Out-of-distribution generalization via composition:
a lens through induction heads in Transformers
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Do LLMs solve novel tasks?

Out-of-distribution (OOD) generalization measures the performance on novel tasks Pirain 7# Prest.
New challenges since advent of LLMs.

= Prompting, In-context learning.
= Compositional structure.
= Tasks that require “reasoning’.

Goal: In-depth empirical analysis to understand

= How composition is internally represented by LLMs:
= How critical geometric structure emerges from training;
= How they empower language & reasoning tasks across a wide range of models.

A primer on Transformers: How concepts are represented

Synthetic example: training dynamics on copying task
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where Wi, Woy € RI%d gre query-key, output-value matrices.

Linear representation hypothesis: concepts are encoded as linear subspaces within the embed-
ding space.

Feature superposition: hidden states are sparse linear combinations of base concept vectors from
a large dictionary.

symbols fruit

apple = 0.09“dessert” + 0.11 “organism”
+ 0.16 “fruit” + 0.22“mobile&IT”
+ 0.42“other”

dessert mobile & IT

Main message: composition through subspace matching empowers
OOD generalization

composed rule 1
e Concept subspaces + rule subspaces

fruit. COMPosedrule2 o Composed rule 1 (e.g., copying),
composed rule 2 ...

symbols

dessert mobile & IT

e Enables OOD generalization,
esp. in novel context (ICL, CoT)

https.//github.com/JiajunSong629/00d-generalization-via-composition
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Training Steps
1. Training data generation. Vocabulary size 64, context length 64, i.i.d. tokens from power law

=

distribution. Segment s# of random tokens with length Unif({10,11,...,19}). Two copies of
s™ at random non-overlapping locations. Prompt format (, st x. st %).

. OOD data generation. Token distribution uniform, segment length 25.
Model. 2-layer (1-layer) 1-head TF with no FFEN, LayerNorm, RoPE, dropout.

Training. Fresh samples, autoregressive, AdamVV.

Low-dimensional subspace matching emerges abruptly

Experiments on pretrained LLMs: symbolic & reasoning tasks
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= Diagonal score: normalized average diagonal entries of WS&W&;

= Subspace matching: generalized cosine sim between two principal subspaces (r = 10).

= Previous-token head (PTH) and induction head (IH). Two types of attention heads. Follow
similar sharp transition, complementary role (position vs. token matching).

PTH/IH attention: pool size None, step 20000
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Conference on Parsimony and Learning (CPAL), March 2025, Stanford

1. Indirect object identification (IOl). Normal (N) vs. Symbolized (S).

(N) “Then, Henry and Blake had a long argument. Afterwards Henry said to” — Blake
(S) “Then, & and #$ had a long argument. Afterwards & said to” — #9$

2. In-context learning (ICL).

,volleyball is sport, lettuce is” — plant
volleyball is $#, lettuce is” — 1%

3. Math reasoning with chain-of-thought (CoTl) on GSM8K.

(N) “baseball is sport, celery is plant, sheep is
(S) “baseball is $#, celery is %, sheep is

“Jerry is cutting up wood for his wood-burning stove. Each pine tree makes 80 logs, each maple tree makes 60
logs, and each walnut tree makes 100 logs. If Jerry cuts up 8 pine trees, 3 maple trees, and 4 walnut trees,
how many logs does he get?” [...Deduction...] “#### 1220”

= 100 test prompts, two versions (Normal as in-distribution, Symbolized as OOD).

= Removal top-K induction heads (ranked by attention scores) vs. removal of random heads,
K =0,10,...,50.
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1. Finding 1: Normal prompts are insensitive to IH removal (likely memorization)

2. Finding 2: In contrast, OOD/reasoning prompts accuracy rely crucially on IHs as a
component in composition.

Common bridge representation hypothesis
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Hypothesis: For a compositional task, there exists a low-dimensional subspace V ¢ RY st.

V = span(Woy ;) = span(W&Kjk).

= Extension of linear representation hypothesis to compositional tasks.
= Key to OOD generalization.
= Supported by ablation experiments (projecting weights onto V vs. onto V1)
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