecting on the full context of a claim pair.

As part of the filtering process, two annotators reviewed all comments left during the stages described
above. Without watching the corresponding movies, and solely based on the comments left, they
identified problematic claims and removed them from the dataset. Importantly, no claims were
rewritten at this stage—they were either accepted or discarded. This filtering step resulted in the
removal of 104 pairs of claims, yielding a cleaner set of 868 high-quality pairs (§A provides more
statistics).

3 EXPERIMENTAL SETUP

In this section, we describe the setup used to evaluate a range of vision-language models (VLMs) on
the MF2 benchmark. Our experiments include both closed and open-weight models, tested across
multiple input modalities using a standardized evaluation protocol.

Modalities. We evaluate all models under a vision-language setup, where they receive visual input
in the form of sampled movie frames. We also experiment with providing subtitles as additional
input. For the ablation studies (see §4.2), we test two other configurations: one that includes movie
synopses, and another that provides only the movie title and release year.

Baselines. We experiment with several state-of-the-art vision-language models (VLMs). As closed
models, we include GPT-4o (OpenAI et al., 2024) and Gemini 2.5 Pro (Team et al., 2023). Our open-
weight models include VideoLLaMA3 (Zhang et al., 2025), Qwen2.5-VL (Bai et al., 2025), LLaVA-
Video (Zhang et al., 2024), InternVL3 (Zhu et al., 2025), Ovis2 (Lu et al., 2024), and LongVILA-
R1 (Chen et al., 2025), a model specialized for long video benchmarks. For all models except GPT-4o,
we first downsample videos to 1 frame per second, following each model’s preprocessing approach.
From these frames, we then uniformly sample a subset, adjusting the number of frames based on
each model’s input constraints and original training settings.6 For GPT-4o, frames are uniformly
sampled directly from the original videos without prior downsampling. The exact number of frames
sampled per model is reported in Table 3. We test multiple prompt variants and report results using the
best-performing prompt for each model. To extract predictions, we use regular expressions to identify

6Note that models always receive uniformly sampled frames from the full movie—not targeted scene
windows. They must process the entire movie and transcript to identify relevant content, irrespectively of the
reasoning granularity of the claim.
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Table 3: Performance of both open-weight and closed models when evaluated on MF2. We report
both pairwise and standard accuracy, when models are assessed on video inputs w/ and w/o subtitles.
Best-performing values among models are bolded and best for each specific group are underlined.

Method #Params #Frames Pairwise Accuracy (%) Accuracy (%)

w/o subs w/ subs w/o subs w/ subs

Baselines

Random - - 25.0 25.0 50.0 50.0
Human - - - 84.1 - 90.5

Closed Models

GPT-4o - 50 18.8 46.8 55.2 71.4
Gemini 2.5 Pro - 120 37.2 60.6 64.2 76.2

Open-weight Models

VideoLLaMA3 7B 180 20.5 33.5 57.0 62.7
Qwen2.5-VL 7B 180 24.6 32.8 56.7 62.0
LLaVA-Video 7B 64 6.6 19.0 51.7 57.8
LongVILA-R1 7B 180 11.5 16.9 50.1 56.6
InternVL3 8B 64 10.9 36.9 53.1 64.6
Ovis2 34B 10 18.8 45.6 53.3 69.5
Qwen2.5-VL 72B 180 29.7 45.9 58.8 70.4
LLaVA-Video 72B 64 15.6 41.8 54.6 69.1
InternVL3 78B 64 22.1 51.3 58.0 72.7

True/False answers in the model outputs, selecting either the first or last valid match depending
on the prompt structure. We include all prompt templates and answer parsing details in §C.1 for
reproducibility. We also include a human baseline where evaluators judged claims based on their
memory, without rewatching scenes (see §2.3).

Evaluation protocol. We report two metrics: (i) pairwise accuracy, which measures how often
models correctly classify both the true and the false claim in a pair (i.e., they receive credit only if
both are labeled correctly; no points are awarded for partial correctness); and (ii) standard accuracy,
which is computed over individual claims. The random baselines are 25% and 50%, respectively.
Following prior work (Karpinska et al., 2024), both models and human annotators see and evaluate
each claim independently, without access to the paired structure during prediction (see discussion in
§7). Pairwise accuracy is computed post-hoc by grouping predictions from the same pair.

4 RESULTS AND ANALYSIS

In this section, we first present the main experimental results (§4.1), followed by ablation studies (§
4.2) that analyze model performance across the different input modalities, reasoning granularities,
and comprehension dimensions.

4.1 MAIN RESULTS

In Table 3, we report both standard and pairwise accuracy for humans, open-weight, and closed
models across two input modalities: video-only and video with subtitles. Our results reveal that:

Both open-weight and closed models fall significantly short of human performance. Among
the closed models, Gemini 2.5 Pro achieves the highest scores, with a pairwise accuracy of 60.6%,
followed by the open-weight InternVL3-72B, which performs 9.3% lower, when evaluated on both
video and subtitles. Despite their relatively strong performance, both models rank significantly behind
humans, with a 24.1% absolute gap. Smaller models perform only marginally above chance, with
the best among them exceeding the random baseline by just 11.09%. These findings underscore the
difficulty of the task for current models, but also highlight humans’ superior ability to retain and
reason over critical narrative information.
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Table 4: Performance of Gemini 2.5 Pro across different input modalities. Video uses only the video
stream; Subs includes only subtitle information; Synopsis relies only on the synopsis of the movie
obtained from Wikipedia; Video w/ Subs combines both video and subtitles inputs; and Movie Title
uses only the claim, along with the movie title and release year, without access to movie content.

Input Modality

Metric Video Subs Synopsis Video w/ Subs Movie Title

Pairwise Accuracy (%) 37.2 56.7 25.5 60.6 43.7
Accuracy (%) 64.2 76.2 61.8 77.6 66.3

Models, particularly medium and large-sized ones, perform substantially better when subtitles
are available compared to relying on video alone. By contrast, smaller-sized models perform
near chance level when evaluated solely on the video and marginally improve with the addition of
subtitles. A notable exception is InternVL3-7B, which shows a more pronounced improvement with
subtitles, indicating some ability to leverage textual context despite its smaller size. In contrast larger
models, such as InternVL3-72B, followed by LLaVA-Video and Ovis2, demonstrate significant gains
when subtitles are provided. These results indicate that textual cues can provide meaningful signals
when integrated with visual inputs—a dynamic we further explore in the following section, where we
deep dive into a fine-grained analysis of different input modalities and reasoning capabilities.

4.2 ABLATION ANALYSIS

Beyond vision: the role of textual and world knowledge. Table 4 presents an ablation study of
Gemini 2.5 Pro, highlighting its strong reliance on subtitles and parametric (internal) knowledge.
Notably, the model performs competitively even without visual input. It achieves strong results when
provided only with subtitles, or even just the movie title and release year. This suggests that the model
draws substantially on broad world knowledge encoded during pretraining. In contrast, performance
declines when the model is given only the movie synopsis, indicating that not all forms of textual
context are equally helpful. These results underscore the critical role of subtitles as a grounding signal
and suggest that pretrained knowledge, rather than surface-level contextual inputs like a synopsis,
enables accurate reasoning in the absence of video. Note that these findings deviate somewhat from
the general assumption made when providing contextual knowledge; past work steering models
to focus on contextual knowledge (e.g. (Li et al., 2023b; Shi et al., 2024; Wang et al., 2025)) or
performing retrieval-augmented generation (Lewis et al., 2020) generally assume that the contextual
knowledge is correct and contains the correct answer. However, on videos, which represent long and
complex contexts, we find that models in fact perform better without contextual knowledge.

Input modality contributions across comprehension dimensions and reasoning granularities.
In Fig. 4, we present ablation studies for Gemini 2.5 Pro, examining how different input modalities
contribute to performance across comprehension dimensions and reasoning granularities. We observe
that models handle temporal perception more effectively than other comprehension aspects across
all modalities—likely because time-related information is often directly observable in visual and
textual inputs, making it easier to track and interpret (Zellers et al., 2021; Li et al., 2022). Event
and entity understanding is notably weaker under visual-only conditions, likely due to the need for
linguistic disambiguation. This limitation becomes evident when subtitles are introduced: the most
significant gain is observed in the aforementioned category, highlighting the complementary role
of textual context. In contrast, emotional understanding benefits the least from subtitles, indicating
challenges in affective comprehension. Beyond comprehension dimensions, reasoning performance
under visual-only inputs remains relatively consistent across reasoning types. However, under the
presence of textual cues, global reasoning becomes more challenging than single- and multi-scene
reasoning.

A fine-grained view of large-scale model performance across comprehension dimensions and
reasoning granularities. Fig. 5 shows that, among the large-scale models, Gemini 2.5 Pro still
demonstrates inferior performance, ranking second to humans in various categories. Other models
like LLaVA-Video and InternVL3 generally show lower scores, suggesting areas for improvement.
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Figure 4: Pairwise accuracy for Gemini 2.5 Pro per comprehension dimension and reasoning granu-
larity when varying the input modalities.
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Figure 5: Pairwise accuracy for large-scale models with video and subtitles, and human baseline per
comprehension dimension and reasoning granularity.

The results also highlight varying degrees of difficulty across the tasks, with emotion comprehension
appearing to be a strong point for humans, while temporal perception is a strong point for models.
Interestingly, the analysis on reasoning granularity reveals an interesting pattern between humans
and models: as reasoning shifts from single-scene to multi-scene and eventually to global, model
performance tends to oscillate across models, while human performance declines. Notably, Qwen2.5-
VL shows improved accuracy on claims requiring global reasoning compared to the other granularities.
This may suggest that global narrative information is more frequently represented in pretraining
corpora (e.g., Wikipedia summaries of movies), whereas single-scene questions demand localized
details that are less likely to be encountered in such sources. In contrast, humans may face increased
cognitive load or memory limitations when reasoning across multiple scenes, which could explain
the drop in performance in some cases.

5 RELATED WORK

Vision and long context LLMs. The field of VLMs has seen rapid progress, with models becoming
increasingly effective at video-language understanding (Deitke et al., 2024; Bai et al., 2025; Zhu
et al., 2025). Early methods focused on short clips and relied on complex spatio-temporal modules,
such as Q-formers (Zhang et al., 2023a; Li et al., 2023a), or temporal pooling techniques (Maaz et al.,
2024; Luo et al., 2023; Xu et al., 2024). While not new, projection layers (Li et al., 2023c; Liu et al.,
2023; Li et al., 2023a; Liu et al., 2024) have gained popularity as a simpler and increasingly effective
alternative for aligning video and language representations (Bai et al., 2025; Zhang et al., 2025; Zhu
et al., 2025), largely driven by advancements in visual encoders (Radford et al., 2021; Tschannen
et al., 2025). In the domain of long video understanding, current approaches primarily focus on
compressing tokens (Li et al., 2023c; Zhang et al., 2025), merely extending the context window
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(Abdin et al., 2024; Liu et al., 2025) or memory consolidation mechanisms (Balazevic et al., 2024;
Song et al., 2023; 2024; Santos et al., 2025). A separate line of work first densely captions videos
and then answers questions based on text only (Zhang et al., 2024; Wang et al., 2024c;e); we focus
instead on benchmarking VLMs without costly captioning pipelines by introducing a benchmark that
evaluates deep video understanding rather than simple memorization.

Long video understanding benchmarks. Understanding long videos presents substantial chal-
lenges, requiring models to track complex temporal dependencies and retain narrative context over
extended durations. While existing benchmarks have driven progress in temporal reasoning over
short clips (Xiao et al., 2021; Wu et al., 2021) and in domain-specific settings such as instructional or
egocentric videos (Yang et al., 2021; Mangalam et al., 2023; Qiu et al., 2024), most focus on content
under three minutes or can be solved with a few keyframes (Yu et al., 2019; Zhang et al., 2023b).
Benchmarks targeting longer content, such as (Mangalam et al., 2023; Rawal et al., 2024; Parmar
et al., 2024; Wu et al., 2024; Hu et al., 2025b; Shafique et al., 2025), still fall short in average duration,
scale, or annotation quality. Even those with longer videos (e.g., HourVideo (Chandrasegaran et al.,
2024), InfiniBench (Ataallah et al., 2024)) often rely on synthetic questions and automated labels, and
most use multiple-choice formats (e.g., Video-MME (Fu et al., 2024), LVBench (Wang et al., 2024b),
Video-MMMU (Hu et al., 2025a)), which introduce biases and limit the assessment of genuine multi-
modal understanding. While (Huang et al., 2020) offers a dataset for long-form movie understanding,
it provides only keyframes, which constrains the flexibility of evaluation. Similarly, SynopGround
(Tan et al., 2024) and Timescope (Zohar et al., 2025) focus on long videos, but primarily target
localized (“needle-in-a-haystack”) retrieval rather than deep understanding. Neptune (Nagrani et al.,
2025) pushes towards free-form answers and reasoning over long time horizons but remains limited
to 15-minute videos; in the same vein, VideoAutoArena Luo et al. (2024) avoids multiple-choice
evaluation by simulating users to rank long-form answers. Similarly, CG-Bench (Chen et al., 2024a)
recognizes the limits of multiple-choice formats and evaluates models based on their ability to ground
their answer to clues in the video. Critically, none of these datasets include claim pair tasks needed to
assess a model’s ability to integrate and create an intrinsic understanding across multi-hour content.
Our benchmark’s design—centered on long-form, manually annotated movie narratives and a binary
claim evaluation protocol—offers a rigorous framework for diagnosing true narrative understanding
in video-language models.

6 CONCLUSIONS

In this paper, we introduce MF2, a comprehensive multimodal benchmark designed to evaluate
VLMs on deep narrative understanding in the context of long movie comprehension. Our benchmark
adopts a binary evaluation protocol and covers a diverse range of claim categories, including emotion
understanding, temporal perception, causal reasoning, and event/entity understanding. These claims
span varying levels of granularity—single-scene, multi-scene, and global—requiring reasoning across
entire films. All examples are annotated by humans to ensure high-quality and reliable labels. Our
extensive evaluation of both open-weight and closed state-of-the-art models reveals a significant
performance gap between models and humans, underscoring the challenges and importance of our
benchmark. Commercial models such as Gemini 2.5 Pro outperform others, including GPT-4o
and other open-weight variants, yet still fall short of human-level performance. We observe that
incorporating transcripts significantly boosts model accuracy. Interestingly, Gemini 2.5 Pro decreases
performance on questions requiring global reasoning, suggesting that our framework effectively
targets the harder challenge of global narrative understanding, which current models continue to
struggle with despite good overall capabilities. We hope MF2 boosts future research and development
aimed at improving the narrative reasoning capabilities of VLMs.

7 LIMITATIONS

Despite careful design and validation, our dataset is not free from imperfections. Minor issues such
as typos may remain, and annotators—though shown one claim at a time—may have recalled earlier
claims from the same pair, influencing later judgments. Models do not share this limitation, as they
process claims independently. As future work, claims from each pair could be split into disjoint sets
and rated by different annotators to better isolate such effects.
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8 ETHICS STATEMENT

We adhered to established scientific and ethical standards in constructing and releasing MF2. All
source movies are released under the permissive Public Domain 1.0 license. Claims and annotations
were created and validated exclusively by the authors; no external crowdworkers were employed.
To encourage a plurality of perspectives in the annotation process, the annotation team consists of
individuals from diverse demographic, institutional, and geographic backgrounds. Since MF2 is
derived entirely from fictional movies, it contains no personally identifiable information (PII) of
real individuals. Nonetheless, some fictional content may reflect cultural stereotypes or outdated
social norms. We caution researchers that models evaluated on MF2 may inherit such biases, and we
recommend appropriate safeguards when interpreting or deploying results. We advise users to employ
MF2 strictly within the scope of this work, namely as a benchmark for evaluating vision–language
models on long movie understanding, and discourage its use beyond it.

9 REPRODUCIBILITY STATEMENT

We ensure reproducibility by releasing the full dataset and the codebase at https://anonymous.
4open.science/r/MF2. The repository includes extended instructions to replicate all exper-
imental settings. To facilitate long-term accessibility, and in accordance with the Public Domain
1.0 license, we additionally host a copy of the raw movie data. Detailed annotation protocols are
provided in Appendix B, while Appendix C outlines additional experimental details. We encourage
independent verification of our results and welcome contributions from the community to extend or
stress-test MF2 over time.
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A METADATA FOR COLLECTED MOVIES

In Table 5, we provide detailed information on the 53 released movies, including their genre, original
language, and duration.

B DETAILED GUIDELINES FOR DATA ANNOTATION AND HUMAN-EVAL

B.1 DATA ANNOTATION GUIDELINES

In Figs. 6 and 7, we present the detailed guidelines provided to annotators during the data annotation
process. These include instructions for constructing contrastive claim pairs, and labeling each pair
with the appropriate reasoning granularity and comprehension dimensions. Furthermore, in Figs. 8
and 9, we include a subset of illustrative examples shown to annotators to guide their annotations of
reasoning granularity and comprehension dimensions, respectively.

We note that among the comprehension dimensions annotators could assign to each claim pair, an
“Other” category was included to account for cases that did not clearly align with any of the predefined
dimensions. As this label was selected rarely (0.49% of the data), it is excluded from the figures
presented in the main text.

B.2 HUMAN EVALUATION GUIDELINES

In Figs. 10 and 11, we provide the full set of guidelines shared to participants during the human
evaluation process, which consists of two stages: an initial stage in which evaluators respond without
revisiting the movie, and an optional second stage that allows revisiting. While we only analyze
the results from Stage 1—as our goal is to assess movie understanding based on memorable events
without allowing participants to rewatch parts of the film—we include the complete instructions for
both stages to offer full context. Additionally, we provide an illustration of the evaluation interface to
clarify the evaluation setup.

C DETAILS ON EXPERIMENTAL SETUP

C.1 PROMPT TEMPLATES

In Figs. 12 and 13 we present the direct and explanation prompt templates used for open-weight
and closed models, respectively. The former requests only a True/False response, while the latter
additionally asks for a brief justification before the final answer. We found that the direct prompt
yielded better performance for open-weight models, while the explanation prompt proved more
effective for closed models. When experimenting with different input modalities—such as adding the
synopsis, subtitles, or movie title—we adapt the prompts accordingly.

C.2 RESOURCES

Our infrastructure consists of a single machine equipped with 4 NVIDIA H100 GPUs (80GB each)
and 12 Intel Xeon Gold 6348 CPUs (2.60GHz, 1TB RAM). All experiments were conducted on a
single GPU, except for evaluations involving larger open-weight models (>70B parameters), where
all 4 GPUs were used to accelerate inference.

Table 5: Details of collected movies.

Movie (Year) Genre (IMDB) Language Duration (mins)

The Last Chance (1945) Drama, War en, it 93.84
They Made Me a Criminal (1939) Boxing, Film Noir,

Crime, Drama, Sport
en 91.21

Tokyo After Dark (1959) Drama en 81.23
The Sadist (1963) Horror, Thriller en 91.63
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Suddenly (1954) Film Noir, Psycholog-
ical Thriller, Crime,
Drama, Thriller

en 76.71

Sabotage (Hitchcock) (1936) Psychological
Thriller, Spy, Crime,
Thriller

en 75.92

Murder By Contract (1958) Film Noir, Crime,
Drama, Thriller

en 80.45

Pushover (1954) Film Noir, Crime,
Drama, Thriller

en 87.77

Go for Broke (1951) Drama, History, War en 90.85
Meet John Doe (1941) Political Drama,

Satire, Comedy,
Drama, Romance

en 122.87

Scarlet Street (1945) Film Noir, Tragedy,
Crime, Drama,
Thriller

en 102.39

Little Lord Fauntleroy (1936) Period Drama,
Drama, Family

en 100.72

Deadline - U.S.A. (1952) Film Noir, Crime,
Drama

en 87.06

My Favorite Brunette (1947) Hard-boiled Detec-
tive, Comedy, Crime,
Mystery, Romance,
Thriller

en 87.34

Woman in the Moon (1929) Adventure, Comedy,
Drama, Romance,
Sci-Fi

de 168.73

Lonely Wives (1931) Comedy, Romance en 85.35
Nothing Sacred (1937) Satire, Screwball

Comedy, Comedy,
Drama, Fantasy,
Romance

en 73.57

Fingerman (1955) Film Noir, Crime,
Drama, Thriller

en 82.06

Borderline (1950) Film Noir, Crime,
Drama, Thriller

en 88.16

Babes in Toyland (1934) Screwball Comedy,
Slapstick, Comedy,
Family, Fantasy,
Musical

en 77.26

The Man From Utah (1934) Drama, Western en 51.49
The Man With The Golden Arm
(1955)

Drug Crime, Psy-
chological Drama,
Crime, Drama,
Romance

en 119.07

A Star Is Born (1937) Tragic Romance,
Drama, Romance

en 110.98

Africa Screams (1949) Farce, Action, Adven-
ture, Comedy

en 79.13

Dementia 13 (1963) Slasher Horror, Hor-
ror, Thriller

en 74.94

Fear and Desire (1952) Drama, Thriller, War en 70.19
The Little Princess (1939) Costume Drama,

Comedy, Drama,
Family, Musical

en 92.77
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Father’s Little Dividend (1951) Comedy, Drama, Ro-
mance

en 81.74

Kansas City Confidential (1952) Conspiracy Thriller,
Film Noir, Heist,
Crime, Drama,
Thriller

en 99.27

Of Human Bondage (1934) Dark Romance, Film
Noir, Medical Drama,
Tragedy, Tragic Ro-
mance, Drama, Ro-
mance

en 82.77

Half Shot at Sunrise (1930) Comedy, Musical en, fr 78.04
Bowery at Midnight (1942) B-Horror, Crime,

Horror, Thriller
en 62.05

The Emperor Jones (1933) Drama, Music en 76.29
The Deadly Companions (1961) Adventure, Drama,

Western
en 93.62

The Red House (1947) Film Noir, Drama,
Mystery, Thriller

en 100.39

Trapped (1949) Film Noir, Crime,
Drama, Thriller

en 79.4

City of Fear (1959) Crime, Drama,
Thriller

en 75.18

Kid Monk Baroni (1952) Action, Drama, Sport en 79.56
Tight Spot (1955) Film Noir, Crime,

Drama, Thriller
en 95.99

Captain Kidd (1945) Costume Drama,
Swashbuckler, Ad-
venture, Biography,
Drama, History

en 87.53

The Front Page (1931) Dark Comedy, Satire,
Screwball Comedy,
Comedy, Crime,
Drama, Mystery,
Romance

en 101.14

The Hitch-Hiker (1953) Film Noir, Crime,
Drama, Thriller

en 70.8

Obsession (1949) Film Noir, Psycholog-
ical Thriller, Crime,
Thriller

en 92.39

Thunderbolt (1929) Film Noir, Crime,
Drama, Music, Ro-
mance

en 91.27

Cyrano de Bergerac (1950) Swashbuckler, Ad-
venture, Drama,
Romance

en 112.87

Scandal Sheet (1952) Film Noir, Crime,
Drama, Romance,
Thriller

en 81.75

Ladies in Retirement (1941) Film Noir, Crime,
Drama

en 92.31

Detour (1945) Film Noir, Crime,
Drama

en 69.09

The Crooked Way (1949) Film Noir, Crime,
Drama, Thriller

en 85.95

A Bucket of Blood (1959) Comedy, Crime, Hor-
ror

en 65.84
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Love Affair (1939) Holiday Romance,
Comedy, Drama,
Romance

en 89.62

The Jackie Robinson Story (1950) Biography, Drama,
Sport

en 76.82

The Last Time I Saw Paris (1954) Tragedy, Tragic Ro-
mance, Drama, Ro-
mance

en 116.02

AI ASSISTANCE

We would like to note that large language models (ChatGPT) were used to assist in drafting and
polishing the writing of this work.
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Guidelines for Data Annotation (Part 1)

We are conducting a research study on long movie understanding as part of a broader effort to
explore how well viewers comprehend and recall complex narratives. Your task is to create claims
that test a viewer’s comprehension of a movie after watching it. These claims will be used in a
human evaluation study to assess how well participants understand and recall key events from the
movie. We appreciate your participation in this data collection process.

General Task Instructions Select a movie from the current “Pool” of movies (the “Pool” can
be found in <LINK>). Make sure this movie is not selected by another annotator.

• Watch the entire movie carefully.

• We highly recommend reading the example claims provided to gain a better understand-
ing of the task you need to fulfil.

• Start writing down your claims following the template available in <LINK> (you will find
two tabs available: the “Examples” tab contains claim examples, and the “Annotations
Template” tab is the template you should follow). Please create another sheet with your
claims–do not directly use the current template–and send it to us once it is completed.

Annotation Process
1. Writing Claims You are asked to create pairs of contrastive claims, where one claim is true
(fact) and the counterfactual version is false (fib). The two claims should differ by minimal edits,
meaning they should be as similar as possible while maintaining contrast. Each claim should differ
in a subtle but meaningful way, challenging comprehension without being overly obvious.
Example:
Fact: The first bomb exploded in the bus.
Fib: The first bomb exploded in the aquarium.
Why this works: The counterfactual claim is created with minimal edits, maintaining contrast
while testing the understanding of a key event.

2. Select Claim Granularity For each pair of claims you constructed, indicate whether
answering them correctly requires reasoning based on a single scene, multiple scenes, or globally
within the movie.
Definition of scene:
A scene in film refers to a complete unit of storytelling, usually consisting of a sequence of events
and dialogue taking place in a specific location and time. It often involves one or more characters
and is usually shot in one continuous take or consisting of a sequence of shots.
Reasoning Granularity Labels:

• Single-scene: Claims that are answerable using information from a single scene.

• Multi-scene: Claims falling into this granularity require information/evidence from mul-
tiple distinct scenes, but not from the whole film. In this case, details are usually spread
out between the multiple scenes. The supporting information/evidence is distributed, but
explicit and locatable (timestamps/scenes can be clearly identified and referenced)

• Global: Claims falling into this granularity require a holistic understanding of the
movie narrative. They cannot be easily tied to specific scenes or timestamps, and need
to infer or accumulate information/evidence that emerges across the entire narrative
(timestamps/scenes can not be clearly identified and referenced).

Note: Reasoning granularity labels should be selected based on the fact (true claim). Check the
examples provided in the “Examples for Reasoning Granularity” part.

Figure 6: Guidelines provided for the data annotation procedure (Part 1).
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Guidelines for Data Annotation (Part 2)

3. Claim Categorization Identify the comprehension dimensions the constructed pair of
claims examines. Sometimes more than one dimension is examined, so we allow for multiple
labels.
Comprehension Dimension Labels:

• Event/Entity Understanding: it refers to claims that require the identification of key
entities (such as people, places, or objects) and understanding of actions or events
involving those entities throughout the narrative. Understanding these claims involves
tracking the presence and role of entities across scenes, extracting relationships among
them, observing and interpreting their actions, and linking them to relevant events in the
narrative.

• Temporal Perception: temporal perception refers to claims that require understanding
of the timeline of events. It involves reasoning about the order in which events or
actions occur—e.g., determining whether an event/action takes place before, after or
at the same time as another—and may also require counting the number of specific
actions or events. Unlike tasks focused on localizing a specific action in time, temporal
perception emphasizes comprehension of broader temporal relationships within the
evolving storyline.

• Emotion Understanding: emotional understanding refers to claims that involve recog-
nizing and interpreting the emotional development of characters throughout the narrative.

• Causal Reasoning: causal reasoning refers to claims that require identifying cause-
and-effect relationships between events or actions, where the relationship may be either
direct or implicit.

• Other: If none of the above fit, select "Other" and suggest a new category.

Note: The categorization is based on both claims (fact and fib). Check the examples provided in
the “Examples for Comprehension Dimensions” part.

Important Points To Consider
• Ensure claims assess the viewer’s understanding of the movie. To put it simply,

claims should refer to significant moments in the movie, avoiding trivial details or
Needle in a Haystack (NIAH)-style claims, such as: “The detective wears a red T-shirt”
(if this detail is not important in the movie).

• Claims must be clear and unambiguous in isolation, meaning they should be under-
standable without requiring additional context but should still require reasoning based
on the movie. Each claim should be self-contained and make sense independently,
without referencing its counterfactual version. Also, avoid highly subjective or inter-
pretive claims. Each claim should still have a definitive answer based on the movie’s
content.

• Avoid providing unnecessary contextual details. For example, do not use phrases like
“in the beginning of the movie, . . . ”, “in the final scene, . . . ” unless such information is
essential to understanding the claim.

• Ensure that claims span the entire movie rather than focus on isolated scenes.

• Once you finish the annotation process, please go through your claims and confirm
that they are in line with the points raised above (these points are important to be
covered to ensure good quality of annotations).

Figure 7: Guidelines provided for the data annotation procedure (Part 2).
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Guidelines for Data Annotation (Part 3)

Examples for Reasoning Granularity In this part, we provide examples to illustrate how
to assign reasoning granularity labels.

Example 1:
Fact: According to the Hattley, the individual shown in the photograph (Marakelli) worked with
Constain.
Fib: According to Hattley, the individual shown in the photograph (Marakelli) had no connection
or working relationship with Constain.
Reasoning Granularity: Single-scene.
Justification: This event is categorized as single-scene because it takes place within one specific
scene: Hattley shows the photograph to Conley, they are having a discussion and it is implied that
Marakelli worked with Constain in the mafia.

Example 2:
Fact: Hattley appeared visibly bothered with the discussion he had in his office with Constain’s
attorney.
Fib: Hattley appeared pleased with the discussion he had in his office with Constain’s attorney.
Reasoning Granularity: Single-scene.
Justification: That is again a single scene event. Constain’s attorney enters the office and they are
having a discussion. After a while, Hattley kicks him out.

Example 3:
Fact: Miss Conley received a dress as a personal gift from the policeman.
Fib: Miss Conley received a dress as a gift from the government, delivered by the policeman.
Reasoning Granularity: Multi-scene.
Justification: That is a multi-scene event, that we need to ground on 2 independent scenes to
answer the question correctly. In the first scene Miss Conley receives a gift from the policeman,
who says that the gift is from the government. After a while (some scenes are interleaved), she
understands that the policeman bought the gift for her and not the government. So to answer
correctly, we need to ground on these 2 specific scenes.

Example 4:
Fact: Conley’s statement about her occupation, describing herself as a “gang buster,” implicitly
refers to Constain.
Fib: Conley’s statement about her occupation, describing herself as a “gang buster,” implicitly
refers to Pete Tinelli.
Reasoning Granularity: Global
Justification: There is a single scene in the end of a movie during which Conley characterises
herself as a “gang buster”. Although it is a single scene, it is impossible to understand solely by
this scene why she said it and to whom she is referring to. We need to watch a big part of the
movie (if not all of it) to understand that refers to Constain.

Figure 8: Guidelines provided for the data annotation procedure (Part 3). This part of the guidelines
provides examples given to annotators to illustrate how to assign reasoning granularity labels. While
more examples were shared during the annotation process, we include a selection here for illustrative
purposes.
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Guidelines for Data Annotation (Part 4)

Examples for Comprehension Dimensions In this part we provide examples to illustrate
how to assign comprehension dimension labels.

Example 1:
Fact: At Jim’s bar, the Connel keeps drinking as he talks to the fake John Doe, expressing his
frustration and concern.
Fib: At Jim’s bar, the Connel keeps drinking as he talks to the fake John Doe, expressing hope and
happiness.
Comprehension Dimension: emotion understanding
Justification: We need to understand what emotion Connel expressed, to answer the pair of claims
correctly.

Example 2:
Fact: Conley’s statement about her occupation describing herself as a “gang buster”, implicitly
refers to Constain.
Fib: Conley’s statement about her occupation describing herself as a “gang buster”, implicitly
refers to Pete Tinelli.
Comprehension Dimension: entity/event understanding
Justification: We need to understand to whom the expression “gang buster” refers to. So, the
comprehension dimension is entity understanding.

Example 3:
Fact: Hallet brought Conley’s sister to the hotel with the intent to make Conley testify in the trial.
Fib: Hallet brought Conley’s sister to the hotel with the intent to make her feel safe.
Comprehension Dimension: causal reasoning
Justification: Here we need to understand why Hallet brought Conley’s sister to the hotel. So it
examines a causal-and-effect relationship.

Example 4:
Fact: Conley decided to testify only after Wiloughby’s death.
Fib: Conley had already decided to testify before Wiloughby’s death.
Comprehension Dimension: temporal perception
Justification: that pair examines the temporal dimension (if the decision was taken before or after
Wiloughby’s death).

Figure 9: Guidelines provided for the data annotation procedure (Part 4). This part of the guidelines
provides examples given to annotators to illustrate how to assign comprehension dimension labels.
While more examples were shared during the annotation process, we include a selection here for
illustrative purposes.
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Guidelines for Human Evaluation (Part 1)

This evaluation study aims to assess how well people comprehend and recall key events from a
movie. You will watch a movie and then evaluate a series of claims about its content. Your goal is
to determine whether each claim is True or False, based solely on what was shown in the movie.
We appreciate your participation in this study.

Task Instructions
• Assign to yourself the movies you want to watch and do the test (we expect 2 movies

per person). Please add your name to the Human-Eval column, on this LINK.

• Visit the platform for evaluation LINK.

• Provide your email to receive access to the movie (it will be used as your unique
identifier).

• Once you submit your email, you should carefully select from the drop-down list the
corresponding movie you assigned yourself and proceed with the evaluation. You will
be shown with the movie link. Please open it in a new tab.

The test is divided in 2 stages: The first stage is mandatory and should be completed by everyone
(during this stage you are not allowed to go back to the movie while answering the questions).
The second stage is optional (during this stage you are allowed to go back to the movie while
answering the questions).

Stage 1:
1. Watch the entire movie carefully before proceeding to the evaluation. Pay attention

to details and context in the movie, as some claims may be subtle or require careful
reasoning.

2. After watching, it’s time to proceed to Stage 1. Please do not go back to the movie
until Stage 1 of the test is completed. Press the “Start Classifying Claims” button, and
you will be shown with one claim at a time. For each claim shown, you need to do the
following:

• Classify the claim as True/False (you should always answer truthfully, without
aiming to maximise you score).

• Mark your confidence about your answer. This is helpful for stage 2, where you
will have the opportunity to revise your claims (by looking back at the movie).

• Leave a comment if any of the following applies: If a claim is ambiguous, unclear,
open to interpretation, has a bad phrasing or typos, you may leave an optional
comment explaining your concerns. You can also comment on the claim in case
it is needle-in-a-haystack style and you think it is too detailed and doesn’t test the
understanding of the movie.

• Once you answered, click "Save" to submit your response and move on to the next
claim.

Important details: Once you submit an answer, you cannot go back and change it. At this
stage, you are strictly prohibited from searching back in the movie, rewinding, or rewatching
scenes while answering the claims. Your responses should be based on your memory and
understanding. You must NOT use any AI tools or external sources to verify or generate
answers. The goal of this study is to assess human understanding of long movies, not automated
retrieval or AI-assisted responses. Also you are not allowed to take any paper notes, while watching
the movie.

Figure 10: Guidelines provided for human evaluation (Part 1).
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Guidelines for Human Evaluation (Part 2)

Stage 2:
Once you complete Stage 1, you will see a message asking you if you want to proceed to Stage 2
(Stage 2 is optional).

During Stage 2, you will be shown again with the choices you selected during Stage 1, but now
you can revise your answers by looking back to the movie (you can reuse the movie link we
provided you). You will be shown for each claim with the choices you did in Stage 1. You are free
to change them and proceed to the next claims. Don’t worry your answers will not be overwritten.
Once you finish with Stage 2, you will be shown with a confirmation message.

If you have any questions or encounter any technical issues, please report them to our
team! Thank you for your time and effort!

Illustration of the human evaluation interface.

Figure 11: Guidelines provided for human evaluation (Part 2).
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Direct Prompt Template

System: You are a helpful AI assistant. Your task is to carefully analyze the provided content and
determine whether statements made about it are true or false based on the available information.
User: You are provided with a movie and a statement. Your task is to carefully watch the
movie and then determine whether the statement is true or false.
Answer TRUE if the statement is true in its entirety based on the movie.
Answer FALSE if any part of the statement is false based on the movie.

Statement: {claim}
Based on the movie, is the above statement TRUE or FALSE?
Provide only your final answer.

Figure 12: Direct prompt template used for open-weight models.

Explanation Prompt Template

System: You are a helpful AI assistant. Your task is to carefully analyze the provided content and
determine whether statements made about it are true or false based on the available information.
User: You are provided with a movie and a statement. Your task is to carefully watch the
movie and then determine whether the statement is true or false.
Answer TRUE if the statement is true in its entirety based on the movie.
Answer FALSE if any part of the statement is false based on the movie.

Statement: {claim}
Based on the movie, is the above statement TRUE or FALSE?
First provide an explanation of your decision-making process in at most one paragraph, and
then provide your final answer.

Figure 13: Explanation prompt template used for closed models.

28


	Introduction
	MF2: Movie Facts and Fibs
	Movie Selection and Subtitles
	Data Annotation
	Quality Control

	Experimental Setup
	Results and Analysis
	Main Results
	Ablation Analysis

	Related Work
	Conclusions
	Limitations
	Ethics Statement
	Reproducibility Statement
	Metadata for Collected Movies
	Detailed Guidelines for Data Annotation and Human-Eval
	Data Annotation Guidelines
	Human Evaluation Guidelines

	Details on Experimental Setup
	Prompt Templates
	Resources


