

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MOVIE FACTS AND FIBS (MF²): A BENCHMARK FOR LONG MOVIE UNDERSTANDING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Despite recent progress in vision-language models (VLMs), holistic understanding
 012 of long-form video content remains a significant challenge, partly due to limitations
 013 in current benchmarks. Many focus on peripheral, “needle-in-a-haystack” details,
 014 encouraging context-insensitive retrieval over deep comprehension. Others rely on
 015 large-scale, semi-automatically generated questions (often produced by language
 016 models themselves) that are easier for models to answer but fail to reflect genuine
 017 understanding. In this paper, we introduce **MF²**, a new benchmark for evaluating
 018 whether models can comprehend, consolidate, and recall key narrative information—
 019 requiring integration of both visual and linguistic modalities—from full-length
 020 movies (**50-170 minutes long**). **MF²** includes over 50 full-length, **open-licensed**
 021 movies, each paired with manually constructed sets of claim pairs—one true (*fact*)
 022 and one plausible but false (*fib*), totalling over 850 pairs. These claims target core
 023 narrative elements such as **character motivations** and **emotions**, **causal chains**,
 024 and **event order**, and refer to **memorable moments** that humans can recall without
 025 rewatching the movie. Instead of multiple-choice formats, we adopt a binary claim
 026 evaluation protocol: for each pair, models must correctly identify both the true and
 027 false claims. This reduces biases like answer ordering and enables a more precise
 028 assessment of reasoning. Our experiments demonstrate that both open-weight and
 029 closed state-of-the-art models fall well short of human performance, underscoring
 030 the relative ease of the task for humans and their superior ability to retain and
 reason over critical narrative information—an ability current VLMs lack.

1 INTRODUCTION

035 Vision-language models (VLMs) have demonstrated strong performance across a wide range of
 036 tasks involving both images and videos (Deitke et al., 2024; Chen et al., 2024b; Liu et al., 2024;
 037 Zhang et al., 2024; Bai et al., 2025; Zhang et al., 2025; Xu et al., 2025; Li et al., 2025). As these
 038 models continue to scale and improve, a natural next frontier lies in long-form video understanding,
 039 essential for real-world applications such as education, storytelling, and other types of narrative video
 040 analysis—where success depends on integrating and reasoning over information that unfolds over
 041 extended periods.

042 Despite this progress, current evaluation benchmarks for video understanding remain limited. They
 043 often rely on relatively short video content (Lei et al., 2018; Xiao et al., 2021; Wu et al., 2021;
 044 Parmar et al., 2024; Rawal et al., 2024; Qiu et al., 2024; Fang et al., 2024) and even when longer
 045 videos are available (Huang et al., 2020; Song et al., 2023; Chandrasegaran et al., 2024; Ataallah
 046 et al., 2024; Wang et al., 2024b; Fu et al., 2024; Wu et al., 2024), they fail to access genuine
 047 comprehension. Instead, many existing benchmarks target “needle-in-a-haystack” retrieval (Kamradt,
 048 2024; Wang et al., 2024a;d; Zhao et al., 2025), focusing on peripheral or low-level details that models
 049 can possibly retrieve with long context windows, even without the abstractive understanding of the
 050 central storyline that humans use. For example, questions such as “*What color is the liquid inside
 051 the bucket in the painting?*” (Wu et al., 2024) or “*Why did Player number 4 in white push down
 052 Player number 17 in purple during the match?*” (Wang et al., 2024b) primarily test narrow recall
 053 capabilities, rather than engaging with fundamental narrative components. Although some existing
 benchmarks (Chandrasegaran et al., 2024) do include tasks that touch upon aspects of storyline
 understanding, they are not primarily designed around narrative-central events. Our benchmark

068
069
070
071
072
073
074 Figure 1: Illustration of three claim pairs (each with a *fact* and a *fib*) from the movie “The Little
075 Princess”. Our claims target memorable events, focusing on key turning points of the narrative such
076 as emotional arcs and causal relationships between characters, and require reasoning across different
077 granularities (single-scene, multi-scene and global). More examples are provided in Appendix F.
078
079

080 instead approaches the problem from a different angle: **We argue that referring to memorable**
081 **moments that humans can recall even without rewatching the movie is key.** Such moments
082 encapsulate critical turning points that shape the narrative trajectory (Papalampidi et al., 2019;
083 2020), such as emotional arcs or causal relationships between characters and events (see Fig. 1).
084 Other benchmarks prioritize quantity over quality, using semi-automatically generated questions
085 (Chandrasegaran et al., 2024; Ataallah et al., 2024), often produced by language models themselves,
086 which may reflect model biases rather than robust evaluation. Evaluation formats also pose challenges:
087 questions are typically either free-form, making automatic and reliable assessment difficult (Bavaresco
088 et al., 2024; Liu & Zhang, 2025; Ye et al., 2025), or multiple choice-based, suffering from several
089 pitfalls such as answer selection biases based on superficial cues or poorly constructed distractors (Li
090 & Gao, 2024; Loginova et al., 2024; Singh et al., 2025; Molfese et al., 2025). Furthermore, as we
091 highlight in Table 1, access to open-source video content is often restricted due to copyright issues,
092 and even when external links (typically to platforms such as YouTube) are provided, they are prone
093 to becoming inaccessible over time (Wang et al., 2024b), which limits reproducibility and long-term
094 usability. These limitations highlight the need for a fully open-source benchmark that **goes beyond**
095 **shallow retrieval** and supports rigorous evaluation of narrative understanding.

096 In this paper, we introduce MF², a benchmark to evaluate **genuine narrative comprehension** of
097 full-length movies. The dataset comprises 53 full-length, open-licensed movies with an **average**
098 **duration of 88.33 minutes**. For each movie, we manually construct a set of contrastive claim
099 pairs, each consisting of one true statement (*a fact*) and one plausible but false counterpart (*a fib*).
100 These claim pairs target memorable events in the movie, such as character motivations, causal
101 links, event chronology, and other key aspects that are central to the narrative (see Table 2). Unlike
102 benchmarks that can be solved through brute-force memorization or naïve extensions of context
103 windows (e.g., “needle-in-a-haystack” style queries), MF² requires models to **consolidate**, **reason**,
104 and **recall** fundamental narrative components across long time spans, requiring integration of both
105 vision and language, and reflecting more human-like understanding. Our contributions are as follows:
106

1. We present MF², a benchmark designed for evaluating narrative comprehension of full-length movies. It consists of 53 full-length, open-licensed movies, each accompanied by corresponding subtitles, and includes over 850 human-crafted claim pairs.
2. We shift away from traditional multiple-choice formats and adopt a **contrastive claim evaluation protocol**, following Karpinska et al. (2024): for each contrastive pair, models must correctly identify both the true and false claims, avoiding biases like answer ordering and enabling a more precise reasoning assessment.
3. We perform an extensive evaluation of state-of-the-art open and closed models as well as a human evaluation to establish upper-bound performance, revealing a notable performance gap between models and humans.

108
109
110
111 Table 1: Comparison of video datasets across different aspects. MC stands for multiple-choice and
112 MC stands for multiple-choice and OE for open-ended questions.
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Dataset	Avg. Duration (mins)	Annotation	Evaluation Format	Source Availability
CausalChaos (Parmar et al., 2024)	-	Auto & Manual	MC & OE	Source link not available
CinePile (Rawal et al., 2024)	2.67	Auto & Manual	MC	YouTube links
EgoSchema (Mangalam et al., 2023)	3.00	Auto & Manual	MC	Videos
ViMuL (Shafique et al., 2025)	4.52	Auto & Manual	MC & OE	Videos
EgoPlan-Bench2 (Qiu et al., 2024)	up to 5	Auto & Manual	MC	Videos
LongVideoBench (Wu et al., 2024)	7.89	Manual	MC	Videos
Video-MMMU (Hu et al., 2025b)	8.44	Manual	MC	Videos
MovieChat-1K (Song et al., 2023)	9.40	Manual	MC & OE	Videos
MLVU (Zhou et al., 2024)	12.00	Auto & Manual	MC & OE	Videos
Neptune (Nagrani et al., 2025)	up to 15	Auto & Manual	MC & OE	Videos
Video-MME (Long) (Fu et al., 2024)	39.76	Manual	MC	YouTube links
HourVideo (Chandrasegaran et al., 2024)	45.70	Auto & Manual	MC	Videos
InfiniBench (Atallah et al., 2024)	52.59	Auto & Manual	MC & OE	Key frames
LBench (Wang et al., 2024b)	68.35	Manual	MC	YouTube links
MF²	88.33	Manual	Claim pairs	Videos

Figure 2: Dataset construction process involving three main stages: movie collection, data annotation, and quality control.

4. We publicly release all data and code¹ to facilitate reproducibility and support future research
on long movie understanding.²

2 MF²: MOVIE FACTS AND FIBS

MF² includes 53 full-length, open-licensed movies, each accompanied by subtitles, and 868 human-authored contrastive claim pairs. Each pair tests whether a model can distinguish true from false information based on its understanding of the story. Fig. 1 shows some examples. We now describe the dataset construction process in detail, covering movie selection (§2.1), annotation methodology including claim categorization and granularity (§2.2), and human quality control procedures used to filter ambiguous or low-quality claims (§2.3). Fig. 2 provides an overview of these three stages.

2.1 MOVIE SELECTION AND SUBTITLES

We started by collecting a pool of movies from the Internet Archive,³ an online repository of open-licensed media. We specifically selected titles released under the Public Domain 1.0 license to ensure legal reusability and support open-access research. To reduce the risk of data contamination in modern foundation models (Jacovi et al., 2023), we focused on older films released between 1920 and 1970, prioritizing those with limited online visibility, measured by the number of user reviews on IMDb. We sourced original-language subtitles—the majority of which are in English—from OpenSubtitles.org,⁴ a widely used platform that provides subtitles for a large collection of movies, TV shows, and other video content. For one movie without available subtitles, we used whisper-1 (Radford et al., 2023)⁵ to generate a transcript and manually post-edited to ensure high quality. This process yielded a final collection of 53 full-length movies with an average duration of 88.33 minutes,

¹<https://anonymous.4open.science/r/MF2>

²We will release the movies upon acceptance.

³<https://archive.org>

⁴<https://www.opensubtitles.org>

⁵<https://platform.openai.com/docs/models/whisper-1>

Figure 3: Distribution of claim pairs across reasoning granularities (left) and comprehension dimensions (right).

each accompanied by audio and aligned subtitles (see §A for details about the movies, including genre, language, and duration).

2.2 DATA ANNOTATION

The annotation process involved 26 annotators, all of whom are co-authors of this work, who watched the full movies, identified key narrative elements, and constructed pairs of contrastive claims: one factually correct statement (*fact*) and one minimally altered, false counterpart (*fib*). Following Karpinska et al. (2024), annotators were instructed to minimize lexical differences between the *fact* and the *fib*, changing only the parts needed to flip the truth value. The annotation guidelines are presented in §B. This contrastive formulation serves two purposes: (i) it isolates the specific narrative element being tested, reducing the chance that models rely on superficial cues (e.g., sentence length, structure, or other lexical patterns); and (ii) it simplifies quality control (see §2.3) by making inconsistencies easier to detect.

Claim granularity. To capture different levels of reasoning, annotators labeled each *fact* according to the granularity required to verify its truth: (i) *single-scene*: answerable using information from one scene; (ii) *multi-scene*: requiring integration across multiple scenes; and (iii) *global*: relying on high-level understanding that spans the full movie, including accumulated or inferred information (cannot be easily tied to distinct scenes). As shown in Fig. 3 (left), the dataset includes a balanced distribution of single-scene and multi-scene *facts* (with a smaller proportion requiring global reasoning). Importantly, all claims test long-form comprehension irrespectively of the reasoning granularity: while global claims require reasoning across the entire movie, key events can also unfold within single or multiple scenes. Even single-scene claims are non-trivial, as they assess whether models can extract and retain salient localized information. While humans naturally focus on important elements, models may lack this ability (see §4.2, where we show that this is indeed the case).

Comprehension dimensions. In addition to the reasoning granularity, annotators also labeled each claim pair with one or more comprehension dimensions, indicating the specific aspects of narrative understanding being tested. These dimensions, informed by prior work (Xiao et al., 2021; Zhang et al., 2023b; Wang et al., 2024b), are defined in Table 2, with their distribution shown in Fig. 3 (right). Annotators could choose multiple dimensions for the same claim.

2.3 QUALITY CONTROL

We conducted a human evaluation stage to establish a human baseline for model comparison (see Section §3), which was also used to collect feedback on the quality of claims. For this round, annotators first selected a subset of movies they had not previously seen during the data annotation stage. After watching a movie, they classified the corresponding claims as either true or false using a custom annotation interface (see §B for an example and full guidelines). Claims were presented one at a time, and annotators were required to respond based solely on memory. To support the identification of problematic claims, we encouraged annotators to leave comments whenever a claim was ambiguous, poorly phrased, open to interpretation, or too fine-grained to be meaningfully tied to narrative understanding (e.g., needle-in-a-haystack claims). The annotation guidelines emphasized the importance of paying close attention while watching the movie, as many claims require subtle

216
217
218
219 Table 2: Definitions of comprehension dimensions.
220
221
222
223
224
225
226
227
228
229
230
231
232
233

234 Comprehension Dimension	235 Definition
236 <i>Event/Entity Understanding</i>	237 Involves identifying key entities (e.g., people, places, or objects) and 238 understanding the events they participate in. This includes tracking 239 entities across scenes, interpreting their roles, and recognizing their 240 interactions and relationships throughout the narrative.
241 <i>Temporal Perception</i>	242 Requires reasoning about the timeline of events—determining 243 whether actions occur before, after, or simultaneously—and may 244 also include counting or sequencing events. The focus is on broader 245 temporal relationships within the narrative.
246 <i>Emotion Understanding</i>	247 Involves recognizing the emotional states of characters and interpreting 248 how these emotions evolve throughout the story.
249 <i>Causal Reasoning</i>	250 Focuses on identifying cause-and-effect relationships between events 251 or actions, including both explicit and implicit dependencies that 252 may span multiple scenes.

253 reasoning or contextual understanding. Importantly, annotators were instructed not to use any external
254 tools or take notes, ensuring that all responses reflected natural human memory and comprehension.

255 An optional second stage allowed annotators to revisit their previous responses with access to the
256 movie. This stage was used exclusively to collect additional comments for validation: annotators
257 used it to revise earlier answers after reflecting on the full context of a claim pair.

258 As part of the filtering process, two annotators reviewed all comments left during the stages described
259 above. Without watching the corresponding movies, and solely based on the comments left, they
260 identified problematic claims and removed them from the dataset. Importantly, no claims were
261 rewritten at this stage—they were either accepted or discarded. This filtering step resulted in the
262 removal of 104 pairs of claims, yielding a cleaner set of 868 high-quality pairs (§A provides more
263 statistics).

264 3 EXPERIMENTAL SETUP

265 In this section, we describe the setup used to evaluate a range of vision-language models (VLMs) on
266 the MF² benchmark. Our experiments include both closed and open-weight models, tested across
267 multiple input modalities using a standardized evaluation protocol.

268 **Modalities.** We evaluate all models under a vision-language setup, where they receive visual input
269 in the form of sampled movie frames. We also experiment with providing subtitles as additional
270 input. For the ablation studies (see §4.2), we test two other configurations: one that includes movie
271 synopses, and another that provides only the movie title and release year.

272 **Baselines.** We experiment with several state-of-the-art vision-language models (VLMs). As closed
273 models, we include GPT-4o (OpenAI et al., 2024) and Gemini 2.5 Pro (Team et al., 2023). Our open-
274 weight models include VideoLLaMA3 (Zhang et al., 2025), Qwen2.5-VL (Bai et al., 2025), LLaVA-
275 Video (Zhang et al., 2024), InternVL3 (Zhu et al., 2025), Ovis2 (Lu et al., 2024), and LongVILA-
276 R1 (Chen et al., 2025), a model specialized for long video benchmarks. For all models except GPT-4o,
277 we first downsample videos to 1 frame per second, following each model’s preprocessing approach.
278 From these frames, we then uniformly sample a subset, adjusting the number of frames based on
279 each model’s input constraints and original training settings.⁶ For GPT-4o, frames are uniformly
280 sampled directly from the original videos without prior downsampling. The exact number of frames
281 sampled per model is reported in Table 3. We test multiple prompt variants and report results using the
282 best-performing prompt for each model. To extract predictions, we use regular expressions to identify

283 ⁶Note that models always receive uniformly sampled frames from the full movie—not targeted scene
284 windows. They must process the entire movie and transcript to identify relevant content, irrespectively of the
285 reasoning granularity of the claim.

270 Table 3: Performance of both open-weight and closed models when evaluated on MF². We report
 271 both pairwise and standard accuracy, when models are assessed on video inputs w/ and w/o subtitles.
 272 Best-performing values among models are **bolded** and best for each specific group are underlined.
 273

Method	#Params	#Frames	Pairwise Accuracy (%)		Accuracy (%)	
			w/o subs	w/ subs	w/o subs	w/ subs
<i>Baselines</i>						
Random	-	-	25.0	25.0	50.0	50.0
Human	-	-	-	84.1	-	90.5
<i>Closed Models</i>						
GPT-4o	-	50	18.8	46.8	55.2	71.4
Gemini 2.5 Pro	-	120	37.2	60.6	64.2	77.6
<i>Open-weight Models</i>						
VideoLLaMA3	7B	180	20.5	33.5	57.0	62.7
Qwen2.5-VL	7B	180	24.6	32.8	56.7	62.0
LLaVA-Video	7B	64	6.6	19.0	51.7	57.8
LongVILA-R1	7B	180	11.5	16.9	50.1	56.6
InternVL3	8B	64	10.9	36.9	53.1	64.6
Ovis2	34B	10	18.8	45.6	53.3	69.5
Qwen2.5-VL	72B	180	<u>29.7</u>	45.9	<u>58.8</u>	70.4
LLaVA-Video	72B	64	<u>15.6</u>	41.8	54.6	69.1
InternVL3	78B	64	22.1	<u>51.3</u>	58.0	<u>72.7</u>

294 True/False answers in the model outputs, selecting either the first or last valid match depending
 295 on the prompt structure. We include all prompt templates and answer parsing details in §C.1 for
 296 reproducibility. We also include a human baseline where evaluators judged claims based on their
 297 memory, without rewatching scenes (see §2.3).

298 **Evaluation protocol.** We report two metrics: (i) pairwise accuracy, which measures how often
 299 models correctly classify both the true and the false claim in a pair (i.e., they receive credit only if
 300 both are labeled correctly; no points are awarded for partial correctness); and (ii) standard accuracy,
 301 which is computed over individual claims. The random baselines are 25% and 50%, respectively.
 302 Following prior work (Karpinska et al., 2024), both models and human annotators see and evaluate
 303 each claim independently, without access to the paired structure during prediction (see discussion in
 304 §7). Pairwise accuracy is computed post-hoc by grouping predictions from the same pair.
 305

306 4 RESULTS AND ANALYSIS

307 In this section, we first present the main experimental results (§4.1), followed by ablation studies (§
 308 4.2) that analyze model performance across the different input modalities, reasoning granularities,
 309 and comprehension dimensions.

310 4.1 MAIN RESULTS

311 In Table 3, we report both standard and pairwise accuracy for humans, open-weight, and closed
 312 models across two input modalities: video-only and video with subtitles. Our results reveal that:

313 **Both open-weight and closed models fall significantly short of human performance.** Among
 314 the closed models, Gemini 2.5 Pro achieves the highest scores, with a pairwise accuracy of 60.6%,
 315 followed by the open-weight InternVL3-72B, which performs 9.3% lower, when evaluated on both
 316 video and subtitles. Despite their relatively strong performance, both models rank significantly behind
 317 humans, with a 24.1% absolute gap. Smaller models perform only marginally above chance, with
 318 the best among them exceeding the random baseline by just 11.09%. These findings underscore the
 319 difficulty of the task for current models, but also highlight humans’ superior ability to retain and
 320 reason over critical narrative information.

324
 325 Table 4: Performance of Gemini 2.5 Pro across different input modalities. *Video* uses only the video
 326 stream; *Subs* includes only subtitle information; *Synopsis* relies only on the synopsis of the movie
 327 obtained from Wikipedia; *Video w/ Subs* combines both video and subtitles inputs; and *Movie Title*
 328 uses only the claim, along with the movie title and release year, without access to movie content.
 329

330 331 332 333	334 335 336 337 338 339 340 341 342 343 344 345 346	339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377					
		Metric	340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377	
334	335	336 337 338 339 340 341 342 343 344 345 346	336 337 338 339 340 341 342 343 344 345 346	336 337 338 339 340 341 342 343 344 345 346	336 337 338 339 340 341 342 343 344 345 346	336 337 338 339 340 341 342 343 344 345 346	336 337 338 339 340 341 342 343 344 345 346
333	334	335 336 337 338 339 340 341 342 343 344 345 346	335 336 337 338 339 340 341 342 343 344 345 346	335 336 337 338 339 340 341 342 343 344 345 346	335 336 337 338 339 340 341 342 343 344 345 346	335 336 337 338 339 340 341 342 343 344 345 346	

336 **Models, particularly medium and large-sized ones, perform substantially better when subtitles**
 337 **are available compared to relying on video alone.** By contrast, smaller-sized models perform
 338 near chance level when evaluated solely on the video and marginally improve with the addition of
 339 subtitles. A notable exception is InternVL3-7B, which shows a more pronounced improvement with
 340 subtitles, indicating some ability to leverage textual context despite its smaller size. In contrast larger
 341 models, such as InternVL3-72B, followed by LLaVA-Video and Ovis2, demonstrate significant gains
 342 when subtitles are provided. These results indicate that textual cues can provide meaningful signals
 343 when integrated with visual inputs—a dynamic we further explore in the following section, where we
 344 deep dive into a fine-grained analysis of different input modalities and reasoning capabilities.
 345

4.2 ABLATION ANALYSIS

347 **Beyond vision: the role of textual and world knowledge.** Table 4 presents an ablation study of
 348 Gemini 2.5 Pro, highlighting its strong reliance on subtitles and parametric (internal) knowledge.
 349 Notably, the model performs competitively even without visual input. It achieves strong results when
 350 provided only with subtitles, or even just the movie title and release year. This suggests that the model
 351 draws substantially on broad world knowledge encoded during pretraining. In contrast, performance
 352 declines when the model is given only the movie synopsis, indicating that not all forms of textual
 353 context are equally helpful. These results underscore the critical role of subtitles as a grounding signal
 354 and suggest that pretrained knowledge, rather than surface-level contextual inputs like a synopsis,
 355 enables accurate reasoning in the absence of video. Note that these findings deviate somewhat from
 356 the general assumption made when providing contextual knowledge; past work steering models
 357 to focus on contextual knowledge (e.g. (Li et al., 2023b; Shi et al., 2024; Wang et al., 2025)) or
 358 performing retrieval-augmented generation (Lewis et al., 2020) generally assume that the contextual
 359 knowledge is correct and contains the correct answer. However, on videos, which represent long and
 360 complex contexts, we find that models in fact perform better *without* contextual knowledge.
 361

362 **Input modality contributions across comprehension dimensions and reasoning granularities.** In Fig. 4, we present ablation studies for Gemini 2.5 Pro, examining how different input modalities
 363 contribute to performance across comprehension dimensions and reasoning granularities. We observe
 364 that models handle temporal perception more effectively than other comprehension aspects across
 365 all modalities—likely because time-related information is often directly observable in visual and
 366 textual inputs, making it easier to track and interpret (Zellers et al., 2021; Li et al., 2022). Event
 367 and entity understanding is notably weaker under visual-only conditions, likely due to the need for
 368 linguistic disambiguation. This limitation becomes evident when subtitles are introduced: the most
 369 significant gain is observed in the aforementioned category, highlighting the complementary role
 370 of textual context. In contrast, emotional understanding benefits the least from subtitles, indicating
 371 challenges in affective comprehension. Beyond comprehension dimensions, reasoning performance
 372 under visual-only inputs remains relatively consistent across reasoning types. However, under the
 373 presence of textual cues, global reasoning becomes more challenging than single- and multi-scene
 374 reasoning.
 375

376 **A fine-grained view of large-scale model performance across comprehension dimensions and**
 377 **reasoning granularities.** Fig. 5 shows that, among the large-scale models, Gemini 2.5 Pro still
 378 demonstrates inferior performance, ranking second to humans in various categories. Other models
 379 like LLaVA-Video and InternVL3 generally show lower scores, suggesting areas for improvement.
 380

Figure 4: Pairwise accuracy for Gemini 2.5 Pro per comprehension dimension and reasoning granularity when varying the input modalities.

Figure 5: Pairwise accuracy for large-scale models with video and subtitles, and human baseline per comprehension dimension and reasoning granularity.

The results also highlight varying degrees of difficulty across the tasks, with emotion comprehension appearing to be a strong point for humans, while temporal perception is a strong point for models. Interestingly, the analysis on reasoning granularity reveals an interesting pattern between humans and models: as reasoning shifts from single-scene to multi-scene and eventually to global, model performance tends to oscillate across models, while human performance declines. Notably, Qwen2.5-VL shows improved accuracy on claims requiring global reasoning compared to the other granularities. This may suggest that global narrative information is more frequently represented in pretraining corpora (e.g., Wikipedia summaries of movies), whereas single-scene questions demand localized details that are less likely to be encountered in such sources. In contrast, humans may face increased cognitive load or memory limitations when reasoning across multiple scenes, which could explain the drop in performance in some cases.

5 RELATED WORK

Vision and long context LLMs. The field of VLMs has seen rapid progress, with models becoming increasingly effective at video-language understanding (Deitke et al., 2024; Bai et al., 2025; Zhu et al., 2025). Early methods focused on short clips and relied on complex spatio-temporal modules, such as Q-formers (Zhang et al., 2023a; Li et al., 2023a), or temporal pooling techniques (Maaz et al., 2024; Luo et al., 2023; Xu et al., 2024). While not new, projection layers (Li et al., 2023c; Liu et al., 2023; Li et al., 2023a; Liu et al., 2024) have gained popularity as a simpler and increasingly effective alternative for aligning video and language representations (Bai et al., 2025; Zhang et al., 2025; Zhu et al., 2025), largely driven by advancements in visual encoders (Radford et al., 2021; Tschannen et al., 2025). In the domain of long video understanding, current approaches primarily focus on compressing tokens (Li et al., 2023c; Zhang et al., 2025), merely extending the context window

(Abdin et al., 2024; Liu et al., 2025) or memory consolidation mechanisms (Balazevic et al., 2024; Song et al., 2023; 2024; Santos et al., 2025). A separate line of work first densely captions videos and then answers questions based on text only (Zhang et al., 2024; Wang et al., 2024c;e); we focus instead on benchmarking VLMs without costly captioning pipelines by introducing a benchmark that evaluates deep video understanding rather than simple memorization.

Long video understanding benchmarks. Understanding long videos presents substantial challenges, requiring models to track complex temporal dependencies and retain narrative context over extended durations. While existing benchmarks have driven progress in temporal reasoning over short clips (Xiao et al., 2021; Wu et al., 2021) and in domain-specific settings such as instructional or egocentric videos (Yang et al., 2021; Mangalam et al., 2023; Qiu et al., 2024), most focus on content under three minutes or can be solved with a few keyframes (Yu et al., 2019; Zhang et al., 2023b). Benchmarks targeting longer content, such as (Mangalam et al., 2023; Rawal et al., 2024; Parmar et al., 2024; Wu et al., 2024; Hu et al., 2025b; Shafique et al., 2025), still fall short in average duration, scale, or annotation quality. Even those with longer videos (e.g., HourVideo (Chandrasegaran et al., 2024), InfiniBench (Ataallah et al., 2024)) often rely on synthetic questions and automated labels, and most use multiple-choice formats (e.g., Video-MME (Fu et al., 2024), LVbench (Wang et al., 2024b), Video-MMMU (Hu et al., 2025a)), which introduce biases and limit the assessment of genuine multimodal understanding. While (Huang et al., 2020) offers a dataset for long-form movie understanding, it provides only keyframes, which constrains the flexibility of evaluation. Similarly, SynopGround (Tan et al., 2024) and Timescope (Zohar et al., 2025) focus on long videos, but primarily target localized (“needle-in-a-haystack”) retrieval rather than deep understanding. Neptune (Nagrani et al., 2025) pushes towards free-form answers and reasoning over long time horizons but remains limited to 15-minute videos; in the same vein, VideoAutoArena Luo et al. (2024) avoids multiple-choice evaluation by simulating users to rank long-form answers. Similarly, CG-Bench (Chen et al., 2024a) recognizes the limits of multiple-choice formats and evaluates models based on their ability to ground their answer to clues in the video. Critically, none of these datasets include claim pair tasks needed to assess a model’s ability to integrate and create an intrinsic understanding across multi-hour content. Our benchmark’s design—centered on long-form, manually annotated movie narratives and a binary claim evaluation protocol—offers a rigorous framework for diagnosing true narrative understanding in video-language models.

6 CONCLUSIONS

In this paper, we introduce **MF²**, a comprehensive multimodal benchmark designed to evaluate VLMs on deep narrative understanding in the context of long movie comprehension. Our benchmark adopts a binary evaluation protocol and covers a diverse range of claim categories, including emotion understanding, temporal perception, causal reasoning, and event/entity understanding. These claims span varying levels of granularity—single-scene, multi-scene, and global—requiring reasoning across entire films. All examples are annotated by humans to ensure high-quality and reliable labels. Our extensive evaluation of both open-weight and closed state-of-the-art models reveals a significant performance gap between models and humans, underscoring the challenges and importance of our benchmark. Commercial models such as Gemini 2.5 Pro outperform others, including GPT-4o and other open-weight variants, yet still fall short of human-level performance. We observe that incorporating transcripts significantly boosts model accuracy. Interestingly, Gemini 2.5 Pro decreases performance on questions requiring global reasoning, suggesting that our framework effectively targets the harder challenge of global narrative understanding, which current models continue to struggle with despite good overall capabilities. We hope MF² boosts future research and development aimed at improving the narrative reasoning capabilities of VLMs.

7 LIMITATIONS

Despite careful design and validation, our dataset is not free from imperfections. Minor issues such as typos may remain, and annotators—though shown one claim at a time—may have recalled earlier claims from the same pair, influencing later judgments. Models do not share this limitation, as they process claims independently. As future work, claims from each pair could be split into disjoint sets and rated by different annotators to better isolate such effects.

486 **8 ETHICS STATEMENT**

487

488 We adhered to established scientific and ethical standards in constructing and releasing MF². All
 489 source movies are released under the permissive Public Domain 1.0 license. Claims and annotations
 490 were created and validated exclusively by the authors; no external crowdworkers were employed.
 491 To encourage a plurality of perspectives in the annotation process, the annotation team consists of
 492 individuals from diverse demographic, institutional, and geographic backgrounds. Since MF² is
 493 derived entirely from fictional movies, it contains no personally identifiable information (PII) of
 494 real individuals. Nonetheless, some fictional content may reflect cultural stereotypes or outdated
 495 social norms. We caution researchers that models evaluated on MF² may inherit such biases, and we
 496 recommend appropriate safeguards when interpreting or deploying results. We advise users to employ
 497 MF² strictly within the scope of this work, namely as a benchmark for evaluating vision–language
 498 models on long movie understanding, and discourage its use beyond it.

499

500 **9 REPRODUCIBILITY STATEMENT**

501

502 We ensure reproducibility by releasing the full dataset and the codebase at <https://anonymous.4open.science/r/MF2>. The repository includes extended instructions to replicate all experimental settings. To facilitate long-term accessibility, and in accordance with the Public Domain 1.0 license, we additionally host a copy of the raw movie data. Detailed annotation protocols are provided in Appendix B, while Appendix C outlines additional experimental details. We encourage independent verification of our results and welcome contributions from the community to extend or stress-test MF² over time.

509 **REFERENCES**

510

511 Marah I Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
 512 Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat S. Behl, Alon Benhaim, Misha
 513 Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Caio César Teodoro Mendes, Weizhu
 514 Chen, Vishrav Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo de Rosa, Matthew Dixon,
 515 Ronen Eldan, Dan Iter, Amit Garg, Abhishek Goswami, Suriya Gunasekar, Emmann Haider,
 516 Junheng Hao, Russell J. Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauffmann, Nikos
 517 Karampatziakis, Dongwoo Kim, Mahoud Khademi, Lev Kurilenko, James R. Lee, Yin Tat Lee,
 518 Yuanzhi Li, Chen Liang, Weishung Liu, Eric Lin, Zeqi Lin, Piyush Madan, Arindam Mitra, Hardik
 519 Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid
 520 Pryzant, Heyang Qin, Marko Radmilac, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli
 521 Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma,
 522 Xia Song, Masahiro Tanaka, Xin Wang, Rachel Ward, Guanhua Wang, Philipp Witte, Michael
 523 Wyatt, Can Xu, Jiahang Xu, Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu, Chengruidong
 524 Zhang, Cyril Zhang, Jianwen Zhang, Li Lyra Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and
 525 Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your phone. *CoRR*,
 526 abs/2404.14219, 2024. URL <https://doi.org/10.48550/arXiv.2404.14219>.

527 Kirolos Atallah, Chenhui Gou, Eslam Abdelrahman, Khushbu Pahwa, Jian Ding, and Mohamed
 528 Elhoseiny. Infinibench: A comprehensive benchmark for large multimodal models in very long
 529 video understanding, 2024. URL <https://arxiv.org/abs/2406.19875>.

530 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 531 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
 532 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
 533 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv*
 534 preprint *arXiv:2502.13923*, 2025.

535 Ivana Balazevic, Yuge Shi, Pinelopi Papalampidi, Rahma Chaabouni, Skanda Koppula, and Olivier J
 536 Henaff. Memory consolidation enables long-context video understanding. In *Forty-first Interna-*
 537 *tional Conference on Machine Learning*, 2024.

538 Anna Bavaresco, Raffaella Bernardi, Leonardo Bertolazzi, Desmond Elliott, Raquel Fernández,
 539 Albert Gatt, Esam Ghaleb, Mario Julianelli, Michael Hanna, Alexander Koller, et al. Llms instead

540 of human judges? a large scale empirical study across 20 nlp evaluation tasks. *arXiv preprint*
 541 *arXiv:2406.18403*, 2024.

542

543 Keshigeyan Chandrasegaran, Agrim Gupta, Lea M. Hadzic, Taran Kota, Jimming He, Cristobal
 544 Eyzaguirre, Zane Durante, Manling Li, Jiajun Wu, and Fei-Fei Li. Hourvideo: 1-hour video-
 545 language understanding. In *Advances in Neural Information Processing Systems*, volume 37,
 546 2024.

547

548 Guo Chen, Yicheng Liu, Yifei Huang, Yuping He, Baoqi Pei, Jilan Xu, Yali Wang, Tong Lu, and Limin
 549 Wang. Cg-bench: Clue-grounded question answering benchmark for long video understanding.
arXiv preprint arXiv:2412.12075, 2024a.

550

551 Yukang Chen, Wei Huang, Baifeng Shi, Qinghao Hu, Hanrong Ye, Ligeng Zhu, Zhijian Liu, Pavlo
 552 Molchanov, Jan Kautz, Xiaojuan Qi, Sifei Liu, Hongxu Yin, Yao Lu, and Song Han. Scaling rl to
 553 long videos. 2025.

554

555 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 556 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
 557 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer
 Vision and Pattern Recognition*, pp. 24185–24198, 2024b.

558

559 Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
 560 madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, Jiasen Lu, Taira Anderson, Erin
 561 Bransom, Kiana Ehsani, Huong Ngo, YenSung Chen, Ajay Patel, Mark Yatskar, Chris Callison-
 562 Burch, Andrew Head, Rose Hendrix, Favyen Bastani, Eli VanderBilt, Nathan Lambert, Yvonne
 563 Chou, Arnavi Chheda, Jenna Sparks, Sam Skjonsberg, Michael Schmitz, Aaron Sarnat, Byron
 564 Bischoff, Pete Walsh, Chris Newell, Piper Wolters, Tammay Gupta, Kuo-Hao Zeng, Jon Borchardt,
 565 Dirk Groeneveld, Jen Dumas, Crystal Nam, Sophie Lebrecht, Caitlin Wittlif, Carissa Schoenick,
 566 Oscar Michel, Ranjay Krishna, Luca Weihs, Noah A. Smith, Hannaneh Hajishirzi, Ross Girshick,
 567 Ali Farhadi, and Aniruddha Kembhavi. Molmo and pixmo: Open weights and open data for
 568 state-of-the-art multimodal models. *arXiv preprint arXiv:2409.17146*, 2024.

569

570 Xinyu Fang, Kangrui Mao, Haodong Duan, Xiangyu Zhao, Yining Li, Dahu Lin, and Kai Chen.
 571 Mmbench-video: A long-form multi-shot benchmark for holistic video understanding. *arXiv
 preprint arXiv:2406.14515*, 2024.

572

573 Chaoyou Fu, Yuhai Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
 574 Zhou, Yunhang Shen, Mengdan Zhang, Peixian Chen, Yanwei Li, Shaohui Lin, Sirui Zhao, Ke Li,
 575 Tong Xu, Xiaowu Zheng, Enhong Chen, Rongrong Ji, and Xing Sun. Video-mme: The first-ever
 576 comprehensive evaluation benchmark of multi-modal llms in video analysis, 2024.

577

578 Kairui Hu, Penghao Wu, Fanyi Pu, Wang Xiao, Yuanhan Zhang, Xiang Yue, Bo Li, and Ziwei Liu.
 579 Video-mmmu: Evaluating knowledge acquisition from multi-discipline professional videos. *arXiv
 preprint arXiv:2501.13826*, 2025a.

580

581 Kairui Hu, Penghao Wu, Fanyi Pu, Wang Xiao, Yuanhan Zhang, Xiang Yue, Bo Li, and Ziwei Liu.
 582 Video-mmmu: Evaluating knowledge acquisition from multi-discipline professional videos. 2025b.
 URL <https://arxiv.org/abs/2501.13826>.

583

584 Qingqiu Huang, Yu Xiong, Anyi Rao, Jiaze Wang, and Dahu Lin. Movienet: A holistic dataset for
 585 movie understanding. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
 586 August 23–28, 2020, Proceedings, Part IV 16*, pp. 709–727. Springer, 2020.

587

588 Alon Jacovi, Avi Caciularu, Omer Goldman, and Yoav Goldberg. Stop uploading test data in
 589 plain text: Practical strategies for mitigating data contamination by evaluation benchmarks. In
 590 Houda Bouamor, Juan Pino, and Kalika Bali (eds.), *Proceedings of the 2023 Conference on
 591 Empirical Methods in Natural Language Processing*, pp. 5075–5084, Singapore, December 2023.
 592 Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.308. URL <https://aclanthology.org/2023.emnlp-main.308/>.

593

Greg Kamradt. Needle in a haystack - pressure testing LLMs, 2024. URL https://github.com/gkamradt/LMTest_NeedleInAHaystack.

594 Marzena Karpinska, Katherine Thai, Kyle Lo, Tanya Goyal, and Mohit Iyyer. One thousand
 595 and one pairs: A “novel” challenge for long-context language models. In Yaser Al-Onaizan,
 596 Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical
 597 Methods in Natural Language Processing*, pp. 17048–17085, Miami, Florida, USA, November
 598 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.948. URL
 599 <https://aclanthology.org/2024.emnlp-main.948/>.

600 Jie Lei, Licheng Yu, Mohit Bansal, and Tamara Berg. TVQA: Localized, compositional video
 601 question answering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.),
 602 *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp.
 603 1369–1379, Brussels, Belgium, October–November 2018. Association for Computational Linguis-
 604 tics. doi: 10.18653/v1/D18-1167. URL <https://aclanthology.org/D18-1167/>.

605 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 606 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
 607 tion for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 608 9459–9474, 2020.

609 Amanpreet Li, Rowan Zellers, Youngjae Yu, Ali Farhadi, and Yejin Choi. Merlot reserve: Neural
 610 script knowledge through vision and language and sound. In *CVPR*, 2022.

611 Dongxu Li, Yudong Liu, Haoning Wu, Yue Wang, Zhiqi Shen, Bowen Qu, Xinyao Niu, Fan Zhou,
 612 Chengen Huang, Yanpeng Li, Chongyan Zhu, Xiaoyi Ren, Chao Li, Yifan Ye, Peng Liu, Lihuan
 613 Zhang, Hanshu Yan, Guoyin Wang, Bei Chen, and Junnan Li. Aria: An open multimodal native
 614 mixture-of-experts model, 2025. URL <https://arxiv.org/abs/2410.05993>.

615 KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhui Wang, Ping Luo, Yali Wang, Limin Wang, and
 616 Yu Qiao. Videochat: Chat-centric video understanding. *arXiv preprint arXiv:2305.06355*, 2023a.

617 Ruizhe Li and Yanjun Gao. Anchored answers: Unravelling positional bias in gpt-2’s multiple-choice
 618 questions. *arXiv preprint arXiv:2405.03205*, 2024.

619 Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke
 620 Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimization.
 621 In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual
 622 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 12286–
 623 12312, Toronto, Canada, July 2023b. Association for Computational Linguistics. doi: 10.18653/
 624 v1/2023.acl-long.687. URL <https://aclanthology.org/2023.acl-long.687/>.

625 Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large language
 626 models, 2023c.

627 Hao Liu, Wilson Yan, Matei Zaharia, and Pieter Abbeel. World model on million-length video and
 628 language with blockwise ringattention. In *The Thirteenth International Conference on Learning
 629 Representations*, 2025. URL <https://openreview.net/forum?id=HN8V0f1wJF>.

630 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.

631 Ming Liu and Wensheng Zhang. Is your video language model a reliable judge? In *The Thirteenth
 632 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=m8yby1JfbU>.

633 Zhijian Liu, Ligeng Zhu, Baifeng Shi, Zhuoyang Zhang, Yuming Lou, Shang Yang, Haocheng Xi,
 634 Shiyi Cao, Yuxian Gu, Dacheng Li, Xiuyu Li, Yunhao Fang, Yukang Chen, Cheng-Yu Hsieh,
 635 De-An Huang, An-Chieh Cheng, Vishwesh Nath, Jinyi Hu, Sifei Liu, Ranjay Krishna, Daguang
 636 Xu, Xiaolong Wang, Pavlo Molchanov, Jan Kautz, Hongxu Yin, Song Han, and Yao Lu. Nvila:
 637 Efficient frontier visual language models, 2024.

638 Olga Loginova, Oleksandr Bezrukov, and Alexey Kravets. Addressing blind guessing: Calibration of
 639 selection bias in multiple-choice question answering by video language models. *arXiv preprint
 640 arXiv:2410.14248*, 2024.

648 Shiyin Lu, Yang Li, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, and Han-Jia Ye. Ovis:
 649 Structural Embedding Alignment for Multimodal Large Language Model. *arXiv e-prints*, art.
 650 arXiv:2405.20797, May 2024. doi: 10.48550/arXiv.2405.20797.

651 Ruipu Luo, Ziwang Zhao, Min Yang, Junwei Dong, Minghui Qiu, Pengcheng Lu, Tao Wang, and
 652 Zhongyu Wei. Valley: Video assistant with large language model enhanced ability, 2023.

653 Ziyang Luo, Haoning Wu, Dongxu Li, Jing Ma, Mohan Kankanhalli, and Junnan Li. Videoau-
 654 toarena: An automated arena for evaluating large multimodal models in video analysis through
 655 user simulation. *arXiv preprint arXiv:2411.13281*, 2024.

656 Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
 657 Towards detailed video understanding via large vision and language models. In *Proceedings of the*
 658 *62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024)*, 2024.

659 Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic
 660 benchmark for very long-form video language understanding. *arXiv preprint arXiv:2308.09126*,
 661 2023.

662 Francesco Maria Molfese, Luca Moroni, Luca Gioffrè, Alessandro Scirè, Simone Conia, and Roberto
 663 Navigli. Right answer, wrong score: Uncovering the inconsistencies of llm evaluation in multiple-
 664 choice question answering. *arXiv preprint arXiv:2503.14996*, 2025.

665 Arsha Nagrani, Mingda Zhang, Ramin Mehran, Rachel Hornung, Nitesh Bharadwaj Gundavarapu,
 666 Nilpa Jha, Austin Myers, Xingyi Zhou, Boqing Gong, Cordelia Schmid, Mikhail Sirotenko, Yukun
 667 Zhu, and Tobias Weyand. Neptune: The long orbit to benchmarking long video understanding,
 668 2025. URL <https://arxiv.org/abs/2412.09582>.

669 OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam Perelman, Aditya Ramesh, Aidan
 670 Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, Aleksander Mądry, Alex Baker-
 671 Whitcomb, Alex Beutel, Alex Borzunov, Alex Carney, Alex Chow, Alex Kirillov, Alex Nichol, Alex
 672 Paino, Alex Renzin, Alex Tachard Passos, Alexander Kirillov, Alexi Christakis, Alexis Conneau,
 673 Ali Kamali, Allan Jabri, Allison Moyer, Allison Tam, Amadou Crookes, Amin Tootoochian,
 674 Amin Tootoonchian, Ananya Kumar, Andrea Vallone, Andrej Karpathy, Andrew Braунstein,
 675 Andrew Cann, Andrew Codispoti, Andrew Galu, Andrew Kondrich, Andrew Tulloch, Andrey
 676 Mishchenko, Angela Baek, Angela Jiang, Antoine Pelisse, Antonia Woodford, Anuj Gosalia,
 677 Arka Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver, Barret Zoph, Behrooz Ghorbani, Ben
 678 Leimberger, Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin Zweig, Beth Hoover, Blake
 679 Samic, Bob McGrew, Bobby Spero, Bogo Giertler, Bowen Cheng, Brad Lightcap, Brandon
 680 Walkin, Brendan Quinn, Brian Guarraci, Brian Hsu, Bright Kellogg, Brydon Eastman, Camillo
 681 Lugaesi, Carroll Wainwright, Cary Bassin, Cary Hudson, Casey Chu, Chad Nelson, Chak Li,
 682 Chan Jun Shern, Channing Conger, Charlotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,
 683 Chong Zhang, Chris Beaumont, Chris Hallacy, Chris Koch, Christian Gibson, Christina Kim,
 684 Christine Choi, Christine McLeavey, Christopher Hesse, Claudia Fischer, Clemens Winter, Coley
 685 Czarnecki, Colin Jarvis, Colin Wei, Constantin Koumouzelis, Dane Sherburn, Daniel Kappler,
 686 Daniel Levin, Daniel Levy, David Carr, David Farhi, David Mely, David Robinson, David Sasaki,
 687 Denny Jin, Dev Valladares, Dimitris Tsipras, Doug Li, Duc Phong Nguyen, Duncan Findlay,
 688 Edede Oiwoh, Edmund Wong, Ehsan Asdar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow, Eric
 689 Kramer, Eric Peterson, Eric Sigler, Eric Wallace, Eugene Brevdo, Evan Mays, Farzad Khorasani,
 690 Felipe Petroski Such, Filippo Raso, Francis Zhang, Fred von Lohmann, Freddie Sulit, Gabriel Goh,
 691 Gene Oden, Geoff Salmon, Giulio Starace, Greg Brockman, Hadi Salman, Haiming Bao, Haitang
 692 Hu, Hannah Wong, Haoyu Wang, Heather Schmidt, Heather Whitney, Heewoo Jun, Hendrik
 693 Kirchner, Henrique Ponde de Oliveira Pinto, Hongyu Ren, Huiwen Chang, Hyung Won Chung,
 694 Ian Kivlichan, Ian O'Connell, Ian O'Connell, Ian Osband, Ian Silber, Ian Sohl, Ibrahim Okuyucu,
 695 Ikai Lan, Ilya Kostrikov, Ilya Sutskever, Ingmar Kanitscheider, Ishaan Gulrajani, Jacob Coxon,
 696 Jacob Menick, Jakub Pachocki, James Aung, James Betker, James Crooks, James Lennon, Jamie
 697 Kirov, Jan Leike, Jane Park, Jason Kwon, Jason Phang, Jason Teplitz, Jason Wei, Jason Wolfe,
 698 Jay Chen, Jeff Harris, Jenia Varavva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui Yu, Jiayi
 699 Weng, Jie Tang, Jieqi Yu, Joanne Jang, Joaquin Quinonero Candela, Joe Beutler, Joe Landers,
 700 Joel Parish, Johannes Heidecke, John Schulman, Jonathan Lachman, Jonathan McKay, Jonathan
 701 Uesato, Jonathan Ward, Jong Wook Kim, Joost Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh

702 Gross, Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao, Joyce Lee, Juntang Zhuang, Justyn
 703 Harriman, Kai Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin Karthik, Kayla Wood, Kendra
 704 Rimbach, Kenny Hsu, Kenny Nguyen, Keren Gu-Lemberg, Kevin Button, Kevin Liu, Kiel Howe,
 705 Krithika Muthukumar, Kyle Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lauren Workman,
 706 Leher Pathak, Leo Chen, Li Jing, Lia Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lilian Weng,
 707 Lindsay McCallum, Lindsey Held, Long Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kondraciuk,
 708 Lukasz Kaiser, Luke Hewitt, Luke Metz, Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine
 709 Boyd, Madeleine Thompson, Marat Dukhan, Mark Chen, Mark Gray, Mark Hudnall, Marvin
 710 Zhang, Marwan Aljubeh, Mateusz Litwin, Matthew Zeng, Max Johnson, Maya Shetty, Mayank
 711 Gupta, Meghan Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao Zhong, Mia Glaese, Mianna
 712 Chen, Michael Janner, Michael Lampe, Michael Petrov, Michael Wu, Michele Wang, Michelle
 713 Fradin, Michelle Pokrass, Miguel Castro, Miguel Oom Temudo de Castro, Mikhail Pavlov, Miles
 714 Brundage, Miles Wang, Minal Khan, Mira Murati, Mo Bavarian, Molly Lin, Murat Yesildal, Nacho
 715 Soto, Natalia Gimelshein, Natalie Cone, Natalie Staudacher, Natalie Summers, Natan LaFontaine,
 716 Neil Chowdhury, Nick Ryder, Nick Stathas, Nick Turley, Nik Tezak, Niko Felix, Nithanth Kudige,
 717 Nitish Keskar, Noah Deutsch, Noel Bundick, Nora Puckett, Ofir Nachum, Ola Okelola, Oleg Boiko,
 718 Oleg Murk, Oliver Jaffe, Olivia Watkins, Olivier Godement, Owen Campbell-Moore, Patrick
 719 Chao, Paul McMillan, Pavel Belov, Peng Su, Peter Bak, Peter Bakkum, Peter Deng, Peter Dolan,
 720 Peter Hoeschele, Peter Welinder, Phil Tillet, Philip Pronin, Philippe Tillet, Prafulla Dhariwal,
 721 Qiming Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Rajan Troll, Randall Lin, Rapha Gontijo
 722 Lopes, Raul Puri, Reah Miyara, Reimar Leike, Renaud Gaubert, Reza Zamani, Ricky Wang, Rob
 723 Donnelly, Rob Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchandani, Romain Huet, Rory
 724 Carmichael, Rowan Zellers, Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan Cheu, Saachi
 725 Jain, Sam Altman, Sam Schoenholz, Sam Toizer, Samuel Miserendino, Sandhini Agarwal, Sara
 726 Culver, Scott Ethersmith, Scott Gray, Sean Grove, Sean Metzger, Shamez Hermani, Shantanu
 727 Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shirong Wu, Shuaiqi, Xia, Sonia Phene, Spencer
 728 Papay, Srinivas Narayanan, Steve Coffey, Steve Lee, Stewart Hall, Suchir Balaji, Tal Broda, Tal
 729 Stramer, Tao Xu, Tarun Gogineni, Taya Christianson, Ted Sanders, Tejal Patwardhan, Thomas
 730 Cunningham, Thomas Degry, Thomas Dimson, Thomas Raoux, Thomas Shadwell, Tianhao
 731 Zheng, Todd Underwood, Todor Markov, Toki Sherbakov, Tom Rubin, Tom Stasi, Tomer Kaftan,
 732 Tristan Heywood, Troy Peterson, Tyce Walters, Tyna Eloundou, Valerie Qi, Veit Moeller, Vinnie
 733 Monaco, Vishal Kuo, Vlad Fomenko, Wayne Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra,
 734 Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian, Yongjik Kim, Youlong Cheng, Yu Zhang,
 735 Yuchen He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and Yury Malkov. Gpt-4o system card, 2024.
 736 URL <https://arxiv.org/abs/2410.21276>.

737 Pinelopi Papalampidi, Frank Keller, and Mirella Lapata. Movie plot analysis via turning point
 738 identification. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the*
 739 *2019 Conference on Empirical Methods in Natural Language Processing and the 9th International*
 740 *Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 1707–1717, Hong Kong,
 741 China, November 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1180.
 742 URL <https://aclanthology.org/D19-1180/>.

743 Pinelopi Papalampidi, Frank Keller, Lea Frermann, and Mirella Lapata. Screenplay summarization
 744 using latent narrative structure. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault
 745 (eds.), *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*,
 746 pp. 1920–1933, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.174. URL <https://aclanthology.org/2020.acl-main.174/>.

747 Paritosh Parmar, Eric Peh, Ruirui Chen, Ting En Lam, Yuhan Chen, Elston Tan, and Basura Fernando.
 748 Causalchaos! dataset for comprehensive causal action question answering over longer causal
 749 chains grounded in dynamic visual scenes. In *The Thirty-eighth Conference on Neural Information*
 750 *Processing Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=gP4aAi7q8S>.

751 Lu Qiu, Yi Chen, Yuying Ge, Yixiao Ge, Ying Shan, and Xihui Liu. Egoplan-bench2: A bench-
 752 mark for multimodal large language model planning in real-world scenarios. *arXiv preprint*
 753 *arXiv:2412.04447*, 2024.

754 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 755 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.

756 Learning transferable visual models from natural language supervision. In Marina Meila and Tong
 757 Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning*, volume
 758 139 of *Proceedings of Machine Learning Research*, pp. 8748–8763. PMLR, 18–24 Jul 2021. URL
 759 <https://proceedings.mlr.press/v139/radford21a.html>.

760 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 761 Robust speech recognition via large-scale weak supervision. In *International conference on
 762 machine learning*, pp. 28492–28518. PMLR, 2023.

764 Ruchit Rawal, Khalid Saifullah, Ronen Basri, David Jacobs, Gowthami Somepalli, and Tom Gold-
 765 stein. Cinepile: A long video question answering dataset and benchmark. *arXiv preprint
 766 arXiv:2405.08813*, 2024.

768 Saul Santos, António Farinhas, Daniel C McNamee, and Andre Martins. ∞ -video: A training-free
 769 approach to long video understanding via continuous-time memory consolidation. In *Forty-second
 770 International Conference on Machine Learning*, 2025. URL [https://openreview.net/
 771 forum?id=afDHwQ1ZDO](https://openreview.net/forum?id=afDHwQ1ZDO).

772 Bhuiyan Sanjid Shafique, Ashmal Vayani, Muhammad Maaz, Hanoona Abdul Rasheed, Dinura Dis-
 773 sanayake, Mohammed Irfan Kurpath, Yahya Hmaiti, Go Inoue, Jean Lahoud, Md. Safirur Rashid,
 774 Shadid Intisar Quasem, Maheen Fatima, Franco Vidal, Mykola Maslych, Ketan Pravin More,
 775 Sanoojan Baliah, Hasindri Watawana, Yuhao Li, Fabian Farestam, Leon Schaller, Roman Tymtsiv,
 776 Simon Weber, Hisham Cholakkal, Ivan Laptev, Shin’ichi Satoh, Michael Felsberg, Mubarak Shah,
 777 Salman Khan, and Fahad Shahbaz Khan. A culturally-diverse multilingual multimodal video
 778 benchmark & model, 2025. URL <https://arxiv.org/abs/2506.07032>.

779 Weijia Shi, Xiaochuang Han, Mike Lewis, Yulia Tsvetkov, Luke Zettlemoyer, and Wen-tau Yih.
 780 Trusting your evidence: Hallucinate less with context-aware decoding. In Kevin Duh, Helena
 781 Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Conference of the North American
 782 Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume
 783 2: Short Papers)*, pp. 783–791, Mexico City, Mexico, June 2024. Association for Computational
 784 Linguistics. doi: 10.18653/v1/2024.naacl-short.69. URL [https://aclanthology.org/
 785 2024.naacl-short.69/](https://aclanthology.org/2024.naacl-short.69/).

786 Shruti Singh, Anton Alyakin, Daniel Alexander Alber, Jaden Stryker, Ai Phuong S Tong, Karl
 787 Sangwon, Nicolas Goff, Mathew de la Paz, Miguel Hernandez-Rovira, Ki Yun Park, et al. It is too
 788 many options: Pitfalls of multiple-choice questions in generative ai and medical education. *arXiv
 789 preprint arXiv:2503.13508*, 2025.

791 Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Xun
 792 Guo, Tian Ye, Yan Lu, Jenq-Neng Hwang, et al. Moviechat: From dense token to sparse memory
 793 for long video understanding. *arXiv preprint arXiv:2307.16449*, 2023.

794 Enxin Song, Wenhao Chai, Tian Ye, Jenq-Neng Hwang, Xi Li, and Gaoang Wang. Moviechat+:
 795 Question-aware sparse memory for long video question answering. *arXiv preprint
 796 arXiv:2404.17176*, 2024.

798 Chaolei Tan, Zihang Lin, Junfu Pu, Zhongang Qi, Wei-Yi Pei, Zhi Qu, Yixin Wang, Ying Shan,
 799 Wei-Shi Zheng, and Jian-Fang Hu. Synopground: A large-scale dataset for multi-paragraph video
 800 grounding from tv dramas and synopses, 2024. URL <https://arxiv.org/abs/2408.01669>.

802 Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
 803 Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
 804 capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.

806 Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-
 807 mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, Olivier Hénaff,
 808 Jeremiah Harmsen, Andreas Steiner, and Xiaohua Zhai. Siglip 2: Multilingual vision-language
 809 encoders with improved semantic understanding, localization, and dense features. *arXiv preprint
 arXiv:2502.14786*, 2025.

810 Han Wang, Archiki Prasad, Elias Stengel-Eskin, and Mohit Bansal. AdaCAD: Adaptively decoding
 811 to balance conflicts between contextual and parametric knowledge. In Luis Chiruzzo, Alan
 812 Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas*
 813 *Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume*
 814 *1: Long Papers)*, pp. 11636–11652, Albuquerque, New Mexico, April 2025. Association for
 815 Computational Linguistics. ISBN 979-8-89176-189-6. URL <https://aclanthology.org/2025.naacl-long.581/>.

817 Hengyi Wang, Haizhou Shi, Shiwei Tan, Weiyi Qin, Wenyuan Wang, Tunyu Zhang, Akshay Nambi,
 818 Tanuja Ganu, and Hao Wang. Multimodal needle in a haystack: Benchmarking long-context
 819 capability of multimodal large language models. *arXiv preprint arXiv:2406.11230*, 2024a.

820

821 Weihang Wang, Zehai He, Wenyi Hong, Yean Cheng, Xiaohan Zhang, Ji Qi, Shiyu Huang, Bin
 822 Xu, Yuxiao Dong, Ming Ding, and Jie Tang. Lvbench: An extreme long video understanding
 823 benchmark, 2024b.

824

825 Xiaohan Wang, Yuhui Zhang, Orr Zohar, and Serena Yeung-Levy. Videoagent: Long-form video
 826 understanding with large language model as agent. In *European Conference on Computer Vision*,
 827 pp. 58–76. Springer, 2024c.

828

829 Yuxuan Wang, Cihang Xie, Yang Liu, and Zilong Zheng. Videollamb: Long-context video understand-
 830 ing with recurrent memory bridges, 2024d. URL <https://arxiv.org/abs/2409.01071>.

831

832 Ziyang Wang, Shoubin Yu, Elias Stengel-Eskin, Jaehong Yoon, Feng Cheng, Gedas Bertasius, and
 833 Mohit Bansal. Videotree: Adaptive tree-based video representation for llm reasoning on long
 834 videos. *arXiv preprint arXiv:2405.19209*, 2024e.

835

836 Bo Wu, Shoubin Yu, Zhenfang Chen, Joshua B. Tenenbaum, and Chuang Gan. STAR: A
 837 benchmark for situated reasoning in real-world videos. In *Thirty-fifth Conference on Neu-
 838 ral Information Processing Systems Datasets and Benchmarks Track (Round 2)*, 2021. URL
 839 <https://openreview.net/forum?id=EfgNF5-ZAjM>.

840

841 Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context
 842 interleaved video-language understanding. In *The Thirty-eight Conference on Neural Information
 843 Processing Systems Datasets and Benchmarks Track*, 2024. URL <https://openreview.net/forum?id=3G1ZDXOI4f>.

844

845 Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next phase of question-
 846 answering to explaining temporal actions. In *Proceedings of the IEEE/CVF conference on computer
 847 vision and pattern recognition*, pp. 9777–9786, 2021.

848

849 Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang
 850 Fan, Kai Dang, et al. Qwen2. 5-omni technical report. *arXiv preprint arXiv:2503.20215*, 2025.

851

852 Lin Xu, Yilin Zhao, Daquan Zhou, Zhijie Lin, See Kiong Ng, and Jiashi Feng. Pl lava : Parameter-free
 853 llava extension from images to videos for video dense captioning, 2024.

854

855 Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, and Cordelia Schmid. Just ask: Learning to
 856 answer questions from millions of narrated videos. In *ICCV*, 2021.

857

858 Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao, Werner
 859 Geyer, Chao Huang, Pin-Yu Chen, Nitesh V Chawla, and Xiangliang Zhang. Justice or prejudice?
 860 quantifying biases in LLM-as-a-judge. In *The Thirteenth International Conference on Learning
 861 Representations*, 2025. URL <https://openreview.net/forum?id=3GTtZFiajM>.

862

863 Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yuetong Zhuang, and Dacheng Tao. Activitynet-qa:
 864 A dataset for understanding complex web videos via question answering. In *AAAI*, pp. 9127–9134,
 865 2019.

866

867 Rowan Zellers, Ximing Lu, Youngjae Yu, Jae Sung Park, Ali Farhadi, and Yejin Choi. Merlot:
 868 Multimodal neural script knowledge models. In *NeurIPS*, 2021.

864 Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong Leng,
 865 Yuming Jiang, Hang Zhang, Xin Li, Peng Jin, Wenqi Zhang, Fan Wang, Lidong Bing, and Deli
 866 Zhao. Videollama 3: Frontier multimodal foundation models for image and video understanding.
 867 *arXiv preprint arXiv:2501.13106*, 2025. URL <https://arxiv.org/abs/2501.13106>.

868 Ce Zhang, Taixi Lu, Md Mohaiminul Islam, Ziyang Wang, Shoubin Yu, Mohit Bansal, and Gedas
 869 Bertasius. A simple llm framework for long-range video question-answering. In *Proceedings of*
 870 *the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 21715–21737,
 871 2024.

872 Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
 873 model for video understanding. *arXiv preprint arXiv:2306.02858*, 2023a. URL <https://arxiv.org/abs/2306.02858>.

874 Hongjie Zhang, Yi Liu, Lu Dong, Yifei Huang, Zhen-Hua Ling, Yali Wang, Limin Wang, and Yu Qiao.
 875 Movqa: A benchmark of versatile question-answering for long-form movie understanding, 2023b.
 876 URL <https://arxiv.org/abs/2312.04817>.

877 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
 878 Instruction Tuning With Synthetic Data. *arXiv e-prints*, art. arXiv:2410.02713, October 2024. doi:
 879 10.48550/arXiv.2410.02713.

880 Zijia Zhao, Haoyu Lu, Yuqi Huo, Yifan Du, Tongtian Yue, Longteng Guo, Bingning Wang, weipeng
 881 chen, and Jing Liu. Needle in a video haystack: A scalable synthetic evaluator for video MLLMs.
 882 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=ZJo6Radbqq>.

883 Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang,
 884 Tiejun Huang, and Zheng Liu. Mlvu: A comprehensive benchmark for multi-task long video
 885 understanding. *arXiv preprint arXiv:2406.04264*, 2024.

886 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
 887 Duan, Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xuehui Wang, Yue Cao, Yangzhou Liu,
 888 Xingguang Wei, Hongjie Zhang, Haomin Wang, Weiye Xu, Hao Li, Jiahao Wang, Nianchen Deng,
 889 Songze Li, Yinan He, Tan Jiang, Jiapeng Luo, Yi Wang, Conghui He, Botian Shi, Xingcheng
 890 Zhang, Wenqi Shao, Junjun He, Yingtong Xiong, Wenwen Qu, Peng Sun, Penglong Jiao, Han Lv,
 891 Lijun Wu, Kaipeng Zhang, Huirong Deng, Jiaye Ge, Kai Chen, Limin Wang, Min Dou, Lewei Lu,
 892 Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui Wang. InternVL3: Exploring
 893 Advanced Training and Test-Time Recipes for Open-Source Multimodal Models. *arXiv e-prints*,
 894 art. arXiv:2504.10479, April 2025. doi: 10.48550/arXiv.2504.10479.

895 Orr Zohar, Rui Li, Andres Marafioti, Xiaohan Wang, Stanford AI Team, and Hugging Face.
 896 Timescope: How long can your video large multimodal model go? <https://huggingface.co/blog/timescope-video-lmm-benchmark>, July 2025. Accessed: YYYY-MM-DD.

897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

918 **A METADATA FOR COLLECTED MOVIES**
919920 In [Table 7](#), we provide detailed information on the 53 released movies, including their genre, original
921 language, and duration.
922923 **B DETAILED GUIDELINES FOR DATA ANNOTATION AND HUMAN-EVAL**
924925 **B.1 DATA ANNOTATION GUIDELINES**
926927 In [Figs. 6](#) and [7](#), we present the detailed guidelines provided to annotators during the data annotation
928 process. These include instructions for constructing contrastive claim pairs, and labeling each pair
929 with the appropriate reasoning granularity and comprehension dimensions. Furthermore, in [Figs. 8](#)
930 and [9](#), we include a subset of illustrative examples shown to annotators to guide their annotations of
931 reasoning granularity and comprehension dimensions, respectively.
932933 We note that among the comprehension dimensions annotators could assign to each claim pair, an
934 “Other” category was included to account for cases that did not clearly align with any of the predefined
935 dimensions. As this label was selected rarely (0.49% of the data), it is excluded from the figures
936 presented in the main text.
937938 **B.2 HUMAN EVALUATION GUIDELINES**
939940 In [Figs. 10](#) and [11](#), we provide the full set of guidelines shared to participants during the human
941 evaluation process, which consists of two stages: an initial stage in which evaluators respond without
942 revisiting the movie, and an optional second stage that allows revisiting. While we only analyze
943 the results from Stage 1—as our goal is to assess movie understanding based on memorable events
944 without allowing participants to rewatch parts of the film—we include the complete instructions for
945 both stages to offer full context. Additionally, we provide an illustration of the evaluation interface to
946 clarify the evaluation setup.
947948 **C DETAILS ON EXPERIMENTAL SETUP**
949950 **C.1 PROMPT TEMPLATES**
951952 In [Figs. 12](#) and [13](#) we present the direct and explanation prompt templates used for open-weight
953 and closed models, respectively. The former requests only a True/False response, while the latter
954 additionally asks for a brief justification before the final answer. We found that the direct prompt
955 yielded better performance for open-weight models, while the explanation prompt proved more
956 effective for closed models. When experimenting with different input modalities—such as adding the
957 synopsis, subtitles, or movie title—we adapt the prompts accordingly.
958959 **C.2 RESOURCES**
960961 Our infrastructure consists of a single machine equipped with 4 NVIDIA H100 GPUs (80GB each)
962 and 12 Intel Xeon Gold 6348 CPUs (2.60GHz, 1TB RAM). All experiments were conducted on a
963 single GPU, except for evaluations involving larger open-weight models (>70B parameters), where
964 all 4 GPUs were used to accelerate inference.
965966 **D ADDITIONAL EXPERIMENTS**
967968 In [Table 5](#) we provide the main results by including a greater coverage of models.
969970 **E ABLATION ON VISUAL STREAM USAGE**
971972 Given the moderate gains observed when models are provided with both video and subtitles compared
973 to subtitles alone, we conduct an additional experiment with Qwen2.5VL-72B to assess whether
974

972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984

985 Table 5: Performance of both open-weight and closed models when evaluated on MF². We report
 986 both pairwise and standard accuracy, when models are assessed on video inputs w/ and w/o subtitles.
 987 Best-performing values among models are **bolded** and best for each specific group are underlined.
 988 Models with (*) fail to follow the instruction prompt.

989

990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	Method	#Params	#Frames	Pairwise Accuracy (%)		Accuracy (%)	
				w/o subs	w/ subs	w/o subs	w/ subs
Baselines							
Random	-	-	25.0	25.0	50.0	50.0	
Human	-	-	-	84.1	-	90.5	
Closed Models							
GPT-4o	-	50	18.8	46.8	55.2	71.4	
Claude 3.7 Sonnet	-	100	3.80	44.6	51.4	71.5	
Gemini 2.5 Pro	-	120	37.2	60.6	64.2	77.6	
Open-weight Models							
Kangaroo*	8B	-	-	-	-	-	
LLaVA-Cinepile*	7B	8	-	-	-	-	
VideoLLaMA3	7B	180	20.5	33.5	57.0	62.7	
Qwen2.5-VL	7B	180	24.6	32.8	56.7	62.0	
LLaVA-Video	7B	64	6.6	19.0	51.7	57.8	
LongVILA-R1	7B	180	11.5	16.9	50.1	56.6	
InternVL3	8B	64	10.9	36.9	53.1	64.6	
LLaVAOneVision1.5	8B	32	4.9	26.4	51.0	60.9	
Gemma3	27B	64	<u>31.5</u>	42.9	<u>61.2</u>	68.1	
Qwen3VL-IT	30B	180	19.2	42.3	56.9	68.6	
Ovis2	34B	10	18.8	45.6	53.3	69.5	
InternVL3.5	38B	64	26.6	46.2	60.0	70.3	
Qwen2.5-VL	72B	180	29.7	45.9	58.8	70.4	
LLaVA-Video	72B	64	15.6	41.8	54.6	69.1	
InternVL3	78B	64	22.1	<u>51.3</u>	58.0	<u>72.7</u>	

Table 6: Performance of Qwen2.5VL-72B under shuffled and non-shuffled visual inputs.

Video Only				
Setting	Pairwise Acc.	Avg Acc.	Acc. (Facts)	Acc. (Fibs)
Original frames	29.7	58.8	45.4	72.1
Shuffled frames	4.8	51.8	4.9	98.7
Video + Subtitles				
Setting	Pairwise Acc.	Avg Acc.	Acc. (Facts)	Acc. (Fibs)
Original frames	45.9	70.4	55.7	85.1
Shuffled frames	40.3	66.2	46.1	86.3

the visual stream is being used. To do so, we shuffle the sampled video frames and compare performance against the non-shuffled setting. We run this experiment for both the video-only and the video-plus-subtitles setups. We report pairwise accuracy, average accuracy, fact (true-claim) accuracy, and fib (false-claim) accuracy. Table 6 presents the results. The substantial drop in pairwise accuracy and fact accuracy under frame shuffling indicates that the model does indeed use visual cues. This observation is further supported by the examples in Appendix F. Gemini’s explanations for its predictions explicitly reference the visual cues, confirming that the model makes use of the visual stream.

F ILLUSTRATIVE EXAMPLES

In this part, we include a small set of examples (Tables 8, 9, 10, 11, 12, 13, 14, 15, 16, 17) showing when visual or text cues are needed to resolve the claims and how Gemini 2.5 Pro (best performing model) succeeds or fails on them, along with its corresponding explanations.

AI ASSISTANCE

We would like to note that large language models (ChatGPT) were used to assist in drafting and polishing the writing of this work.

Table 7: Details of collected movies.

Movie (Year)	Genre (IMDB)	Language	Duration (mins)
The Last Chance (1945)	Drama, War	en, it	93.84
They Made Me a Criminal (1939)	Boxing, Film Noir, Crime, Drama, Sport	en	91.21
Tokyo After Dark (1959)	Drama	en	81.23
The Sadist (1963)	Horror, Thriller	en	91.63
Suddenly (1954)	Film Noir, Psychological Thriller, Crime, Drama, Thriller	en	76.71
Sabotage (Hitchcock) (1936)	Psychological Thriller, Spy, Crime, Thriller	en	75.92
Murder By Contract (1958)	Film Noir, Crime, Drama, Thriller	en	80.45
Pushover (1954)	Film Noir, Crime, Drama, Thriller	en	87.77
Go for Broke (1951)	Drama, History, War	en	90.85
Meet John Doe (1941)	Political Drama, Satire, Comedy, Drama, Romance	en	122.87

1080	Scarlet Street (1945)	Film Noir, Tragedy, Crime, Drama, Thriller	en	102.39
1081				
1082				
1083	Little Lord Fauntleroy (1936)	Period Drama, Drama, Family	en	100.72
1084				
1085	Deadline - U.S.A. (1952)	Film Noir, Crime, Drama	en	87.06
1086				
1087	My Favorite Brunette (1947)	Hard-boiled Detective, Comedy, Crime, Mystery, Romance, Thriller	en	87.34
1088				
1089				
1090	Woman in the Moon (1929)	Adventure, Comedy, Drama, Romance, Sci-Fi	de	168.73
1091				
1092				
1093	Lonely Wives (1931)	Comedy, Romance	en	85.35
1094	Nothing Sacred (1937)	Satire, Screwball Comedy, Comedy, Drama, Fantasy, Romance	en	73.57
1095				
1096				
1097				
1098	Fingerman (1955)	Film Noir, Crime, Drama, Thriller	en	82.06
1099				
1100	Borderline (1950)	Film Noir, Crime, Drama, Thriller	en	88.16
1101				
1102	Babes in Toyland (1934)	Screwball Comedy, Slapstick, Comedy, Family, Fantasy, Musical	en	77.26
1103				
1104				
1105				
1106	The Man From Utah (1934)	Drama, Western	en	51.49
1107	The Man With The Golden Arm (1955)	Drug Crime, Psychological Drama, Crime, Drama, Romance	en	119.07
1108				
1109				
1110				
1111	A Star Is Born (1937)	Tragic Romance, Drama, Romance	en	110.98
1112				
1113	Africa Screams (1949)	Farce, Action, Adventure, Comedy	en	79.13
1114				
1115	Dementia 13 (1963)	Slasher Horror, Horror, Thriller	en	74.94
1116				
1117	Fear and Desire (1952)	Drama, Thriller, War	en	70.19
1118	The Little Princess (1939)	Costume Drama, Comedy, Drama, Family, Musical	en	92.77
1119				
1120	Father's Little Dividend (1951)	Comedy, Drama, Romance	en	81.74
1121				
1122	Kansas City Confidential (1952)	Conspiracy Thriller, Film Noir, Heist, Crime, Drama, Thriller	en	99.27
1123				
1124				
1125				
1126	Of Human Bondage (1934)	Dark Romance, Film Noir, Medical Drama, Tragedy, Tragic Romance, Drama, Romance	en	82.77
1127				
1128				
1129				
1130				
1131	Half Shot at Sunrise (1930)	Comedy, Musical	en, fr	78.04
1132	Bowery at Midnight (1942)	B-Horror, Crime, Horror, Thriller	en	62.05
1133	The Emperor Jones (1933)	Drama, Music	en	76.29

1134	The Deadly Companions (1961)	Adventure, Drama, Western	en	93.62
1135				
1136	The Red House (1947)	Film Noir, Drama, Mystery, Thriller	en	100.39
1137				
1138	Trapped (1949)	Film Noir, Crime, Drama, Thriller	en	79.4
1139				
1140	City of Fear (1959)	Crime, Drama, Thriller	en	75.18
1141				
1142	Kid Monk Baroni (1952)	Action, Drama, Sport	en	79.56
1143	Tight Spot (1955)	Film Noir, Crime, Drama, Thriller	en	95.99
1144				
1145	Captain Kidd (1945)	Costume Drama, Swashbuckler, Adventure, Biography, Drama, History	en	87.53
1146				
1147				
1148				
1149	The Front Page (1931)	Dark Comedy, Satire, Screwball Comedy, Comedy, Crime, Drama, Mystery, Romance	en	101.14
1150				
1151				
1152				
1153	The Hitch-Hiker (1953)	Film Noir, Crime, Drama, Thriller	en	70.8
1154				
1155	Obsession (1949)	Film Noir, Psychological Thriller, Crime, Thriller	en	92.39
1156				
1157				
1158	Thunderbolt (1929)	Film Noir, Crime, Drama, Music, Romance	en	91.27
1159				
1160				
1161	Cyrano de Bergerac (1950)	Swashbuckler, Adventure, Drama, Romance	en	112.87
1162				
1163				
1164	Scandal Sheet (1952)	Film Noir, Crime, Drama, Romance, Thriller	en	81.75
1165				
1166				
1167	Ladies in Retirement (1941)	Film Noir, Crime, Drama	en	92.31
1168				
1169	Detour (1945)	Film Noir, Crime, Drama	en	69.09
1170				
1171	The Crooked Way (1949)	Film Noir, Crime, Drama, Thriller	en	85.95
1172				
1173	A Bucket of Blood (1959)	Comedy, Crime, Horror	en	65.84
1174				
1175	Love Affair (1939)	Holiday Romance, Comedy, Drama, Romance	en	89.62
1176				
1177	The Jackie Robinson Story (1950)	Biography, Drama, Sport	en	76.82
1178				
1179	The Last Time I Saw Paris (1954)	Tragedy, Tragic Romance, Drama, Romance	en	116.02
1180				
1181				
1182				
1183				
1184				
1185				
1186				
1187				

1188
1189
1190
1191
1192

1193 **Guidelines for Data Annotation (Part 1)**

1194
1195
1196
1197
1198

We are conducting a research study on long movie understanding as part of a broader effort to explore how well viewers comprehend and recall complex narratives. Your task is to create claims that test a viewer's comprehension of a movie after watching it. These claims will be used in a human evaluation study to assess how well participants understand and recall key events from the movie. We appreciate your participation in this data collection process.

1199
1200

General Task Instructions Select a movie from the current "Pool" of movies (the "Pool" can be found in <LINK>). Make sure this movie is not selected by another annotator.

1201
1202
1203
1204
1205
1206
1207

- Watch the entire movie carefully.
- We highly recommend reading the example claims provided to gain a better understanding of the task you need to fulfil.
- Start writing down your claims following the template available in <LINK> (you will find two tabs available: the "Examples" tab contains claim examples, and the "Annotations Template" tab is the template you should follow). Please create another sheet with your claims—do not directly use the current template—and send it to us once it is completed.

1208
1209

Annotation Process

1210
1211
1212

1. Writing Claims You are asked to create pairs of contrastive claims, where one claim is true (fact) and the counterfactual version is false (fib). The two claims should differ by minimal edits, meaning they should be as similar as possible while maintaining contrast. Each claim should differ in a subtle but meaningful way, challenging comprehension without being overly obvious.

1213
1214
1215
1216
1217

Example:

Fact: The first bomb exploded in the bus.

Fib: The first bomb exploded in the aquarium.

Why this works: The counterfactual claim is created with minimal edits, maintaining contrast while testing the understanding of a key event.

1218
1219
1220

2. Select Claim Granularity For each pair of claims you constructed, indicate whether answering them correctly requires reasoning based on a single scene, multiple scenes, or globally within the movie.

1221
1222
1223

Definition of scene:

A scene in film refers to a complete unit of storytelling, usually consisting of a sequence of events and dialogue taking place in a specific location and time. It often involves one or more characters and is usually shot in one continuous take or consisting of a sequence of shots.

1224
1225
1226
1227
1228
1229
1230
1231
1232

Reasoning Granularity Labels:

- **Single-scene:** Claims that are answerable using information from a single scene.
- **Multi-scene:** Claims falling into this granularity require information/evidence from multiple distinct scenes, but not from the whole film. In this case, details are usually spread out between the multiple scenes. The supporting information/evidence is distributed, but explicit and locatable (timestamps/scenes can be clearly identified and referenced)
- **Global:** Claims falling into this granularity require a holistic understanding of the movie narrative. They cannot be easily tied to specific scenes or timestamps, and need to infer or accumulate information/evidence that emerges across the entire narrative (timestamps/scenes can not be clearly identified and referenced).

1233
1234
1235

Note: Reasoning granularity labels should be selected based on the fact (true claim). Check the examples provided in the "Examples for Reasoning Granularity" part.

1236
1237
1238
1239
1240
1241

Figure 6: Guidelines provided for the data annotation procedure (Part 1).

1242
1243
1244
1245
1246

1247
1248
1249
1250
1251

Guidelines for Data Annotation (Part 2)

3. Claim Categorization Identify the comprehension dimensions the constructed pair of claims examines. Sometimes more than one dimension is examined, so we allow for multiple labels.

Comprehension Dimension Labels:

- **Event/Entity Understanding:** it refers to claims that require the identification of key entities (such as people, places, or objects) and understanding of actions or events involving those entities throughout the narrative. Understanding these claims involves tracking the presence and role of entities across scenes, extracting relationships among them, observing and interpreting their actions, and linking them to relevant events in the narrative.
- **Temporal Perception:** temporal perception refers to claims that require understanding of the timeline of events. It involves reasoning about the order in which events or actions occur—e.g., determining whether an event/action takes place before, after or at the same time as another—and may also require counting the number of specific actions or events. Unlike tasks focused on localizing a specific action in time, temporal perception emphasizes comprehension of broader temporal relationships within the evolving storyline.
- **Emotion Understanding:** emotional understanding refers to claims that involve recognizing and interpreting the emotional development of characters throughout the narrative.
- **Causal Reasoning:** causal reasoning refers to claims that require identifying cause-and-effect relationships between events or actions, where the relationship may be either direct or implicit.
- **Other:** If none of the above fit, select "Other" and suggest a new category.

Note: The categorization is based on both claims (fact and fib). Check the examples provided in the "Examples for Comprehension Dimensions" part.

Important Points To Consider

- **Ensure claims assess the viewer's understanding of the movie.** To put it simply, claims should refer to **significant moments** in the movie, **avoiding trivial details or Needle in a Haystack (NIAH)-style claims**, such as: "The detective wears a red T-shirt" (if this detail is not important in the movie).
- **Claims must be clear and unambiguous in isolation**, meaning they should be understandable without requiring additional context but should still require reasoning based on the movie. **Each claim should be self-contained and make sense independently**, without referencing its counterfactual version. Also, **avoid highly subjective or interpretive claims**. Each claim should still have a definitive answer based on the movie's content.
- **Avoid providing unnecessary contextual details.** For example, do not use phrases like "in the beginning of the movie, . . .", "in the final scene, . . ." unless such information is essential to understanding the claim.
- Ensure that claims **span the entire movie** rather than focus on isolated scenes.
- Once you finish the annotation process, please **go through your claims and confirm that they are in line with the points raised above** (these points are important to be covered to ensure good quality of annotations).

Figure 7: Guidelines provided for the data annotation procedure (Part 2).

1289
1290
1291
1292
1293
1294
1295

1296
1297
1298
1299
1300
1301
1302

1303 Guidelines for Data Annotation (Part 3)

1304 **Examples for Reasoning Granularity** In this part, we provide examples to illustrate how
1305 to assign reasoning granularity labels.

1306 **Example 1:**

1308 *Fact:* According to the Hattley, the individual shown in the photograph (Marakelli) worked with
1309 Constance.

1310 *Fib:* According to Hattley, the individual shown in the photograph (Marakelli) had no connection
1311 or working relationship with Constance.

1311 *Reasoning Granularity:* Single-scene.

1312 *Justification:* This event is categorized as single-scene because it takes place within one specific
1313 scene: Hattley shows the photograph to Conley, they are having a discussion and it is implied that
1314 Marakelli worked with Constance in the mafia.

1315 **Example 2:**

1316 *Fact:* Hattley appeared visibly bothered with the discussion he had in his office with Constance's
1317 attorney.

1318 *Fib:* Hattley appeared pleased with the discussion he had in his office with Constance's attorney.

1319 *Reasoning Granularity:* Single-scene.

1320 *Justification:* That is again a single scene event. Constance's attorney enters the office and they are
1321 having a discussion. After a while, Hattley kicks him out.

1322 **Example 3:**

1323 *Fact:* Miss Conley received a dress as a personal gift from the policeman.

1324 *Fib:* Miss Conley received a dress as a gift from the government, delivered by the policeman.

1325 *Reasoning Granularity:* Multi-scene.

1326 *Justification:* That is a multi-scene event, that we need to ground on 2 independent scenes to
1327 answer the question correctly. In the first scene Miss Conley receives a gift from the policeman,
1328 who says that the gift is from the government. After a while (some scenes are interleaved), she
1329 understands that the policeman bought the gift for her and not the government. So to answer
1330 correctly, we need to ground on these 2 specific scenes.

1331 **Example 4:**

1332 *Fact:* Conley's statement about her occupation, describing herself as a "gang buster," implicitly
1333 refers to Constance.

1334 *Fib:* Conley's statement about her occupation, describing herself as a "gang buster," implicitly
1335 refers to Pete Tinelli.

1336 *Reasoning Granularity:* Global

1337 *Justification:* There is a single scene in the end of a movie during which Conley characterises
1338 herself as a "gang buster". Although it is a single scene, it is impossible to understand solely by
1339 this scene why she said it and to whom she is referring to. We need to watch a big part of the
1340 movie (if not all of it) to understand that refers to Constance.

1341 Figure 8: Guidelines provided for the data annotation procedure (Part 3). This part of the guidelines
1342 provides examples given to annotators to illustrate how to assign reasoning granularity labels. While
1343 more examples were shared during the annotation process, we include a selection here for illustrative
1344 purposes.

1344
1345
1346
1347
1348
1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Guidelines for Data Annotation (Part 4)

Examples for Comprehension Dimensions In this part we provide examples to illustrate how to assign comprehension dimension labels.

Example 1:

Fact: At Jim’s bar, the Connel keeps drinking as he talks to the fake John Doe, expressing his frustration and concern.

Fib: At Jim’s bar, the Connel keeps drinking as he talks to the fake John Doe, expressing hope and happiness.

Comprehension Dimension: emotion understanding

Justification: We need to understand what emotion Connel expressed, to answer the pair of claims correctly.

Example 2:

Fact: Conley’s statement about her occupation describing herself as a “gang buster”, implicitly refers to Constable.

Fib: Conley’s statement about her occupation describing herself as a “gang buster”, implicitly refers to Pete Tinelli.

Comprehension Dimension: entity/event understanding

Justification: We need to understand to whom the expression “gang buster” refers to. So, the comprehension dimension is entity understanding.

Example 3:

Fact: Hallet brought Conley’s sister to the hotel with the intent to make Conley testify in the trial.

Fib: Hallet brought Conley’s sister to the hotel with the intent to make her feel safe.

Comprehension Dimension: causal reasoning

Justification: Here we need to understand why Hallet brought Conley’s sister to the hotel. So it examines a causal-and-effect relationship.

Example 4:

Fact: Conley decided to testify only after Wiloughby’s death.

Fib: Conley had already decided to testify before Wiloughby’s death.

Comprehension Dimension: temporal perception

Justification: that pair examines the temporal dimension (if the decision was taken before or after Wiloughby’s death).

Figure 9: Guidelines provided for the data annotation procedure (Part 4). This part of the guidelines provides examples given to annotators to illustrate how to assign comprehension dimension labels. While more examples were shared during the annotation process, we include a selection here for illustrative purposes.

1404
1405
1406
1407
1408
1409

Guidelines for Human Evaluation (Part 1)

This evaluation study aims to assess how well people comprehend and recall key events from a movie. You will watch a movie and then evaluate a series of claims about its content. Your goal is to determine whether each claim is True or False, based solely on what was shown in the movie. We appreciate your participation in this study.

Task Instructions

- Assign to yourself the movies you want to watch and do the test (we expect 2 movies per person). Please add your name to the Human-Eval column, on this [LINK](#).
- Visit the platform for evaluation [LINK](#).
- Provide your email to receive access to the movie (it will be used as your unique identifier).
- Once you submit your email, you should carefully select from the drop-down list the corresponding movie you assigned yourself and proceed with the evaluation. You will be shown with the movie link. Please open it in a new tab.

The test is divided in **2 stages**: The **first stage** is **mandatory** and should be completed by everyone (*during this stage you are not allowed to go back to the movie while answering the questions*). The **second stage** is **optional** (*during this stage you are allowed to go back to the movie while answering the questions*).

Stage 1:

1. **Watch the entire movie carefully before proceeding to the evaluation.** Pay attention to details and context in the movie, as some claims may be subtle or require careful reasoning.
2. After watching, it's time to proceed to Stage 1. **Please do not go back to the movie until Stage 1 of the test is completed.** Press the "Start Classifying Claims" button, and you will be shown with **one claim at a time**. For each claim shown, you need to do the following:
 - **Classify the claim as True/False** (you should always answer truthfully, without aiming to maximise your score).
 - Mark your **confidence** about your answer. This is helpful for stage 2, where you will have the opportunity to revise your claims (by looking back at the movie).
 - Leave a comment if any of the following applies: If a claim is **ambiguous, unclear, open to interpretation, has a bad phrasing or typos, you may leave an optional comment explaining your concerns**. You can also comment on the claim in case it is **needle-in-a-haystack style** and you think it is too detailed and doesn't test the understanding of the movie.
 - Once you answered, click "Save" to submit your response and move on to the next claim.

Important details: Once you submit an answer, you cannot go back and change it. At this stage, you are **strictly prohibited from searching back in the movie, rewinding, or rewatching scenes while answering the claims**. Your responses **should be based on your memory and understanding**. You must **NOT use any AI tools or external sources to verify or generate answers**. The goal of this study is to assess human understanding of long movies, not automated retrieval or AI-assisted responses. Also you are not allowed to take any paper notes, while watching the movie.

Figure 10: Guidelines provided for human evaluation (Part 1).

1452
1453
1454
1455
1456
1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

Guidelines for Human Evaluation (Part 2)

1469

Stage 2:

1470

Once you complete Stage 1, you will see a message asking you if you want to proceed to Stage 2 (Stage 2 is optional).

1471

1472

1473

1474

1475

1476

1477

1478

1479

During Stage 2, you will be shown again with the choices you selected during Stage 1, but now **you can revise your answers by looking back to the movie** (you can reuse the movie link we provided you). You will be shown for each claim with the choices you did in Stage 1. You are free to change them and proceed to the next claims. Don't worry your answers will not be overwritten. Once you finish with Stage 2, you will be shown with a confirmation message.

If you have any questions or encounter any technical issues, please report them to our team! Thank you for your time and effort!

Claims classified: 0 out of 36

The mechanic disconnects the fuel pump by mistake, and the psychopath can't start the car.

True
 False

Are you confident in your answer?

Yes
 No

[Optional] Leave a comment (ambiguity/tupos/needle-in-a-haystack):

This claim is ambiguous because ...
 Or this claim is in a need-in-a-haystack style because ...
 (write down any concern you have regarding typos, phrasing, ambiguity, NIAH)

Save

Illustration of the human evaluation interface.

1499

1500

1501

1502

Figure 11: Guidelines provided for human evaluation (Part 2).

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Direct Prompt Template

1520 **System:** You are a helpful AI assistant. Your task is to carefully analyze the provided content and
 1521 determine whether statements made about it are true or false based on the available information.

1522 **User:** You are provided with a movie and a statement. Your task is to carefully watch the
 1523 movie and then determine whether the statement is true or false.

1524 Answer TRUE if the statement is true in its entirety based on the movie.

1525 Answer FALSE if any part of the statement is false based on the movie.

1526 **Statement:** {claim}

1527 Based on the movie, is the above statement TRUE or FALSE?

1528 Provide only your final answer.

1530 Figure 12: Direct prompt template used for **open-weight** models.
 1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

Explanation Prompt Template

1547 **System:** You are a helpful AI assistant. Your task is to carefully analyze the provided content and
 1548 determine whether statements made about it are true or false based on the available information.

1549 **User:** You are provided with a movie and a statement. Your task is to carefully watch the
 1550 movie and then determine whether the statement is true or false.

1551 Answer TRUE if the statement is true in its entirety based on the movie.

1552 Answer FALSE if any part of the statement is false based on the movie.

1553 **Statement:** {claim}

1554 Based on the movie, is the above statement TRUE or FALSE?

1555 First provide an explanation of your decision-making process in at most one paragraph, and
 1556 then provide your final answer.

1558 Figure 13: Explanation prompt template used for **closed** models.
 1559

1560

1561

1562

1563

1564

1565

1566
1567
1568
1569
1570
1571

Table 8: **Illustrative Example 1 from the movie “Suddenly”**. Gemini fails to predict both claims correctly in every modality setting.

1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582

Example 1 (Part 1) - Movie: "Suddenly"

Pidge brings the water

Setting up the circuit

Pop spills the water

The electrocution

1583
1584
1585

Fact (✓): The grandfather, Peter Benson, intentionally spilled the water on the floor.

Fib (✗): The grandfather, Peter Benson, accidentally spilled the water on the floor.

1586
1587

Granularity: Multi-scene

1588
1589
1590
1591
1592
1593
1594
1595
1596

Context (Spoiler alert !): Early in the film, the TV breaks. Later, when the criminals have already broken into the house, Pop (the grandfather) orchestrates the setup to save everyone (without explicitly stating it). He feigns a heart attack and asks for water, Pidge brings it. The TV technician pretends to repair the broken TV as part of a sabotage plan, while the circuit. When the moment comes, Pop *intentionally* spills the water on the floor (placing it on the edge of the table). Shortly after, the electrocution occurs when one of the criminals steps on the spilled water. *Both visual and textual information are needed to understand that Pop indeed spilled the water and what was his intention. Gemini fails to predict both claims correctly in every modality setting.*

1597
1598
1599

Gemini’s Predictions:

Subs only setting

1600
1601
1602
1603
1604
1605
1606
1607
1608

Prediction on Fact: The statement is “The grandfather, Peter Benson, intentionally spilled the water on the floor.” To determine if this is true, we need explicit evidence in the transcript: 1. That Peter Benson spilled water; 2. That he did so intentionally. Transcript evidence: Peter Benson (Pop) feigns a heart attack. He asks Pidge: “Pidge, put down that gun and get some water for your grandfather.” Pidge presumably brings the water. Later, just before the climax, the line “Oh, butterfingers!” appears. This implies something was dropped or spilled, likely the water. However, the transcript does not explicitly state who exclaimed “Oh, butterfingers!” or who spilled the water. Since the transcript does not explicitly confirm that Peter Benson spilled the water, the statement cannot be verified. **FALSE (Ground-truth: TRUE)**

1609
1610
1611
1612
1613
1614
1615

Prediction on Fib: The transcript mentions Pidge being asked to get water for his grandfather, Peter Benson (Pop), when Pop feigns a heart attack [...] However, the transcript does not state that Peter Benson subsequently spilled this water, or any water, on the floor. [...] it is not explicitly stated who Jud is referring to or that the fumbling involved spilling water. The context is the electrocution and shooting, not an earlier incident of spilling water. There is no direct statement or clear implication in the transcript that Peter Benson accidentally spilled water on the floor. **FALSE (Ground-truth: FALSE)**

1616
1617
1618
1619

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629

Table 9: **Illustrative Example 1 from the movie “Suddenly”**. Gemini fails to predict both claims correctly in every modality setting.

1630
1631

Example 1 (Part 2) - Movie: "Suddely"

1632
1633
1634
1635
1636

Prediction on Fact: The grandfather, Peter Benson, is seen at 2:17 reaching for a glass of water. He then appears to deliberately drop the glass, causing the water to spill on the floor. This creates a distraction, allowing the woman to crawl towards a gun. The context of the scene, where the family is being held hostage and looking for an opportunity to fight back, combined with the grandfather’s actions and the subsequent events, strongly suggests the spill was intentional. **TRUE** (*Ground-truth: TRUE*)

1643
1644
1645
1646
1647
1648

Prediction on Fib: The video introduces an older character who is later identified as Peter Benson (around 0:46-0:47). Much later in the video, during a tense hostage situation, Peter Benson is seen sitting in an armchair holding a glass of water. At timestamp 2:18, he is startled and gets up abruptly, causing the water in his glass to spill onto the floor. The context of the scene, where he reacts to the unfolding events, suggests the spill was accidental due to his sudden movement or reaction. **TRUE** (*Ground-truth: FALSE*)

1649
1650
1651

Prediction on Fact: The grandfather, Peter Benson, is seen getting up with a glass of water around timestamp 55:20. As he walks, he stumbles and drops the glass, spilling the water on the floor near the table leg and electrical wiring. Immediately after, he clutches his chest and feigns a heart attack. The transcript reflects this with dialogue about his pain. There is no visual or textual evidence to suggest the spill was intentional; rather, it appears accidental, possibly due to his feigned or real physical distress, and he then uses the moment to further distract the captors by exaggerating his heart condition. **TRUE** (*Ground-truth: TRUE*)

1659
1660
1661
1662
1663
1664

Prediction on Fib: The grandfather, Peter Benson, takes a glass of water and walks towards the table where the assassin has set up the rifle. He places the glass on the edge of the metal table (around 55:23). As he moves to talk to Jud, who is working on the TV, the glass tips over and spills the water on the floor (around 55:24). The spilling appears to be an unintentional consequence of his actions and the precarious placement of the glass. Therefore, it was an accident. **TRUE** (*Ground-truth: FALSE*)

1665
1666
1667
1668
1669
1670
1671
1672
1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

Table 10: **Illustrative Example 2 from “Sabotage (Hitchcock)”**. Gemini predicts the pair of claims incorrectly in every modality setting.**Example 2 (Part 1) - Movie: "Sabotage (Hitchcock)"**

Aquarium

Planning the sabotage

Meet in cinema

Kid enters the bus

The time arrives

Bus explosion

People in the cinema

Explosion in cinema

Fact (✓): The second bomb exploded in the cinema.**Fib (✗):** There was a second bomb about to explode, but it didn't.**Granularity:** Global

Context (Spoiler alert !): Mr. Verloc and the terrorist meet at the aquarium, where the terrorist first mentions the plan to explode a bomb (he mentions “a parcel of fireworks” and asks Mr. Verloc to meet his friend the bombmaker). The terrorist meet again in the cinema, to discuss about the sabotage. Later in the movie the explosion happens inside the bus. While the second explosion happens inside the cinema. *Gemini fails to predict both claims correctly in every modality setting.*

Gemini’s Predictions:**Subs only setting**

Prediction on Fact: To determine if the statement is true or false, we need to identify the sequence of bomb-related incidents in the transcript. 1. **First Incident (Sabotage at the Cinema):** The transcript begins with a power outage at the cinema, described as “Sand. Sabotage. Wrecking. Deliberate.” This is the first act of sabotage or a device causing disruption that Verloc is connected with. [...] This incident occurred at the cinema. 2. **Second Incident (Stevie’s Bomb on the Bus):** Mr. Verloc is then tasked with a more serious act: to leave a “small parcel... a parcel of fireworks” (a bomb) in Piccadilly Circus. His young brother-in-law, Stevie, is sent to deliver this parcel. This bomb explodes prematurely. [...] This is the second distinct sabotage/bomb event in the plot, and this bomb exploded on a bus, not in the cinema. 3. **Third Incident (Bomb Explosion at the Cinema):** Towards the end of the transcript, the old man who makes the bombs is cornered in the cinema. [...] This bomb then explodes: [...] This explosion occurs at the cinema. Based on this chronological sequence of events: * The first destructive “bomb-like” event was the sabotage at the cinema (power outage). * The second bomb (Stevie’s parcel) exploded on a bus in the West End. * The third bomb (detonated by the old man) exploded in the cinema. [...] Therefore, the statement is false. **FALSE (Ground-truth: TRUE)**

Prediction on Fib: The transcript describes two main bomb-related incidents. The first is the explosion that kills Stevie. The second occurs at the cinema where the old man (the bomb maker) threatens to “blow the place sky high.” The transcript later confirms an explosion there: “The roof’s gone. The whole of the back of the place - clean blown off.” This indicates the second bomb *did* explode. Therefore, the statement that a second bomb was “about to explode, but it didn’t” is false because it did explode. **FALSE (Ground-truth: FALSE)**

1728

1729

1730

1731

1732 Table 11: **Illustrative Example 2 from “Sabotage (Hitchcock)”**. Gemini predicts the pair of claims
 1733 incorrectly in every modality setting.

1734

1735 **Example 2 (Part 2) - Movie: "Sabotage"**

1736

1737 **Video-only setting**

1739 **Prediction on Fact:** The video shows one clear explosion involving a bus on a street around the
 1740 1:46 mark. Following this, there are various scenes, including one where people are watching a
 1741 cartoon in a cinema. However, there is no depiction or indication of a second bomb exploding,
 1742 nor is there any explosion shown occurring inside the cinema. **FALSE (Ground-truth: TRUE)**
 1743

1744 **Prediction on Fib:** The video montage shows scenes from Alfred Hitchcock’s “Sabotage.” The
 1745 primary bomb plot shown results in an explosion on a bus around 1:46. Later in the montage,
 1746 around 2:17-2:19, the Professor (the bomb maker) is seen suspiciously entering the cinema
 1747 building. This implies he might be carrying a second bomb and intending to cause another
 1748 explosion. However, the video montage ends shortly after this, at 2:23, without showing what
 1749 happens to the Professor or if there was indeed a second bomb that was “about to explode.”
 1750 Crucially, the video does **not** show this second bomb failing to explode or being prevented
 1751 from exploding. Since the video does not provide any information about the outcome of this
 1752 potential second bomb (neither showing it explode nor showing it **not** explode), the assertion
 1753 “but it didn’t” is not supported by the available video content. Therefore, the statement cannot
 1754 be confirmed as true based on the provided video. **FALSE (Ground-truth: FALSE)**
 1755

1756 **Video w/ subs setting**

1757 **Prediction on Fact:** The first act of sabotage was the power station blackout. The second
 1758 planned act of sabotage, referred to as “a parcel of fireworks”, was to be left in the cloakroom
 1759 at Piccadilly Circus underground station [...] This parcel, carried by Stevie on a bus, explodes
 1760 on the bus at 1:45. A newspaper headline later confirms “WEST END BOMB SENSATION.
 1761 Fully-laden bus was blown up in Piccadilly this afternoon”. [...] An explosion then occurs at
 1762 the cinema, as described by an officer: “The roof’s gone. The whole of the back of the place -
 1763 clean blown off”. This is a separate, third bomb event. Therefore, the second bomb (the one
 1764 Stevie was carrying) exploded on the bus, not in the cinema. The explosion in the cinema
 1765 was a distinct event caused by a different bomb wielded by the bird shop owner. **FALSE**
 1766 (*Ground-truth: TRUE*)

1767 **Prediction on Fib:** The statement claims: “There was a second bomb about to explode, but it
 1768 didn’t.” Let’s analyze the bombs in the film: 1. The first act of sabotage is the power station
 1769 blackout. While not explicitly shown as a bomb explosion, it is an act of “wilful destruction.” 2.
 1770 The second major plot device is the bomb intended for Piccadilly Circus on Lord Mayor’s Show
 1771 day. Verloc gives this bomb to Stevie. This bomb explodes prematurely on the bus, killing
 1772 Stevie and many others [...]. So this bomb **did** explode. 3. The third instance involving a
 1773 bomb is at the cinema, where the Professor (the bomb maker) is cornered by the police. [...] This bomb **does** explode [...]. In all instances where a bomb is primed or ready for its purpose
 1774 within the narrative, it either explodes (bus bomb, Professor’s bomb in the cinema) or fulfills its
 1775 sabotage (power station). There is no scene in the film where a bomb is “about to explode” and
 1776 then “didn’t.” The bombs that are set up to go off, do go off. Therefore, the statement is false.
 1777 **FALSE (Ground-truth: FALSE)**

1778

1779

1780

1781

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791

Table 12: **Illustrative Example 3 from “Scandal Sheet”**. The pair of claims relies primarily on visual information. Gemini predicts them incorrectly when given only a single modality, but when provided with both the transcript and the video, it correctly identifies the pair of claims.

1792 **Example 3 (Part 1) - Movie: "Scandal Sheet"**

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
News about the killer

Sales increasing..

Sales increasing..

1803 **Fact (✓):** The sales of the newspaper increased after it was revealed that the editor was the killer.

1804 **Fib (✗):** The sales of the newspaper decreased after it was revealed that the editor was the killer.

1805 **Granularity:** Single-scene

1806 **Context (Spoiler alert !):** In the film’s climax, Steve McCleary discovers that his editor-in-chief, Mark Chapman, is the “Lonely Hearts Killer.” After Chapman is exposed and confronted, McCleary—now acting as editor—publishes the full story, revealing Chapman’s true identity and crimes. Following the revelation, the newspaper’s sales surge dramatically. *This pair of claims relies primarily on visual information. Gemini predicts them incorrectly when given only a single modality, but when provided with both the transcript and the video, it correctly identifies the pair of claims.*

1807 **Gemini’s Predictions:**

1808 **Subs only setting**

1809 **Prediction on Fact:** The transcript ends with Mark Chapman, the editor, being apprehended as the killer. He tells the reporter McCleary to “Write it up big, kid. It’ll sell a lot of papers.” This indicates an expectation that the story will boost sales, but the transcript concludes before any information about the actual sales figures **after** this revelation is provided. Therefore, the statement that sales **increased** after the revelation cannot be verified from the given text.

1810 **FALSE (Ground-truth: TRUE)**

1811 **Prediction on Fib:** The transcript ends with Mark Chapman, the editor, being apprehended as the killer. His last words are, Write it up big, kid. It’ll sell a lot of papers. This is a prediction about future sales, not a statement of what actually happened to the sales. The transcript provides no information about the newspaper’s sales figures **after** it was revealed that the editor was the killer. Therefore, the statement cannot be confirmed as true based on the provided text. **FALSE (Ground-truth: FALSE)**

1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

1836

1837

1838 Table 13: **Illustrative Example 3 from “Scandal Sheet”**. The pair of claims relies primarily on
 1839 visual information. Gemini predicts them incorrectly when given only a single modality, but when
 1840 provided with both the transcript and the video, it correctly identifies the pair of claims.

1841

1842

Example 3 (Part 2) - Movie: "Scandal Sheet"

1843

1844

Video only setting

1845

1846

Prediction on Fact: The video shows a chart of the “NET PAID CIRCULATION NEW YORK EXPRESS” at various points. Initially, at 0:10, the circulation is shown with an upward trend. After the editor is revealed to be the killer and is subsequently shot (around 2:26-2:28), the final shot of the movie (2:29) shows a newspaper headline “KILLER!!” with the byline “By Steve McCleary” superimposed over the same circulation chart. At this point, the line on the chart indicating sales has reached its highest point, implying a significant increase in sales coinciding with or immediately following the revelation and capture of the killer editor. **TRUE** (*Ground-truth: TRUE*)

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

Prediction on Fib: The movie shows a chart of the “New York Express” net paid circulation at 0:10, indicating an upward trend in sales from October to September, reaching 650,000. Later, after the editor (the man standing by the chart at 0:10) is revealed as the killer and is shot (around 2:27), the final shot at 2:29 shows a newspaper headline “KILLER!!” superimposed over the *same* circulation chart. The numbers and the upward trend on this chart are identical to the one shown at 0:10. The movie does not provide any information or visual evidence suggesting that the newspaper’s sales decreased after the editor was revealed as the killer. The chart displayed at the end is the same one that showed increasing sales. **TRUE** (*Ground-truth: FALSE*)

1863

1864

Video w/ subs setting

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

Prediction on Fact: The statement’s truthfulness hinges on whether newspaper sales increased after the revelation that the editor, Mark Chapman, was the killer. 1. At 3:40, Mark Chapman discusses the newspaper’s circulation, showing a graph and mentioning that when circulation reaches 750,000, a big bonus will be paid. The graph shows circulation rising, with the last point around June/July showing approximately 620,000-650,000. 2. The revelation that Mark Chapman is the killer unfolds towards the end of the film. 3. At 59:39, the newspaper headline “EXPRESS EDITOR LONELY HEART KILLER!!” by Steve McCleary is shown. 4. Immediately following this (59:45 - 59:49), a large circulation meter for the “N.Y. EXPRESS” is shown. A hand physically moves the needle on the meter, stopping at 750,000. “The End” is then superimposed over this image. This sequence strongly implies that the story revealing the editor as the killer led to the circulation reaching 750,000. Earlier, Chapman had also told McCleary to write the story big because “It’ll sell a lot of papers” (59:06). The visual of the circulation hitting 750,000 immediately after the headline about the editor being the killer is the final image before “The End,” suggesting this was the peak sales driven by this sensational story. **TRUE** (*Ground-truth: TRUE*)

1880

1881

1882

1883

1884

1885

1886

1887

Prediction on Fib: At the end of the movie, after the editor, Mark Chapman, is revealed as the killer and the headline “EXPRESS EDITOR LONELY HEART KILLER!!” is shown (59:40-59:43), the circulation meter for the New York Express is shown. A hand moves the needle to 750,000 (59:45). Earlier in the film (around 4:24), it was mentioned that reaching 750,000 in circulation would trigger a big bonus. The film ends with the circulation at this high number, indicating that sales reached this target *after* the revelation about the editor. There is no indication that sales decreased; in fact, the implication is that this sensational story would boost sales, as McCleary says, “Write it up big, kid. It’ll sell a lot of papers.” (59:14-59:16). **FALSE** (*Ground-truth: FALSE*)

1888

1889

1890

1891

1892

1893

Table 14: **Illustrative Example 4 from “Tight Spot”**. Gemini fails to predict both claims correctly when given only the subtitles or only the visual cues. However, when provided with both modalities together, it correctly predicts both claims.

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

Example 4 (Part 1) - Movie: "Tight Spot"

1910 **Fact (✓):** When Hallet shows Conley a photograph of an individual who was on the yacht, she
1911 immediately recognizes the person.

1912 **Fib (✗):** When Hallet shows Conley a photograph of an individual who was on the yacht, she
1913 claims not to recognize the person.

1914

1915

Granularity: Single-scene

1916

1917

1918

1919

1920

1921

Context (Spoiler alert !): This pair of claims to be answered correctly requires *both* the *visual* and *text* cues. Hallet shows Conley a photograph (visual information) and asks whether she recognizes the person (Senior Maracelli). Conley recognizes the person. *When the model is given only the subtitles, it misclassifies both the fact and the fib (as visual cues are absent). In contrast, when provided with both the video and the subtitles, it predicts each one correctly.*

1922

Gemini’s Predictions:

1923

Subs only setting

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

Prediction on Fact: The statement claims that “When Hallet shows Conley a photograph of an individual who was on the yacht, she immediately recognizes the person.” We need to check two things in the transcript: 1. Does Hallet show Conley a photograph of an individual from the yacht? 2. If so, does Conley immediately recognize the person? In the transcript, the relevant exchange is: HALLETT: “And at one of these islands, this man came aboard the yacht.” CONLEY: “Signor Maracelli. The Italian garden expert. He taught me to say his name himself.” [...] *The transcript does not use the word “photograph” or describe the action of showing one in this specific interaction.* Since the statement’s premise that Hallet shows Conley a photograph is not explicitly confirmed by the transcript, a part of the statement is not verifiably true based on the provided text. **FALSE (Ground-truth: TRUE)**

1935

1936

1937

1938

1939

1940

Prediction on Fib: When Mr. Hallett mentions Signor Maracelli coming aboard the yacht, Conley immediately identifies him as “The Italian garden expert” and adds, “He taught me to say his name himself.” This indicates she clearly recognizes the person Hallett is referring to (and presumably showing a photograph of, though the act of showing the photo isn’t explicitly stated, Hallett’s line “this man came aboard the yacht” implies he’s identifying someone specific). She does not claim not to recognize him. **FALSE (Ground-truth: FALSE)**

1941

1942

1943

1944
1945
1946
1947
1948
1949

1950 Table 15: **Illustrative Example 4 from “Tight Spot”**. Gemini fails to predict both claims correctly
1951 when given only the subtitles or only the visual cues. However, when provided with both modalities
1952 together, it correctly predicts both claims.
1953

1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Example 4 (Part 2) - Movie: “Tight Spot”

Video only setting

Prediction on Fact: The statement asks whether Conley immediately recognizes the person in the photograph shown to her by Hallet. In the video, at 00:30, Hallet takes out a photograph. At 00:31, he shows it to Conley. Conley looks down at the photo, then at 00:32, she looks up at Hallet with an expression that seems more contemplative or questioning rather than one of instant, clear recognition. She then glances back at the photo before looking at Hallet again and starting to speak at 00:33. Her reaction involves a pause and a sequence of looks, which does not convey **immediate** recognition. “Immediate” suggests an instantaneous, reflexive understanding, which is not evident in her more measured response. **FALSE (Ground-truth: TRUE)**

Prediction on Fib: The statement claims that when Hallet shows Conley a photograph of an individual from a yacht, Conley claims not to recognize the person. Observing the video, there is a scene from approximately 0:29 to 0:36 where a man (presumably Hallet, played by Edward G. Robinson) shows a photograph to a woman (presumably Conley, played by Ginger Rogers). The woman looks at the photograph (0:31-0:32). However, the video segment does not include any audible dialogue or clear visual cue (like shaking her head definitively or mouthing “I don’t know”) from the woman that would confirm she “claims not to recognize the person.” Her facial expression is somewhat pensive or surprised but not an explicit denial of recognition. She then proceeds to make a phone call (0:34). The context that the photograph is of “an individual who was on the yacht” is also not explicitly provided by the visual information in this clip. Since the crucial part of the statement - her claiming not to recognize the person - is not depicted or audible in the provided video evidence, the statement cannot be verified as true based on the available information. **FALSE (Ground-truth: FALSE)**

Video w/ subs setting

Prediction on Fact: When Hallett shows Conley the photograph (around 00:40), he identifies the man as “Signor Maracelli.” Conley immediately confirms recognition by saying, “The Italian garden expert. He taught me to say his name himself.” This demonstrates she knew who the person was. **TRUE (Ground-truth: TRUE)**

Prediction on Fib: When Mr. Hallett mentions Signor Maracelli coming aboard the yacht, Conley immediately identifies him as “The Italian garden expert” and adds, “He taught me to say his name himself.” This indicates she clearly recognizes the person Hallett is referring to (and presumably showing a photograph of, though the act of showing the photo isn’t explicitly stated, Hallett’s line “this man came aboard the yacht” implies he’s identifying someone specific). She does not claim not to recognize him. **FALSE (Ground-truth: FALSE)**

1998
1999
2000
2001
2002
2003

Table 16: **Illustrative Example 5 from “Tight Spot”**. Gemini fails to predict the pair of claims correctly, in every modality setting.

Example 5 (Part 1) - Movie: “Tight Spot”

Pete in taxi

Walking the stairs of the church

Pete being shot

Fact (✓): Pete Tinelli was shot.

Fib (✗): Pete Tinelli was poisoned.

Granularity: Multi-scene

Context (Spoiler alert !): Early in the film, we are introduced to Pete during a scene in which he rides in a taxi with two other men. Later, the group arrives in front of a church, and as they walk up the steps, Pete is suddenly shot while the other two men look around, trying to identify the shooter. *This pair of claims requires both visual and text cues to be resolved correctly, as the model needs to understand who is Pete (in the first scene) and connect it with his murder (being shot). Gemini fails to predict correctly the pair of claims in every modality setting.*

Gemini’s Predictions:

Subs only setting

Prediction on Fact: The transcript states that “Pete’s dead” and that “He was murdered by the Costain mob.” [...] However, the transcript does not specify the method of murder. It does not explicitly say that Pete Tonelli was shot. Therefore, because the specific detail of “shot” is not confirmed in the transcript, the statement is false. **FALSE (Ground-truth: TRUE)**

Prediction on Fib: The transcript states, “Pete’s dead... He was murdered by the Costain mob.” It does not specify the method of murder. Since the transcript doesn’t mention poisoning as the cause of Pete Tonelli’s death, and only confirms he was murdered, the statement that he was poisoned cannot be confirmed as true based on the provided text. **FALSE (Ground-truth: FALSE)**

Video only setting

Prediction on Fact: A man is visibly shot around the 1:57-1:58 mark in the video. In this scene, a man is held by two others, another man (resembling Edward G. Robinson) nods, a gunshot sound is heard, and the man being held slumps. However, throughout the provided video clip, there is no dialogue, on-screen text, or any other information that identifies the man who was shot as “Pete Tinelli.” [...] **FALSE (Ground-truth: TRUE)**

Prediction on Fib: The video contains several scenes that lead to the conclusion that Pete Tinelli was poisoned. At 1:58, a group of men are shown in what appears to be a garage, and one man is forcibly made to drink something. He subsequently collapses at 2:01. Later, at 2:05, a woman asks, “What happened to Pete Tinelli?” and is told, “He won’t bother you anymore.” Shortly after, at 2:08, one man informs another, “Pete Tinelli’s been taken care of.” When asked “How?”, the response is “Poison.” This sequence of events and dialogue directly confirms that Pete Tinelli was poisoned. **TRUE (Ground-truth: FALSE)**

2051

2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069

2070 Table 17: **Illustrative Example 5 from “Tight Spot”**. Gemini fails to predict the pair of claims
 2071 correctly, in every modality setting.
 2072

2073 **Example 5 (Part 2) - Movie: “Tight Spot”**

2075 **Video w/ subs setting**

2076
 2077 **Prediction on Fact:** The provided transcript states at 00:54-00:55 that “Pete’s dead” and “He
 2078 was murdered by the Costain mob.” However, neither the transcript nor the accompanying video
 2079 footage specifies the method of his murder. The statement “Pete Tinelli was shot” asserts a
 2080 specific cause of death (being shot) which is not explicitly mentioned or shown in the provided
 2081 materials. Since the method of murder is not confirmed, we cannot ascertain that he was shot
 2082 based solely on the given information. **FALSE** (*Ground-truth: TRUE*)

2083 **Prediction on Fib:** The transcript states at 00:42, “He was murdered by the Costain mob.”
 2084 While this confirms Pete Tonelli was murdered, it does not specify the method of murder. The
 2085 statement claims he was poisoned. Since the available information does not mention poisoning
 2086 as the cause of death, the specific claim that he was poisoned cannot be verified as true from
 2087 the provided movie and transcript. **FALSE** (*Ground-truth: FALSE*)

2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105