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Abstract

Neural Architecture Search (NAS) has long been
an important research direction, to replace labor-
intensive manual architecture search. Since the in-
troduction of weight sharing in NAS, the resource
and time consumption of architecture searches has
been significantly reduced. In addition, variants
of NAS methods have been proposed that elim-
inate the need for retraining by inferring model
parameters directly from the shared weights after
the search. However, these methods are mainly
based on the MobileNet search space, which is
primarily used for “size” searches. For the impor-
tant “topology” search space, no NAS method has
been proposed that does not require retraining. In
this work, we fill this gap by proposing a NAS
method that does not require retraining based on
the topology search space. Our method combines
the advantages of previously proposed Hypernet-
work and Kshot-NAS. We also propose a new dis-
tillation and sampling method for this new NAS
architecture. We present results on NAS-Bench-
201 and show that our method matches or even
exceeds the baseline performance of post-search
retraining.

1. Introduction

Since its inception, Neural Architecture Search (NAS) has
received much attention due to the challenges of manually
designing neural network architectures. The original goal of
NAS was to automatically design the optimal neural network
architecture to solve specific tasks. The initial works (Zoph
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Figure 1. Only the topology search space based supernetwork is
trained. All subnets can be directly sampled from the supernetwork,
and directly deployed, without the need to train from scratch.

& Le, 2017; Real et al., 2019; Zoph et al., 2018) were all
based on this, and demonstrated their effectiveness at great
cost, as they required training many candidate architectures
from scratch for evaluation. After ENAS (Pham et al., 2018)
proposed weight sharing, the efficiency and resource con-
sumption of NAS were greatly optimized. As the demand
for deploying neural networks on different platforms or dif-
ferent user devices increases, the goal of NAS has gradually
expanded to designing neural network architectures suitable
for different platforms. Due to the different characteristics
of different platforms, the running speed of the same net-
work architecture on different platforms will vary greatly
(Wu et al., 2019). Therefore, for efficient deployment, it is
usually necessary to repeat the search for each platform. If
the architectures for each platform need to be trained from
scratch, the computational cost of the NAS will be very high.
Therefore, some works (Cai et al., 2020; Yu et al., 2020a)
have proposed to use weight sharing to train only one large
supernetwork, and all the weights of the subnetworks can
be sampled directly from the supernetwork. In this way, the
architecture can be directly sampled from the weights of the
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supernetwork for verification and deployment, without the
need to train from scratch.

However, the current methods are based on size search
spaces, such as the MobileNet search space (Howard et al.,
2019), which is different from the previous NAS (Zoph &
Le, 2017; Real et al., 2019; Zoph et al., 2018) based on
topology search spaces (Directed Acyclic Graph). Although
the size search space is also considerably large that can
be effectively searched for different devices. In topology
search space, the architecture or search block, is defined
by the number of nodes in the DAG and the edges between
nodes, as well as the candidate operations. The network
is stacked from search blocks. We can search for one ar-
chitecture for each block, or all search blocks can use the
same architecture. In contrast, the blocks in the size search
space are predetermined, and the network is stacked from
multiple blocks with the same architecture. For example,
in the MobileNet search space, the block is the inverted
bottleneck block, and the structure of this block is fixed. It
consists of two point-wise convolutions at the beginning
and end for channel scaling, and a depth-wise convolution
in the middle for feature extraction. The variable parts are
the number of channels in the block (including the expan-
sion rate), the kernel size of the depth-wise convolution,
and the depth of the entire network. The limitation of this
search space makes the resultant architectures be the vari-
ants of MobileNet, rather than completely new architectures.
In other words, smaller subnets can be fully contained by
larger subnets. In other words, the main drawback is that all
subnets have the same architecture, and the performance is
mainly affected not by the differences in architecture, but
by the number of FLOPs. For deployment, the constraints
mostly come from the size of hardware storage and compu-
tational capabilities. In contrast, the operations in the search
block of topology search space do not intersect. This leads
to very large differences in the architectures of different
subnets. For hardware with specific accelerators, this can
make NAS more meaningful. However, this feature makes
supernetwork training more difficult. Therefore, current
work based on topology search spaces (Su et al., 2021; Zhao
etal., 2021; Hu et al., 2020) aims to improve the ability of
ranking based on supernetwork weight sharing. But, the
searched network still needs to be retrained from scratch to
achieve the deployable performance.

Here, we investigate the problem of NAS based on topol-
ogy search spaces always needing to be retrained to achieve
deployable performance. We propose a supernetwork train-
ing method that combines multiple techniques to solve this
problem. In terms of network structure, we integrate Hy-
pernetwork and KshotNAS, enabling the network weights
to adapt based on the architecture. In terms of training,
we introduce a novel distillation approach combined with
Focus-Fair Sampling. This allows all subnets to be rela-

tively well-trained without the need to train from scratch,
as shown in Figure 1. We conducted experiments on NAS-
Bench-201 (Dong & Yang, 2020). On Cifarl10, we achieved
an average accuracy of 87.12% averaged across all subnets
(the equivalent value for training from scratch is 87.06%),
while the best accuracy was 92.47% (the value for training
from scratch is 94.37%). On Cifar100, the average accuracy
of all subnets reached 61.03% (the value for training from
scratch is 61.41%), and the best accuracy was 71.98% (the
equivalent value of training from scratch is 73.51%).

2. Related Work

Conventional NAS (Zoph & Le, 2017; Real et al., 2019;
Zoph et al., 2018; Liu et al., 2018) requires training a large
number of candidate architectures from scratch to select
the best-performing architecture, which consumes a lot of
computational resources and time, hindering the widespread
application of NAS. The proposal of weight sharing, that is,
using a supernetwork that includes all architectures in the
search space, only trains the supernetwork, and all subnet-
works can be obtained by sampling the weights of the super-
network, greatly reduces the computational and time costs
compared to traditional NAS. ENAS (Pham et al., 2018)
reduces the cost by 1000x by using weight sharing. Dif-
ferentiable Architecture Searche(DARTS) (Liu et al., 2019)
adds coefficients to each path, and the output of all nodes
is the weighted sum of all paths. By this technique, the
search method is made differentiable, and the optimal archi-
tecture is searched using gradient descent. ProxylessNAS
(Cai et al., 2019) adds additional architectural parameters
during training and uses binary encoding to activate only
one path at a time.

Sampling Method: During the training of the supernetwork,
each iteration needs to sample the subnetwork, and the sam-
pling method will have a non-negligible impact on the final
training results of the supernetwork. OneShot-NAS (Bender
et al., 2018) discards paths during training, and the discard
rate increases over time. Single Path One-Shot(SPOS) (Guo
et al., 2020) compresses the search space so that all sub-
networks are single-path, and a random path is selected
at each iteration, so the supernetwork is just a framework
and does not need to be fully trained. FairNAS (Chu et al.,
2021) uses a fair sampling path method and superimposes
gradients for simultaneous updates to eliminate the SPOS
subnetwork iteration order problem, reducing the optimiza-
tion gap between subnetworks. DFairNAS (Meng & Chen,
2023) improves on FairNAS, proposing a way to calculate
the score of all operations based on the performance of
the subnetworks to combine high-scoring operations. This
is consistent with our idea, we propose a new FocusFair
sampling method, which has a higher probability of sam-
pling high-performance subnetworks while minimizing the
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impact on the remaining subnetworks.

Size Search Space based NAS: Single-Path NAS (Sta-
moulis et al., 2019) uses the MobileNet search space and
proposes sharing of convolutional kernels, where small con-
volutional kernels inherit from large convolutional kernels.
Once-for-All(OFA) (Cai et al., 2020) performs progressive
shrinkage fine-tuning on the supernetwork after full train-
ing, so that the subnetworks can also be directly deployed
without retraining. BigNas (Yu et al., 2020a) uses many
techniques during training, such as the sandwich rule (Yu
& Huang, 2019), inplace distillation (Yu & Huang, 2019),
and exponentially decaying with constant ending, to achieve
almost the same effect as OFA (Cai et al., 2020). However,
as mentioned earlier, these are all based on the small search
space and will not search for new architectures, all of which
are variants of MobileNet, but the methods proposed are
very meaningful. For example, in-place distillation, and
OFA (Cai et al., 2020) proposed a transformation matrix
for convolutional kernel transformation. We extend in-place
distillation to the topological search space, effectively im-
proving the training effect of the supernetwork. The purpose
of the transformation matrix is to ensure that the weights
between subnetworks are not completely shared, enhance
the representation ability of the supernetwork, and have the
same idea as our use of Hypernetwork. Autoformer (Chen
et al., 2021) proposes the concept of weight entanglement
and extends it from CNN to transformers. There are also
some similar works that do not require retraining, such as
Hardware-Aware Transformers (HAT) (Wang et al., 2020),
Focusformer (Liu et al., 2022a), AttentiveNAS (Wang et al.,
2021), NASVIT (Gong et al., 2022), ShiftNAS (Zhang et al.,
2023).

Rank Correlation: Weight sharing has not been theoreti-
cally verified, only based on an assumption that the subnet-
work ranking obtained by evaluating the subnetwork trained
by the supernetwork is valid. A large number of works are
dedicated to verifying or improving the correlation between
the ranking obtained by evaluating the subnetwork trained
using the supernetwork and the ranking obtained by evaluat-
ing the subnetwork trained from scratch. (Hu et al., 2020)
proposed a angle based method to shrink the search space to
improve the ranking correlation. The work of (Zhang et al.,
2020b) shows that the ranking correlation based on weight
sharing is unstable, the reason being the mutual interfer-
ence between a large number of subnetworks. Their study
on group sharing shows that grouping based on network
architecture similarity can effectively reduce the number
of subnetworks while obtaining better ranking correlation.
FewShot (Zhao et al., 2021) conducted the same study, ex-
tending OneShot-NAS to FewShot-NAS, which means that
it has several supernetworks instead of one. Consistent with
the results of (Zhang et al., 2020b), the more supernetworks
there are, the better the ranking correlation. Another work

(Liu et al., 2022b) based on FewShot-NAS, changed the
grouping method so that the number of groups gradually
increased. KShot-NAS (Su et al., 2021) directly uses K
weights for each Conv layer, and introduces simplexnet,
which encodes the network architecture as input and outputs
K weight coefficients, and finally obtains the network by
summing the weighted K weights. Through our method,
all networks can be trained to a directly deployable state,
which makes ranking correlation no longer critical.

Hypernetwork based NAS: There are two works (Brock
et al., 2017; Zhang et al., 2020a) that use Hypernetwork
(Ha et al., 2016) similarly to our method to generate the
weights of the network. Smash (Brock et al., 2017) en-
codes the network architecture as a 3D tensor as input, and
uses a 26-layer DenseNet (Huang et al., 2018) to generate
all the weights of the network at once. Graph Hypernet-
works(GHN) (Zhang et al., 2020a) encodes the network
architecture as a computational graph to generate weights.
The advantage of Hypernetwork in the NAS field is that
it can generate weights based on the input architecture en-
coding, no longer completely weight sharing, which can
improve the performance that subnetworks can achieve to a
certain extent.

3. Method

Unlike the previous methods without retraining, we make
it possible to perform multiple searches and deployments
after training the supernetwork based on the topology search
space once. Our method consists of two main parts:

* We combine Hypernetwork (Ha et al., 2016) and Kshot-
NAS (Su et al., 2021) to make the expression ability
of Hypernetwork more powerful, so that the weights
of the architectures in the search space are no longer
completely shared, and higher performance can be
achieved.

* Based on the topology search space, we propose a
new supernetwork training process, which includes
distillation and Focus-Fair sampling methods.

We will first introduce the method of combining Hypernet-
work and KshotNAS in Section 3.1, and then introduce the
distillation and sampling methods in Section 3.2.

3.1. Kshot-Hypernet

Kshot-Hypernet is a combination of Hypernetwork(Ha et al.,
2016) and KshotNAS(Su et al., 2021). The core of the
Hypernetwork method is weight decomposition, which de-
composes the weight of the convolution into the form of
two matrices multiplied together, and all convolution layers
share the same Hypernetwork. This method can greatly re-
duce the number of parameters. Specifically, we assume that



Single Train Multi Deploy on Topology Search Spaces

l Hypernetwork

Figure 2. Hypernetwork as proposed in (Ha et al., 2016)
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Figure 3. Kshot-Hypernet

a convolutional neural network has D convolution layers.
The weight of the i-th layer is W € R%inXCou x K xK"
Ct,,C! . are the corresponding input and output channel
numbers, and K is the convolution kernel size. In order to al-
low the shared Hypernetwork to generate different weights,
an additional learnable feature vector z* € R” is added to
each layer, where h is the hidden dimension. The weight

can be represented as follows:
Wi =g(z%), ()

where g is a generative function composed of two fully con-
nected layers, as shown in Figure 2, with weight dimensions
of hx C!, ~hand h x C? , - K*- K. Since the number
of input and output channels of each convolution layer may
be different, the output of the Hypernetwork is fixed to a
unit convolution kernel, such as 16 x 16 x 3 x 3, and then
multiple unit convolution kernels are generated and stacked.

Although the original Hypernetwork greatly reduces the
number of parameters, its impact on network performance
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Figure 4. Coefficient Attention Block

cannot be ignored. To balance the number of parameters and
performance, we allow each convolution layer to have its
own weight generation network. The original method shared
the weight generation network, but the trainable feature vec-
tors of each unit convolution kernel were independent. In
contrast, our weight generation network is independent, and
the feature vectors are shared. The feature vectors are gen-
erated by the architecture encoding through a separate addi-
tional small feedforward network, which provides a superior
efficiency accuracy tradeoff for NAS. The feedforward net-
work consists of multiple layers of MLPMixer (Tolstikhin
et al., 2021). To further reduce the number of parameters,
we increase the shared part, i.e., the generated architecture
features, and decrease the independent part, i.e., the weight
generation network. The new weight can be represented as
follows:

W'=yg'(2), @
where z € R"*" is the feature vector generated by the
architecture encoding, and the weight dimensions of the two
fully connected layers of g* are hxC?, and hxC? ,-K*-K*,
respectively.

However, even with this modification, the expressive power
of Hypernetwork is still limited. To further enhance the
expressiveness, we combine the method of KshotNAS with
the weight representation Eq. (2).

The increase in the number of weights [V in the weight dic-
tionary in KshotNAS, which leads to a surge in the number
of parameters, makes network training more difficult (Su
et al., 2021). One of the biggest advantages of Hypernet-
work is the smaller number of parameters. The combination
of the two allows us to use a larger NV without affecting the
training of the network, while improving the expressiveness
of Hypernetwork. In our method, the increment of the num-
ber of parameters is based on the number of weights in the
first fully connected layer of the weight generation network,
ie., h x C! - N.The weight dictionary can be represented
as follows:

,wy] =g'(2) ?3)

where w!, € RCut*XCin*K'XK" = Agsuming that the in-
put and output channels C,, and C,,; of a convolution
layer are both 256, the convolution kernel K size is 3,
the hidden dimension h is 64, and the number of gener-
ated weights IV is 64. Then the original method requires

@Wi = [wzl,
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Cout - Cout - K% - N = 37.75M, while our method only
requires Cj,, - h - N + Cpyy - K? = 1.05M. The number
of parameters is reduced by almost 35 x. Moreover, K-shot
uses SimplexNet to generate weight coefficients, which is
similar to the shared part of our network. Therefore, we
combine the two to generate weight coefficients and archi-
tecture features at the same time. Thus, we can generate
different weight dictionaries and their coefficients for differ-
ent architectures, greatly increasing the expressiveness of
the weight dictionary. The final weight can be represented
as follows:

N

W= Z Apwl, 4)
n=1

A = softmazx(f(a)), ©)

where A € RY is the weight coefficient, « is the architec-
ture encoding, and f is a multi-layer MLPMixer. To further
increase the performance of the network, we insert a mod-
ified channel attention module (CAM) (Woo et al., 2018)
before the so ftmax, which was proposed for convolutional
neural networks to perform self-attention on the channel
dimension of the input features. We call it the Coefficient
Attention Block (CAB) (see Figure 4).

3.2. Training a Topology Search Space Based
Supernetwork

Training a supernetwork based on a topology search space is
more difficult than training a supernetwork based on a size
search space. In a size search space, such as the MobileNet
search space, where the smallest subnetwork is the shared
part of all networks, in other words, all subnetworks can
actually be considered as the result of pruning the super-
network to a certain extent. From this perspective, we can
improve the original NAS process based on weight sharing,
omit the retraining step, and perform progressive shrinking
consistent with pruning (Cai et al., 2020). Another, more ag-
gressive strategy is to train all architectures at once without
any fine-tuning or training (Yu et al., 2020a). For a topology
search space, there is no subordinate relationship between
architectures, only partial overlap. This makes it more dif-
ficult to train all subnetworks at once. We propose our
solution to the sampling method and distillation method in
supernetwork training. Figure 5 shows our training process.

Distillation in topology search space: Knowledge dis-
tillation is a technique to improve network performance.
BigNAS(Yu et al., 2020a) verified that using the largest
subnetwork for in-place distillation(Yu & Huang, 2019) is
feasible in a size search space, and the effect is significant.
In NAS based on a topology search space, the architectures
between subnetworks are very different, making uniform
distillation very difficult. Although not absolute, larger
networks, or networks with more parameters, usually have

better performance. For a topology search space, since ad-
jacent two layers are single-path, the architecture with the
most parameters does not include the other subnetworks, so
the subnetwork with the most parameters is not necessarily
suitable for distilling the other subnetworks. Intuitively, the
entire supernetwork is the most suitable teacher, because
the supernetwork contains all subnetworks, and will have
some of their characteristics. In previous NAS methods, the
supernetwork was just a framework and did not need to be
fully trained, but if the entire supernetwork is to be trained,
directly accumulating the outputs of all paths will cause
the network to be not trainable. Inspired by DARTS(Liu
et al., 2019), we use additional architecture parameters /3 to
balance the outputs of different operations:

cxp(B3)
; > cap(B)

o’ €O

o (a"), (©6)

) =

where O%7 is the set of all operations between node z* and
node 27 . Since it includes all operations, it is more suitable
as a teacher for all subnetworks than a single-path network.
Unlike DARTS, the purpose of which is to search for the
best architecture on the validation set, our purpose is to train
the best teacher for all subnetworks. This is reasonable,
and experiments have shown its effectiveness. Although
this increases the training time and GPU storage usage, the
results are very worthwhile.

In addition, we do not disable the parameters of the Batch-
Norm layer in the network as DARTS did, although it will
affect the scaling of the architecture parameters . This is
because 1) we are not training the supernetwork alone, but
training the supernetwork and subnetworks simultaneously,
so the parameters of the Batchnorm layer are helpful for the
training of the subnetwork, and the training of the subnet-
work can correct the parameters of the Batchnorm layer. 2)
Our goal is to train the best teacher for all subnetworks, not
to search for the best architecture on the validation set, so
the scaling of 3 will not have a significant impact on our
goal.

As shown in Figure 5, for each batch of training samples,
we first train with the teacher to obtain soft labels, update
the weights of the entire network and the architecture pa-
rameters 8. Then we sample the subnetworks, train with
the same training samples, and only calculate the loss using
soft labels. We have tried mixing distillation loss and target
loss, but using only soft labels can achieve better results.

FocusFair Sampling: The sampling method also has a great
impact on the training of weight-sharing NAS. As described
in FairNAS(Chu et al., 2021), using uniform sampling has
a sequence problem. FairNAS can alleviate this problem
to some extent. (Yu et al., 2020b) verified that compared
with uniform sampling, FairNAS has better stability in the
training of the supernetwork, especially in the early stage.
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Figure 5. Training flowchart. The first step is to train the complete supernetwork with architecture parameters, including forward and
backward (the depth of color represents the size of the architecture parameters). The second step is to sample the subnetworks using the
Focus-Fair sampling method based on the architecture parameters, and distill the subnetworks with the soft labels from the first step.
Finally, the accumulated gradients are used to update the weights of the supernetwork.

In addition, as shown in Figure 6(a), through experiments,
we found that for a topology search space, low-performance
architectures are more likely to be positively affected in the
training of the supernetwork, which get improvement to
reach or exceed the performance of training from scratch.
High-performance architectures will be affected more neg-
atively, resulting in performance far worse than training
from scratch. To address this problem, i.e., make the train-
ing more focused on high-performance architectures while
minimizing the impact on other architectures, we propose
Focus-Fair Sampling. Similar to the idea of DARTS(Liu
et al., 2019), architectures with higher architecture parame-
ters 3 should have relatively high performance. Therefore,
we use softmax(f) as the sampling weight of FairNAS, so
that operations with higher 5 have a higher probability of
being combined together, while still traversing all operations
between each pair of nodes in each iteration. This ensures
that the impact on architectures other than high-performance
architectures is minimized. For example, assuming that the
search block has three nodes, i.e., [z°, 2!, #2], the opera-
tion pool is [0g, 01,02], softmax(B*1) = [0.2,0.5,0.3],
and softmax(5*?) = [0.3,0.1,0.6]. Then the first sub-
network sampling in the iteration has a 30% probability of
obtaining [09"!, 05%], which is nearly twice higher than the
uniform sampling 11.1%. Combined with our distillation
method, this sampling method is cost-free. Compared with
DFair(Meng & Chen, 2023), our method is simpler and does
not require a large amount of validation during training.

To avoid the value of max(softmax(/3)) being too large

during training, i.e., focusing too much on a single high-
performance architecture, leading to training imbalance,
we use an additional hyperparameter 7, and we use
softmax(5/T) as the weight, which makes the sampling
smoother. Through experiments, we found that the value of
T is best around 1.5.

4. Result

In order to evaluate the overall performance of our method,
that is, the performance of all architectures in the search
space, we choose to use NAS-Bench-201(Dong & Yang,
2020) for testing. NAS-Bench-201 is a NAS benchmark
based on cell search. The search space is the topology struc-
ture, that is, the directed acyclic graph (DAG). Each cell
has four nodes, and there are five operations that can be
selected between any two nodes, zeroing, skip connection,
1x1 convolution, 3x3 convolution, and 3x3 average pooling.
The search space has a total of 15625 architectures. For
all architectures, NAS-Bench-201 provides detailed data on
training from scratch for 12 epochs and 200 epochs on three
datasets, Cifar10, Cifar100, and ImageNet16-120. There-
fore, NAS-Bench-201 is often used to evaluate the search
ability of NAS methods and the ranking ability of weight
sharing methods. Our goal is to evaluate the training effect
of the supernetwork, that is, whether the subnet sampled
from the supernetwork can directly achieve the performance
of training from scratch. Therefore, we use the average
accuracy of all subnets for evaluation.
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Algorithm 1 Training a Topology Search Space Based Supernetwork

Input: number of training epochs F, warmup epochs F,,, training data loader D, number of generated weights N, weight
coefficients A, operations pool O, number of operation candidates K.

fore=0to £ —1do

if e < E,, then
set A\, to 1/N; #warmup phase

end if
train the entire supernetwork and get the soft label g;
calculate the loss with true label y and backward pass;
update weights and 3 with weight decay;
fork=0to K —1do

random sample one architecture from O with weights softmax(8/7);
remove sampled operation from O, and its corresponding architecture parameter from [3;

train the sampled architecture with soft label ¥;
end for
update weights without weight decay;
end for

Supernetwork Training: For the configuration of the Hy-
pernetwork, we use h = 32, N = 64. In order to make
the architecture feature and weight coefficient generation
network have a larger batch size at each update, we use the
same trick as GHN3(Knyazev et al., 2023), that is, using the
same input samples on each GPU, but training with different
subnets. We use 4 GPUs for training. According to the set-
ting of NAS-Bench-201, we sample 5 subnets each iteration
(a total of 5 operations can be selected), so the batch size
of the architecture feature and weight coefficient generation
network each iteration is 20. Training uses SGD optimizer
with 0.9 momentum and Nesterov acceleration. The batch
size on each GPU is 256. We use an initial learning rate
of 0.2, use cosine learning rate decay, and train for a total
of 300 epochs. For Focus-Fair sampling, we set the tem-
perature 7 = 1.5. In addition, we use the same warm-up
method as KshotNAS(Su et al., 2021), that is, making all
weight coefficients the same in the first 5 epochs. In In-place
distillation, we also use the same weight decay strategy as
BigNAS(Yu et al., 2020a), that is, only weight decay is
used for the teacher. We also remove weight decay for all
BatchNorm layers and bias. Our complete training process
is summarized in Algorithm 1. After the supernetwork train-
ing is completed, we do not perform any retraining and
directly evaluate the subnet sampled from the supernetwork.
During evaluation, we use the same method as (Yu et al.,
2018), using 2048 training samples to recalculate the run-
ning statistics of the BatchNorm layer. To ensure fairness,
our experiments are consistent with NAS-Bench-201, and
no additional data augmentation is used.

Table 1 shows the training results of our method on NAS-
Bench-201. Since other methods do not report the aver-
age accuracy, we cannot directly compare with them. Our
method has a slightly higher average accuracy on Cifar10

Table 1. Training results on NAS-Bench-201.

Cifar10  Cifar100
Avg. accuracy (baseline) 87.06%  61.41%
Avg. accuracy (ours) 87.12%  61.02%
Max. accuracy (baseline) 94.37%  73.51%
Max. accuracy (ours) 9247%  72.04%

Table 2. Effect of our Kshot-Hypernet based on Cifar100. The
result of Kshot(Su et al., 2021) is produced by us, since they didn’t
provide source code.

Avg. accuracy  Max. accuracy

weight sharing 53.04% 65.24%
Kshot(N=12) 53.75% 63.88%
Kshot-Hypernet 60.66% 68.4%

than the baseline, and is very close to the baseline on Ci-
far100. The difference between the maximum accuracy
and the baseline is kept within 2%. This indicates that
our method can make most subnets on NAS-Bench-201
approach or surpass the results.

Effectiveness of Kshot-Hypernet: We compare the ef-
fect of directly using weight sharing, Kshot-NAS(Su et al.,
2021), and our Kshot-Hypernet method on Cifar100. As
shown in Table 2, our method has an improvement of about
7% in average accuracy and about 5% in maximum accuracy.
This indicates that our method far exceeds other methods in
the results of supernetwork training in the topology search
space.

Effectiveness of our distillation method: To verify the
effectiveness of our distillation method, we conducted an
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Figure 6. Comparison of FairNAS Sampling and Focus-Fair Sampling. The baseline is the result of training from scratch, provided by

NAS-Bench-201.

Table 3. Effect of our distillation method based on Cifar100.

Avg. accuracy ~ Max. accuracy

58.60% 67.86%
60.26% 69.3%

w/o KD
w/ our KD

Table 4. Kendall’s Tau of different methods on NAS-Bench-201.

value of our method on both datasets is about 70%. This
indicates that the ranking ability of our method is higher
than almost all other methods. This also indirectly proves
the effectiveness of our method.

5. Discussion

In this paper, we propose a novel training paradigm for
super-networks based on the topological search space. Af-
ter training the super-network, it can be directly searched

and deployed on the target platform without the need for
retraining. We introduce a new distillation and sampling

Method Cifar10  Cifar100
SPOS (Guo et al., 2020) 55.00%  56.00%
AngleNet (Hu et al., 2020) 57.48%  60.40%
K-shot (Su et al., 2021) 62.64%  61.22%
FewShot(25-supernets) (Zhao et al., 2021)  69.6% N/A

our 69.42%  70.18%

method for topological search space NAS, which effectively
improves the performance of all architectures in the search
space after super-network training. Our method transcends
the limitations of the MobileNet search space, enabling the

ablation experiment. As shown in Table 3, our distillation
method has an improvement of about 1.5% in both average
accuracy and maximum accuracy on Cifar100. This indi-
cates that our distillation method is effective in improving
the performance of the subnet, and overall improves the
performance of the supernetwork.

Effectiveness of Focus-Fair Sampling: As mentioned in
Section 3.2, previous sampling methods, such as FairNAS
sampling, will result in high-performance subnets not get-
ting enough training. To verify the effectiveness of our
Focus-Fair sampling, we compared the training results of the
two sampling methods. As shown in Figure 6, our method
fills the gap in high-ranking subnets caused by FairNAS
sampling.

Ranking ability: Although ranking ability is not our fo-
cus, we still evaluated the ranking ability of our method on
NAS-Bench-201. As shown in Table 4, the Kendall’s Tau

training of a super-network to be applicable across various
platforms, thereby increasing flexibility and efficiency in
deployment.

Although we have achieved promising results on CIFAR-10
and CIFAR-100, there is still potential for improvement
in maximum accuracy, necessitating further experiments.
Additionally, it is essential to verify the method’s effective-
ness on larger datasets and broader search spaces. Future
research may focus on integrating smaller search spaces
into a unified training approach, thereby enhancing the flex-
ibility of the NAS search space and improving deployment
efficiency.
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Figure 7. Comparison of architecture distribution within the search space. 7(a) is the baseline, which is the result of training from scratch,
provided by NAS-Bench-201. 7(b) is our result, where we directly evaluate the inherited weights from the supernetwork without any
retraining.

We analyzed the architecture distribution within the search space of NAS-Bench-201, as shown in Figure 7. We can see that,

compared to the baseline, although slightly less in the highest performance, the architecture distribution of our method is
more concentrated at relatively high performance.
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