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Abstract

With the advancement of diffusion models (DMs) and the substantially increased
computational requirements, quantization emerges as a practical solution to obtain
compact and efficient low-bit DMs. However, the highly discrete representation
leads to severe accuracy degradation, hindering the quantization of diffusion models
to ultra-low bit-widths. This paper proposes a novel weight binarization approach
for DMs, namely BinaryDM, pushing binarized DMs to be accurate and efficient
by improving the representation and optimization. From the representation perspec-
tive, we present an Evolvable-Basis Binarizer (EBB) to enable a smooth evolution
of DMs from full-precision to accurately binarized. EBB enhances information
representation in the initial stage through the flexible combination of multiple
binary bases and applies regularization to evolve into efficient single-basis bina-
rization. The evolution only occurs in the head and tail of the DM architecture
to retain the stability of training. From the optimization perspective, a Low-rank
Representation Mimicking (LRM) is applied to assist the optimization of binarized
DMs. The LRM mimics the representations of full-precision DMs in low-rank
space, alleviating the direction ambiguity of the optimization process caused by
fine-grained alignment. Comprehensive experiments demonstrate that BinaryDM
achieves significant accuracy and efficiency gains compared to SOTA quantization
methods of DMs under ultra-low bit-widths. With 1-bit weight and 4-bit activation
(W1A4), BinaryDM achieves as low as 7.74 FID and saves the performance from
collapse (baseline FID 10.87). As the first binarization method for diffusion models,
W1A4 BinaryDM achieves impressive 15.2× OPs and 29.2× model size savings,
showcasing its substantial potential for edge deployment.

1 Introduction

Diffusion models (DMs) [11, 31] have shown excellent capabilities in generation tasks in various
fields, such as image [11, 31, 32], vision [20, 10], and speech [22, 24, 14]. DMs have become one of
the most popular generative model paradigms with significant quality and diversity advantages. DMs
generate data through the iterative noise estimates, while up to 1000 iterative steps slow the inference
process and rely on expensive hardware resources. Although some proposed methods can effectively
reduce the number of iterations to dozens of times [30, 28, 23, 1], the complex neural network of
DMs also results in a large number of floating point calculations and memory usage in each step,
which hinders the efficient deployment and inference on edge. Therefore, the compression of DMs
has been widely studied as a practical technology to accelerate the iterative process and reduce the
inference cost, including quantization [16, 29], distillation [27, 19, 21], pruning [5], etc.
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Figure 1: Overview of BinaryDM, consisting of Learnable Multi-basis Binarizer to enhance informa-
tion representation and Low-rank Representation Mimicking to improve optimization direction.

Low-bit quantization emerges as a practical approach to compress deep learning models by reducing
the bit-width of parameters [35, 7]. Thus, with quantization, diffusion models can enjoy the compres-
sion and acceleration brought by fixed-point parameters and computation in inference [16, 15, 8, 29].
The 1-bit quantization, namely binarization, allows the binarized model to enjoy compact 1-bit
parameters and efficient computation [18, 34, 33]. With the most aggressive bit-width, 1-bit weights
can lead to up to 32× size reduction and replace expensive floating-point multiplications with addition
constructions during inference, thus saving resources significantly [25, 6].

However, binarized DMs suffer significant performance degradation compared to their full-precision
counterparts. The performance decline primarily arises from two aspects: First, weight binarization
severely restricts the feature extraction capability of DM, causing significant damage to information
in critical representations of generative models. Second, introducing discrete binarization functions
in DMs poses a significant hurdle to stable convergence.

In this paper, we propose BinaryDM to push the weights of diffusion models toward binarization. The
proposed method pushes the weights of DMs toward accurate and efficient binarization, considering
the representation and computation properties. BinaryDM is composed of two novel techniques:
From the representation perspective, we present an Evolvable-Basis Binarizer (EBB) to recover the
representations generated by the binarized DM. EBB first applies dual sets of binary bases with
learnable scalars to significantly enhance the feature extraction capability of the initial binarized
weights, then evolves the high-order bases to the single-basis form guided by regularization loss. It
is selectively applied only to key parameter locations of the DM architecture to reduce unnecessary
evolution processes, thereby easing the training burden and making the evolution smoother. From
the optimization perspective, a Low-rank Representation Mimicking (LRM) is incorporated to
enhance the binarization-aware optimization of DMs. LRM projects binarized and full-precision
representations to low-rank, enabling the optimization of binarized DM to focus on the principal
direction and mitigate direction ambiguity caused by the representation complexity of generation.

2 BinaryDM

2.1 Preliminaries

In the forward process of diffusion models, Gaussian noise is added to data x0 ∼ q(x) in T times via
a schedule βt controlling noise strength, the process can be expressed as

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, (1)

where xt ∈ {x1, · · · ,xT } denote the noisy samples at t-th step. The reverse process aims to generate
samples by removing noise, approximating the unavailable conditional distribution q (xt−1 | xt)
with learned distributions pθ (xt−1 | xt), which can be expressed as

pθ (xt−1 | xt) = N
(
xt−1; µ̃θ (xt, t) , β̃tI

)
. (2)
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The mean µ̃θ (xt, t) and variance β̃t could be derived using the reparameterization [11]:

µ̃θ (xt, t) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ (xt, t)

)
, β̃t =

1− ᾱt−1

1− ᾱt
· βt, (3)

where αt = 1 − βt, ᾱt =
∏t

i=1 αi, and ϵθ denotes a function approximation with the learnable
parameter θ, which predicts ϵ from xt. The U-Net with spatial transformer layers is applied as
the architecture of the noise estimation network in common practices. For the training of DMs, a
simplified variant of the variational lower bound is usually applied as the loss function to achieve
high sample quality, which can be expressed as

Lsimple = Et,x0,ϵt

[∥∥ϵt − ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵt, t

)∥∥2] . (4)

The binarization and quantization compress and accelerate the noise estimation model by discretizing
weights and activations to low bit-width. In the baseline of the binarized diffusion model, the weight
w ∈ θ is binarized to 1-bit by wbi = σ sign(w) [25, 3], where sign function confine w to +1 or
-1 with 0 thresholds, wbi ∈ θbi denotes the binarized weight, and θbi denotes the binarized noise
estimation network. σ is the floating-point scalar, which is initialized as ∥w∥

n (n denotes the number of
weight elements) and learnable during training process following [25, 18]. The activation is quantized
by the LSQ quantizer [4]. With the 32× compressed weight, the computation of noise estimation can
also be replaced with integer additions, achieving significant compression and acceleration.

2.2 Evolvable-Basis Binarizer

In the current baseline, weights are quantized to 1-bit values to economize on storage and computation
during inference, and activations can be quantized to integers. However, the extensive discretization of
weights to binary in DMs results in a notable deterioration of the generated representations. Previous
works present a straightforward approach that enhances binarized parameters via higher-order residual
bases [17, 12, 2] have achieved significant success in terms of accuracy, but the introduced additional
bases result in substantial additional hardware overhead, making them unsuitable for practical
deployment on existing hardware architectures.

To utilize the representation capability of high-order bases while avoiding redundant costs during
inference, we sought to use residual binarized structures as transitional structures and evolve during
training. This would allow fully binarized DMs to start from a more favorable initial state, resulting
in a smoother optimization process and better final outcomes.

We propose the Evolvable-Basis Binarizer (EBB) to address the adaptation challenges faced by bina-
rized DMs during the early stages of optimization due to structural limitations. EBB is implemented
in two stages during training. The first stage uses higher-order residual multi-basis with regularization
penalties, which then transitions into the second stage with simple single-basis binary weights.

Learnable Multi-Basis. In the forward propagation of the first stage, EBB is defined as

wbi
EBB = σI sign (w) + σII sign (w − σ1 sign (w)) , (5)

where the σI and σII are learnable scalars which are initialized as σ0
I = ∥w∥

n and σ0
II =

∥w−σ1 sign(w)∥
n ,

respectively, ∥ · ∥ denotes the ℓ2-normalization. The inference of layer binarized by EBB involves the
computation of multiple bases. For instance, the convolution in binarized DM is

o = a×wbi
EBB = σI (a⊗ sign (w)) + σII (a⊗ sign (w − σ1 sign (w))) , (6)

where a denotes the activation, and × and ⊗ denote the convolution consisting of multiplication and
addition instructions [25, 13], respectively.

In the backward propagation of EBB, the gradient of the learnable scalars is calculated as follows:

∂wbi
EBB

∂σI
=

{
sign (w) (1− σII sign (w)) , if σI sign (w) ∈ (w − 1,w + 1) ,

sign (w) , otherwise,
(7)

∂wbi
EBB

∂σII
= sign (w − σ1 sign (w)) , (8)
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where the Straight Through Estimator (STE) is applied to approximate the sign function during
backwards. With the binary basis with different learnable scalars, the representation capability of
quantized weights can be significantly enhanced. The residual initialization makes the optimization
of binarized DM start from an error-minimizing state. With EBB, the representation of weight is
significantly diversified compared to the binarized DM baseline, where the statistic about the EBB is
presented in Fig ??.

Surrender Strategy. We adopted a two-stage training process with a regularization strategy, allowing
the DM to transition from an initial multi-basis structure to full binarization. In the first stage,
regularization loss is applied to the higher-order learnable scaling factors, encouraging them to
approach zero:

LEBB = µ
1

N

N∑
i=1

σi
II. (9)

Where N denote the number of basic layers (e.g., convolutional, linear) in the noise estimation
network of DMs, and µ are hyperparameter coefficients used to balance the loss terms.

In the second stage, all higher-order terms are removed, and the forward propagation is simplified to:
wbi = σI sign (w) . (10)

Location Selection. In our BinaryDM, the proposed EBB is partially applied to crucial and parameter-
sparse locations of the diffusion models while retaining concise vanilla binarization at other locations
to reduce unnecessary evolution processes and the associated training overhead. Specifically, we
apply EBB where the feature scale is greater or equal to 1

2 input scale, i.e., the first and last six layers
with only the 15% of whole parameters in the noise estimation network of BinaryDM. In contrast,
other layers keep consistent with the binarized DM baseline with vanilla binarizers. On the one hand,
applying EBB to these key parameter locations within DM architectures significantly enhances the
information processing capacity of binarized DMs in the early stages of optimization, leading to a
better overall learning process. On the other hand, using a vanilla binarizer for intermediate layers,
which contain the most parameters but are less sensitive to quantization loss, reduces the instability
caused by switching between stages for unimportant components and lowers the training overhead.

2.3 Low-rank Representation Mimicking

In the quantization-aware training of DMs, the discretization of parameter space caused by weight
binarization and activation quantization function and the inaccurate gradient approximation involved
in the derivation process bring difficulties to the stable convergence of binarized DM. Since having
almost the same architecture, the original full-precision DM can be regarded as an oracle of the
binarized one. Therefore, an intuitive approach is to assist the training of binarized DMs by mimicking
the representation of full-precision replicas. During training, aligning outputs and/or intermediate
representations of binarized DMs with full-precision counterparts can provide additional supervision,
accelerating the convergence of quantized DMs significantly.

However, there are issues directly aligning the intermediate representations of binarized and full-
precision DMs during optimization. Firstly, fine-grained alignment of high-dimensional representa-
tion leads to a blurry optimization direction for DMs, especially when mimicking the intermediate
features is introduced. Secondly, compared to the full-precision DM, the intermediate features in the
binarized one are derived from a discrete latent space since the discretization of parameters makes it
difficult to mimic the full-precision DM directly.

Therefore, we propose Low-rank Representation Mimicking (LRM) to efficiently optimize the
BinaryDM by mimicking full-precision representations in a low-rank space. We group the full-
precision DM θFP based on the timestep embedding modules composed of residual convolution and
transformer blocks. The intermediate representation can be denoted as ϵ̂FP

θi (xt, t) ∈ Rh×w×c. We
use principal component analysis (PCA) to project representations to low-rank space. The covariance
matrix for representations of the full-precision DM is

Ci =
1

(h× w)
2 ϵ̂

FP
θi (xt, t) ϵ̂

FP
θi

T (xt, t) , (11)

where θi represents the composition of the top i modules. The eigenvector matrix Ei ∈ Rc×c is

Ei
TCiEi = Λi, (12)
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BaselineBinaryDM
Figure 2: Visualization of samples generated by the binarized DM baseline and W1A4 BinaryDM.

where Λi is the diagonal matrix of eigenvalues of Ci, arranged in descending order. We take the
matrix composed of the first ⌈ c

K ⌋ column eigenvectors of Ei as the transformation matrix, denoted

as E⌈ c
K ⌋

i , where ⌈·⌋ denotes the round function and K denotes to the reduction times of dimension.
We use E

⌈ c
K ⌋

i to project the intermediate representation of both full-precision and binarized:

RFP
i (xt, t) = ϵ̂FP

θi (xt, t)E
⌈ c
K ⌋

i , Rbi
i (xt, t) = ϵ̂bi

θbi
i
(xt, t)E

⌈ c
K ⌋

i , (13)

where ϵ̂bi
θi (xt, t) denotes the intermediate representation of the i-th layer in the DM with binarized

parameters θbi, and RFP
i (xt, t) and Rbi

i (xt, t) denote the low-rank representations of full-precision
and binarized DMs, respectively, with the same shape h× w × ⌈ c

K ⌋. The K empirically defaults as
4 and is detailed ablated in Appendix ??.

We then leverage the obtained low-rank representation to drive the binarized DM to learn the full-
precision counterpart. We construct a mean squared error (MSE) loss between the i-th module of
low-rank representations between full-precision and binarized DMs:

LLRMi =
∥∥RFP

i −Rbi
i

∥∥ . (14)

The total loss function is composed of Eq. (4), Eq. (9) and Eq. (14):

Ltotal = Lsimple + LEBB + λ
1

M

M∑
i=1

LLRMi, (15)

where M denotes the number of timestep embedding modules in the noise estimation network of
DMs, and λ is a hyperparameter coefficient to balance the loss terms.

Since the computation cost of obtaining the transformation matrix E
⌈ c
K ⌋

i in LRM is significantly
expensive, we compute the matrix by the first batch of input and keep it fixed during the training
process. The fixed mapping between representations is also beneficial to the optimization of binarized
DM from a steady perspective.

LRM enables binarized DMs to mimic the representation of full-precision counterparts, improving
the optimization process by introducing additional supervision. As shown in Fig ??, LRM effectively
brings the local block closer to the full-precision block. Furthermore, by applying low-rank projec-
tions based on the principal components from full-precision representations before representation
mimicking, the binarized DM can be optimized along clear and stable directions, accelerating the
convergence of the model. Furthermore, binarized and full-precision DMs have completely consistent
architectures, making representation mimicking between them natural.

3 Experiment

Settings. We conduct experiments on LSUN-Bedrooms 256 × 256 [36] for unconditional image
generation tasks over LDM-4. The evaluation metrics used in our study encompass Fréchet Inception
Distance (FID) [9], Sliding Fréchet Inception Distance (sFID) [26], and Precision-and-Recall. We
implement and evaluate the DMs binarized by our BinaryDM and the baseline presented in Section 2.1,
where LSQ [4] is employed uniformly as activations quantizers. Several SOTA quantization methods
for DMs with 2∼8 bits weights are also considered [8, 15].

Main Results. Our LDM experiments encompass the evaluation of LDM-4 on LSUN-Bedrooms. We
showcase results across various activation bit widths in the context of weight binarization, comparing
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Table 1: Results for LDM on multiple datasets in unconditional generation by DDIM with 100 steps.
Model Dataset Method #Bits Size(MB) FID↓ sFID↓ Precision↑ Recall↑

LDM-4 LSUN-Bedrooms
256× 256

FP 32/32 1045.4 3.09 7.08 65.82 45.36
LSQ 2/32 69.8 7.49 12.79 64.02 37.60
Baseline 1/32 35.8 8.43 13.11 65.45 29.88
BinaryDM 1/32 35.8 6.99 12.15 67.51 36.80
Q-Diffusion 2/8 69.8 62.01 33.56 16.48 14.12
Baseline 1/8 35.8 9.37 12.10 64.36 30.76
BinaryDM 1/8 35.8 6.51 11.67 65.80 35.28
Q-Diffusion 4/4 134.9 427.46 277.22 0.00 0.00
EfficientDM 4/4 134.9 10.60 - - -
LSQ 2/4 69.8 12.95 12.79 55.97 34.30
Q-DM 1/4 35.8 9.99 11.96 57.62 29.30
TDQ 1/4 35.8 11.28 12.80 55.14 27.32
Baseline 1/4 35.8 10.87 15.46 64.05 26.50
BinaryDM 1/4 35.8 7.74 10.80 64.71 32.98

Table 2: Ablation results on LSUN-Bedrooms 256× 256.
Method #Bits FID↓ sFID↓ Prec.↑ Recall↑
FP 32/32 3.09 7.08 65.82 45.36

Vanilla 1/32 8.43 13.11 65.45 29.88
+EBB 1/32 7.39 12.34 65.98 35.84
+LRM 1/32 6.99 12.15 67.51 36.80

them with the outcomes of some quantization methods at higher bit settings. The conventional binary
baseline method exhibits subpar performance in the LDM context and experiences a further decline in
the W1A4 experimental setup. In contrast, BinaryDM significantly enhances the generation quality,
exhibiting consistent performance across different activation bit settings. Notably, when compressing
from W1A32 to W1A4, the FID increased by a mere 0.75 for BinaryDM, showcasing its robustness.

Ablation Study. We evaluate the effectiveness of our proposed EBB and LRM, and the results are
presented in Table 2. The performance has shown significant recovery when applying our EBB only
to binarized DM. With the application of LRM on this basis, the generative capability of the resulting
binarized diffusion models is further enhanced, with the FID decreasing to 6.99.

Efficiency Analysis. The results in Table 3 indicate that our DM can achieve up to 29.2× space
savings while obtaining up to 15.2× acceleration during inference.
Table 3: Inference efficiency of our proposed BinaryDM of LDM-4 on LSUN-Bedrooms 256× 256.

Model Method #Bits Size(MB) OPs(×109) FID↓

LDM-4

Full-Precision 4/4 1045.4 96.0 3.09
Q-Diffusion 4/4 134.9 24.3 427.46
EfficientDM 4/4 134.9 24.3 10.60
LSQ 2/4 69.8 12.3 12.95
BinaryDM 1/4 35.8 6.3 7.74

Limitations. BinaryDM directly uses layerwise LSQ [4] for activations instead of specific designs,
we thus believe the potential for improving BinaryDM from activation quantization perspective.

4 Conclusion

In this paper, we propose BinaryDM, a novel accurate quantization-aware training approach to push
the weights of diffusion models towards the limit of binary. Firstly, we present an Evolvable-Basis
Binarizer (EBB) to enable the QAT of binarized DMs to start from a more favorable initial state,
leading to a smoother optimization process and better final results. Secondly, a Low-rank Repre-
sentation Mimicking (LRM) is applied to enhance the binarization-aware optimization of the DM,
alleviating the optimization direction ambiguity caused by fine-grained alignment. Comprehensive
experiments demonstrate that BinaryDM achieves significant accuracy and efficiency gains compared
to SOTA quantization methods of DMs under ultra-low bit-widths. As the first binarization method
for diffusion models, W1A4 BinaryDM achieves impressive 15.2× OPs and 29.2× storage savings,
showcasing substantial advantages and potential for deploying DMs on edge.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We make the main claims made in the abstract and introduction accurately
reflect the paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses the limitations of the work in the section 3.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
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Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully discloses all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and conclusions
of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The data used is open source, and the code will be included in the supplemen-
tary materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We specify all the experimental setting in section 3 and section ??.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We fixed random seeds for all experiments to ensure the reproducibility of the
experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides sufficient information on the computer resources in the
section ?? and the section 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: This paper introduces the original owners of assets in the section 3 and the
section ??.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will include the anonymous code in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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