
Published as a conference paper at ICLR 2023

A UNIFIED FRAMEWORK FOR SOFT THRESHOLD
PRUNING

Yanqi Chen1,3, Zhengyu Ma†3, Wei Fang1,3, Xiawu Zheng3, Zhaofei Yu1,2,3, Yonghong Tian†1,3

1National Engineering Research Center of Visual Technology, School of Computer Science,
Peking University; 2Institute for Artificial Intelligence, Peking University; 3Peng Cheng Laboratory
yhtian@pku.edu.cn, mazhy@pcl.ac.cn; (†Corresponding author)

ABSTRACT

Soft threshold pruning is among the cutting-edge pruning methods with state-of-
the-art performance1. However, previous methods either perform aimless search-
ing on the threshold scheduler or simply set the threshold trainable, lacking the-
oretical explanation from a unified perspective. In this work, we reformulate soft
threshold pruning as an implicit optimization problem solved using the Iterative
Shrinkage-Thresholding Algorithm (ISTA), a classic method from the fields of
sparse recovery and compressed sensing. Under this theoretical framework, all
threshold tuning strategies proposed in previous studies of soft threshold prun-
ing are concluded as different styles of tuning L1-regularization term. We fur-
ther derive an optimal threshold scheduler through an in-depth study of threshold
scheduling based on our framework. This scheduler keeps L1-regularization coef-
ficient stable, implying a time-invariant objective function from the perspective of
optimization. In principle, the derived pruning algorithm could sparsify any math-
ematical model trained via SGD. We conduct extensive experiments and verify its
state-of-the-art performance on both Artificial Neural Networks (ResNet-50 and
MobileNet-V1) and Spiking Neural Networks (SEW ResNet-18) on ImageNet
datasets. On the basis of this framework, we derive a family of pruning meth-
ods, including sparsify-during-training, early pruning, and pruning at initializa-
tion. The code is available at https://github.com/Yanqi-Chen/LATS.

1 INTRODUCTION

Pruning has been a thriving area of network compression. Since the day deep neural networks
stretch their tentacles to every corner of machine learning applications, the demand for shrinking
the size of network parameters has never stopped growing. Fewer parameters usually imply less
computing burden on resource-constrained hardware such as embedded devices or neuromorphic
chips. Some pioneering studies have revealed considerable redundancies in both Artificial Neural
Networks (ANNs) (Han et al., 2015; 2016; Wen et al., 2016; Liu et al., 2017) and Spiking Neural
Networks (SNNs) (Qi et al., 2018; Chen et al., 2021; Yin et al., 2021; Deng et al., 2021; Kundu
et al., 2021; Kim et al., 2022b).

In essence, pruning can be formulated as an optimization problem under constraint on L0 norm,
the number of nonzero components in network parameters. Assuming L is the loss function of
vectorized network weight w, we expect lower L0 norm ∥w∥0 along with lower loss L(w). Despite
different formulations like hard constraints

min
L(w)≤c

∥w∥0; (1)

min
∥w∥0≤K

L(w); (2)

or soft constraints (penalized)
min
w
{L(w) + µ∥w∥0}, (3)

1For example, STR (Kusupati et al., 2020) is the first to achieve >50% Top-1 accuracy of ImageNet on
ResNet-50 under >99% sparsity. STDS (Chen et al., 2022) is the first pruning algorithm achieving acceptable
performance degradation (∼ 3% under 88.8% sparsity) for spiking neural networks with 18+ layers.

1

https://github.com/Yanqi-Chen/LATS

Published as a conference paper at ICLR 2023

all these forms are without exception NP-Hard (Natarajan, 1995; Davis et al., 1997; Nguyen et al.,
2019). Relaxing L0 norm to Lp(0 < p < 1) norm will not make it more tractable for it is still
strongly NP-Hard (Ge et al., 2011). Nowadays, research on pruning and sparse optimization is
mainly focused on the L1-regularized problem, the tightest convex relaxation of L0 norm, which
dates back to a series of groundbreaking studies on compressed sensing (Donoho, 2006; Candès
et al., 2006). These researches technically allows us to solve L1-regularized problem as an alter-
native or, sometimes even an equivalent option (Candès, 2008) to confront L0 norm constraint. A
variety of modern methods such as magnitude-based pruning are still firmly rooted in solving the
L1 regularized optimization problem. Be that as it may, L1 regularization is mostly employed for
shrinking the magnitude of weight before the hard thresholding step, which has started to be replaced
by other sorts of novel regularization (Zhuang et al., 2020).

In the past few years, a new range of pruning methods based on soft threshold reparameterization of
weights has been developing gradually. The term “reparameterization” here refers to a specific map-
ping to network weights w from a latent space of hidden parameters θ. The “geometry” of latent
space could be designed for guiding actual weights w towards sparsity. In soft threshold prun-
ing, the mapping is an element-wise soft threshold function with time-variant threshold. Among
these studies, two representative ones are Soft Threshold weight Reparameterization (STR) (Kusu-
pati et al., 2020) and State Transition of Dendritic Spines (STDS) (Chen et al., 2022). They both
achieve the best performance of that time. STDS further demonstrates the analogy between soft
threshold mapping and a structure in biological neural systems, i.e., dendritic filopodia and ma-
ture dendritic spines. However, few researchers notice that soft threshold mapping also appear as
the shrinkage operator in the solution of LASSO (Tibshirani, 1996) when the design matrix is or-
thonormal. The studies on LASSO further derives the Iterative Shrinkage-Thresholding Algorithm
(ISTA) (Daubechies et al., 2004; Elad, 2006), which used to be popularized in sparse recovery and
compressed sensing. ISTA has many variants (Bioucas-Dias & Figueiredo, 2007; Beck & Teboulle,
2009b; Bayram & Selesnick, 2010) and has long been certified as an effective sparsification methods
in all sorts of fields like deep learning (He et al., 2017; Zhang et al., 2018; Bai et al., 2020), computer
vision (Beck & Teboulle, 2009a; Dong et al., 2013), medical imageology (Lustig et al., 2007; Otazo
et al., 2015) and geophysics (Herrmann & Hennenfent, 2008). Despite an abecedarian analysis on
the similarity between STDS and ISTA, many issues remains to be addressed, such as 1) the exact
equivalence between ISTA and the growing threshold in soft threshold pruning, 2) the necessity of
setting threshold trainable in STR, and 3) the way to improve existing methods without exhaustively
trying different tricks for scheduling threshold.

In this work, we proposed a theoretical framework serving as a bridge between the underlying L1-
regularized optimization problem and threshold scheduling. The bridge is built upon the key finding
that soft threshold pruning is an implicit ISTA for nonzero weights. Specifically, we prove that the
L1 coefficient in the underlying optimization problem is determined by both threshold and learning
rate. In this way, any threshold tuning strategy can now be interpreted as a scheme for tuning L1

penalty. We find that a time-invariant L1 coefficient lead to performance towering over previous
pruning studies. Moreover, we bring a strategy of tuning L1 penalty called continuation strategy
(Xiao & Zhang, 2012), which was once all the rage in the field of sparse optimization, to the field of
pruning. It derives broad categories of algorithms covering several tracks in the present taxonomy
of pruning. In brief, our contributions are summarized as follows:

• Theoretical cornerstone of threshold tuning strategy. To the best of our knowledge,
this is the first work interpreting increasing threshold as an ever-changing regularized term.
Under theoretical analysis, we present a unified framework for the local equivalence of
ISTA and soft threshold pruning. It enables us to make a comprehensive study on threshold
tuning using the classic method in sparse optimization.

• Learning rate adapted threshold scheduler. Through our proposed framework, we reveal
the strong relation between the learning rate scheduler and the threshold scheduler. Then
we show that an time-invariant L1 coefficient requires the changing of threshold being
proportional to the learning rate. The Learning rate Adapted Threshold Scheduler (LATS)
built upon L1 coefficient achieves a state-of-the-art performance-sparsity tradeoff on both
deep ANNs and SNNs.

• Sibling schedulers cover multiple tracks of pruning. We propose an early pruning al-
gorithm by translating the homotopy continuation algorithm into a pruning algorithm with

2

Published as a conference paper at ICLR 2023

our framework. It achieves indistinguishable performance to LATS as a conventional early
pruning method. Moreover, the algorithm in the pruning-at-initialization setting erases
some subsequent layers in ResNet and maintains the identity mapping, shrinking deep
ResNet to a shallow one.

2 RELATED WORKS

There has been a deluge of pruning algorithms emerged since the term “deep compression” was in-
vented. These various studies emphasize different points like granularity (structured or unstructured)
and stage of pruning (at initialization, during training, post training). The difference in granularity is
similar to that between LASSO and group LASSO. Empirically, unstructured pruning tends to reach
higher sparsity under the same accuracy degradation. For the pruning phase, sparsify during training
commonly lead to higher accuracy than early phase one, e.g., pruning at initialization. Moreover,
pruning during training is cheaper than post-training pruning when the overhead of dense training is
considered. Some most relevant works are introduced as follows.

Sparsify during training. The terminology sparsify-during-training (also called pruning-while-
learning, pruning-during-training) is mentioned in Hoefler et al. (2021), which refers to pruning and
training networks simultaneously including those iteratively pruned networks. Recent works in this
area includes STR (Kusupati et al., 2020), Top-KAST (Jayakumar et al., 2020), CS (Continuous
Sparsification) (Savarese et al., 2020), RigL (Evci et al., 2020), WoodFisher (Singh & Alistarh,
2020), PSGD (Kim et al., 2020), GraNet (Liu et al., 2021a), Powerprop (Schwarz et al., 2021),
ProbMask (Zhou et al., 2021), GPO (Wang et al., 2022), OptG (Zhang et al., 2022) and STDS (Chen
et al., 2022). Many of these works are based on the reparameterization of weights using either
binary mask or element-wise nonlinear mapping. The former choose to confront L0 constraint
directly while the latter are committed to adjusting the landscape of loss function around zero. Our
method is based on soft threshold reparameterization, which is piecewise linear and has an intrinsic
connection to the ISTA with L1 regularization.

Early pruning. We refer to a variant of sparsify-during-training as early pruning here, which only
exerts pruning to network in the early stage of training. It includes pruning at initialization, e.g.,
GraSP (Wang et al., 2020), SynFlow (Tanaka et al., 2020), SBP-SR (Hayou et al., 2021), ProsPr
(Alizadeh et al., 2022), and the conventional early pruning methods which stop pruning after several
epochs of training (You et al., 2020; Liu et al., 2021b; Rachwan et al., 2022). Most of these works
are inspired by the discovery of Lottery Ticket Hypothesis (LTH) (Frankle & Carbin, 2019) or SNIP
(Lee et al., 2019), if not both. LTH suggests we can find a sparse subnetwork with comparable
performance to the dense network after iterative retraining, while SNIP manages to train from an
initial sparse network. A wide array of criteria like connectivity sensitivity are taken for finding such
sparse networks in the early stage with promising accuracy after training.

3 PRELIMINARIES

Notation. We use |x| to denote the element-wise absolute value of x, and ∥x∥p denotes the p-
norm of x. x ⊙ y denotes the element-wise product of x and y. If not otherwise specified, the
superscript within parenthesis x(i) denotes x at i-th iteration of gradient descent. The element-wise
sigmoid function is denoted by σ(x)i := 1/(1 + e−xi). The soft threshold mapping is also an
element-wise mapping defined by Sd(x)i := sign(xi) ·max {|xi| − d, 0} with scalar threshold d.

3.1 SOFT THRESHOLD PRUNING

Basically, soft threshold pruning will iteratively execute following three core steps:

(i) Mapping hidden weight to actual weight w through the soft threshold mapping w(t) ←
Sd(θ(t)) during training, where θ is a trainable hidden weight with the same shape as w.

(ii) Training hidden weight θ through backpropagation in latent space
(iii) Growing threshold d pushes the term max {|θi| − d, 0} in Sd(θ) towards zero and thereby

enforces sparsity for w.

3

Published as a conference paper at ICLR 2023

Algorithm 1 The general form of soft threshold pruning algorithm coupled with vanilla SGD (STR
and STDS for instance).
Input: initialized network parameters w(0), threshold scheduler function g(·), initial threshold d(0), final threshold D, initial learnable

parameter sinit, loss function L(w), the number of training iterations T , L2 penalty λ.
Output: trained sparse parameters w(T)

1: s
(0) ← sinit,d

(0) ← σ(s
(0)

), θ(0) ← w(0) ▷ Initialization of weight and threshold
2: for t = 0, 1, . . . , T − 1 do
3: ∆θ(t) ← ∇w(L(w(t)))⊙1|θ|>d(t) ▷ Computing gradient with respect to hidden weight

4: θ(t+1) ← θ(t) − η(t)(∆θ(t) + λθ(t)) ▷ Update hidden weight. η(t) is learning rate
5: s

(t+1) ← s
(t) − η

(t)
(∇s(L(w; s

(t)
)) + λs

(t)
) ▷ Threshold training in STR

6: d(t+1) ←σ(s
(t+1)

)g((t + 1)/T) ·D ▷ Update threshold
7: w(t+1) ← S

d(t+1) (θ
(t+1)) ▷ Update the actual weight

8: end for
9: return w(T)

We provide a general form of soft threshold pruning as Algorithm 1, which is a prototype of both
STR and STDS. GPO change the mapping in line 7 to a convex combination of soft threshold and
identity mapping, leading to a slight difference. However, GPO only obtain marginal performance
improvement with respect to STR, and will soon degenerate to STR as discussed in Appendix C.
Therefore, the following of this paper are focused on STR and STDS. The differences between them
are concluded from two aspects.

Gradient computing. With the reparameterization mapping w(t) ← Sd(θ(t)), the forward step
includes mapping via θ → w and evaluating loss with w as the actual network weight. Hence,
gradient is backpropagated via path L → w → θ. The learning rule is thus used for updating θ
instead of w. Note that Sd is non-differentiable at±d and has zero gradient in interval (−d, d). STR
takes advantage of the subgradient at ±d and leaves zero gradients as it is. STDS views Sd as an
identity mapping during backward, and provides a convergence analysis by approximating Sd using
a smooth surrogate Ŝd(x) = 1

α [ζ(α(x− d))− ζ(−α(x+ d))], where ζ(x) := log(1 + ex) denotes
the softplus function.

Threshold tuning. These studies spontaneously try manipulating threshold d for different sparsity.
STR assigns an independent threshold for each layer, resulting into a threshold vector d. Besides,
STR further parameterizes the threshold by another trainable parameter s. The mapping from s to
d is individually designed for CNN and RNN. Compared to STR, STDS set threshold manually by
introducing the threshold scheduler as d(t) = g(t/T) ·D, wherein scheduler function g : [0, 1]→
[0, 1] is increasing and satisfies g(0) = 0, g(1) = 1, T is the total training steps. The formulation
is based on the idea that increasing threshold from 0 to D could follow different paths. The final
threshold D is the only adjustable hyperparameter for different sparsity levels when g is given.
Larger D always leads to higher sparsity in practice.

The above techniques are summarized in Tab. 1.

Table 1: Techniques used in previous studies.

Method Reparameterization mapping
w(θ, d)

Gradient of mapping Threshold Note

STR
(Kusupati et al., 2020) w = Sd(θ) Subgradient d :=

{
σ(s), for CNN
es, for RNN

s is layer-wise
(global for STR-GS),

trainable,
and L2 regularized

GPO
(Wang et al., 2022) w = (1− k)Sd(θ) + kθ Gradient d := σ(s)

s, k are layer-wise,
trainable,

and L2 regularized
STDS

(Chen et al., 2022) w = Sd(θ) 1 (Viewed as identity) d(t) = g(t/T) ·D g is increasing,
g(0) = 0, g(1) = 1

3.2 ITERATIVE SHRINKAGE-THRESHOLDING ALGORITHM

ISTA is initially derived from solving linear inverse problem with regularization
minx∈Rn

{
∥Ax− b∥22 + r(x)

}
, where A ∈ Rm×n and b ∈ Rm. ISTA is later extended to

general objective as minx∈Rn {F (x) := f(x) + r(x)} with assumptions listed below

4

Published as a conference paper at ICLR 2023

(i) Objective function f : Rn → R is continuous differentiable, and L-smooth, i.e., ∥∇f(x)−
∇f(y)∥2 ≤ Lf∥x− y∥2,∀x,y ∈ Rn, where Lf > 0 is the Lipschitz constant of∇f .

(ii) Regularization function r : Rn → R is continuous convex and can be nonsmooth.

(iii) F is bounded from below.

Leave the regularization r(x) alone, applying vanilla SGD to f can be viewed as iteratively cal-
culating proximal regularization (Martinet, 1970) of the linearized f at x, which is suggested by
the following fact: x − η∇f(x) = argminy{f(x) + ⟨y − x,∇f(x)⟩ + 1

2η∥y − x∥22}, where η

is explained as “stepsize” in optimization or “learning rate” in the context of deep learning. For a
given point x, F (y) can be approximated by expanding f to the quadratic term in a similar vein

F̂η(y;x) := f(x) + ⟨y − x,∇f(x)⟩+ 1

2η
∥y − x∥22 + r(y), (4)

The above problem admits a unique minimizer

argmin
y

F̂η(y;x) = argmin
y

{
1

2η
∥y − (x− η∇f(x))∥22 + r(y)

}
. (5)

Note that η = 1
Lf

gives a upperbound of f(y), which is obtained by the descent lemma f(y) ≤
f(x) + ⟨y − x,∇f(x)⟩ + Lf

2 ∥y − x∥22 (Beck, 2017). It implies with proper choice of η, we
are virtually optimizing the upperbound of F (y) using minimizer in Eq. 5. The general form of
ISTA iteratively solves Eq. 5 as x(t+1) = argminx F̂η(x;x

(t)), which is also known as proximal
gradient methods (Combettes & Wajs, 2005). The detailed convergence analysis is presented in
vast optimization literature like FISTA (Beck & Teboulle, 2009b) and GIST (Gong et al., 2013).
For sparsity, we are interested in L1 regularization term r(x) = µ∥x∥1, µ > 0. Since L1 norm is
separable, we have a closed-form solution with element-wise soft threshold operation as

x(t+1) = Sµη(x(t) − η∇f(x(t))). (6)

Eq. 6 gives the ISTA update rule under L1 regularization.

4 A FRAMEWORK FOR SOFT THRESHOLD PRUNING

In this part, we will formulate the growing threshold under soft threshold reparameterization as an
implicit ISTA. For simplicity, we assume the threshold is global across all parameters, which is
consistent with the setting of STDS and STR-GS, i.e., the global threshold version of STR. Hence,
we use scalar d rather than vector d in Algorithm 1 to denote the global threshold.

To begin with, we investigate the update rule of nonzero components in actual weight

θ(t+1) ← θ(t) − η(t)∇w(L(w(t)))⊙∇θ(w(θ(t), d(t))), Line 4 in Algorithm 1, (7)

w(t+1) ← Sd(t+1)(θ(t+1)), Line 7 in Algorithm 1. (8)

Assuming the sign of weight remains unchanged after an update, which happens when the gradient
has the opposite sign of weight or the gradient magnitude is sufficiently small, we have the following
Lemma:

Lemma 1 (Local update rule). The update rule in Eq. 7 and Eq. 8 implies the following update of a
nonzero component w(θ, d) in actual weight w

w(t+1) = Sd(t+1)−d(t)(w(t) − η(t)∇w(L(w(t)))). (9)

The formal version and proof of Lemma 1 is given in Appendix A. Note that the form in Eq. 9 is
equivalent to the ISTA update rule with threshold equal to forward finite difference d(t+1) − d(t).
Recall Eq. 6, the corresponding optimization problem can be deduced as Theorem 1:

Theorem 1. Let L(w) be the loss function depending on the network weight w, which is further
reparamterized by hidden weight θ and threshold d as w(θ, d) = Sd(θ). When applying vanilla

5

Published as a conference paper at ICLR 2023

SGD to reparameterized nonzero weight, the update rule is locally equivalent to solving the follow-
ing problem using ISTA with penalty term

min
w

{
F (w) := L(w) +

d(t+1) − d(t)

η(t)
∥w∥1

}
, (10)

where η(t), d(t) denotes the learning rate and threshold at the t-th iteration, respectively. The mag-
nitude of L1-penalty is the quotient of forward finite difference of threshold scheduler divided by
learning rate.

Theorem 1 serves as the glue holding the learning rate scheduler η(t), threshold d(t) and penalty µ(t)

together. It also to some extent justify the increasing threshold for a positive penalty term. Under
this framework, we further explain in Appendix B that the original STDS uses an improper threshold
scheduler. Moreover, the validity of training threshold is discussed in Appendix C.

5 FINDING OPTIMAL THRESHOLD SCHEDULER

In this part, we are devoted to evaluating some threshold schedulers based on our theoretical frame-
work and literature on sparse optimization. With the framework, any past strategy of tuning L1

penalty can be converted to a feasible pruning algorithm today.

5.1 LEARNING RATE ADAPTED THRESHOLD SCHEDULER

If the optimization problem in Theorem 1 is fixed, or in other words, the L1 penalty is invariant
µ(t) ≡ µ during learning, we can deduce a unique threshold scheduler LATS. In LATS, the change
on threshold d(t+1) − d(t) must be proportional to the learning rate η(t) during training.
Corollary 1 (Learning rate Adapted Threshold Scheduler). For fixed L1 regularized problem

min
w
{F (w) := L(w) + µ∥w∥1} , (11)

where µ > 0 is the time-independent L1 penalty coefficient, the threshold scheduler is governed by

the learning rate scheduler as d(t) = d(0) + µ
t−1∑
i=0

η(i)

For the most frequently used testbed, ResNet-50 (He et al., 2016) on ImageNet dataset (Deng et al.,
2009), researchers usually use the cosine annealing learning rate scheduler (Loshchilov & Hutter,
2017) with ηmin = 0. Assuming the initial threshold is zero, simple algebra shows the definition of
corresponding LATS with a slight abuse of notation

d(n,b) = µηmax

[
B

4

(
2n+ 1 +

sin
(
2n−1
2N π

)
sin π

2N

)
+

b

2

(
1 + cos

nπ

N

)]
, (12)

where the threshold d(n,b) depends on epoch id n and batch id b. Here n = 0, 1, . . . , N − 1 denotes
the current id of training epoch, and b = 1, 2, . . . , B denotes the batch id in n-th epoch. We elaborate
the detailed derivation of Eq. 12 in Appendix D.

5.2 SIMPLIFIED THRESHOLD SCHEDULER

Computation such as Eq. 12 is intricate for implementation. In effect, painstakingly coding LATS
according to given learning rate scheduler is not inevitable. To ease the computing burden, we turn
to replacing sum of learning rate with integration of learning rate function.

To be specific, assuming the learning rate scheduler can be expressed by η(n,b) = h(n/N), the
simplified threshold scheduler is defined by

d(t) = d(N−1,B) ·
∫ t

T

0
h(x)dx∫ 1

0
h(x)dx

. (13)

The simplification is loyal to the idea that the value of Riemann integral could be approximated by
rectangle method. Eq. 13 can be interpreted with scheduler form in STDS as d(t) = g(t/T) · D

6

Published as a conference paper at ICLR 2023

with scheduler function g(x) =
∫ t

T

0
h(x)dx/

∫ 1

0
h(x)dx and final threshold D = d(N−1,B). The

detailed derivation of Eq. 13 is given in Appendix D.

Now we have the Simplified LATS (S-LATS for short) for the cosine annealing learning rate sched-
uler h(x) = ηmax

2 (1 + cos(πx))

d(t) =
µηmaxT

2
·
∫ t

T

0
1
2 (1 + cosπx)dx∫ 1

0
1
2 (1 + cosπx)dx

=
µηmaxT

2

[
1

π
sin(

tπ

T
) +

t

T

]
. (14)

The final threshold is D = µηmaxT/2, which satisfies D ∝ µ. Tuning D is thus akin to changing
the magnitude of penalty. In the following discussion, we employ the final threshold D instead
of d(N−1,B) to lighten the notation. The threshold schedulers in the rest of this work will thus be
expressed in a unified form of d(t) = g(t/T) · D. We evaluate LATS and S-LATS under identical

Table 2: Comparison of LATS and S-LATS when applied to ResNet-50 on ImageNet dataset.

Final threshold D
STDS + LATS STDS + S-LATS

Sparsity (%) Top-1 Acc. (%) Sparsity (%) Top-1 Acc. (%)

0.1 79.97 76.53 79.95 76.75
0.5 95.54 73.12 95.53 73.03
1.0 97.43 69.56 97.43 69.64
5.0 99.27 53.80 99.28 53.64

final thresholds D = 0.1, 0.5, 1.0, 5.0, which can be gleaned from Tab. 2. The results show LATS
and S-LATS are indistinguishable from accuracy and sparsity. Thus, we turn to a simplified threshold
scheduler in the following discussion.

5.3 CONTINUATION STRATEGY

Also known as “warm starting”, continuation strategy is designated for accelerating convergence.
Similar to annealing of learning rate, continuation refers to gradually reducing L1 penalty during
learning. It is also explained in Hale et al. (2008) as an analogue to the homotopy algorithms
in statistics. Continuation method used to serve as a common trick in abundant classic literature
concerning sparse optimization including GPSR (Figueiredo et al., 2007), fixed point continuation
method (Hale et al., 2008), SpaRSA (Wright et al., 2009) and NESTA (Becker et al., 2011).

5.3.1 PGH SCHEDULER

In the series works of proximal gradient homotopy (PGH) (Xiao & Zhang, 2012; 2013; Lin & Xiao,
2014), the researchers provide proof of geometric convergence rate when inducing exponentially
decaying L1 coefficient µ(t) = β

t
T , where 0 < β < 1 is a constant. Considering our formulation

of soft threshold pruning in Theorem 1, PGH can be translated into the PGH scheduler (simplified
using Eq.13), which can be written as

d(t) = gPGH(t/T) ·D :=

∫ t
T

0
1
2 (1 + cosπx)βxdx∫ 1

0
1
2 (1 + cosπx)βxdx

·D, (15)

where the analytic form of gPGH is shown below

gPGH(x) =
π2 (βx − 1) + log2(β) (βx − 2) + log(β)βx(log(β) cos(πx) + π sin(πx))

π2(β − 1)− 2 log2(β)
. (16)

5.3.2 LINK TO EARLY PRUNING

For the PGH scheduler, we interpolate β between 0 and 1 and get a series of different PGH sched-
ulers. As shown in Fig. 1, the increasing in threshold slows over time, which is caused by decaying
L1 penalty. For 0 < β < 1, if pruning is ignored when penalty is below a preset threshold, we get a
family of early pruning algorithms. They will stop pruning at different stages. Recall that the regular-
ized term is proportional to the forward finite difference and thus can be approximated by derivative,
for conventional early pruning, we regard g′PGH(t/T) < 0.1 as the termination criterion of pruning.

7

Published as a conference paper at ICLR 2023

0.00 0.25 0.50 0.75 1.00
x

0.00

0.25

0.50

0.75

1.00

g P
G

H
(x

) β = 1e-10
β = 1e-05
β = 0.1
S-LATS
(β → 1)
β → 0

Figure 1: PGH schedulers un-
der different β.

There are two limit cases when β approaches 0 or 1. It is obvi-
ous that β → 1 leads to S-LATS for no decay is applied. When
β → 0, the penalty is always zero except for the beginning. In
this case, PGH scheduler degenerates to a magnitude-based prun-
ing after weight initialization followed by a normal training stage.
This is also referred to as sparse-to-sparse training or pruning at
initialization method.

6 EXPERIMENTS

In this section, we test proposed threshold scheduler S-LATS on both deep ANNs and SNNs. The
favorable performances against the previous studies are confirmed. In all experiments we switch
sparisty levels by changing D, which is equivalent to tuning L1 penalty coefficient. We also tune
hyperparameter β in PGH scheduler to maintain different phases of early pruning algorithm. Com-
pared to the dense baseline, no tuning on other training hyperparameters is needed, which minimize
the effort when applying to other networks.

6.1 S-LATS

S-LATS achieves state-of-the-art performances on both ANNs (ResNet-50, MobileNet-V1 (Howard
et al., 2017)) and SNNs (SEW ResNet-18 (Fang et al., 2021)). The results on ResNet-like networks
and MobileNet-V1 are illustrated in Fig. 2. We add Gradual Magnitude Pruning (GMP) (Zhu &
Gupta, 2017) into comparison for few recent studies are conducted on MobileNet-V1. Notably,
our method surges ahead of all the other baselines under <98% sparsity for pruning on ResNet-50,
which is shown in Tab. 3. It should be noted that the origin STDS excludes the last FC layer from
pruning in SNNs, while the results reported here are shown by rerunning it with the last layer pruned.
We also admit it fails to achieve comparable performance with a few baselines like OptG and in

Table 3: Comparison of ResNet-50 Top-1 accuracy on ImageNet in recent studies using 100 training
epochs. For some studies without strict control on sparsity, the closest sparsity is reported behind
the performance. Performance of S-LATS is averaged over three trials.

Method Batch size Sparsity

80% 90% 95% 96.5% 97.5% 98% 99%

STR 256 76.19 (79.55) 74.31 (90.23) 70.40 (95.03) 67.22 (96.53) - 61.46 (98.05) 51.82 (98.98)
STR-GS 256 - 74.13 (89.54) - - - 62.17 (97.91) -
GraNet 256 76 74.5 72.3 70.5 - - -

ProbMask 256 - 74.68 71.5 - - 66.83 61.07
OptG 256 - 74.28 72.38 70.85 - 67.2 62.1

WoodFisher 256 76.73 75.26 72.16 - - 65.47 -
S-LATS 256 76.57±0.15 (79.95) 75.43±0.17 (89.57) 73.20±0.09 (95.12) 71.48±0.13 (96.58) 69.49±0.18 (97.43) 67.25±0.19 (98.01) 58.39±0.25 (99.02)

S-LATS 1024 76.61±0.25 (79.00) 75.87±0.15 (90.15) 74.29±0.28 (95.01) 72.80±0.18 (96.53) 70.78±0.09 (97.54) 69.15±0.13 (98.00) 61.90±0.18 (98.93)

RigL (ERK) 4096 75.1 73.0 69.7 67.2 - - -
Top-KAST

(Powerprop) 4096 76.24 75.23 73.25 - - - -

Top-KAST
(Powerprop+ERK) 4096 76.76 75.74 - - - - -

extreme sparsity (≥99%), which suggests the theory might be imperfect under such conditions. An
ablation study shows S-LATS outperforms the default threshold scheduler of STDS, which is shown
in Appendix F.

80 85 90 95 100
Sparsity (%)

50

55

60

65

70

75

To
p-

1
A

cc
.

(%
)

Dense Acc.

S-LATS
STR
STR-GS
GraNet
OptG
ProbMask
WoodFisher

75 80 85 90
Sparsity (%)

62

64

66

68

70

72

To
p-

1
A

cc
.

(%
)

Dense Acc.

S-LATS
STR
GMP
WoodFisher

60 70 80 90
Sparsity (%)

40

45

50

55

60

To
p-

1
A

cc
.

(%
)

Dense Acc.

S-LATS
STDS (Sine sch.)
ADMM

80 85 90 95 100
Sparsity (%)

50

55

60

65

70

75

To
p-

1
A

cc
.

(%
)

Dense Acc.(256)Dense Acc.(1024)

S-LATS (256)
S-LATS (1024)
PPTopKAST (4096)

PPTopKAST,ERK (4096)

RigLERK (4096)

Figure 2: Performance of several SOTA pruning strategies of ResNet-50 (Leftmost & Rightmost),
MobileNet-V1 (Middle left) and SEW ResNet-18 (Middle right) on ImageNet. All trials uses the
standard training setting (256 batch size) except the rightmost one, which uses an enlarged batch
size marked in parenthesis. Detailed layerwise sparsity and accuracy are given in Appendix I.

8

Published as a conference paper at ICLR 2023

Pruning using large batch size. Powerprop (Schwarz et al., 2021), adopts a batch size of 4096 for
pruning of ResNet-50 and achieves fascinating performances under high sparsity. Hence, we explore
the large batch size setting. Due to limited resources, we only increase it to 1024 and enlarge the
learning rate correspondingly. The rightmost of Fig. 2 shows it indeed leads to higher performance,
which outperforms all other SOTA studies. Astonishingly, even though the performance of the dense
network slightly degrades, the accuracy of the sparse ones is improved overall. On the basis of the
above finding, we believe applying an even larger batch size, like 4096 used in Powerprop, to our
method may lead to top-notch performance tradeoff.

6.2 PGH SCHEDULER

Conventional early pruning Our experiments of early pruning includes β = 0.1, 10−5, 10−10.
The corresponding ending criteria t/T = 0.743, 0.382, 0.231 are given by numerical solution. It
indicates pruning roughly stops at the 74th, the 38th and the 23th epoch. The network using PGH
scheduler with smaller β converges faster to a sparse one, which is illustrated in the left of Fig. 3.
Surprisingly, we find in the middle of Fig. 3 that for different β, the datapoint of accuracy against

0 20 40 60 80 100
Epoch

20

40

60

80

S
pa

rs
ity

(%
)

β = 1e-10
β = 1e-5
β = 0.1
S-LATS
(β → 1)

80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5 100.0
Sparsity (%)

50

55

60

65

70

75

To
p-

1
A

cc
.

(%
)

Dense Acc.

β = 1e-10
β = 1e-5
β = 0.1
S-LATS
(β → 1)

0 10 20 30 40 50
Layer

40

60

80

100

La
ye

rS
pa

rs
ity

(%
)

D = 0.1
D = 0.11
D = 0.13
D = 0.15

Figure 3: Overall sparsity during learning when final threshold D = 0.1 (Left). Performance
under different sparsity levels (Middle). Layerwise sparsity of PGH scheduler under pruning at
initialization setting β → 0 (Right).

sparsity almost lies on the curve of S-LATS. It suggests these schedulers have practically the same
performances as S-LATS, but with faster convergence to sparse networks. With the help of PGH
scheduler, we are able to find sparse networks earlier with negligible performance degradation.

Pruning at initialization We also try β → 0, which refers to increasing the threshold
to its maximum at the first iteration. Note that our method is agnostic about the structure
of network. Hence, some layers are completely pruned as shown in the right of Fig. 3,

Table 4: Results in pruning at initialization experiments.
Final threshold D 0.1 0.11 0.13 0.15

Overall sparsity (%) 87.16 90.00 93.11 95.64
Top-1 Acc. (%) 74.69 72.89 68.23 62.22
Zeroed layers 0 9 9 27

wherein three consecutive layers
within a residual block tend to be
pruned simultaneously. However,
owing to the skip connection in
ResNet, the feature can still pass
through shortcuts to the final FC
layer, and thus the whole networks
are still normally trained. The afore-
mentioned results are collected in Tab. 4.

7 CONCLUSION & DISCUSSION

In this work, we present a framework interpreting increasing threshold as a constantly changing
penalty term and reveal the underlying connection between soft threshold pruning and ISTA. We
also derive a couple of threshold schedulers, which achieve comparable performance to current
SOTA works and cover multiple tracks of pruning. It is worth noting that our method is agnostic
about the object of pruning. This design endows our method with versatility while treating weight
wheresoever equally, and yet becomes totally ignorant of nowadays pruning researches like spar-
sity budget allocation, e.g., Erdős-Rényi (Mocanu et al., 2018) and Erdős-Rényi-Kernel (ERK) (Evci
et al., 2020), or commonsense in this area like “Leave at least one path from input through out-
put”. We believe our method can for sure further benefit from knowledge in the prosperous field of
network pruning.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

This work is supported by grants from the National Key R&D Program of China under
Grant 2020AAA01035, the Key-Area Research Development Program of Guangdong Province
(2021B0101400002), and the National Natural Science Foundation of China under contract
No. 62088102, No. 62176003, No. 62006132, No. 62027804 and No. 61825101. The computing
resources of Pengcheng Cloudbrain are used in this research.

REFERENCES

Milad Alizadeh, Shyam A. Tailor, Luisa M Zintgraf, Joost van Amersfoort, Sebastian Farquhar,
Nicholas Donald Lane, and Yarin Gal. Prospect pruning: Finding trainable weights at initializa-
tion using meta-gradients. In International Conference on Learning Representations, 2022.

Haoli Bai, Jiaxiang Wu, Irwin King, and Michael Lyu. Few shot network compression via cross
distillation. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):3203–3210,
Apr. 2020.

Ilker Bayram and Ivan W. Selesnick. A subband adaptive iterative shrinkage/thresholding algorithm.
IEEE Transactions on Signal Processing, 58(3):1131–1143, 2010.

Amir Beck. First-Order Methods in Optimization, pp. 109. Society for Industrial and Applied
Mathematics, 2017.

Amir Beck and Marc Teboulle. Fast gradient-based algorithms for constrained total variation image
denoising and deblurring problems. IEEE Transactions on Image Processing, 18(11):2419–2434,
2009a.

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009b.

Stephen Becker, Jérôme Bobin, and Emmanuel J. Candès. NESTA: A fast and accurate first-order
method for sparse recovery. SIAM Journal on Imaging Sciences, 4(1):1–39, 2011.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

JosÉ M. Bioucas-Dias and MÁrio A. T. Figueiredo. A new TwIST: Two-step iterative shrink-
age/thresholding algorithms for image restoration. IEEE Transactions on Image Processing, 16
(12):2992–3004, 2007.

Emmanuel J. Candès. The restricted isometry property and its implications for compressed sensing.
Comptes Rendus Mathematique, 346(9):589–592, 2008.

Emmanuel J. Candès, Justin K. Romberg, and Terence Tao. Stable signal recovery from incomplete
and inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8):1207–
1223, 2006.

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L. Yuille.
Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(4):
834–848, 2018.

Yanqi Chen, Zhaofei Yu, Wei Fang, Tiejun Huang, and Yonghong Tian. Pruning of deep spiking
neural networks through gradient rewiring. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI-21, pp. 1713–1721, 2021.

Yanqi Chen, Zhaofei Yu, Wei Fang, Zhengyu Ma, Tiejun Huang, and Yonghong Tian. State transi-
tion of dendritic spines improves learning of sparse spiking neural networks. In Proceedings of
the 39th International Conference on Machine Learning, pp. 3701–3715, 2022.

Mark W Coffey. On some series representations of the Hurwitz zeta function. Journal of Computa-
tional and Applied Mathematics, 216(1):297–305, 2008.

10

Published as a conference paper at ICLR 2023

Patrick L. Combettes and Valérie R. Wajs. Signal recovery by proximal forward-backward splitting.
Multiscale Modeling & Simulation, 4(4):1168–1200, 2005.

Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint. Communications on Pure and Applied
Mathematics, 57(11):1413–1457, 2004.

Geoff Davis, Stephane Mallat, and Marco Avellaneda. Adaptive greedy approximations. Construc-
tive approximation, 13(1):57–98, 1997.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009.

Lei Deng, Yujie Wu, Yifan Hu, Ling Liang, Guoqi Li, Xing Hu, Yufei Ding, Peng Li, and Yuan Xie.
Comprehensive snn compression using admm optimization and activity regularization. IEEE
Transactions on Neural Networks and Learning Systems, pp. 1–15, 2021.

Weisheng Dong, Lei Zhang, Guangming Shi, and Xin Li. Nonlocally centralized sparse representa-
tion for image restoration. IEEE Transactions on Image Processing, 22(4):1620–1630, 2013.

David L Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289–
1306, 2006.

Michael Elad. Why simple shrinkage is still relevant for redundant representations? IEEE Transac-
tions on Information Theory, 52(12):5559–5569, 2006.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In Proceedings of the 37th International Conference on Machine
Learning, pp. 2943–2952, 2020.

Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep
residual learning in spiking neural networks. In Advances in Neural Information Processing
Systems, pp. 21056–21069, 2021.

MÁrio A. T. Figueiredo, Robert D. Nowak, and Stephen J. Wright. Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse problems. IEEE Journal of
Selected Topics in Signal Processing, 1(4):586–597, 2007.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

Dongdong Ge, Xiaoye Jiang, and Yinyu Ye. A note on the complexity of Lp minimization. Mathe-
matical programming, 129(2):285–299, 2011.

Pinghua Gong, Changshui Zhang, Zhaosong Lu, Jianhua Huang, and Jieping Ye. A general itera-
tive shrinkage and thresholding algorithm for non-convex regularized optimization problems. In
Proceedings of the 30th International Conference on Machine Learning, pp. 37–45, 2013.

Elaine T. Hale, Wotao Yin, and Yin Zhang. Fixed-point continuation for ℓ1-minimization: Method-
ology and convergence. SIAM Journal on Optimization, 19(3):1107–1130, 2008.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in Neural Information Processing Systems, 2015.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In International Conference on Learning
Representations, 2016.

Soufiane Hayou, Jean-Francois Ton, Arnaud Doucet, and Yee Whye Teh. Robust pruning at initial-
ization. In International Conference on Learning Representations, 2021.

11

Published as a conference paper at ICLR 2023

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct
2017.

Felix J. Herrmann and Gilles Hennenfent. Non-parametric seismic data recovery with curvelet
frames. Geophysical Journal International, 173(1):233–248, 04 2008.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal of
Machine Learning Research, 22(241):1–124, 2021.

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

Carl Gustav Jacob Jacobi. De usu legitimo formulae summatoriae maclaurinianae. Journal für die
reine und angewandte Mathematik, 12:263–272, 1834.

Siddhant Jayakumar, Razvan Pascanu, Jack Rae, Simon Osindero, and Erich Elsen. Top-kast: Top-k
always sparse training. In Advances in Neural Information Processing Systems, pp. 20744–20754,
2020.

Jangho Kim, KiYoon Yoo, and Nojun Kwak. Position-based scaled gradient for model quantization
and pruning. In Advances in Neural Information Processing Systems, pp. 20415–20426, 2020.

Youngeun Kim, Yuhang Li, Hyoungseob Park, Yeshwanth Venkatesha, and Priyadarshini Panda.
Neural architecture search for spiking neural networks. In Computer Vision – ECCV 2022, pp.
36–56, 2022a.

Youngeun Kim, Yuhang Li, Hyoungseob Park, Yeshwanth Venkatesha, Ruokai Yin, and
Priyadarshini Panda. Exploring lottery ticket hypothesis in spiking neural networks. In Com-
puter Vision – ECCV 2022, pp. 102–120, 2022b.

Donald E Knuth. Johann faulhaber and sums of powers. Mathematics of Computation, 61(203):
277–294, 1993.

Souvik Kundu, Gourav Datta, Massoud Pedram, and Peter A. Beerel. Spike-thrift: Towards energy-
efficient deep spiking neural networks by limiting spiking activity via attention-guided compres-
sion. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV), pp. 3953–3962, 2021.

Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek Jain, Sham
Kakade, and Ali Farhadi. Soft threshold weight reparameterization for learnable sparsity. In
Proceedings of the 37th International Conference on Machine Learning, pp. 5544–5555, 2020.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: single-shot network pruning based
on connection sensitivity. In International Conference on Learning Representations, 2019.

Qihang Lin and Lin Xiao. An adaptive accelerated proximal gradient method and its homotopy
continuation for sparse optimization. In Proceedings of the 31st International Conference on
Machine Learning, pp. 73–81, 2014.

Shiwei Liu, Tianlong Chen, Xiaohan Chen, Zahra Atashgahi, Lu Yin, Huanyu Kou, Li Shen, Mykola
Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Sparse training via boosting
pruning plasticity with neuroregeneration. In Advances in Neural Information Processing Sys-
tems, pp. 9908–9922, 2021a.

Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually need
dense over-parameterization? in-time over-parameterization in sparse training. In Proceedings of
the 38th International Conference on Machine Learning, pp. 6989–7000, 2021b.

12

Published as a conference paper at ICLR 2023

Wei Liu, Andrew Rabinovich, and Alexander Berg. Parsenet: Looking wider to see better. arXiv
preprint arXiv:1506.04579, 2015.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
International Conference on Computer Vision (ICCV), 2017.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. In Inter-
national Conference on Learning Representations, 2017.

Michael Lustig, David Donoho, and John M. Pauly. Sparse MRI: The application of compressed
sensing for rapid MR imaging. Magnetic Resonance in Medicine, 58(6):1182–1195, 2007.

Wolfgang Maass. Networks of spiking neurons: The third generation of neural network models.
Neural Networks, 10(9):1659–1671, 1997.

Bernard Martinet. Régularisation d’inéquations variationnelles par approximations successives. Re-
vue Francaise d’informatique et de Recherche operationelle, 4:154–158, 1970.

Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy, Jun Sawada, Filipp
Akopyan, Bryan L. Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, Bernard Brezzo, Ivan
Vo, Steven K. Esser, Rathinakumar Appuswamy, Brian Taba, Arnon Amir, Myron D. Flickner,
William P. Risk, Rajit Manohar, and Dharmendra S. Modha. A million spiking-neuron integrated
circuit with a scalable communication network and interface. Science, 345(6197):668–673, 2014.

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature communications, 9(1):1–12, 2018.

Byunggook Na, Jisoo Mok, Seongsik Park, Dongjin Lee, Hyeokjun Choe, and Sungroh Yoon. Au-
toSNN: Towards energy-efficient spiking neural networks. In Proceedings of the 39th Interna-
tional Conference on Machine Learning, pp. 16253–16269, 2022.

Balas Kausik Natarajan. Sparse approximate solutions to linear systems. SIAM Journal on Comput-
ing, 24(2):227–234, 1995.

Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

Thanh T Nguyen, Charles Soussen, Jérôome Idier, and El-Hadi Djermoune. NP-hardness of ℓ0 mini-
mization problems: revision and extension to the non-negative setting. In 2019 13th International
conference on Sampling Theory and Applications (SampTA), pp. 1–4, 2019.

Ricardo Otazo, Emmanuel Candès, and Daniel K. Sodickson. Low-rank plus sparse matrix decom-
position for accelerated dynamic MRI with separation of background and dynamic components.
Magnetic Resonance in Medicine, 73(3):1125–1136, 2015.

Yu Qi, Jiangrong Shen, Yueming Wang, Huajin Tang, Hang Yu, Zhaohui Wu, and Gang Pan. Jointly
learning network connections and link weights in spiking neural networks. In Proceedings of
the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, pp. 1597–
1603, 2018.

John Rachwan, Daniel Zügner, Bertrand Charpentier, Simon Geisler, Morgane Ayle, and Stephan
Günnemann. Winning the lottery ahead of time: Efficient early network pruning. In Proceedings
of the 39th International Conference on Machine Learning, pp. 18293–18309, 2022.

Pedro Savarese, Hugo Silva, and Michael Maire. Winning the lottery with continuous sparsification.
In Advances in Neural Information Processing Systems, pp. 11380–11390, 2020.

Jonathan Schwarz, Siddhant Jayakumar, Razvan Pascanu, Peter E Latham, and Yee Teh. Power-
propagation: A sparsity inducing weight reparameterisation. In Advances in Neural Information
Processing Systems, pp. 28889–28903, 2021.

13

Published as a conference paper at ICLR 2023

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. In Advances in Neural Information Processing Systems, pp. 18098–18109,
2020.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. In Advances in Neural Information
Processing Systems, pp. 6377–6389, 2020.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020.

Xiaodong Wang, Xianxian Zeng, Yun Zhang, Dong Li, and Weijun Yang. Learning soft threshold
for sparse reparameterization using gradual projection operators. Neurocomputing, 488:381–390,
2022.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in Neural Information Processing Systems, pp. 2082–2090,
2016.

Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, 1990.

Stephen J. Wright, Robert D. Nowak, and MÁrio A. T. Figueiredo. Sparse reconstruction by sepa-
rable approximation. IEEE Transactions on Signal Processing, 57(7):2479–2493, 2009.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in Neuroscience, 12:331, 2018.

Lin Xiao and Tong Zhang. A proximal-gradient homotopy method for the l1-regularized least-
squares problem. In Proceedings of the 29th International Conference on Machine Learning
(ICML-12), pp. 839–846, 2012.

Lin Xiao and Tong Zhang. A proximal-gradient homotopy method for the sparse least-squares
problem. SIAM Journal on Optimization, 23(2):1062–1091, 2013.

Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics:
Stochastic gradient descent exponentially favors flat minima. In International Conference on
Learning Representations, 2021.

Hang Yin, John Boaz Lee, Xiangnan Kong, Thomas Hartvigsen, and Sihong Xie. Energy-efficient
models for high-dimensional spike train classification using sparse spiking neural networks. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp.
2017–2025, 2021.

Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G. Baraniuk,
Zhangyang Wang, and Yingyan Lin. Drawing early-bird tickets: Toward more efficient training
of deep networks. In International Conference on Learning Representations, 2020.

Dejiao Zhang, Haozhu Wang, Mario Figueiredo, and Laura Balzano. Learning to share: Simultane-
ous parameter tying and sparsification in deep learning. In International Conference on Learning
Representations, 2018.

Yuxin Zhang, Mingbao Lin, Mengzhao Chen, Zihan Xu, Fei Chao, Yunhan Shen, Ke Li, Yongjian
Wu, and Rongrong Ji. Optimizing gradient-driven criteria in network sparsity: Gradient is all you
need. arXiv preprint arXiv:2201.12826, 2022.

Xiao Zhou, Weizhong Zhang, Hang Xu, and Tong Zhang. Effective sparsification of neural networks
with global sparsity constraint. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 3599–3608, 2021.

14

Published as a conference paper at ICLR 2023

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

Tao Zhuang, Zhixuan Zhang, Yuheng Huang, Xiaoyi Zeng, Kai Shuang, and Xiang Li. Neuron-level
structured pruning using polarization regularizer. In Advances in Neural Information Processing
Systems, pp. 9865–9877, 2020.

A PROOF OF THEOREMS AND LEMMAS

For clarity, we restate the theorem or lemma in the main text again here.

Lemma 1 (Local update rule). The update rule below

θ(t+1) ← θ(t) − η(t)∇w(L(w(t)))⊙∇θ(w(θ(t), d(t))) (17)

w(t+1) ← Sd(t+1)(θ(t+1)) (18)

imply the following update of any nonzero component w(θ, d) in actual weight w

w(t+1) = Sd(t+1)−d(t)(w(t) − η(t)∇w(L(w(t)))). (19)

when |θ(t+1)| > d(t) and the sign condition sign(θ(t+1)) = sign(θ(t)) are met.

Proof. For any nonzero weight w(t) ̸= 0, θ(t) = w(t) + d(t) sign(w(t)), using Eq. 17 we have

θ(t+1) = w(t) + d(t) sign(w(t))− η(t)∇w(L(w(t))) (20)

Let w̄(t+1) := w(t) − η(t)∇w(L(w(t))) be the target point of vanilla SGD without regularization.
Recall Eq. 20, we have

w̄(t+1) = θ(t+1) − d(t) sign(w(t))

= sign(θ(t+1))|θ(t+1)| − sign(θ(t))d(t)

= sign(θ(t+1))|θ(t+1)| − sign(θ(t+1))d(t)

= sign(θ(t+1))(|θ(t+1)| − d(t)),

(21)

which has the same sign as θ(t+1). Now we have sign(w(t+1)) = sign(θ(t+1)) = sign(θ(t)) =
sign(w(t)) = sign(w̄(t+1)).

To evaluate the updated weight, by Eq. 18, Eq. 20, Eq. 21 and the definition of soft threshold map-
ping, we derive

w(t+1) = sign(θ(t+1))max{|w(t) + d(t) sign(w(t))− η(t)∇w(L(w(t)))| − d(t+1), 0}
= sign(θ(t+1))max{|w̄(t+1) + d(t) sign(w̄(t+1))| − d(t+1), 0}
= sign(θ(t+1))max{| sign(w̄(t+1))(|w̄(t+1)|+ d(t))| − d(t+1), 0}
= sign(θ(t+1))max{|w̄(t+1)|+ d(t) − d(t+1), 0}
= sign(w̄(t+1))max{|w̄(t+1)| − (d(t+1) − d(t)), 0}
= Sd(t+1)−d(t)(w(t) − η(t)∇w(L(w(t)))).

(22)

B ORIGINAL THRESHOLD SCHEDULER IN STDS

In STDS, the authors propose the Sine scheduler d(t) = 1
2 (1+sin(π(t

T −
1
2)))D = 1

2 (1−cos(
tπ
T))D.

With the form of simplified threshold scheduler in Eq. 13, by Theorem 1, the corresponding penalty

15

Published as a conference paper at ICLR 2023

µ(t) has the form

µ(t) =
d(t+1) − d(t)

η(t)

= D ·
cos(tπT)− cos((t+1)π

T)

ηmax(1 + cos tπ
T)

=
2D sin π

T

ηmax
·
sin(tπT + π

2T)

1 + cos tπ
T

≈ C ·
sin(tπT)

1 + cos tπ
T

= C · tan(tπ
2T

)

(23)

It is a function of training progress t/T with constant C. Investigate the function tan(x/2) on
interval (0, π), we have µ(x) is increasing from 0 to +∞, which implies µ can be sufficiently large
during training. The loss is thus insignificant compared to the regularization term in the last stage of
training and leads to performance degradation with respect to S-LATS.

C DISCUSSION ABOUT TRAINING THRESHOLD

In the main text, we propose a framework explaining the style of growth in threshold as an ever-
changing optimization problem. However, we only cover manually designed threshold schedulers.
We make a discussion here and show training threshold is not as easy as STR or GPO did. We will
show GPO and STR share the same discussion of training threshold since GPO will degenerate to
STR in a few training epochs. Moreover, we suggest not simply setting threshold trainable if one
really wants to investigate optimization of threshold.

C.1 L2 PENALTY DOMINATES EARLY TRAINING OF STR.

In the official codebase of STR, we notice the trainable sparse threshold is also together with weight
decay (L2 regularization λ∥s∥22). λ is of magnitude around 10−5 ∼ 10−4. The initial value sinit is
usually set to negative number with large magnitude around−104 ∼ −103 for CNN trials. It is easy
to see the magnitude of L2 regularized term is around 0.01 ∼ 1 in the early stage of training.

Take CNN for instance. For given loss function L and weight wl of the l-th layer, the gradient
passed to threshold sl can be estimated as

∇slL(wl(sl,θl)) =

〈
∇wl
L(wl),

(
∂wl

∂sl

)⊤〉
=

∑
(w,θ)∈(wl,θl)

∇wL(wl) · ∇sl(Sσ(sl)(θ))

= −σ(sl)(1− σ(sl))
∑

(w,θ)∈(wl,θl)
w ̸=0

∇wL(wl) · sign(θ)

(24)

wherein each term of sum has magnitude less than 1
4∇wL(wl) since sigmoid function σ(x) is

bounded in (0, 1). Given that the stochastic gradient noise across parameters in wl admits to Lévy
distribution (Xie et al., 2021), some negative and positive terms will balance each other, which makes
us wonder whether the regularization term dominates the training of threshold. Therefore, we com-
pare the gradient to L2 penalty by tracing the magnitude ratio of ∇slL to λ|sl| during training of
ResNet-50 on ImageNet, which is shown in Fig. 4.

It is evident that the L2 penalty plays the leading role in the early stage rather than the gradient. We
even observe for several final layers, the penalty always dominates the training of threshold. The
update of s can thereby be rewritten to s(t+1) ≈ s(t)(1−η(t)λ), where η(t) is the learning rate at the

16

Published as a conference paper at ICLR 2023

0 20 40 60 80 100
Epoch

0

5

10

|∇
s

(L
)

λ
s
|

conv1 (layer 1)

0 20 40 60 80 100
Epoch

0

2

4

6

layer1.2.conv2 (layer 10)

0 20 40 60 80 100
Epoch

0

2

4

layer2.2.conv3 (layer 21)

0 20 40 60 80 100
Epoch

0

1

2

3

|∇
s

(L
)

λ
s
|

layer3.2.conv1 (layer 32)

0 20 40 60 80 100
Epoch

0.0

0.5

1.0

layer4.2.conv2 (layer 52)

0 20 40 60 80 100
Epoch

0.0

0.5

1.0

fc (layer 54)

Figure 4: Magnitude ratios of gradient to L2-regularization
∣∣∣∇sl

L
λsl

∣∣∣ in different layers when training
using STR at 90.23% overall sparsity. Data within an epoch are averaged using geometric mean.

t-th iteration. Regardless of gradient, at the beginning of training, STR can be viewed as a special
case of threshold scheduler as follows

d(t) = σ

(
sinit ·

t−1∏
i=0

(1− η(i)λ)

)
, t = 1, 2, . . . (25)

By Theorem 1, the corresponding penalty can be derived by

µ(t) =
d(t+1) − d(t)

η(t)

=
σ(s(t+1))− σ(s(t))

η(t)

=
σ′(s̄)(s(t+1) − s(t))

η(t)

= −σ′(s̄)s(t)η(t)λ

η(t)

= −σ′(s̄)s(t)λ

(26)

where s̄ lies between s(t+1) and s(t). The existence of s̄ is shown by Lagrange’s Mean Value
Theorem. It is rather difficult to analytically give the explicit expression of µ(t) since it relies on the
behavior of s, which has a dynamic decay rate 1− η(t)λ.

Loosely speaking, we adopt the approximation s̄ ≈ s(t). We still cannot show the explicit form of
µ(t), but now we can investigate the trend of penalty by analyzing function µ(x) = −σ′(x)x, which
is increasing in (−∞, γ). Here γ ≈ −1.5434 is the unique negative root of e−x(x+1)−x+1 = 0.
In the early stage, s is a negative number with a much larger magnitude than γ. Based on the above,
µ is increasing in the early stage.

C.2 GPO: FALL BACK TO STR SHORTLY

It concludes STR is majorly influenced by L2 decay on s. We will see that GPO has a similar
behavior on k and GPO will degenerate to STR shortly after the training begins.

In GPO, the authors introduces another trainable parameter β in the reparameterization w = (1 −
k)Sd(θ) + kθ with k = 10−6|β|. GPO starts from the identity mapping w = θ by initializing

17

Published as a conference paper at ICLR 2023

β = 106. The gradient passed to βl in the l-th layer is given by

∇βl
L(wl(sl, βl,θl)) =

〈
∇wl
L(wl),

(
∂wl

∂βl

)⊤〉
= 10−6 sign(βl) ·

∑
(w,θ)∈(wl,θl)

∇wL(wl) · (θ − Sd(θ))
(27)

Notice that θ−Sd(θ) =
{
θ, |θ| < d

d sign(θ), |θ| ≥ d
has magnitude not greater than d, which derives that

the gradient ∇wL(wl) are added with coefficient whose magnitude is below 10−6d.

From the codebase of GPO, we confirm the weight decay on β is 10−4. Since the initial β is 106, the
L2 regularized term is of magnitude around 10−4 × 106 = 100 at the beginning of training. Recall
that d = σ(s) < 1, it is obvious that the gradient pass to β has a much smaller magnitude than the
L2 regularization. For this reason, the gradient can be ignored for k. Furthermore, k will shrink
exponentially to almost zero and the mapping in GPO will fall back to STR within a few epochs,
which can be seen by w = (1− k)Sd(θ) + kθ ≈ Sd(θ).

C.3 FOCUS ON THRESHOLD SCHEDULER INSTEAD OF THE FINAL THRESHOLD.

Conventional wisdom suggests that when a parameter is set trainable, it will be optimized automat-
ically. This idea should only work for those directly determining the performance, e.g., weights in a
dense network. For pruning, authors of STDS find the differences in positions of performance versus
sparsity curve should be ascribed to the evolving patterns of the threshold. To verify this, we replace
the threshold training mechanism in STR and default scheduler in STDS by several schedulers with
the same final threshold D = 10−3 (D = 0.5 for STDS) shown below

• Sine: d(t) = 1
2 (1 + sin(π(t

T −
1
2)))D

• Linear: d(t) = t
T D

• Log2: d(t) = log2(
t
T + 1)D

We conduct the training on ANN ResNet-50 for both methods, the results are shown in Tab. 5. It is

Table 5: Comparison of threshold schedulers when applied to ResNet-50 on ImageNet.

Scheduler STR (D = 10−3) STDS (D = 0.5)

Sparsity (%) Top-1 Acc. (%) Sparsity (%) Top-1 Acc. (%)

Sine 94.14 71.51 95.72 72.42
Linear 95.41 69.85 98.46 59.79
Log2 95.95 68.55 98.05 64.74

obvious that even though the final thresholds are set equally, the accuracy and overall sparsity vary
with the scheduler. In fact, simply setting threshold trainable indicates one only cares about whether
the final threshold is optimal, which turns out to be a tangential issue in soft threshold pruning.

The above results suggest the correct manner to manipulate threshold is pursuing a well-performed
scheduler. Even if one studies the learning of threshold, it should be concentrated on the optimiza-
tion of threshold scheduler, which may require tools in discrete-time optimal control. Due to the
complex coupling between constantly changing threshold and final performance, discussion based
on discrete-time optimal control is beyond the scope of this work.

D DETAILED DERIVATION FOR LATS AND S-LATS

In this part, we provide detailed derivations for LATS and S-LATS, which covers Eq. 12 and Eq. 13.

18

Published as a conference paper at ICLR 2023

D.1 LATS FOR COSINE ANNEALING SCHEDULER

In most of the deep learning applications, the training process includes the schedule of the learning
rate, which is also known as learning rate scheduler. Generally, the learning rate is updated at
the end of an epoch. Assuming there are N training epochs in total, each of which includes B
training mini-batches. The learning rate scheduler is defined as η(n,b) = h(n/N), which evaluates
the learning rate at the b-th mini-batch in the n-th epoch. Here n = 0, 1, . . . , N − 1 denotes the
current id of the training epoch, and b = 1, 2, . . . , B denotes the batch id in n-th epoch. We denote
h : [0, 1]→ R+ as the scheduler function for the learning rate. For cosine annealing scheduler with
ηmin = 0, we have

h(x) =
ηmax

2
(1 + cos(πx)) (28)

In Corollary 1, the threshold scheduler for LATS is obtained by d(t) = d(0) + µ
∑t−1

i=0 η
(i), where

d(t) is the threshold after t mini-batches from the beginning. Under the learning rate scheduler
described in Eq. 28, the threshold d(n,b) is shown by accumulating all previous learning rates, which
gives

d(n,b) = d(0,0) + µ

[
b · h(n/N) +B

n−1∑
i=0

h(i/N)

]
(29)

For cosine annealing learning rate scheduler, we have

d(n,b) = d(0,0) +
µηmax

2

[
b(1 + cos

nπ

N
) +B

n−1∑
i=0

(1 + cos
iπ

N
)

]

= d(0,0) +
µηmax

2

[
b(1 + cos

nπ

N
) +Bn+B

n−1∑
i=0

cos
iπ

N

] (30)

To evaluate the sum of cos(iπ/N), we give the following results

n−1∑
i=0

cos
iπ

N
=

1

sin π
2N

n−1∑
i=0

(
cos

iπ

N
sin

π

2N

)

=
1

sin π
2N

n−1∑
i=0

1

2

(
sin

(
i

N
+

1

2N

)
π − sin

(
i

N
− 1

2N

)
π

)

=
1

2 sin π
2N

(
n−1∑
i=0

sin

(
2i+ 1

2N
π

)
−

n−1∑
i=0

sin

(
2i− 1

2N
π

))

=
1

2 sin π
2N

(
n∑

i=1

sin

(
2i− 1

2N
π

)
−

n−1∑
i=0

sin

(
2i− 1

2N
π

))

=
1

2 sin π
2N

(
sin

(
2n− 1

2N
π

)
+ sin

π

2N

)
=

1

2
+

sin
(
2n−1
2N π

)
2 sin π

2N

.

(31)

Recall Eq. 30, we have

d(n,b) = d(0,0) +
µηmax

2

[
b(1 + cos

nπ

N
) +Bn+B

(
1

2
+

sin
(
2n−1
2N π

)
2 sin π

2N

)]

= d(0,0) + µηmax

[
b

2
(1 + cos

nπ

N
) +

B

4

(
2n+ 1 +

sin
(
2n−1
2N π

)
sin π

2N

)]
.

(32)

When d(0,0) = 0, this gives LATS in the form of Eq. 12.

19

Published as a conference paper at ICLR 2023

D.2 THE DETAILED MOTIVATION OF S-LATS

The implementation of LATS is rather complicated and requires meticulous coding. Worse still, for
some learning rate schedulers, e.g., polynomial decay scheduler (Liu et al., 2015; Chen et al., 2018)

η(t) = ηmax

(
1− t

T

)κ

, (33)

where κ > 0 is a constant (κ = 0.9 in aforementioned studies), the form of LATS cannot be reduced
like cosine annealing scheduler in most cases. To see this, we write the corresponding LATS as

d(t) = d(0) + µηmax

t−1∑
i=0

(
1− i

T

)κ

. (34)

Note that 1 − i
T makes up an arithmetic progression, and the threshold is the sum of their powers.

Simplifying the sums of powers of arithmetic progression requires the so-called Bernoulli number
(Jacobi, 1834; Knuth, 1993) when κ is integer. For a general κ > 0, the expression of Eq. 34 includes
the generalized harmonic numbers H(−p)

n :=
∑n

k=1 k
p, which is further based on the Hurwitz zeta

function (Coffey, 2008). In such case, we cannot analytically compute LATS, which forces us to do
the summation in Eq. 34. It thus brings about the accumulative error. In brief, we cannot expect
each learning rate scheduler corresponds to an analytical and simple form of LATS.

To handle this, we turn to an approximation rather than precisely evaluating d(t). Returning to
Eq. 29, with d(0,0) ignored, we split the right hand side into two terms B

∑n−1
i=0 h(i/N) and b ·

h(n/N).

The first term could be viewed as left Riemann sum in two steps 1) interpolate points
0, 1/N, 2/N, . . . , (n − 1)/N, n/N with constant spacing 1/N , the width of the rectangles 2) eval-
uate the sum of rectangle areas with height h(i/N). It leads to the approximation of the Riemann
integral

B

n−1∑
i=0

h(i/N) = BN

n−1∑
i=0

1

N
h(i/N) ≈ BN

∫ n/N

0

h(x)dx. (35)

The second term match b/B part of a residual tiny rectangle

b · h(n/N) = BN · b
B
· 1
N

h(n/N) (36)

To sum up, Eq. 35 and Eq. 36 together make a numerical approximation of integral
BN

∫ n/N+b/BN

0
h(x)dx, which is shown schematically in Fig. 5. Note that we could write training

progress as t/T now, where t = Bn+ b is the current iteration id and T = BN is the total training
iterations.

So far, we successfully replace the summation with integration. However, the current final threshold
is BN

∫ 1

0
h(x)dx, which is different from the real one d(N−1,B). To keep the final threshold d(T) =

d(N−1,B), we normalize the integral as follows

d(t) = d(N−1,B) ·
∫ t

T

0
h(x)dx∫ 1

0
h(x)dx

. (37)

For most learning rate scheduler functions, integration is much easier than summation. S-LATS
enables us to apply our pruning method on wider varieties of deep learning applications.

E PRUNING EXPERIMENTS ON MOBILENET-V1 USING S-LATS

Besides the ResNet-like structures mentioned in the main text, we also conduct experiments on
MobileNet-V1 (Howard et al., 2017) to show the power of our proposed methods S-LATS on the
lightweight network. To make a fair comparison, we choose those SOTA studies using the standard

20

Published as a conference paper at ICLR 2023

0 1
N

2
N

· · · · · · n−1
N

n
N

n+1
N

n
N
+

b
BN

Training Progress

0.0

0.2

0.4

0.6

0.8

1.0

Le
ar

ni
ng

R
at

e
S

ch
ed

ul
er

h(
·)

Figure 5: Explanation on numerical approximation of integral
∫ n/N+b/BN

0
h(x)dx. Cosine anneal-

ing learning rate scheduler is exemplified in a darker blue curve. The area of n cyan rectangles
corresponds to Eq. 35. The area of the tiny yellow rectangle is Eq. 36.

training setting, i.e., batch size of 256 and 100 training epochs. They include STR (Kusupati et al.,
2020), gradual pruning in WoodFisher (Singh & Alistarh, 2020), and a modern implementation
(Gale et al., 2019) of Gradual Magnitude Pruning (GMP) (Zhu & Gupta, 2017). Note that we do not
compare S-LATS to OptG, since OptG adopts 1.8× (180) training epochs, or the comparison would
be unfair.

The results are shown in Tab. 6. Apparently, our proposed method towers over previous sparsify-
during-training work. We elaborate on the sparsity budgets and the corresponding final thresholds
in Tab. 12 of Appendix I. The hyperparameters for training MobileNet-V1 are stated in Tab. 8 of
Appendix H.

Table 6: Performance comparison of MobileNet-V1 on ImageNet using standard training setting
(256 batch size, 100 epochs). The results of GMP are gleaned from the manuscripts of STR and
OptG. The accuracy of our method is averaged over three trials.

Method Top-1 Acc. (%) Sparsity (%)

Dense 71.95 0

GMP 67.70 74.11
STR 68.35 75.28
STR 66.52 79.07

WoodFisher 70.09 75.28
S-LATS 68.25±0.19 81.84

GMP 61.80 89.03
STR 64.83 85.80
STR 62.10 89.01
STR 61.51 89.62

WoodFisher 63.87 89.00
S-LATS 66.73±0.08 85.87
S-LATS 65.63±0.20 88.22
S-LATS 64.93±0.21 89.08

21

Published as a conference paper at ICLR 2023

F ABLATION STUDY OF THRESHOLD SCHEDULER ON RESNET-50

F.1 REMOVE L2 DECAY FOR FAIR COMPARISON

To evaluate the performance gains brought by the threshold scheduler alone, the weight decay or L2

penalty must be removed. To explain this, recall line 4 in Algorithm 1, we know the update rule
of hidden weight θ is affected by both gradient and L2 penalty λ∥θ∥2. However, the analysis in
Lemma 1 is based on vanilla SGD without weight decay. To account for this inconsistency, let’s first
investigate the influence of weight decay on the equivalent optimization problem.

In the presence of weight decay, the update rule described by Eq. 17 has an additional penalty term
as follows

θ(t+1) ← θ(t) − η(t)∇w(L(w(t)))⊙∇θ(w(θ(t), d(t)))− η(t)λθ(t) (38)

Following derivation in Eq. 20, we have

θ(t+1) = w(t) + d(t) sign(w(t))− η(t)∇w(L(w(t)))− η(t)λθ(t) (39)

Similarly, we denote w̄(t+1) := w(t) − η(t)∇w(L(w(t))) to be the target point of vanilla SGD
without regularization. With Eq. 39, we have

w̄(t+1) = θ(t+1) − d(t) sign(w(t))η(t) − λθ(t)

= sign(θ(t+1))|θ(t+1)| − sign(θ(t))d(t) − λ sign(θ(t))|θ(t)|
= sign(θ(t+1))|θ(t+1)| − sign(θ(t+1))d(t) − λ sign(θ(t))|θ(t)|
= sign(θ(t+1))(|θ(t+1)| − d(t) − λ|θ(t)|),

(40)

If w̄(t+1) still satisfies the local relation that sign(w(t+1)) = sign(θ(t+1)) = sign(θ(t)) =
sign(w(t)) = sign(w̄(t+1)), mimicking Eq. 22, we have

w(t+1) = Sd(t+1)−d(t)+λ|θ(t)|(w
(t) − η(t)∇w(L(w(t)))). (41)

Apparently, the L2 penalty of θ lies into the equivalent L1 penalty term of w in the ISTA rule,
making the analysis of the corresponding threshold scheduler intractable. Accordingly, we decide
to remove weight decay, i.e., and set λ to zero in the ablation study to prevent an unpredictable
threshold scheduler.

F.2 SINE SCHEDULER IN STDS VS S-LATS

After removing weight decay, we rerun the original STDS and our methods under several sparsity
levels (through changing D) while keeping the other hyperparameters and the batch size of 256. As
illustrated in Fig. 6, the results on ResNet-50 show our method clearly surpasses the original STDS
on the ImageNet dataset. A theoretical analysis is enclosed in Appendix B.

94 95 96 97 98
Sparsity (%)

66

68

70

72

74

To
p-

1
A

cc
.

(%
)

STDS + S-LATS
STDS (Sine sch.)

Figure 6: Performance comparison of original STDS and our method.

22

Published as a conference paper at ICLR 2023

G SPARSITY VS FIRING RATE IN SNNS

G.1 AN OVERVIEW OF SNNS

Spiking neural networks (SNNs) are honored as the third generation of neural network models
(Maass, 1997), derived from biological neural network modeling. SNNs are composed of spik-
ing neurons, which release spikes in binary form, and connections between neurons. The model
of spiking neurons is a dynamical system described by one or more ordinary differential equations
(ODE) and a firing threshold. The dynamical system is also called “subthreshold dynamics” in the
context of computational neuroscience. A spike is generated and passed to all postsynaptic spiking
neurons when the variable representing membrane potential exceeds the firing threshold. Today, the
most commonly used neuron model is the Leaky Integrate-and-Fire (LIF) model. Specifically, LIF
has the subthreshold dynamic as follows

τm
du(t)

dt
= −(u(t)− urest) +

∑
Iw, (42)

where u(t) is the membrane potential at time t, urest is the resting potential, τm is the membrane
constant, I and w denote input spikes and input weights respectively. The firing behavior of LIF
neurons is depicted as an instantaneous jump of membrane potential shown below

lim
∆t→0+

u(tf +∆t) = urest, if u(tf) ≥ uth, (43)

where uth, t
f are the firing threshold and firing time respectively.

The ODE in Eq.42 can be discretized via the Euler method and transformed into an RNN-like itera-
tive computing manner as follows

u[t−] = u[t− 1] +
1

τm

(
−(u[t− 1]− urest) +

∑
i
wiIi[t]

)
,

s[t] = H(u[t−]− uth),

u[t] = s[t]urest + (1− s[t])u[t−].

(44)

where u[t−], u[t] are the membrane potential before and after firing at timestep t respectively, H(·)
is the Heaviside step function modeling jump behavior when a spike is triggered. However, training
techniques in RNN, such as backpropagation through time (BPTT) (Werbos, 1990) cannot be di-
rectly applied to SNNs for the spiking behavior described by Heaviside is non-differentiable. Thanks
to the surrogate gradient method proposed in Wu et al. (2018); Neftci et al. (2019), researchers can
now incorporate BPTT into training of SNNs by switching to a “differentiable mode” of the Heav-
iside step function when computing gradient. It refers to replacing Heaviside step with a differen-
tiable surrogate function. Surrogate gradient resembles the straight-through estimator (Bengio et al.,
2013) closely in both computing style and ideology.

G.2 REDUCING SNNS COST ON NEUROMORPHIC HARDWARE

SNNs are considered energy efficient when deployed on a series of dedicated hardware, also known
as neuromorphic hardware or event-driven hardware. On these chips, the computation is triggered
only when there are incoming spikes and weights are nonzero (Merolla et al., 2014). For this reason,
there are three mainstream methods for alleviating the energy cost of a given SNN on neuromorphic
chips including 1) unstructured pruning of weights, 2) reducing the number of spikes, and 3) search-
ing for efficient SNN structures. The NAS studies on SNNs (Na et al., 2022; Kim et al., 2022a) are
not based on existing SNN structure, so we omit the discussion of NAS methods.

Many recent studies have made ample signs of progress on pruning and reducing spike counts. They
confirm there is a weak correlation between the number of spikes and weight sparsity (Deng et al.,
2021; Chen et al., 2022; Kim et al., 2022b). We also evaluate the spike counts of pruned SNNs.
Compared to the number of spikes, a more frequently used metric is average firing rate, which is
obtained by averaging the number of spikes across timesteps and spiking neurons. We collect the
average firing rate of each trial during inference using pruned SEW ResNet-18. We further provide
a plot of the average firing rate against the sparsity, which is shown in Fig. 7. The weak relationship
between the number of spikes and weight sparsity is manifested in the slightly decreased average

23

Published as a conference paper at ICLR 2023

0 20 40 60 80
Sparsity (%)

0.1275

0.1300

0.1325

0.1350

0.1375

0.1400

A
vg

.
Fi

rin
g

R
at

e

Figure 7: The trend of average firing rate against sparsity.

firing rate. Despite a downward trend in the average firing rate, the relative magnitude of the decline
is trifling. It is consistent with previous observations and suggests pruning is an inefficient means of
reducing the number of spikes in SNNs.

In conclusion, pruning is an efficient way to induce weight sparsity and lower cost. However, we
should not expect the suppression of firing rates as a bonus.

H TRAINING HYPERPARAMETERS

We make the detailed setting in our experiments clear in Tab. 7, Tab. 8 and Tab. 9.

Table 7: ANN ResNet-50 hyperparameters.
Description Notation Value

Epoch - 100
Optimizer - Momentum SGD (momentum = 0.875)
Overall batch size - 256 1024
Max. learning rate ηmax 0.256 0.512
Learning rate scheduler - Cosine annealing
Warmup epochs - 5
Label smoothing - 0.1
Weight decay λ 3.05e-5 (0 for ablation study in Appendix F)
Prune BN layers? - No
Prune first and last layers? - Yes

Table 8: ANN MobileNet-V1 hyperparameters.
Description Notation Value

Epoch - 100
Optimizer - Momentum SGD (momentum = 0.875)
Overall batch size - 256
Max. learning rate ηmax 0.256
Learning rate scheduler - Cosine annealing
Warmup epochs - 5
Label smoothing - 0.1
Weight decay λ 3.05e-5
Prune BN layers? - No
Prune first and last layers? - Yes

24

Published as a conference paper at ICLR 2023

Table 9: SNN SEW ResNet-18 hyperparameters.
Description Notation Value

Epoch - 320
Optimizer - Momentum SGD (momentum = 0.9)
Overall batch size - 256
Max. learning rate ηmax 0.1
Learning rate scheduler - Cosine annealing
Weight decay λ 0
Prune BN layers? - No
Prune first and last layers? - Yes
Simulation timesteps - 4
SEW function - ADD

I SPARSITY BUDGETS

Table 10: Sparsity budgets of ResNet-50 using STDS + S-LATS on ImageNet (256 batch size).
Final threshold D 0.1 0.2 0.3 0.4 0.45 0.5 0.6 0.7 0.8 1.0 1.4 1.5 2.0 3.0 3.5 4.0 5.0 6.0

Top-1 Acc. (%) 76.75 75.52 74.50 73.75 73.18 73.03 72.04 71.47 70.81 69.64 67.47 67.02 64.20 60.35 58.88 56.79 53.64 50.41

Layer(s) Sparsity (%)

Overall 79.95 89.57 92.99 94.60 95.12 95.53 96.13 96.58 96.94 97.43 98.01 98.11 98.48 98.89 99.02 99.13 99.28 99.39

conv1 34.18 49.83 56.73 59.57 64.35 67.90 69.79 70.89 75.54 74.31 78.36 78.71 81.92 83.94 85.58 86.20 88.01 89.47
layer1.0.conv1 43.04 58.79 66.58 68.82 72.22 74.90 75.44 76.03 79.30 82.25 84.69 83.84 88.06 91.33 89.72 91.77 93.53 94.26
layer1.0.conv2 73.59 82.82 87.36 89.43 90.82 91.38 92.01 93.18 93.06 94.96 95.97 95.87 97.08 98.22 97.96 98.44 98.51 99.00
layer1.0.conv3 67.26 77.89 84.59 86.93 88.71 89.52 91.52 92.95 93.19 95.28 95.83 95.84 97.19 98.13 98.12 98.55 98.49 99.16
layer1.0.downsample.0 58.61 73.39 78.28 82.06 83.91 85.33 85.86 87.01 89.11 90.31 91.83 92.61 93.19 94.56 95.14 95.73 96.19 96.62
layer1.1.conv1 69.42 78.74 83.92 86.19 87.51 88.46 90.94 91.72 93.46 93.51 94.32 94.32 96.12 97.20 96.99 98.46 98.84 99.05
layer1.1.conv2 73.06 84.09 88.31 89.18 90.32 91.81 93.83 94.73 96.02 95.62 95.72 95.36 97.18 97.96 98.02 99.20 99.64 99.41
layer1.1.conv3 69.48 79.34 86.22 85.91 88.12 92.01 92.58 92.60 95.00 94.74 95.12 95.20 97.07 98.32 98.66 98.96 99.72 99.58
layer1.2.conv1 64.66 75.52 82.27 86.07 87.00 87.75 89.77 88.64 91.03 92.55 94.18 95.09 96.27 97.03 97.97 97.82 98.78 98.91
layer1.2.conv2 63.14 76.05 84.24 86.97 88.20 89.35 90.86 90.06 91.91 93.02 94.81 94.34 96.93 97.15 98.01 97.94 98.56 99.25
layer1.2.conv3 68.90 80.36 86.72 87.87 89.11 90.09 91.77 92.69 92.73 94.42 96.64 95.80 97.64 98.26 99.04 98.71 99.18 99.33
layer2.0.conv1 59.82 73.85 80.93 82.27 83.13 86.86 89.47 89.19 90.64 91.19 93.37 92.78 95.23 96.01 97.02 97.26 97.98 98.43
layer2.0.conv2 72.90 85.04 88.93 92.21 92.57 93.19 94.54 94.80 94.89 95.74 97.05 97.01 97.50 98.04 98.27 98.28 98.61 99.16
layer2.0.conv3 71.13 82.92 86.98 89.32 90.37 91.58 92.63 93.15 93.37 94.38 96.03 96.03 96.76 97.78 98.00 97.85 98.12 98.72
layer2.0.downsample.0 81.42 90.05 92.85 94.08 94.78 95.22 95.66 96.28 96.44 97.40 97.88 98.07 98.25 98.86 99.03 99.08 99.16 99.31
layer2.1.conv1 83.44 90.47 93.48 95.35 95.96 95.80 96.62 96.73 96.73 97.95 98.25 98.61 98.89 99.04 99.21 99.42 99.27 99.56
layer2.1.conv2 82.60 90.41 94.05 96.28 96.22 96.37 97.17 96.90 97.76 98.31 98.68 99.02 99.14 99.44 99.46 99.61 99.56 99.76
layer2.1.conv3 73.53 83.15 88.32 92.18 91.63 92.38 93.93 93.80 95.03 96.08 96.79 97.37 98.29 98.66 99.04 99.28 99.04 99.48
layer2.2.conv1 74.48 85.75 88.91 91.48 92.37 91.97 93.44 94.26 94.86 95.85 96.09 96.88 97.54 98.33 98.46 98.97 98.85 99.08
layer2.2.conv2 75.42 87.51 90.66 92.41 93.18 92.90 93.92 94.89 95.26 96.32 96.25 97.47 97.96 98.61 98.36 98.88 99.18 99.19
layer2.2.conv3 70.68 82.69 86.23 90.11 90.35 91.14 92.36 93.93 93.28 95.32 96.33 96.91 97.50 98.33 98.39 98.82 99.04 99.12
layer2.3.conv1 71.05 83.26 86.70 90.06 90.17 91.70 92.47 92.75 93.46 94.34 95.50 96.47 96.95 97.47 97.94 98.46 98.45 98.79
layer2.3.conv2 74.50 83.83 88.23 91.11 91.28 92.90 93.06 94.27 94.36 94.89 97.02 96.67 97.29 97.94 98.25 98.73 98.92 98.61
layer2.3.conv3 72.81 85.69 89.03 91.17 92.36 92.16 93.69 94.37 95.23 95.33 96.74 97.07 97.90 98.27 98.73 99.03 99.11 99.04
layer3.0.conv1 61.26 74.70 80.18 83.80 84.81 85.51 87.13 88.01 88.81 90.43 91.82 92.57 93.79 95.04 95.56 96.42 96.69 97.29
layer3.0.conv2 82.41 91.42 94.51 95.78 96.15 96.49 96.94 97.27 97.56 97.94 98.33 98.33 98.68 98.87 99.04 99.12 99.25 99.35
layer3.0.conv3 71.21 82.18 86.32 88.76 89.38 89.93 91.42 92.04 92.46 93.73 94.97 95.40 96.23 97.28 97.50 97.95 98.20 98.61
layer3.0.downsample.0 86.21 93.20 95.39 96.83 96.96 97.29 97.77 97.98 98.13 98.53 98.83 98.96 99.24 99.39 99.44 99.56 99.60 99.60
layer3.1.conv1 86.76 92.91 95.17 96.46 96.48 97.02 97.25 97.80 97.95 98.37 98.67 98.82 99.16 99.38 99.41 99.55 99.56 99.63
layer3.1.conv2 86.67 93.68 95.71 96.79 97.09 97.37 97.77 98.09 98.32 98.52 98.92 98.99 99.31 99.51 99.51 99.66 99.67 99.72
layer3.1.conv3 75.18 86.50 90.08 92.77 93.44 94.10 94.53 95.48 96.12 96.75 97.53 97.82 98.46 99.03 98.98 99.29 99.38 99.50
layer3.2.conv1 83.83 90.82 93.96 95.29 96.06 95.69 97.01 96.80 97.13 97.58 98.36 98.28 98.65 99.08 99.32 99.27 99.55 99.58
layer3.2.conv2 84.24 92.07 94.68 95.84 96.17 96.22 97.35 97.26 97.53 97.93 98.62 98.69 98.92 99.22 99.42 99.40 99.62 99.66
layer3.2.conv3 75.66 85.49 89.88 92.30 93.13 92.99 95.21 94.99 95.49 96.24 97.61 97.65 98.28 98.83 99.14 99.10 99.44 99.54
layer3.3.conv1 80.26 90.40 92.47 94.60 94.41 94.94 95.91 95.87 96.48 97.20 98.17 98.13 98.67 98.84 99.03 99.09 99.32 99.53
layer3.3.conv2 83.78 91.46 94.33 95.39 96.14 96.59 96.90 97.70 97.88 98.34 98.75 98.97 99.12 99.40 99.49 99.55 99.62 99.70
layer3.3.conv3 76.82 87.45 91.13 93.10 93.32 94.60 95.05 96.24 96.35 97.10 98.08 98.33 98.66 99.06 99.26 99.36 99.43 99.53
layer3.4.conv1 77.62 87.58 91.12 92.47 93.41 94.15 94.67 96.03 96.16 96.44 97.39 97.55 98.16 98.85 98.84 99.19 99.38 99.37
layer3.4.conv2 83.13 91.87 94.67 95.63 96.17 96.66 97.32 97.48 97.87 98.14 98.61 98.71 99.11 99.42 99.53 99.63 99.73 99.72
layer3.4.conv3 76.09 87.14 91.38 92.55 93.79 94.55 95.29 95.94 96.44 97.00 97.93 98.10 98.52 99.14 99.23 99.43 99.62 99.62
layer3.5.conv1 73.48 85.83 89.67 91.89 92.45 93.36 94.45 94.68 94.92 95.73 96.69 97.02 97.61 98.39 98.88 98.86 99.13 99.23
layer3.5.conv2 81.39 90.78 93.61 95.30 95.85 96.28 96.62 97.39 97.56 98.09 98.60 98.59 99.00 99.33 99.53 99.50 99.61 99.69
layer3.5.conv3 73.98 85.35 89.23 91.80 92.53 93.13 94.12 95.16 95.16 95.98 96.99 97.31 98.06 98.69 99.14 99.21 99.23 99.44
layer4.0.conv1 64.48 77.49 82.89 85.92 87.00 87.93 89.26 90.33 91.14 92.09 93.65 93.85 94.79 95.83 96.25 96.68 97.19 97.40
layer4.0.conv2 84.02 94.14 97.01 97.83 98.07 98.17 98.34 98.45 98.66 98.82 99.05 99.05 99.17 99.36 99.38 99.44 99.53 99.57
layer4.0.conv3 72.53 83.17 87.02 89.51 90.39 90.99 92.21 93.09 93.73 94.63 95.87 96.01 96.73 97.61 97.78 98.02 98.38 98.60
layer4.0.downsample.0 85.36 92.49 94.97 96.03 96.39 96.77 97.13 97.42 97.63 97.92 98.33 98.41 98.70 99.00 99.13 99.20 99.33 99.44
layer4.1.conv1 81.34 90.10 93.30 94.91 95.55 95.99 96.52 97.17 97.47 98.00 98.60 98.59 98.86 99.23 99.35 99.42 99.56 99.65
layer4.1.conv2 83.00 91.75 94.76 96.19 96.68 97.03 97.39 97.85 98.14 98.52 98.95 98.96 99.18 99.46 99.55 99.57 99.69 99.73
layer4.1.conv3 75.37 86.50 90.65 92.84 93.42 94.08 94.81 95.43 95.88 96.63 97.40 97.48 97.79 98.47 98.59 98.64 98.88 99.00
layer4.2.conv1 74.54 86.22 90.56 92.98 93.83 94.53 95.26 96.01 96.63 97.23 97.82 97.94 98.35 98.84 98.93 99.03 99.21 99.39
layer4.2.conv2 79.66 90.89 95.74 97.04 97.38 97.52 97.81 98.07 98.36 98.56 98.77 98.82 99.01 99.23 99.29 99.38 99.49 99.60
layer4.2.conv3 66.98 79.13 84.53 87.56 88.74 89.37 90.60 91.60 92.61 93.82 95.04 95.41 96.41 97.57 97.79 98.08 98.51 98.86
fc 86.44 94.47 96.69 97.58 97.87 98.10 98.44 98.65 98.79 99.04 99.25 99.27 99.40 99.49 99.54 99.56 99.57 99.60

25

Published as a conference paper at ICLR 2023

Table 11: Sparsity budgets of ResNet-50 using STDS + S-LATS on ImageNet (1024 batch size).
Final threshold D 0.1 0.2 0.23 0.25 0.3 0.4 0.475 0.5 0.6 0.73 0.8 1.0 1.13 1.5 2.0 3.0 3.5 4.0

Top-1 Acc. (%) 76.61 76.15 75.97 75.88 75.58 74.90 74.61 74.04 73.68 72.84 72.73 71.67 70.68 69.20 67.16 63.81 61.72 60.40

Layer(s) Sparsity (%)

Overall 79.00 88.81 90.15 90.92 92.34 94.19 95.01 95.25 95.93 96.53 96.78 97.30 97.54 98.00 98.38 98.79 98.93 99.04

conv1 40.67 46.90 55.02 53.64 56.36 62.73 66.07 64.46 71.75 70.97 72.86 74.04 76.87 77.51 79.39 83.93 84.56 87.38
layer1.0.conv1 52.32 58.42 65.16 64.92 65.36 72.02 74.71 74.07 79.30 79.30 81.84 82.93 85.82 83.20 87.96 90.33 91.04 90.97
layer1.0.conv2 75.36 82.51 85.46 86.66 87.70 89.99 91.46 91.87 92.69 93.60 94.34 94.89 95.41 95.79 96.87 97.73 98.06 98.10
layer1.0.conv3 70.77 77.27 80.81 81.59 83.83 86.68 88.84 89.89 90.94 92.82 93.27 94.27 94.79 95.66 96.89 97.58 97.92 98.32
layer1.0.downsample.0 64.12 71.25 74.69 75.47 78.57 82.09 83.73 83.44 86.99 87.38 88.92 89.49 90.48 92.49 93.05 94.68 94.98 95.31
layer1.1.conv1 74.98 79.80 82.61 82.99 85.29 86.96 87.48 89.42 90.72 91.63 92.41 94.35 93.60 95.78 96.36 97.36 97.49 98.77
layer1.1.conv2 78.53 83.95 86.02 85.23 89.04 88.26 90.46 92.69 92.72 93.74 94.16 95.35 95.43 96.98 97.64 98.41 98.84 99.33
layer1.1.conv3 77.44 80.13 81.32 81.99 84.70 85.31 88.08 90.27 91.71 93.14 93.58 94.20 94.73 96.28 96.94 98.08 98.66 99.07
layer1.2.conv1 70.75 76.64 77.59 79.77 80.70 85.06 86.50 87.58 89.15 90.91 92.42 92.96 93.51 94.43 96.46 98.02 97.99 97.89
layer1.2.conv2 70.35 76.21 78.69 80.13 83.24 86.20 86.69 88.74 91.18 91.75 92.65 94.47 93.40 95.38 97.15 98.01 97.97 98.34
layer1.2.conv3 77.30 77.87 82.51 82.66 84.60 86.46 89.57 88.23 92.04 92.70 92.96 95.35 93.87 96.25 97.64 98.19 98.46 98.26
layer2.0.conv1 69.29 72.99 77.38 75.72 79.36 81.06 85.20 85.80 88.93 88.83 90.87 92.46 92.42 94.80 95.63 96.78 97.29 97.39
layer2.0.conv2 76.86 84.95 87.06 88.11 89.32 91.52 93.28 93.42 94.01 94.81 95.40 95.92 96.71 96.96 97.50 98.52 98.50 98.62
layer2.0.conv3 75.99 80.48 84.57 85.12 85.54 88.53 90.73 90.84 91.45 92.50 93.01 94.82 94.87 95.76 97.05 97.80 97.77 98.13
layer2.0.downsample.0 84.75 89.95 91.27 91.94 92.58 94.84 95.10 95.29 95.79 96.67 96.86 97.33 97.49 97.89 98.41 98.67 98.93 98.96
layer2.1.conv1 89.09 90.01 91.85 93.14 92.72 94.67 95.55 95.54 95.65 97.00 97.05 97.73 98.01 98.23 98.93 99.25 99.44 99.39
layer2.1.conv2 87.41 89.84 92.13 93.68 92.94 95.04 95.99 96.01 96.07 97.35 97.49 98.36 98.26 98.67 99.17 99.47 99.65 99.65
layer2.1.conv3 81.25 82.44 86.02 88.49 87.05 90.50 92.51 92.16 91.95 94.20 94.48 95.95 96.12 97.09 97.89 98.80 99.16 99.10
layer2.2.conv1 77.10 85.06 86.77 88.37 89.76 91.35 91.45 92.98 93.09 93.55 94.63 95.11 96.12 96.55 97.05 97.93 98.79 98.58
layer2.2.conv2 79.02 87.80 88.76 89.76 89.97 92.55 92.77 92.61 93.93 94.61 95.09 95.26 96.40 97.14 97.50 98.37 99.17 98.94
layer2.2.conv3 71.18 82.41 83.43 85.35 87.02 89.28 90.05 90.93 91.46 92.80 93.58 93.83 95.80 95.97 96.96 97.96 98.82 98.57
layer2.3.conv1 71.29 81.69 84.35 85.66 87.46 89.64 90.34 90.71 91.64 93.72 93.07 94.49 95.54 95.78 97.13 97.82 97.87 98.08
layer2.3.conv2 73.69 83.46 85.49 86.71 88.83 90.38 91.28 92.67 93.19 94.32 93.90 95.26 96.04 96.57 97.52 97.67 97.97 98.33
layer2.3.conv3 73.48 84.16 86.39 86.28 89.51 90.65 92.20 92.08 93.02 94.78 94.69 95.57 95.97 96.83 97.56 98.05 98.25 98.75
layer3.0.conv1 62.93 75.02 77.81 79.06 81.57 83.61 85.41 85.64 87.35 88.80 89.57 90.65 91.63 92.85 94.27 95.65 96.26 96.18
layer3.0.conv2 82.70 91.71 92.62 93.54 94.69 95.64 96.15 96.70 96.96 97.45 97.57 97.90 98.01 98.43 98.70 98.96 99.07 99.11
layer3.0.conv3 72.49 82.71 84.57 85.53 87.34 88.74 89.68 90.66 91.39 92.98 92.80 93.95 94.79 95.56 96.47 97.36 97.68 97.79
layer3.0.downsample.0 87.88 93.93 94.74 95.39 96.36 96.89 97.35 97.51 97.93 98.35 98.38 98.69 98.76 99.06 99.25 99.36 99.44 99.49
layer3.1.conv1 86.70 92.88 93.65 94.35 95.64 96.29 96.63 97.02 97.19 97.72 97.75 97.94 98.49 98.69 99.02 99.25 99.39 99.41
layer3.1.conv2 85.98 93.44 93.99 94.73 96.13 96.67 97.06 97.37 97.48 98.13 98.19 98.35 98.87 98.90 99.11 99.34 99.48 99.43
layer3.1.conv3 74.52 85.38 87.49 88.09 90.54 92.11 93.02 93.65 94.33 95.16 95.69 96.05 97.08 97.38 98.07 98.38 98.85 98.90
layer3.2.conv1 84.36 91.82 93.20 93.33 93.93 95.07 95.61 96.23 96.26 97.09 97.40 97.48 98.08 98.13 98.50 99.02 99.16 99.13
layer3.2.conv2 83.49 91.97 93.01 93.50 94.42 95.51 96.15 96.73 96.65 97.35 97.59 97.67 98.18 98.21 98.75 99.15 99.20 99.22
layer3.2.conv3 75.10 85.78 87.87 88.06 89.36 91.66 92.72 93.96 94.17 95.06 95.61 95.91 96.77 96.89 98.07 98.41 98.71 98.83
layer3.3.conv1 80.11 89.01 90.31 91.45 92.54 93.60 94.34 95.01 95.78 96.18 96.36 97.12 97.36 97.63 98.26 98.61 99.07 99.02
layer3.3.conv2 82.74 91.07 92.45 92.82 93.74 95.54 96.15 96.43 96.95 97.39 97.36 97.85 98.00 98.54 98.79 99.22 99.37 99.33
layer3.3.conv3 75.19 86.40 87.38 88.85 89.98 92.03 93.14 93.50 94.62 95.83 95.34 96.32 96.50 97.57 98.04 98.73 98.93 98.85
layer3.4.conv1 76.54 86.54 88.09 89.35 90.46 92.61 93.25 94.02 94.56 95.68 95.20 95.73 96.46 97.12 97.73 98.47 98.51 98.69
layer3.4.conv2 82.23 90.86 92.02 92.50 93.93 95.47 96.05 95.86 96.63 97.20 97.72 97.97 97.90 98.59 98.88 99.21 99.24 99.40
layer3.4.conv3 75.51 85.30 87.73 88.50 90.23 91.95 92.59 93.37 94.24 95.53 95.63 96.11 96.72 97.46 98.11 98.56 98.64 98.90
layer3.5.conv1 73.52 84.35 86.23 86.85 89.11 91.01 91.75 92.27 93.27 94.56 94.89 95.45 95.75 96.62 97.41 98.11 98.50 98.62
layer3.5.conv2 80.96 90.30 91.09 91.95 93.39 95.08 95.45 95.67 96.55 97.03 97.39 97.74 97.88 98.39 98.76 99.10 99.30 99.43
layer3.5.conv3 73.55 83.72 85.38 86.40 88.65 90.83 91.40 91.96 93.12 94.61 94.68 95.12 95.74 96.61 97.57 98.10 98.47 98.61
layer4.0.conv1 65.17 78.27 79.76 81.06 83.34 86.00 87.24 87.75 89.04 90.32 90.94 91.87 92.49 93.47 94.63 95.65 96.29 96.39
layer4.0.conv2 84.07 93.29 94.58 95.35 96.59 97.99 98.29 98.30 98.51 98.68 98.75 98.92 98.97 99.09 99.21 99.37 99.41 99.45
layer4.0.conv3 72.08 83.90 85.07 86.04 87.64 89.90 90.95 91.05 92.18 93.23 93.78 94.72 95.02 95.93 96.67 97.51 97.81 98.10
layer4.0.downsample.0 85.95 92.56 93.61 94.12 95.02 96.16 96.57 96.80 97.16 97.64 97.66 98.01 98.22 98.54 98.83 99.08 99.23 99.24
layer4.1.conv1 77.97 89.09 89.96 91.06 92.44 94.43 94.94 95.23 95.96 96.52 96.91 97.39 97.68 98.12 98.49 98.88 99.01 99.18
layer4.1.conv2 80.73 90.68 91.40 92.49 94.03 95.76 96.24 96.56 97.11 97.62 97.88 98.30 98.47 98.83 99.02 99.32 99.38 99.48
layer4.1.conv3 71.47 85.15 86.25 87.73 89.75 92.46 92.96 93.54 94.38 95.09 95.65 96.33 96.71 97.38 97.58 98.12 98.23 98.56
layer4.2.conv1 69.25 83.86 86.10 86.64 88.26 91.54 93.58 93.38 94.55 95.19 95.67 96.81 96.90 97.62 97.87 98.41 98.48 98.75
layer4.2.conv2 75.76 87.45 89.41 89.79 91.75 94.72 96.47 96.34 97.50 97.70 98.03 98.46 98.47 98.83 98.96 99.27 99.29 99.39
layer4.2.conv3 62.85 77.36 79.58 80.52 82.77 86.37 88.80 88.74 90.50 91.41 91.98 93.85 93.97 95.32 96.19 97.41 97.61 98.02
fc 88.02 95.57 96.39 96.77 97.50 98.29 98.54 98.65 98.92 99.16 99.20 99.35 99.41 99.52 99.62 99.69 99.69 99.65

26

Published as a conference paper at ICLR 2023

Table 12: Sparsity budgets of MobileNet-V1 using STDS + S-LATS on ImageNet.
Final threshold D 0.4 0.6 0.8 0.9

Top-1 Acc. (%) 68.44 66.64 65.41 65.13

Layer(s) Sparsity (%)

Overall 81.84 85.87 88.22 89.08

model.0.0 51.39 62.27 57.06 55.90
model.1.0 46.53 62.85 54.86 56.94
model.1.3 60.45 76.76 67.63 68.51
model.2.0 11.28 21.70 18.75 18.23
model.2.3 52.82 61.65 61.56 68.92
model.3.0 23.96 25.43 26.04 31.86
model.3.3 53.38 59.64 64.90 67.77
model.4.0 2.69 5.64 8.94 5.38
model.4.3 62.50 68.58 72.97 75.10
model.5.0 20.70 26.26 29.34 31.38
model.5.3 68.64 74.57 78.17 79.69
model.6.0 15.32 20.49 20.40 25.00
model.6.3 79.08 84.26 87.14 87.85
model.7.0 24.80 29.28 34.44 37.83
model.7.3 81.65 86.53 89.26 90.23
model.8.0 35.72 40.89 48.55 48.59
model.8.3 81.10 85.35 88.22 89.20
model.9.0 40.06 42.73 46.59 50.85
model.9.3 79.38 84.02 87.30 87.97
model.10.0 33.88 40.41 42.99 45.33
model.10.3 75.01 80.66 83.84 85.23
model.11.0 26.52 28.56 31.77 31.42
model.11.3 71.13 77.06 80.75 82.36
model.12.0 10.44 13.24 14.67 16.06
model.12.3 80.64 84.83 87.28 88.15
model.13.0 43.65 46.79 48.35 49.09
model.13.3 82.10 85.47 87.57 88.36
fc 92.40 95.25 96.54 96.93

27

Published as a conference paper at ICLR 2023

Table 13: Sparsity budgets of ResNet-50 using PGH scheduler in pruning at initialization setting on
ImageNet.

Final threshold D 0.1 0.11 0.13 0.15

Top-1 Acc. (%) 74.69 72.89 68.23 62.22

Layer(s) Sparsity (%)

Overall 87.16 90.00 93.11 95.64

conv1 32.05 33.48 34.66 34.75
layer1.0.conv1 38.92 38.70 37.48 33.89
layer1.0.conv2 67.15 67.55 66.07 59.91
layer1.0.conv3 59.89 60.16 57.60 49.34
layer1.0.downsample.0 58.89 61.24 64.05 60.72
layer1.1.conv1 60.78 63.04 61.00 53.19
layer1.1.conv2 65.13 64.05 60.48 54.98
layer1.1.conv3 57.58 55.88 49.53 42.51
layer1.2.conv1 53.80 55.80 51.01 43.32
layer1.2.conv2 58.37 59.34 55.33 51.22
layer1.2.conv3 61.24 62.34 60.16 48.72
layer2.0.conv1 49.99 49.88 45.61 42.38
layer2.0.conv2 70.38 69.61 72.09 86.96
layer2.0.conv3 63.37 61.13 59.27 82.79
layer2.0.downsample.0 75.97 74.72 70.28 59.11
layer2.1.conv1 77.21 75.13 66.76 59.39
layer2.1.conv2 76.35 74.61 73.73 86.70
layer2.1.conv3 63.60 60.96 58.64 81.81
layer2.2.conv1 68.74 66.52 56.07 49.60
layer2.2.conv2 70.42 69.81 69.10 87.02
layer2.2.conv3 63.30 60.06 54.06 83.67
layer2.3.conv1 63.87 59.87 44.49 43.37
layer2.3.conv2 70.13 68.83 67.57 86.60
layer2.3.conv3 66.09 62.03 49.41 82.74
layer3.0.conv1 54.05 54.86 76.17 100.00
layer3.0.conv2 82.47 89.52 99.25 100.00
layer3.0.conv3 65.61 82.20 98.40 100.00
layer3.0.downsample.0 78.21 71.87 54.37 53.19
layer3.1.conv1 78.03 78.40 79.45 100.00
layer3.1.conv2 82.93 92.45 98.20 100.00
layer3.1.conv3 69.54 87.02 96.55 100.00
layer3.2.conv1 74.19 72.72 89.19 100.00
layer3.2.conv2 81.22 89.29 99.56 100.00
layer3.2.conv3 68.24 82.87 99.03 100.00
layer3.3.conv1 66.58 63.63 88.10 100.00
layer3.3.conv2 78.70 88.28 99.54 100.00
layer3.3.conv3 65.76 80.80 99.00 100.00
layer3.4.conv1 57.57 59.99 75.83 100.00
layer3.4.conv2 79.10 88.66 98.66 100.00
layer3.4.conv3 62.33 80.67 97.62 100.00
layer3.5.conv1 53.63 58.43 78.13 100.00
layer3.5.conv2 79.08 88.88 99.04 100.00
layer3.5.conv3 58.30 80.30 98.32 100.00
layer4.0.conv1 90.52 100.00 100.00 100.00
layer4.0.conv2 99.80 100.00 100.00 100.00
layer4.0.conv3 99.37 100.00 100.00 100.00
layer4.0.downsample.0 75.46 79.81 86.40 91.34
layer4.1.conv1 97.11 100.00 100.00 100.00
layer4.1.conv2 99.90 100.00 100.00 100.00
layer4.1.conv3 99.56 100.00 100.00 100.00
layer4.2.conv1 98.61 100.00 100.00 100.00
layer4.2.conv2 99.96 100.00 100.00 100.00
layer4.2.conv3 99.74 100.00 100.00 100.00
fc 83.95 82.61 81.69 86.05

28

Published as a conference paper at ICLR 2023

Table 14: Sparsity budgets of SEW ResNet-18 using STDS + S-LATS on ImageNet.
Final threshold D 0.5 1.0 2.0 3.0 5.0 7.0 10 15 20

Top-1 Acc. (%) 62.59 62.3 60.806 59.816 57.572 55.454 53.74 50.024 47.586

Layer(s) Sparsity (%)

Overall 60.11 71.18 79.74 83.75 88.11 89.96 92.57 94.30 95.21

conv1 38.70 49.83 62.40 66.90 73.93 79.44 80.71 85.43 86.90
layer1.0.conv1.0 48.98 60.42 73.58 76.98 82.13 86.19 87.39 90.02 91.90
layer1.0.conv2.0 37.88 50.73 61.17 66.69 71.79 76.28 79.39 82.53 84.40
layer1.1.conv1.0 40.37 54.44 66.75 72.12 77.59 80.65 84.02 86.53 87.84
layer1.1.conv2.0 39.94 51.82 62.50 67.47 73.18 77.47 80.40 84.16 85.53
layer2.0.conv1.0 39.78 52.67 64.46 68.41 74.30 77.91 81.07 83.65 85.84
layer2.0.conv2.0 46.68 59.70 70.55 74.26 79.64 83.32 85.99 88.92 90.62
layer2.0.downsample.0.0 16.81 25.96 36.11 41.39 47.29 54.48 59.00 63.48 67.22
layer2.1.conv1.0 48.87 62.95 73.58 77.19 81.24 84.64 87.51 89.59 91.89
layer2.1.conv2.0 49.85 63.01 71.87 77.04 81.44 84.69 87.65 90.72 91.80
layer3.0.conv1.0 48.98 60.98 71.23 75.30 80.16 83.48 85.91 88.49 90.02
layer3.0.conv2.0 56.54 68.36 77.14 81.23 86.21 88.38 91.20 93.05 94.38
layer3.0.downsample.0.0 27.11 37.56 48.76 54.21 61.76 66.29 70.50 75.62 79.10
layer3.1.conv1.0 61.25 72.95 80.88 83.91 87.98 89.96 91.59 93.66 94.48
layer3.1.conv2.0 60.16 71.00 79.03 82.63 86.38 88.59 90.49 92.50 93.61
layer4.0.conv1.0 58.92 70.02 78.17 82.08 86.23 88.38 90.44 92.65 93.86
layer4.0.conv2.0 64.63 74.90 82.40 85.93 89.74 91.58 93.27 95.14 95.96
layer4.0.downsample.0.0 31.91 42.72 53.25 58.97 65.57 69.29 72.34 75.55 77.45
layer4.1.conv1.0 67.33 77.95 85.81 89.57 93.42 95.61 96.99 97.89 98.38
layer4.1.conv2.0 63.04 72.57 80.14 84.08 88.71 91.79 94.04 95.35 96.01
fc 33.00 52.40 71.29 79.66 86.71 89.96 92.52 94.95 96.27

Table 15: Sparsity budgets of SEW ResNet-18 using our implementation of original STDS (STDS
+ Sine scheduler) on ImageNet.

Final threshold D 0.6 0.8 1.5 3.0 5.0

Top-1 Acc. (%) 61.114 60.218 57.458 52.966 48.436

Layer(s) Sparsity (%)

Overall 76.06 79.91 85.91 90.62 93.19

conv1 48.07 53.99 68.15 79.49 85.71
layer1.0.conv1.0 61.37 69.80 81.65 88.07 91.37
layer1.0.conv2.0 56.20 62.73 73.62 79.45 83.24
layer1.1.conv1.0 56.73 64.55 79.27 84.19 87.55
layer1.1.conv2.0 58.62 65.86 73.35 79.39 84.28
layer2.0.conv1.0 58.34 66.05 75.50 80.44 85.06
layer2.0.conv2.0 66.05 72.17 80.13 85.38 88.55
layer2.0.downsample.0.0 28.70 36.28 49.60 58.87 64.78
layer2.1.conv1.0 68.32 74.54 82.47 87.28 89.96
layer2.1.conv2.0 68.65 73.85 80.92 86.52 89.55
layer3.0.conv1.0 68.04 73.05 80.11 86.17 88.89
layer3.0.conv2.0 74.94 79.00 85.20 89.69 92.33
layer3.0.downsample.0.0 44.28 50.82 62.14 70.68 76.31
layer3.1.conv1.0 78.62 82.50 87.89 91.36 93.57
layer3.1.conv2.0 76.93 80.73 86.32 90.13 92.28
layer4.0.conv1.0 76.41 80.41 86.30 90.59 92.95
layer4.0.conv2.0 80.60 83.84 88.43 92.07 93.92
layer4.0.downsample.0.0 49.57 55.31 63.96 71.63 75.94
layer4.1.conv1.0 82.60 85.81 90.74 94.64 96.62
layer4.1.conv2.0 77.17 79.68 84.09 88.96 92.32
fc 46.12 56.43 77.07 90.62 95.18

29

	Introduction
	Related works
	Preliminaries
	Soft threshold pruning
	Iterative shrinkage-thresholding algorithm

	A framework for soft threshold pruning
	Finding optimal threshold scheduler
	Learning rate adapted threshold scheduler
	Simplified threshold scheduler
	Continuation strategy
	PGH scheduler
	Link to early pruning

	Experiments
	S-LATS
	PGH scheduler

	Conclusion & Discussion
	Proof of theorems and lemmas
	Original threshold scheduler in STDS
	Discussion about training threshold
	L2 penalty dominates early training of STR.
	GPO: fall back to STR shortly
	Focus on threshold scheduler instead of the final threshold.

	Detailed derivation for LATS and S-LATS
	LATS for cosine annealing scheduler
	The detailed motivation of S-LATS

	Pruning experiments on MobileNet-V1 using S-LATS
	Ablation study of threshold scheduler on ResNet-50
	Remove L2 decay for fair comparison
	Sine scheduler in STDS vs S-LATS

	Sparsity vs firing rate in SNNs
	An overview of SNNs
	Reducing SNNs cost on neuromorphic hardware

	Training hyperparameters
	Sparsity budgets

