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Abstract

This paper presents an auditing procedure for the Differentially Private Stochas-
tic Gradient Descent (DP-SGD) algorithm in the black-box threat model that is
substantially tighter than prior work. The main intuition is to craft worst-case
initial model parameters, as DP-SGD’s privacy analysis is agnostic to the choice
of the initial model parameters. For models trained on MNIST and CIFAR-10
at theoretical ε = 10.0, our auditing procedure yields empirical estimates of
εemp = 7.21 and 6.95, respectively, on a 1,000-record sample and εemp = 6.48
and 4.96 on the full datasets. By contrast, previous audits were only (rela-
tively) tight in stronger white-box models, where the adversary can access the
model’s inner parameters and insert arbitrary gradients. Overall, our auditing
procedure can offer valuable insight into how the privacy analysis of DP-SGD
could be improved and detect bugs and DP violations in real-world implementa-
tions. The source code needed to reproduce our experiments is available from
https://github.com/spalabucr/bb-audit-dpsgd.

1 Introduction

Differentially Private Stochastic Gradient Descent (DP-SGD) [1] allows training machine learning
models while providing formal Differential Privacy (DP) guarantees [15]. DP-SGD is a popular
algorithm supported in many open-source libraries like Opacus [40], TensorFlow [19], and JAX [4].
Progress in privacy accounting and careful hyper-parameter tuning has helped reduce the gap in
model performance compared to non-private training [11]. Furthermore, pre-training models on large
public datasets and then fine-tuning them on private datasets using DP-SGD can also be used to
improve utility [11].

Implementing DP-SGD correctly can be challenging – as with most DP algorithms [5, 26] – and
bugs that lead to DP violations have been found in several DP-SGD implementations [7, 22]. These
violations do not only break the formal DP guarantees but can also result in realistic privacy threats [17,
33]. This prompts the need to audit DP-SGD implementations to verify whether the theoretical
DP guarantees hold in practice. This usually involves running membership inference attacks [32],
whereby an adversary infers whether or not a sample was used to train the model. The adversary’s
success estimates the empirical privacy leakage from DP-SGD, and that is compared to the theoretical
DP bound. If the former is “far” from the latter, it means that the auditing procedure is loose and may
not be exploiting the maximum possible privacy leakage. Whereas, when empirical and theoretical
estimates are “close,” auditing is tight and can be used to identify bugs and violations [28].
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Although techniques to tightly audit DP-SGD exist in literature [28, 29], they do so only in active
white-box threat models, where the adversary can observe and insert arbitrary gradients into the
intermediate DP-SGD steps. By contrast, in the more restrictive black-box threat model, where an
adversary can only insert an input canary and observe the final trained model, prior work has only
achieved loose audits [20, 28, 29]. In fact, prior work has suggested that the privacy analysis of DP-
SGD in the black-box threat model can be tightened but only in limited settings (i.e., strongly convex
smooth loss functions) [3, 9, 39]. Therefore, it has so far remained an open research question [28]
whether or not it is possible to tightly audit DP-SGD in the black-box model.

In this paper, we introduce a novel auditing procedure that achieves substantially tighter black-box
audits of DP-SGD than prior work, even for natural (i.e., not adversarially crafted) datasets. The
main intuition behind our auditing procedure is to craft worst-case initial model parameters, as
DP-SGD’s privacy analysis is agnostic to the choice of initial model parameters. We show that the
gap between worst-case empirical and theoretical privacy leakage in the black-box threat model is
much smaller than previously thought [20, 28, 29]. When auditing a convolutional neural network
trained on MNIST and CIFAR-10 at theoretical ε = 10, our audits achieve an empirical privacy
leakage estimate of εemp = 6.48 and 4.96, respectively, compared to εemp = 3.41 and 0.69 when the
models were initialized to average-case initial model parameters, as done in prior work [11, 20, 28].

In the process, we identify and analyze the key factors affecting the tightness of black-box auditing:
1) dataset size and 2) gradient clipping norm. Specifically, we find that the audits are looser for larger
datasets and larger gradient clipping norms. We believe this is due to more noise, which reduces the
empirical privacy leakage. When considering smaller datasets with 1,000 samples, our audits are
tighter – for ε = 10.0, we obtain εemp = 7.21 and 6.95, respectively, for MNIST and CIFAR-10.

Finally, we present tight audits for models with only the last layer fine-tuned using DP-SGD. Specifi-
cally, we audit a 28-layer Wide-ResNet model pre-trained on ImageNet-32 [11] with the last layer
privately fine-tuned on CIFAR-10. With ε = 10.0, we achieve an empirical privacy leakage estimate
of εemp = 8.30 compared to εemp = 7.69 when the models are initialized to average-case initial
parameters (as in previous work [11, 20, 28]).

Overall, the ability to perform rigorous audits of differentially private machine learning techniques
allows shedding light on the tightness of theoretical guarantees in different settings. At the same time,
it provides critical diagnostic tools to verify the correctness of implementations and libraries.

2 Related Work

DP-SGD. Abadi et al. [1] introduce DP-SGD and use it to train a feed-forward neural network
model classifying digits on the MNIST dataset. On the more complex CIFAR-10 dataset, they
instead fine-tune a pre-trained convolutional neural network, incurring a significant performance loss.
Tramèr and Boneh [35] improve on [1] using hand-crafted feature extraction techniques but also
suggest that end-to-end differentially private training may be inherently difficult without additional
data. Papernot et al. [30] and Dörmann et al. [14] also present improvements considering different
activation functions and larger batch sizes. Finally, De et al. [11] achieve state-of-the-art model
performance on CIFAR-10 both while training from scratch and in fine-tuning regimes; they do so by
using large batch sizes, augmenting training data, and parameter averaging. Our work focuses on
auditing realistic models with high utility that might be used in practice; thus, we audit models with
utility similar to [11] and the same models pre-trained in [11] in the fine-tuning regime.

Membership Inference Attacks (MIAs). Shokri et al. [32] propose the first black-box MIAs against
machine learning models using shadow models. Carlini et al. [6] improve by fitting a Gaussian
distribution on the loss of the target sample and using fewer models to achieve equivalent attack
accuracies. Sablayrolles et al. [31] consider per-example thresholds to improve the performance of
the attacks in a low false-positive rate setting [6]. By factoring in various uncertainties in the MIA
“game,” Ye et al. [38] construct an optimal generic attack. Concurrent work [16, 25, 37] use poisoned
pre-trained models, which is somewhat similar to our approach of using worst-case initial model
parameters, but with a different focus. Specifically, Liu et al. [25] and Wen et al. [37] show that
privacy leakage from MIAs is amplified when pre-trained models are poisoned but, crucially, do not
consider DP auditing. Additionally, while Feng and Tramèr [16] achieve tight audits with poisoned
pre-trained models, their strategy is geared towards the last-layer only fine-tuning regime. By contrast,
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we focus on auditing DP-SGD with full model training to estimate the empirical worst-case privacy
leakage in the black-box setting.

Auditing DP-SGD. Jayaraman and Evans [21] derive empirical privacy guarantees from DP-SGD,
observing a large gap from the theoretical upper bounds. Jagielski et al. [20] use data poisoning
in the black-box model to audit Logistic Regression and Fully Connected Neural Network models
and produce tighter audits than using MIAs. They initialize models to fixed (average-case) initial
parameters, but the resulting empirical privacy guarantees are still far from the theoretical bounds.
They also adapt their procedure to the fine-tuning regime, again producing loose empirical estimates.

Nasr et al. [29] are the first to audit DP-SGD tightly; they do so by using adversarially crafted
datasets and active white-box adversaries that insert canary gradients into the intermediate steps of
DP-SGD. In follow-up work, [28] presents a tight auditing procedure also for natural datasets, again
in the active white-box model. Zanella-Béguelin et al. [42] present tighter auditing procedures using
Bayesian techniques, needing fewer models to audit larger privacy levels. Finally, De et al. [11]
perform black-box auditing of their implementation of DP-SGD in the JAX framework [4]; they also
use fixed (average-case) initialization of models as in [20], similarly achieving loose audits.

Overall, while prior work [11, 20, 29] showed that reducing the randomness in the initial model
parameters results in tighter empirical privacy leakage estimates, the audits remained loose as the
fixed model parameters were still initialized randomly. Specifically, designing an effective adversarial
strategy that provides tight audits in the black-box setting without destroying utility has remained, to
the best of our knowledge, an open problem.

3 Background

3.1 Differential Privacy (DP)

Definition 1 (Differential Privacy (DP) [15]). A randomized mechanismM : D → R is (ε, δ)-
differentially private if, for any two neighboring datasets D,D′ ∈ D and S ⊆ R, it holds:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ

Put simply, DP guarantees a formal upper bound (constrained by the privacy parameter ε) on the
probability that any adversary observing the output of the mechanismM can distinguish between
two neighboring inputs toM – i.e., two datasets differing in only one record.

3.2 Differentially Private Machine Learning (DPML)

DP-SGD. Differentially Private Stochastic Gradient Descent (DP-SGD) [1] is a popular algorithm for
training machine learning models while satisfying DP. In this paper, we consider classification tasks
on samples from the domain X × Y , where X is the features domain and Y is the labels domain.

DP-SGD, reviewed in Algorithm 1, introduces two hyper-parameters: gradient clipping norm C and
noise multiplier σ. Typically, C is set to 1, while σ is calibrated to the required privacy level (ε, δ)
based on the number of iterations, T , and batch size, B. Early DP-SGD work [1] set batch sizes to be
small and similar to those of non-private SGD; however, recent work has highlighted the advantage
of setting large batch sizes [11, 14] by training state-of-the-art models with them. Following this
trend, and to ease auditing, we set B = N , as also done in prior work [28]. Finally, while the initial
set of model parameters θ0 is typically sampled randomly (e.g., using Xavier initialization [18]), it
can also be set arbitrarily (and even adversarially), without affecting the privacy guarantees provided
by DP-SGD.

Fine-tuning regime. In this setting, one first pre-trains a model on a (large) public dataset and then
fine-tunes it on the private data. When a suitable public dataset is available, prior work has shown
that fine-tuning can achieve much higher utility than training from scratch using DP-SGD [11].

There are two methods for fine-tuning: doing it for all layers or only the last one. In both cases, the
initial model parameters, θ0, are set to the pre-trained model parameters (rather than randomly) before
running DP-SGD. However, while the former updates all model parameters during DP-SGD, with
the latter, the model parameters until the last (fully connected) layer are “frozen” and not updated
during DP-SGD. This setting treats the pre-trained model as a feature extractor and trains a Logistic
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Algorithm 1 Differentially Private Stochastic Gradient Descent (DP-SGD) [1]
Require: Dataset, D. Iterations, T . Learning rate, η. Batch size, B. Loss function, ℓ. Initial model parameters,

θ0. Noise multiplier, σ. Clipping norm, C.
1: for t ∈ [T ] do
2: Sample Lt from D with sampling probability B/N
3: for (xi, yi) ∈ Lt do
4: gt(xi, yi)← ∇θtℓ(θt; (xi, yi))

5: ḡt(xi, yi)← gt(xi)/max(1, ||gt(xi)||2
C

)
6: end for
7: g̃t ← 1

B

(∑
i ḡt(xi, yi) +N (0, C2σ2I)

)
8: θt+1 ← θt − ηg̃t
9: end for

10: return θT

Regression model using DP-SGD based on the extracted features. As prior work shows [11] that this
setting produces models with accuracy closer to the non-private state of the art (while also incurring
smaller computational costs), we also do fine-tuning of just the last layer.

3.3 DP Auditing

As mentioned above, DP provides a theoretical limit on the adversary’s ability – bounded by the
privacy parameter ε – to distinguish betweenM(D) andM(D′). With auditing, one assesses this
limit empirically to verify whether the theoretical guarantees provided byM are also met in practice.
There may be several reasons this does not happen, e.g., the privacy analysis ofM is not tight [29] or
because of bugs in the implementation ofM [28, 36]. Therefore, with DP mechanisms increasingly
deployed in real-world settings, auditing them becomes increasingly important.

Deriving εemp. When auditing a DP mechanismM, one runsM repeatedly on two neighboring
inputs, D and D′, R times each and the outputs (O = {o1, ..., oR} and O′ = {o′1, ..., o′R}) are given
to an adversary A. Next, A tries to distinguish between O and O′, which determines a false positive
rate (FPR) and false negative rate (FNR). For a given number of outputs 2R and confidence level
α, empirical upper bounds FPR and FNR can be computed using Clopper-Pearson confidence
intervals [29, 28]. Finally, the empirical upper bounds are converted to an empirical lower bound
εemp using the privacy region of M (see below) and εemp can be compared to the theoretical ε.
We consider an audit tight if εemp ≈ ε. To ease presentation, we abstract away the details and use
εemp ← EstimateEps(FPR,FNR, 2R,α, δ) to denote the process of estimating an εemp from a given
FPR and FNR.1

Privacy region of DP-SGD. Given a mechanism M, the privacy region of the mechanism,
RM(ε, δ) = {(FPR,FNR)|·} defines the FPR and FNR values attainable for any adversary aiming
to distinguish betweenM(D) andM(D′). Nasr et al. [28] note that the privacy region of DP-SGD
corresponds (tightly) to that of µ-Gaussian Differential Privacy [13], which can be used to first
compute a lower bound on µ:

µemp = Φ−1(1− FPR)− Φ−1(FNR) (1)

Then, a lower bound on µ corresponds to a lower bound on ε by means of the following theorem:

Theorem 1 (µ-GDP to (ε, δ)-DP conversion [13]). A mechanism is µ-GDP iff it is (ε, δ(ε))-DP for
all ε ≥ 0, where:

δ(ε) = Φ

(
− ε

µ
+

µ

2

)
− eεΦ

(
− ε

µ
− µ

2

)
(2)

4 Auditing Procedure

In this section, we present our auditing procedure. We discuss the threat model in which we operate,
the key intuition for using worst-case initial parameters, and how we craft them to maximize the
empirical privacy leakage.

1Please refer to https://github.com/spalabucr/bb-audit-dpsgd for details.
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Algorithm 2 Auditing DP-SGD
Require: Data distribution, D. Number of samples, n. Initial model parameters, θ0. Loss function, ℓ. Number

of repetitions, 2R. Decision threshold, τ . Confidence level, α.
1: Sample D ∼ Dn−1

2: Craft target sample (xT , yT )
3: D′ = D ∪ {(xT , yT )}

4: Observations O ← {}, O′ ← {}
5: for r ∈ [R] do
6: θr ← DP-SGD(D; θ0, ℓ)
7: θ′r ← DP-SGD(D′; θ0, ℓ)
8: O[t]← ℓ(θr; (xT , yT ))
9: O′[t]← ℓ(θ′r; (xT , yT ))

10: end for

11: FPR← 1
R
|{o|o ∈ O, o ≥ τ}|

12: FNR← 1
R
|{o|o ∈ O′, o < τ}|

13: εemp ← EstimateEps(FPR, FNR, 2R,α, δ)
14: return εemp

Threat model. We consider a simple black-box model where the adversary only sees the final model
parameters, θT , from DP-SGD. Specifically, unlike prior work on tight audits [28, 29], the adversary
cannot observe intermediate model parameters or insert canary gradients. We do so to consider more
realistic adversaries that may exist in practice. Additionally, we assume that the adversary can choose
a worst-case target sample as is standard for auditing DP mechanisms [20]. Finally, we assume
that the adversary can choose (possibly adversarial) initial model parameters. Note that this is not
only an assumption allowed by DP-SGD’s privacy analysis, but, in the context of the popular public
pre-training, private fine-tuning regime [11], this is also a reasonable assumption.

Auditing. Our DP-SGD auditing procedure is outlined in Algorithm 2. As we operate in the black-box
threat model, the procedure only makes a call to the DP-SGD algorithm—once again, they cannot
insert canary gradients, etc. As mentioned, the adversary can set the initial model parameters (θ0),
which is fixed for all models. Finally, we assume that the final model parameters are given to the
adversary, who calculates the loss of the target sample as “observations.” These are then thresholded
to compute FPRs and FNRs and estimate the εemp using the EstimateEps process (see Section 3.3).
This threshold, which we denote as τ , must be computed on a separate set of observations (e.g., a
validation set) for the εemp to constitute a technically valid lower bound. However, as any decision
threshold for GDP is equally likely to maximize εemp [28], we follow common practice [27, 29, 28]
to find the threshold that maximizes the value of εemp from O ∪O′.

Crafting worst-case initial parameters. Recall that DP-SGD’s privacy analysis holds not only for
randomly initialized models but also for arbitrary fixed parameters. Indeed, this was noted in prior
work [11, 20, 28] and led to using initial model parameters that are fixed for all models. In our work,
we consider worst-case, rather than average-case, initial parameters that minimize the gradients of
normal samples in the dataset. This makes the target sample’s gradient much more distinguishable.
To do so, we pre-train the model using non-private SGD on an auxiliary dataset that follows the same
distribution as the target dataset. Specifically, for MNIST, we pre-train the model on half of the full
dataset (reserving the other half to be used for DP-SGD) for 5 epochs with a batch size of 32 and a
learning rate of 0.01. For CIFAR-10, we first pre-train the model on the CIFAR-100 dataset for 300
epochs with batch size 128 and a learning rate of 0.1. Then, we (non-privately) fine-tune the model on
half of the full dataset for 100 epochs, with a batch size of 256 and a learning rate of 0.1. Ultimately,
we show that the gradients of normal samples are indeed minimized, achieving significantly tighter
audits of DP-SGD in the black-box model.

5 Experiments

In this section, we evaluate our auditing procedure using image datasets commonly used to benchmark
differentially private classifiers and CNNs that achieve reasonable utility on these datasets.
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Dataset ε = 1.0 ε = 2.0 ε = 4.0 ε = 10.0

MNIST 95.4 95.7 95.9 95.9
CIFAR-10 46.0 51.2 52.2 53.6

Table 1: Accuracy of models for average-case initial model parameters (θ0).

Due to computational constraints, we only train 2R = 200 models (100 with the target sample and
100 without) to determine the empirical privacy estimates εemp in the full model training setting
and train 2R = 1000 models for the last-layer only fine-tuning setting. In theory, we could achieve
tighter audits by increasing the number of models, however, this would require significantly more
computational resources and time (see below). Since our work focuses on the (broader) research
questions of whether tight audits are possible in the black-box setting and how various factors
affect this tightness, we believe 2R = 200 provides a reasonable tradeoff between tightness and
computational overhead.

In our evaluation, we report lower bounds with 95% confidence (Clopper-Pearson [10]) and report
the mean and standard deviation values of εemp over five independent runs.2

5.1 Experimental Setup

Datasets. We experiment with the MNIST [24] and CIFAR-10 [23] datasets. The former includes
60,000 training and 10,000 testing 28x28 grayscale images in one of ten classes (hand-written digits),
Often referred to as a “toy dataset,” is commonly used to benchmark DP machine learning models.
CIFAR-10 is a more complex dataset containing 50,000 training and 10,000 testing 32x32 RGB
images, also consisting of ten classes. Note that the accuracy of DP models trained on CIFAR-10 has
only recently started to approach non-private model performance [11, 35]. Whether on MNIST or
CIFAR-10, prior black-box audits (using average-case initial parameters) have not been tight. More
precisely, for theoretical ε = 8.0, De et al. [11] and Nasr et al. [28] only achieve empirical estimates
of εemp ≈ 2 and εemp ≈ 1.6, respectively, on MNIST and CIFAR-10.

To ensure a fair comparison between the average-case and worst-case initial parameter settings, we
split the training data in two and privately train on only half of each dataset (30,000 images for
MNIST and 25,000 for CIFAR-10). The other half of the training dataset is used as the auxiliary
dataset to non-privately pre-train the models and craft the worst-case initial parameters (see Section 4).
We note that for CIFAR-10, we additionally augment the pre-training dataset with the CIFAR-100
dataset to boost the model accuracy further (see Appendix A for further details).

Models. When training the model fully, we use a (shallow) Convolutional Neural Network (CNN)
for both datasets. We do so as we find accuracy to be poor with models like Logistic Regression
and Fully Connected Neural Networks, and training hundreds of deep neural networks is impractical
due to large computational cost. Therefore, we draw on prior work by Dörmann et al. [14] and train
shallow CNNs that achieve acceptable model accuracy while being relatively fast to train. (We report
exact model architectures in Appendix A). Whereas, for the last layer-only fine-tuning setting, we
follow [11] and use the Wide-ResNet (WRN-28-10) [41] model pre-trained on ImageNet-32 [12].

Experimental Testbed. All our experiments are run on a cluster using 4 NVIDIA A100 GPUs, 64
CPU cores, and 100GB of RAM. Auditing just one model took approximately 16 GPU hours on
MNIST and 50 GPU hours on CIFAR-10.

5.2 Full Model Training

To train models with an acceptable accuracy on MNIST and CIFAR-10, we first tune the hyper-
parameters (i.e., learning rate η and number of iterations T ); due to space limitations, we defer
discussion to Appendix A.

Model Accuracy. In Table 1, we report the accuracy of the final models for the different values of
ε-s we experiment with. While accuracy on MNIST is very good (≥ 95% for all ε), for CIFAR-10,

2The source code needed to reproduce our experiments is available from https://github.com/spalabucr
/bb-audit-dpsgd.
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Figure 1: Auditing models with average-case vs worst-case initial parameters at various levels of ε.
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Figure 2: Comparing the average gradient norms to empirical privacy leakage, εemp, for models
trained on MNIST at ε = 10.0 with increasing number of pre-training epochs.

we are relatively far from the state of the art (≈50% at ε = 10.0 vs. ≈80% at ε = 8.0 in [11]). This
is due to two main reasons. First, as we need to train hundreds of models, we are computationally
limited to using shallow CNNs rather than deep neural networks. Second, we need to consider a much
larger batch size to ease auditing [28]; thus, the models converge much more slowly. In Appendix B,
we show that, given enough iterations (T = 1,000), the model reaches an accuracy of ≈70% at
ε = 10.0, almost approaching state-of-the-art. As a result, we audit models striking a reasonable
trade-off between utility and computational efficiency, as discussed above.

Impact of initialization. In Figure 1, we compare the difference in εemp between worst-case initial
parameters and average-case parameters (as done in prior work [11, 20, 28]). In the latter, all models
are initialized to the same, randomly chosen θ0 (using Xavier initialization [18]), while, in the former,
to a θ0 from a model pre-trained on an auxiliary dataset. In the rest of this section, the target sample
is set as the blank sample, which is known to produce the tightest audits in previous work [11, 28].

With worst-case initial parameters, we achieve significantly tighter audits for both MNIST and
CIFAR-10. Specifically, at ε = 1.0, 2.0, 4.0, 10.0, the empirical privacy leakage estimates reach
εemp = 0.08, 0.54, 1.89, 6.48 and εemp = 0.00, 0.18, 1.43, 4.96 for MNIST and CIFAR-10, re-
spectively. In comparison, with average-case initial parameters as in prior work, the empirical
privacy leakage estimates were significantly looser, reaching only εemp = 0.00, 0.06, 0.61, 3.41 and
εemp = 0.07, 0.02, 0.20, 0.69 for MNIST and CIFAR-10, respectively. Notably, at larger privacy
levels ε = 4.0 and ε = 10.0, for both MNIST and CIFAR-10, the empirical privacy leakage estimates
when auditing with worst-case initial parameters are not only larger than the average-case, but are
outside of the ± s.d. range. This shows that our auditing procedure not only produces significantly
tighter audits than prior work, especially at larger εs, but also that, at lower ε-s, our evaluations are
currently limited by the number of models used to audit (resulting in large s.d.).

7



1.0 2.0 4.0 10.0
Theoretical Y

0
1
2
3
4
5
6
7
8
9

10
Em

pi
ri

ca
lY

em
p

MNIST

1.0 2.0 4.0 10.0
Theoretical Y

0
1
2
3
4
5
6
7
8
9

10

Em
pi

ri
ca

lY
em

p

CIFAR10

Theoretical Y n = 100 n = 1,000 n = |D|

Figure 3: Auditing models trained on varying dataset sizes (n) at different values of ε. The full
dataset size |D| is 30,000 for MNIST and 25,000 for CIFAR-10.

To shed light on why worst-case initial parameters improve tightness, we vary the amount of pre-
training done to craft θ0 and, in Figure 2, plot the corresponding εemp-s and the average gradient
norm of all samples (after clipping) in the first iteration of DP-SGD. For computational efficiency,
we focus on MNIST and set the theoretical ε to 10.0. Recall that, regardless of the initial model
parameters, all models achieve ≥ 95% accuracy on the test set. As the number of pre-training epochs
increases from 0 (no pre-training) to 5, the average gradient norm steadily decreases from 1.00 to
0.51, as expected. On the other hand, the empirical privacy leakage increases from 3.41 to 6.48. In
other words, with more pre-training, the impact of the other samples in the dataset reduces, making
the target sample much more distinguishable, thus yielding tighter audits. Although there appears to
be an anomaly in the εemp obtained when the model is pre-trained for 3 epochs, this is within the
standard deviation.

Remarks. With lower ε values, the empirical εemp estimates are still relatively far away from the
theoretical bounds. This is because, in each run, we train a small number of models and report the
average εemp across all five runs. In fact, the maximum εemp obtained over the five runs amount
to εemp = 0.27, 1.48, 3.23, 8.28 and εemp = 0.00, 0.54, 2.33, 6.70, respectively, on MNIST and
CIFAR-10, for ε = 1.0, 2.0, 4.0, 10.0. Nevertheless, even on the averages, our audits are still
appreciably tighter than prior work—approximately by a factor of 3 for MNIST [11] and CIFAR-
10 [28]. Overall, this confirms that the tightness of the audits can vary depending on the datasets,
possibly due to differences in the difficulty of the classification task on the datasets. For instance,
MNIST classification is known to be easy, with DP-SGD already reaching close to non-private model
performance, even at low ε-s. By contrast, CIFAR-10 is much more challenging, with a considerable
gap still existing between private and non-private model accuracy [11].

Impact of size of dataset. In the auditing literature, empirical privacy leakage is often commonly
estimated on (smaller) dataset samples both to achieve tighter audits and for computational efficiency
reasons [11]. In Figure 3, we evaluate the impact of the dataset size (n) on the tightness of auditing.
While smaller datasets generally yield tighter audits, the size’s impact also depends on the dataset
itself. For instance, at ε = 10.0, auditing with n = 100 results in εemp = 7.41 and 7.01, for MNIST
and CIFAR-10, respectively, compared to εemp = 6.48 and 4.96 on the full dataset. In other words,
with MNIST, the dataset size does not significantly affect tightness. However, for CIFAR-10, smaller
datasets significantly improve the audit’s tightness significantly.

Sensitivity to clipping norm. Finally, we evaluate the impact of the hyper-parameters on the tightness
of black-box audits. In the black-box setting, unlike in white-box, the adversary cannot arbitrarily
insert gradients that are of the same scale as the gradient clipping norm, C [28]. Thus, they are
restricted to gradients that naturally arise from samples. In Figure 4, we report the εemp values
obtained with varying clipping norms, C. For computational efficiency, the results on CIFAR-10 are
for models trained on datasets of size n = 1,000.

When the gradient clipping norm is small (C = 0.1, 1.0), the audits are tighter. This is because
the gradient norms are typically very small in the worst-case initial parameter setting, leading to a
much higher “signal-to-noise” ratio. While this might suggest that black-box audits may not be as
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Figure 4: Auditing models trained with varying gradient clipping norm (C) at ε = 1.0, 2.0, 4.0, 10.0.
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Figure 5: Auditing models when fine-tuning only the last layer using average-case and worst-case
initialization of models at various levels of ε.

effective with larger gradient clipping norms, we observe that, with C = 10.0, model accuracy is poor
too—more precisely, with ε = 1.0, 2.0, 4.0, 10.0, accuracy reaches 85.6%, 93.1%, 95.0%, 96.1%,
respectively, compared to 97.2%, 97.4%, 97.5%, 97.5% with C = 1.0 on MNIST. This indicates that
audits are looser with C = 10.0 because the model is not learning effectively, as there is too much
noise. In fact, this could suggest that the privacy analysis for the C = 10.0 setting could be further
tightened in the black-box threat model, which we leave to future work.

5.3 Fine-Tuning the Last Layer Only

We now experiment with the setting where a model is first non-privately pre-trained on a large public
dataset, and only the last layer is fine-tuned on the private dataset. For this setting, we choose
the WRN-28-10 model pre-trained on ImageNet-32 and fine-tune the last layer on CIFAR-10 using
DP-SGD, as done in [11]. At ε = 1.0, 2.0, 4.0, 10.0, fine-tuning the last layer yields model accuracies
of 91.3%, 91.4%, 91.4%, 91.5% and 93.1%, 93.2%, 93.3%, 93.2% for average-case and worst-case
initial model parameters, respectively. In this section, we run the ClipBKD procedure from [20] to
craft a target sample, as it has been shown to produce tighter empirical privacy guarantees for Logistic
Regression models.

Once again, we compare the tightness of the audits with respect to the initial model parameters. In
Figure 5, we report the empirical privacy leakage estimates obtained at various levels of ε when the
last layer is initialized to average- and worst-case (through pre-training) initial model parameters.
Similar to the full model training setting, model initialization can impact audit tightness, albeit not as
significantly. Specifically, at ε = 10.0, we obtain εemp = 9.19 and 9.33, respectively, when the last
layers are initialized to average- and worst-case initial model parameters.

Overall, the audits in this setting are considerably tight, and increasingly so for larger ε, as we obtain
empirical privacy leakage estimates of εemp = 0.67, 1.62, 3.64, 9.33 for ε = 1.0, 2.0, 4.0, 10.0,
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respectively. The maximum εemp across five independent runs is also much tighter, namely, εemp =
1.37, 2.10, 4.28, 9.94 for ε = 1.0, 2.0, 4.0, 10.0, respectively. Although maximum εemp exceeds the
theoretical ε at 1.0, 2.0, and 4.0 suggests a DP violation, this is, in fact, within the standard deviation
of ±0.40, 0.36, and 0.38, respectively.

We also evaluated the impact of the dataset size and clipping norm in this setting as well; however,
these factors do not significantly impact audit tightness, as this is a much simpler setting compared to
training a CNN model fully. For more details, please see Appendix C.

6 Conclusion

This paper presented a novel auditing procedure for Differentially Private Stochastic Gradient Descent
(DP-SGD). By crafting worst-case initial model parameters, we achieved empirical privacy leakage
estimates substantially tighter than prior work for DP-SGD in the black-box model and for natural (i.e.,
not adversarially crafted) datasets. At ε = 10.0, we achieve nearly tight estimates of εemp = 7.21 and
6.95 for datasets consisting of 1,000 samples from MNIST and CIFAR-10, respectively. While we
achieve slightly weaker estimates of εemp = 6.48 and 4.96 on the full datasets, these still represent a
roughly 3x improvement over the estimates achieved in prior work [11, 28].

Naturally, our work is not without limitations – the main one being the computational cost of auditing.
Black-box auditing typically requires training hundreds of models to empirically estimate FPRs/FNRs
with good accuracy and confidence. This can take hundreds of GPU hours, even for the shallow
CNNs we audit in our work. Thus, auditing deep neural networks (e.g., WideResNet) trained on
large datasets (e.g., ImageNet) may be computationally challenging for entities that are not huge
corporations. However, as our main objective is addressing the open research question of whether
tight DP-SGD audits are feasible in the black-box model, we focus on shallow models. Our results
are very promising as, thanks to the intuition of using worst-case initial parameters, we do achieve
nearly tight audits. Nevertheless, we leave it to future work to reduce the computational cost of the
auditing procedure, e.g., by training significantly fewer models.

Relatedly, recent work [2, 34] has begun to focus on auditing within a single training run, although it
has thus far achieved only loose empirical estimates. One interesting direction would be to combine
the insights from this paper (i.e., using worst-case initial model parameters) with one-shot auditing
techniques. However, this may not be trivial as these techniques typically employ a large number
of canary samples, each with large gradient norms, which can potentially interfere with our goal to
reduce the gradient norm of “other” samples.

Furthermore, we only consider full batch gradient descent (B = n), i.e., without sub-sampling. Note
that this is standard practice and eases auditing by enabling GDP auditing, which requires fewer
models and is much less computationally intensive compared to auditing DP-SGD with sub-sampling
using Privacy Loss Distributions (PLDs) [28]. Nevertheless, when auditing DP-SGD with sub-
sampling in the “hidden-state” threat model where the adversary can only observe the final trained
model but can insert gradient canaries, recent work has shown that there is a significant gap between
the theoretical upper bound and the empirical lower bound privacy leakage achieved [8]. Even though
this suggests a privacy amplification phenomenon in the hidden-state setting (which would extend to
black-box as well), for general non-convex loss functions, prior work has also shown that the privacy
analysis of DP-SGD with sub-sampling is tight even in the hidden-state [3]. Therefore, whether
audits can be tight in the black-box threat model for DP-SGD with sub-sampling under realistic loss
functions and datasets remains an open question for future work.
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Figure 6: Test accuracies (%) on CIFAR-10 for models trained for varying number of iterations, T
and learning rates, η at a fixed ε = 10.0.

A Model Architectures and Hyper-parameters

In this work, we use the shallow Convolutional Neural Networks used by Dörmann et al. [14], who
make minor modifications to the CNNs used earlier by Tramèr and Boneh [35] to achieve good model
utilities on MNIST and CIFAR-10. Exact model architectures for MNIST and CIFAR-10 are reported
in Tables 2 and 3, respectively.

Layer Parameters
Convolution 16 filters of 5x5
Max-Pooling 2x2
Convolution 32 filters of 4x4
Max-Pooling 2x2
Fully connected 32 units
Fully connected 10 units

Table 2: Shallow CNN model for
MNIST with Tanh activations.

Layer Parameters
Convolution 32 filters of 3x3, stride 1, padding 1
Convolution 32 filters of 3x3, stride 1, padding 1
Max-Pooling 2x2, stride 2, padding 0
Convolution 64 filters of 3x3, stride 1, padding 1
Convolution 64 filters of 3x3, stride 1, padding 1
Max-Pooling 2x2, stride 2, padding 0
Convolution 128 filters of 3x3, stride 1, padding 1
Convolution 128 filters of 3x3, stride 1, padding 1
Max-Pooling 2x2, stride 2, padding 0
Fully connected 128 units
Fully connected 10 units

Table 3: Shallow CNN model for CIFAR-10 with Tanh
activations

Hyper-parameter tuning. To achieve the best model utilities, we tune the hyper-parameters of
DP-SGD (i.e., number of iterations, T and learning rate, η). For MNIST, we train for T = 100
iterations, with a learning rate of η = 4 for both average-case and worst-case initial model parameters.
For CIFAR-10, we train for T = 200 iterations, with a learning rate of η = 2 for the average-case
initial model parameter setting. For the worst-case initial model parameter setting, we use a learning
rate of η = 1 instead, as this resulted in the best model performance for CIFAR-10. When fine-tuning
just the last layer, we train for T = 25 iterations, with a learning rate of 10.0. Note that, for the
experiments varying the dataset size, the learning rate was scaled accordingly so that the size of the
dataset does not affect the “influence” of each sample (i.e., η

B ). All clipping norms are set to C = 1.0
as done in prior work [11], and batch sizes are set to the dataset size B = n to ease auditing [28].
Finally, the noise multiplier σ is calculated from the batch size and number of iterations using the
Privacy loss Random Variable accountant provided by Opacus [40].

B Model Convergence

In Figure 6, we plot the test accuracies obtained when training the CNN model on the CIFAR-10
dataset for varying number of iterations, T , and learning rates, η, at a fixed theoretical ε = 10.0.
Specifically, we train with full batch gradient descent (i.e., B = n) and re-calculate the noise
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Figure 7: Comparing the tightness of εemp for different factors at different values of ε

multiplier σ for each T and η such that all points on the Figure have the same privacy level of
ε = 10.0.

First, we observe that η = 2.0 and η = 4.0 result in comparable test accuracies that increase
with the number of iterations, reaching close to 70% accuracy at T = 1,000 (67.3% and 65.4%,
respectively). Therefore, even though at T = 200 and ε = 10.0, the models we audit only achieve
53.6% accuracy, this is a computational limitation, and the model can, in fact, achieve good model
utilities given enough iterations. However, increasing the learning rate to η = 10.0 results in poor
model performance.

In their original work, Dörmann et al. achieve a test accuracy of 70.1% at ε = 7.42 by training the
model with a batch size of 8,500 (sampling rate, q = 0.17). However, following prior work [28],
we choose not to consider sub-sampling as this makes tight auditing difficult. This is because the
theoretical privacy region of the sub-sampled Gaussian mechanism (the underlying mechanism for
DP-SGD with sub-sampling) is loose compared to the empirical privacy region observed, thus making
audits in this setting inherently weaker.

C Last layer only fine-tuning

Finally, we evaluate the impact of the clipping norm and dataset size on the tightness of auditing in
the last layer only fine-tuning setting. Overall, we find that these factors have little to no impact, as
tight audits are achieved in the most difficult settings considered.

In Figures 7a and 7b, we report the empirical privacy estimates obtained when using different gradient
clipping norms and when training on datasets with different sizes, respectively. While there may
be some minor differences between the empirical εemp obtained in different settings, overall, the
gradient clipping norm and dataset size do not significantly affect tightness. We believe this is
because it is much simpler to fine-tune the last (Logistic Regression) layer of a CNN than to train the
full model. Here, the empirical privacy leakage is already maximized (εemp ≈ 10.0 for theoretical
ε = 10.0) in the most difficult setting (C = 10.0, n = |D|). Therefore, “relaxing the setting” by
using smaller clipping norms and dataset sizes does not significantly improve the privacy leakage.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claim of our paper is that we achieve nearly tight audits of DP-SGD
in the black-box setting. Indeed, for a theoretical ε = 10.0, we achieve empirical privacy
leakage values that are quite close, especially in settings where the number of samples in
the dataset is low.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We cover the main limitation of our work in the Conclusion section. Specifi-
cally, we discuss that tight black-box audits need hundreds of models to be trained, which
forms a computational limitation for our approach. We also highlight some advancements in
auditing that require much fewer models, but unfortunately they are not applicable to our
work as those techniques do not achieve tight audits.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Our work is more empirical than theoretical.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We describe our auditing procedure clearly in Section 4, and include exact
hyper-parameters and model architectures in Appendix A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use publicly available datasets and will release the accompanying code to
reproduce our results upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All hyper-parameters and training details are provided in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All plots include a error bar, calculated from the standard deviation across 5
runs as explained in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resources used to train the models is provided in Section 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We do not attack live systems or use private datasets.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss how as DP tools and libraries are increasingly used in production
settings, performing such audits becomes increasingly necessary, to precisely prevent societal
harm, in the Introduction.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not attack any live systems, or propose a new “attack”. We use existing
attacks to empirically evaluate the privacy of open algorithms using open datasets.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper for the MNIST and CIFAR-10 datasets used in our
work.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release any new datasets or models with our work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

20

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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