
Optimal Design for Human Preference Elicitation

Subhojyoti Mukherjee
University of Wisconsin-Madison∗
smukherjee27@wisc.edu

Anusha Lalitha
AWS AI Labs

Kousha Kalantari
AWS AI Labs

Aniket Deshmukh
AWS AI Labs

Ge Liu
UIUC∗

Yifei Ma
AWS AI Labs

Branislav Kveton
Adobe Research∗

Abstract

Learning of preference models from human feedback has been central to recent
advances in artificial intelligence. Motivated by the cost of obtaining high-quality
human annotations, we study efficient human preference elicitation for learning
preference models. The key idea in our work is to generalize optimal designs, an
approach to computing optimal information-gathering policies, to lists of items
that represent potential questions with answers. The policy is a distribution over
the lists and we elicit preferences from them proportionally to their probabilities.
To show the generality of our ideas, we study both absolute and ranking feedback
models on items in the list. We design efficient algorithms for both and analyze
them. Finally, we demonstrate that our algorithms are practical by evaluating them
on existing question-answering problems.

1 Introduction

Reinforcement learning from human feedback (RLHF) has been effective in aligning and fine-tuning
large language models (LLMs) [68, 36, 15, 77, 39]. The main difference from classic reinforcement
learning (RL) [81] is that the agent learns from human feedback, which is expressed as preferences
for different potential choices [2, 49, 71, 10, 90]. The human feedback allows LLMs to be adapted
beyond the distribution of data that was used for their pre-training and generate answers that are more
preferred by humans [15]. The feedback can be incorporated by learning a preference model. When
the human decides between two choices, the Bradley-Terry-Luce (BTL) model [12] can be used. For
multiple choices, the Plackett-Luce (PL) model [65, 54] can be adopted. A good preference model
should correctly rank answers to many potential questions. Therefore, learning of a good preference
model can be viewed as learning to rank, and we adopt this view in this work. Learning to rank has
been studied extensively in both offline [14] and online [67, 43, 83, 80, 46] settings.

To effectively learn preference models, we study efficient methods for human preference elicitation.
We formalize this problem as follows. We have a set of L lists representing questions, each with K
items representing answers. The objective of the agent is to learn to rank all items in all lists. The
agent can query humans for feedback. Each query is a question with K answers represented as a list.
The human provides feedback on it. We study two feedback models: absolute and ranking. In the
absolute feedback model, a human provides noisy feedback for each item in the list. This setting is
motivated by how annotators assign relevance judgments in search [30, 57]. The ranking feedback is
motivated by learning reward models in RLHF [68, 36, 15, 77, 39]. In this model, a human ranks all
items in the list according to their preferences. While K = 2 is arguably the most common case, we
study K ≥ 2 for the sake of generality and allowing a higher-capacity communication channel with
the human [102]. The agent has a budget for the number of queries. To learn efficiently within the

∗The work was done at AWS AI Labs.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

budget, it needs to elicit preferences from the most informative lists, which allows it to learn to rank
all other lists. Our main contribution is an efficient algorithm for computing the distribution of the
most informative lists.

Our work touches on many topics. Learning of reward models from human feedback is at the center
of RLHF [62] and its recent popularity has led to major theory developments, including analyses of
regret minimization in RLHF [16, 87, 90, 91, 61, 75]. These works propose and analyze adaptive
algorithms that interact with the environment to learn highly-rewarding policies. Such policies are
usually hard to deploy in practice because they may harm user experience due to over-exploration
[22, 82]. Therefore, Zhu et al. [102] studied RLHF from ranking feedback in the offline setting with
a fixed dataset. We study how to collect an informative dataset for offline learning to rank with both
absolute and ranking feedback. We approach this problem as an optimal design, a methodology for
computing optimal information-gathering policies [66, 24]. The policies are non-adaptive and thus
can be precomputed, which is one of their advantages. The main technical contribution of this work is
a matrix generalization of the Kiefer-Wolfowitz theorem [41], which allows us to formulate optimal
designs for ranked lists and solve them efficiently. Optimal designs have become a standard tool in
exploration [45, 37, 38, 58, 33] and adaptive algorithms can be obtained by combining them with
elimination. Therefore, optimal designs are a natural stepping stone to other solutions.

We make the following contributions:

1. We develop a novel approach for human preference elicitation. The key idea is to generalize
the Kiefer-Wolfowitz theorem [41] to matrices (Section 3), which then allows us to compute
information-gathering policies for ranked lists.

2. We propose an algorithm that uses an optimal design to collect absolute human feedback
(Section 4.1), where a human provides noisy feedback for each item in the queried list. A
least-squares estimator is then used to learn a preference model. The resulting algorithm is
both computationally and statistically efficient. We bound its prediction error (Section 4.2)
and ranking loss (Section 4.3), and show that both decrease with the sample size.

3. We propose an algorithm that uses an optimal design to collect ranking human feedback
(Section 5.1), where a human ranks all items in the list according to their preferences. An
estimator of Zhu et al. [102] is then used to learn a preference model. Our approach is both
computationally and statistically efficient, and we bound its prediction error (Section 5.2)
and ranking loss (Section 5.3). These results mimic the absolute feedback setting and show
the generality of our framework.

4. We compare our algorithms to multiple baselines in several experiments. We observe that
the algorithms achieve a lower ranking loss than the baselines.

2 Setting

Notation: Let [K] = {1, . . . ,K}. Let ∆L be the probability simplex over [L]. For any distribution
π ∈ ∆L, we get

∑L
i=1 π(i) = 1. Let Π2(K) = {(j, k) ∈ [K]2 : j < k} be the set of all pairs over

[K] where the first entry is lower than the second one. Let ∥x∥2A = x⊤Ax for any positive-definite
A ∈ Rd×d and x ∈ Rd. We use Õ for the big-O notation up to logarithmic factors. Specifically, for
any function f , we write Õ(f(n)) if it is O(f(n) logk f(n)) for some k > 0. Let supp (π) be the
support of distribution π or a random variable.

Setup: We learn to rank L lists, each with K items. An item k ∈ [K] in list i ∈ [L] is represented
by a feature vector xi,k ∈ X , where X ⊆ Rd is the set of feature vectors. The relevance of items
is given by their mean rewards. The mean reward of item k in list i is x⊤

i,kθ∗, where θ∗ ∈ Rd is an
unknown parameter. Without loss of generality, we assume that the original order of the items is
optimal, x⊤

i,jθ∗ > x⊤
i,kθ∗ for any j < k and list i. The agent does not know it. The agent interacts

with humans for n rounds. At round t, it selects a list It and the human provides stochastic feedback
on it. Our goal is to design a policy for selecting the lists such that the agent learns the optimal order
of all items in all lists after n rounds.

Feedback model: We study two models of human feedback, absolute and ranking:

2

(1) In the absolute feedback model, the human provides a reward for each item in list It chosen by
the agent. Specifically, the agent observes noisy rewards

yt,k = x⊤
It,kθ∗ + ηt,k , (1)

for all k ∈ [K] in list It, where ηt,k is independent zero-mean 1-sub-Gaussian noise. This feedback
is stochastic and similar to that in the document-based click model [19].

(2) In the ranking feedback model, the human orders all items in list It selected by the agent. The
feedback is a permutation σt : [K] → [K], where σt(k) is the index of the k-th ranked item. The
probability that this permutation is generated is

p(σt) =

K∏
k=1

exp[x⊤
It,σt(k)

θ∗]∑K
j=k exp[x

⊤
It,σt(j)

θ∗]
. (2)

Simply put, items with higher mean rewards are more preferred by humans and hence more likely
to be ranked higher. This feedback model is known as the Plackett-Luce (PL) model [65, 54, 102],
and it is a standard assumption when learning values of individual choices from relative feedback.
Since the feedback at round t is with independent noise, in both (1) and (2), any list can be observed
multiple times and we do need to assume that n ≤ L.

Objective: At the end of round n, the agent outputs a permutation σ̂n,i : [K] → [K] for all lists
i ∈ [L], where σ̂n,i(k) is the index of the k-th ranked item in list i. We measure the quality of the
solution by the ranking loss after n rounds, which we define as

Rn =

L∑
i=1

K∑
j=1

K∑
k=j+1

1{σ̂n,i(j) > σ̂n,i(k)} . (3)

The loss is the number of incorrectly ordered pairs of items in permutation σ̂n,i, summed over all
lists i ∈ [L]. It can also be viewed as the Kendall tau rank distance [40] between the optimal order
of items in all lists and that according to σ̂n,i. We note that other ranking metrics exist, such as the
normalized discounted cumulative gain (NDCG) [86] and mean reciprocal rank (MRR) [85]. Our
work can be extended to them and we leave this for future work.

The two closest related works are Mehta et al. [56] and Das et al. [20]. They proposed algorithms for
learning to rank L pairs of items from pairwise feedback. Their optimized metric is the maximum
gap over the L pairs. We learn to rank L lists of K items from K-way ranking feedback. We bound
the maximum prediction error, which is a similar metric to the prior works, and the ranking loss in
(3), which is novel. Our setting is related to other bandit settings as follows. Due to the budget n, it is
similar to fixed-budget best arm identification (BAI) [13, 5, 6, 95]. The main difference is that we do
not want to identify the best arm. We want to sort L lists of K items. Online learning to rank has
also been studied extensively [67, 43, 105, 53, 44]. We do not minimize cumulative regret or try to
identify the best arm. A more detailed comparison is in Appendix D.

We introduce optimal designs [66, 24] next. This allows us to minimize the expected ranking loss
within a budget of n rounds efficiently.

3 Optimal Design and Matrix Kiefer-Wolfowitz

This section introduces a unified approach to human preference elicitation from both absolute and
ranking feedback. First, we note that to learn the optimal order of items in all lists, the agent has to
estimate the unknown model parameter θ∗ well. In this work, the agent uses a maximum-likelihood
estimator (MLE) to obtain an estimate θ̂n of θ∗. After that, it orders the items in all lists according to
their estimated mean rewards x⊤

i,kθ̂n in descending order, which defines the permutation σ̂n,i. If θ̂n
minimized the prediction error (x⊤

i,k(θ̂n − θ∗))
2 over all items k ∈ [K] in list i, the permutation σ̂n,i

would be closer to the optimal order. Moreover, if θ̂n minimized the maximum error over all lists, all
permutations would be closer and the ranking loss in (3) would be minimized. This is why we focus
on minimizing the maximum prediction error

max
i∈[L]

∑
a∈Ai

(a⊤(θ̂n − θ∗))
2 = max

i∈[L]
tr(A⊤

i (θ̂n − θ∗)(θ̂n − θ∗)
⊤Ai) , (4)

3

where Ai is a matrix representing list i and a ∈ Ai is a column in it. In the absolute feedback model,
the columns of Ai are feature vectors of items in list i (Section 4.1). In the ranking feedback model,
the columns of Ai are the differences of feature vectors of items in list i (Section 5.1). Therefore, Ai

depends on the type of human feedback. In fact, as we show later, it is dictated by the covariance of
θ̂n in the corresponding human feedback model. We note that the objective in (4) is worst-case over
lists and that other alternatives, such as 1

L

∑L
i=1

∑
a∈Ai

(a⊤(θ̂n − θ∗))
2, may be possible. We leave

this for future work.

We prove in Sections 4 and 5 that the agent can minimize the maximum prediction error in (4) and
the ranking loss in (3) by sampling from a fixed distribution π∗ ∈ ∆L. That is, the probability of
selecting list i at round t is P (It = i) = π∗(i). The distribution π∗ is a minimizer of

g(π) = max
i∈[L]

tr(A⊤
i V

−1
π Ai) , (5)

where Vπ =
∑L

i=1 π(i)AiA
⊤
i is a design matrix. The optimal design aims to find the distribution

π∗. Since (5) does not depend on the received feedback, our algorithms are not adaptive.

The problem of finding π∗ that minimizes (5) is called the G-optimal design [45]. The minimum of
(5) and the support of π∗ are characterized by the Kiefer-Wolfowitz theorem [41, 45]. The original
theorem is for least-squares regression, where Ai are feature vectors. At a high level, it says that the
smallest ellipsoid that covers all feature vectors has the minimum volume, and in this way relates
the minimization of (5) to maximizing log det(Vπ). We generalize this claim to lists, where Ai is a
matrix of feature vectors representing list i. This generalization allows us to go from a design over
feature vectors to a design over lists represented by matrices.

Theorem 1 (Matrix Kiefer-Wolfowitz). Let M ≥ 1 be an integer and A1, . . . ,AL ∈ Rd×M be L
matrices whose column space spans Rd. Then the following claims are equivalent:

(a) π∗ is a minimizer of g(π) in (5).

(b) π∗ is a maximizer of f(π) = log det(Vπ).

(c) g(π∗) = d.

Furthermore, there exists a minimizer π∗ of g(π) such that |supp (π∗) | ≤ d(d+ 1)/2.

Proof. We generalize the proof of the Kiefer-Wolfowitz theorem in Lattimore and Szepesvari [45].
The key observation is that even if Ai is a matrix and not a vector, the design matrix Vπ is positive
definite. Using this structure, we establish the key facts used in the original proof. First, we show that
∇f(π) = (tr(A⊤

i V
−1
π Ai))

L
i=1 is the gradient of f(π) with respect to π. In addition, we prove that

g(π) ≥
∑L

i=1 π(i) tr(A
⊤
i V

−1
π Ai) = d. The complete proof is in Appendix A.1.

From the equivalence in Theorem 1, it follows that the agent should solve the optimal design

π∗ = argmax
π∈∆L

f(π) = argmax
π∈∆L

log det(Vπ) (6)

and sample according to π∗ to minimize the maximum prediction error in (4). Note that the optimal
design over lists in (6) is different from the one over vectors [45]. As an example, suppose that we
have 4 feature vectors {xi}i∈[4] and two lists: A1 = (x1,x2) and A2 = (x3,x4). The list design is
over 2 variables (lists) while the vector design is over 4 variables (vectors). The list design can also
be viewed as a constrained vector design, where (x1,x2) and (x3,x4) are observed together with the
same probability.

The optimization problem in (6) is convex and thus easy to solve. When the number of lists is large,
the Frank-Wolfe algorithm [59, 32] can be used, which solves convex optimization problems with
linear constraints as a sequence of linear programs. We use CVXPY [21] to compute the optimal
design. We report its computation time, as a function of the number of lists L, in Appendix E. The
computation time scales roughly linearly with the number of lists L. In the following sections, we
employ Theorem 1 to bound the maximum prediction error and ranking loss for both absolute and
ranking feedback.

4

Algorithm 1 Dope for absolute feedback.
1: for i = 1, . . . , L do
2: Ai ← [xi,k]k∈[K]

3: Vπ ←
∑L

i=1 π(i)AiA
⊤
i

4: π∗ ← argmaxπ∈∆L log det(Vπ)
5: for t = 1, . . . , n do
6: Sample It ∼ π∗
7: for k = 1, . . . ,K do
8: Observe yt,k in (1)
9: Compute θ̂n in (7)

10: for i = 1, . . . , L do
11: Set σ̂n,i(k) to the index of the item with

the k-th highest x⊤
i,ℓθ̂n in list i

12: Output: Permutation σ̂n,i for all i ∈ [L]

Algorithm 2 Dope for ranking feedback.
1: for i = 1, . . . , L do
2: for (j, k) ∈ Π2(K) do
3: zi,j,k ← xi,j − xi,k

4: Ai ← [zi,j,k](j,k)∈Π2(K)

5: Vπ ←
∑L

i=1 π(i)AiA
⊤
i

6: π∗ ← argmaxπ∈∆L log det(Vπ)
7: for t = 1, . . . , n do
8: Sample It ∼ π∗
9: Observe σt in (2)

10: Compute θ̂n in (10)
11: for i = 1, . . . , L do
12: Set σ̂n,i(k) to the index of the item with

the k-th highest x⊤
i,ℓθ̂n in list i

13: Output: Permutation σ̂n,i for all i ∈ [L]

4 Learning with Absolute Feedback

This section is organized as follows. In Section 4.1, we present an algorithm for human preference
elicitation under absolute feedback. We bound its prediction error in Section 4.2 and its ranking loss
in Section 4.3.

4.1 Algorithm Dope

Our algorithm for absolute feedback is called D-optimal preference elicitation (Dope). It has four
main parts. First, we solve the optimal design in (6) to get a data logging policy π∗. The matrix for
list i is Ai = [xi,k]k∈[K] ∈ Rd×K , where xi,k is the feature vector of item k in list i. Second, we
collect human feedback for n rounds. At round t ∈ [n], we sample a list It ∼ π∗ and then observe
yt,k for all k ∈ [K], as defined in (1). Third, we estimate the model parameter using least squares

θ̂n = Σ̄−1
n

n∑
t=1

K∑
k=1

xIt,kyt,k . (7)

The normalized and unnormalized covariance matrices corresponding to the estimate are

Σn =
1

n
Σ̄n , Σ̄n =

n∑
t=1

K∑
k=1

xIt,kx
⊤
It,k , (8)

respectively. Finally, we sort the items in all lists i according to their estimated mean rewards x⊤
i,kθ̂n

in descending order, to obtain the permutation σ̂n,i. The pseudo-code of Dope is in Algorithm 1.

The estimator (7) is the same as in ordinary least squares (OLS), because each observed list can be
treated as K independent observations. The matrix for list i, Ai, can be related to the inner sum in
(8) through tr(AiA

⊤
i) =

∑K
k=1 xi,kx

⊤
i,k. Therefore, our algorithm collects data for a least-squares

estimator by optimizing its covariance [45, 33].

4.2 Maximum Prediction Error Under Absolute Feedback

In this section, we bound the maximum prediction error of Dope under absolute feedback. We start
with a lemma that uses the optimal design π∗ to bound maxi∈[L]

∑
a∈Ai

∥a∥2
Σ̄−1

n
.

Lemma 2. Let π∗ be the optimal design in (6). Fix budget n and let each allocation nπ∗(i) be an
integer. Then maxi∈[L]

∑
a∈Ai

∥a∥2
Σ̄−1

n
= d/n.

The lemma is proved in Appendix A.2. Since all nπ∗(i) are integers, we note that Σ̄n must be full
rank and invertible. Note that the assumption of all nπ∗(i) being integers does not require n ≥ L.

5

This is because π∗(i) has at most d(d+ 1)/2 non-zero entries (Theorem 1). This is independent of
the number of lists L, which could also be infinite (Chapter 21.1 in Lattimore and Szepesvari [45]).
The integer condition can be also relaxed by rounding non-zero entries of nπ∗(i) up to the closest
integer. This clearly yields an integer allocation of size at most n+ d(d+ 1)/2. All claims in our
work would hold for any π∗ and this allocation. With Lemma 2 in hand, the maximum prediction
error is bounded as follows.
Theorem 3 (Maximum prediction error). With probability at least 1− δ, the maximum prediction
error after n rounds is

max
i∈[L]

tr(A⊤
i (θ̂n − θ∗)(θ̂n − θ∗)

⊤Ai) = O

(
d2 + d log(1/δ)

n

)
.

The theorem is proved in Appendix A.3. As in Lemma 2, we assume that each allocation nπ∗(i) is
an integer. If the allocations were not integers, rounding errors would arise and need to be bounded
[66, 25, 37]. At a high level, our bound would be multiplied by 1 + β for some β > 0 (Chapter 21 in
Lattimore and Szepesvari [45]). We omit this factor in our proofs to simplify them.

Theorem 3 says that the maximum prediction error is Õ(d2/n). Note that this rate cannot be attained
trivially, for instance by uniform sampling. To see this, consider the following example. Take K = 2.
Let xi,1 = (1, 0, 0) for i ∈ [L− 1] and xL,1 = (0, 1, 0), and xi,2 = (0, 0, 1) for all i ∈ [L]. In this
case, the minimum eigenvalue of Σ̄n is n/L in expectation, because only one item in list L provides
information about the second feature, xL,1 = (0, 1, 0). Following the proof of Theorem 3, we would
get a rate of Õ(dL/n). Prior works on optimal designs also made similar observations [78].

The rate in Theorem 3 is the same as in linear models [45]. Specifically, by the Cauchy-Schwarz
inequality, we would get

(x⊤(θ̂n − θ∗))
2 ≤ ∥θ̂n − θ∗∥2Σ̄n

∥x∥2
Σ̄−1

n
= Õ(d) Õ(d/n) = Õ(d2/n)

with a high probability, where θ∗, θ̂n, and Σ̄n are the analogous linear model quantities. This bound
holds for infinitely many feature vectors. It can be tightened to Õ(d/n) for a finite number of feature
vectors, where Õ hides the logarithm of the number of feature vectors. This can be proved using a
union bound over (20.3) in Chapter 20 of Lattimore and Szepesvari [45].

4.3 Ranking Loss Under Absolute Feedback

In this section, we bound the expected ranking loss under absolute feedback. Recall from Section 2
that the original order of items in each list is optimal. With this in mind, the gap between the mean
rewards of items j and k in list i is ∆i,j,k = (xi,j − xi,k)

⊤θ∗, for any i ∈ [L] and (j, k) ∈ Π2(K).
Theorem 4 (Ranking loss). The expected ranking loss after n rounds is bounded as

E[Rn] ≤ 2

L∑
i=1

K∑
j=1

K∑
k=j+1

exp

[
−
∆2

i,j,kn

8d

]
.

Proof. From the definition of the ranking loss, we have

E[Rn] =

L∑
i=1

K∑
j=1

K∑
k=j+1

E[1{σ̂n,i(j) > σ̂n,i(k)}] =
L∑

i=1

K∑
j=1

K∑
k=j+1

P
(
x⊤
i,j θ̂n < x⊤

i,kθ̂n

)
,

where P
(
x⊤
i,j θ̂n < x⊤

i,kθ̂n

)
is the probability of predicting a sub-optimal item k above item j in list

i. We bound this probability from above by bounding the sum of P
(
x⊤
i,k(θ̂n − θ∗) >

∆i,j,k

2

)
and

P
(
x⊤
i,j(θ∗ − θ̂n) >

∆i,j,k

2

)
. Each of these probabilities is bounded from above by exp

[
−∆2

i,j,kn

8d

]
,

using a concentration inequality in Lemma 8. The full proof is in Appendix A.4.

Each term in Theorem 4 can be bounded from above by exp
[
−∆2

minn
8d

]
, where n is the sample size,

d is the number of features, and ∆min denotes the minimum gap. Therefore, the bound decreases

6

exponentially with budget n and gaps, and increases with d. This dependence is similar to that in
Theorem 1 of Azizi et al. [6] for fixed-budget best-arm identification in linear models. Yang and Tan
[95] derived a similar bound and a matching lower bound. The gaps ∆i,j,k reflect the hardness of
sorting list i, which depends on the differences of the mean rewards of items j and k in it.

Finally, we wanted to note that our optimal designs may not be optimal for ranking. We have not
focused solely on ranking because we see value in both prediction error (Theorem 3) and ranking
loss (Theorem 4) bounds. The fact that we provide both shows the versatility of our approach.

5 Learning with Ranking Feedback

This section is organized similarly to Section 4. In Section 5.1, we present an algorithm for human
preference elicitation under ranking feedback. We bound its prediction error in Section 5.2 and its
ranking loss in Section 5.3. Our algorithm design and analysis are under the following assumption,
which we borrow from Zhu et al. [102].

Assumption 1. We assume that the model parameter satisfies θ∗ ∈ Θ, where

Θ = {θ ∈ Rd : θ⊤1d = 0, ∥θ∥2 ≤ 1} . (9)

We also assume that maxi∈[L], k∈[K] ∥xi,k∥2 ≤ 1.

The assumption of bounded model parameter and feature vectors is common in bandits [1, 45]. The
additional assumption of θ⊤1d = 0 is from Zhu et al. [102], from which we borrow the estimator
and concentration bound.

5.1 Algorithm Dope

Our algorithm for ranking feedback is similar to Dope in Section 4. It also has four main parts. First,
we solve the optimal design problem in (6) to obtain a data logging policy π∗. The matrix for list i
is Ai = [zi,j,k](j,k)∈Π2(K) ∈ Rd×K(K−1)/2, where zi,j,k = xi,j − xi,k is the difference of feature
vectors of items j and k in list i. Second, we collect human feedback for n rounds. At round t ∈ [n],
we sample a list It ∼ π∗ and then observe σt drawn from the PL model, as defined in (2). Third, we
estimate the model parameter as

θ̂n = argmin
θ∈Θ

ℓn(θ) , ℓn(θ) = −
1

n

n∑
t=1

K∑
k=1

log

(
exp[x⊤

It,σt(k)
θ]∑K

j=k exp[x
⊤
It,σt(j)

θ]

)
, (10)

where Θ is defined in Assumption 1. We solve this estimation problem using iteratively reweighted
least squares (IRLS) [89], a popular method for fitting the parameters of generalized linear models
(GLMs). Finally, we sort the items in all lists i according to their estimated mean rewards x⊤

i,kθ̂n in
descending order, to obtain the permutation σ̂n,i. The pseudo-code of Dope is in Algorithm 2.

The optimal design for (10) is derived as follows. First, we derive the Hessian of ℓn(θ), ∇2ℓn(θ), in
Lemma 9. The optimal design with∇2ℓn(θ) cannot be solved exactly because∇2ℓn(θ) depends on
an unknown model parameter θ. To get around this, we bound θ-dependent terms from below. Many
prior works on decision making under uncertainty with GLMs [26, 52, 102, 20, 99] took a similar
approach. We derive normalized and unnormalized covariance matrices

Σn =
2

K(K − 1)n
Σ̄n , Σ̄n =

n∑
t=1

K∑
j=1

K∑
k=j+1

zIt,j,kz
⊤
It,j,k , (11)

and prove that ∇2ℓn(θ) ⪰ γΣn for some γ > 0. Therefore, we can maximize log det(∇2ℓn(θ)),
for any θ ∈ Θ, by maximizing log det(Σn). The matrix for list i, Ai, can be related to the inner sum
in (11) through tr(AiA

⊤
i) =

∑K
j=1

∑K
k=j+1 zi,j,kz

⊤
i,j,k.

The price to pay for our approximation is a constant C > 0 in our bounds (Theorems 5 and 6). In
Appendix C, we discuss a more adaptive design and also compare to it empirically. We conclude that
it would be harder to implement and analyze, and we do not observe empirical benefits at K = 2.

7

5.2 Maximum Prediction Error Under Ranking Feedback

In this section, we bound the maximum prediction error of Dope under ranking feedback. Similarly
to the proof of Theorem 3, we decompose the error into two parts, which capture the efficiency of the
optimal design and the uncertainty in the MLE θ̂n.
Theorem 5 (Maximum prediction error). With probability at least 1− δ, the maximum prediction
error after n rounds is

max
i∈[L]

tr(A⊤
i (θ̂n − θ∗)(θ̂n − θ∗)

⊤Ai) = O

(
K6(d2 + d log(1/δ))

n

)
.

This theorem is proved in Appendix A.5. We build on a self-normalizing bound of Zhu et al. [102],
∥θ̂n − θ∗∥2Σn

≤ O
(

K4(d+log(1/δ))
n

)
, which may not be tight in K. If the bound could be improved

by a multiplicative c > 0, we would get a multiplicative c improvement in Theorem 5. Note that if
the allocations nπ∗(i) are not integers, a rounding procedure is necessary [66, 25, 37]. This would
result in an additional multiplicative 1 + β in our bound, for some β > 0. We omit this factor in our
derivations to simplify them.

5.3 Ranking Loss Under Ranking Feedback

In this section, we bound the expected ranking loss under ranking feedback. Similarly to Section 4.3,
we define the gap between the mean rewards of items j and k in list i as ∆i,j,k = z⊤i,j,kθ∗, where
zi,j,k = xi,j − xi,k is the difference of feature vectors of items j and k in list i.
Theorem 6 (Ranking loss). The expected ranking loss after n rounds is bounded as

E[Rn] ≤
L∑

i=1

K∑
j=1

K∑
k=j+1

exp

[
−
∆2

i,j,kn

CK4d
+ d

]
,

where C > 0 is a constant.

Proof. The proof is similar to Theorem 4. At the end of round n, we bound the probability that a
sub-optimal item k is ranked above item j. The proof has two parts. First, for any list i ∈ [L] and
items (j, k) ∈ Π2(K), we show that P

(
x⊤
i,j θ̂n < x⊤

i,kθ̂n

)
= P

(
z⊤i,j,k(θ∗ − θ̂n) > ∆i,j,k

)
. Then

we bound this quantity by exp
[
−∆2

i,j,kn

CK4d + d
]
. The full proof is in Appendix A.6.

The bound in Theorem 6 is similar to that in Theorem 4, with the exception of multiplicative K−4

and additive d. The leading term inside the sum can be bounded by exp
[
−∆2

minn
CK4d

]
, where n is the

sample size, d is the number of features, and ∆min is the minimum gap. Therefore, similarly to
Theorem 4, the bound decreases exponentially with budget n and gaps, and increases with d. This
dependence is similar to Theorem 2 of Azizi et al. [6] for fixed-budget best-arm identification in
GLMs. Our bound does not involve the extra factor of κ > 0 because we assume that all vectors lie
in a unit ball (Assumption 1).

6 Experiments

The goal of our experiments is to evaluate Dope empirically and compare it to baselines. All methods
estimate θ̂n using (7) or (10), depending on the feedback. To guarantee that these problems are well
defined, even if the sample covariance matrix Σ̄n is not full rank, we regularize both objectives with
γ∥θ∥22, for a small γ > 0. This mostly impacts small sample sizes. Specifically, since the optimal
design collects diverse feature vectors, Σ̄n is likely to be full rank for large sample sizes. After θ̂n is
estimated, each method ranks items in all lists based on their estimated mean rewards x⊤

i,kθ̂n. The
performance of all methods is measured by their ranking loss in (3) divided by L. All experiments
are averaged over 100 independent runs, and we report results in Figure 1. We compare the following
algorithms:

8

10 20 30 40 50 60 70 80 90 100
Number of logged interactions

0.5

1.0

1.5

2.0

2.5

Ra
nk

in
g

lo
ss

Unif
Dope (Ours)
Avg Design
Clustered Design
APO

(a) Absolute feedback

10 20 30 40 50 60 70 80 90 100
Number of logged interactions

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

Ra
nk

in
g

lo
ss

Unif
Dope (Ours)
Avg Design
Clustered Design
APO

(b) Ranking feedback

50 100 150 200 250 300 350 400 450 500
Number of logged interactions

0.0

0.5

1.0

1.5

2.0

Ra
nk

in
g

lo
ss

Unif
Dope (Ours)
Avg Design
Clustered Design
APO

(c) Nectar dataset

100 200 300 400 500 600 700 800 900 1000
Number of logged interactions

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ra
nk

in
g

lo
ss

Unif
Dope (Ours)
Avg Design
Clustered Design
APO

(d) Anthropic dataset

Figure 1: Ranking loss of all compared methods as a function of the number of rounds. The error
bars are one standard error of the estimates.

(1) Dope: This is our method. We solve the optimal design problem in (6) and then sample lists It
according to π∗.

(2) Unif: This baseline chooses lists It uniformly at random from [L]. While simple, it is known to
be competitive in real-world problems where feature vectors may cover the feature space close to
uniformly [4, 96, 3, 70].

(3) Avg-Design: The exploration policy is an optimal design over feature vectors. The feature vector
of list i is the mean of the feature vectors of all items in it, x̄i =

1
K

∑K
k=1 xi,k. After the design is

computed, we sample lists It according to it. The rest is the same as in Dope. This baseline shows
that our list representation with multiple feature vectors can outperform more naive choices.

(4) Clustered-Design: This approach uses the same representation as Avg-Design. The difference
is that we cluster the lists using k-medoids. Then we sample lists It uniformly at random from the
cluster centroids. The rest is the same as in Avg-Design. This baseline shows that Dope outperforms
other notions of diversity, such as obtained by clustering. We tune k (k = 10 in the Nectar dataset
and k = 6 otherwise) and report only the best results.

(5) APO: This method was proposed in Das et al. [20] and is the closest related work. APO greedily
minimizes the maximum error in pairwise ranking of L lists of length K = 2. We extend it to K > 2
as follows. First, we turn L lists of length K into

(
K
2

)
L lists of length 2, one for each pair of items in

the original lists. Then we apply APO to these
(
K
2

)
L lists of length 2.

Pure exploration algorithms are often compared to cumulative regret baselines [13, 5]. Since our
problem is a form of learning to rank, online learning to rank (OLTR) baselines [67, 43, 105] seem
natural. We do not compare to them for the following reason. The problem of an optimal design over
lists is to design a distribution over queries. All OLTR algorithms solve a different problem, return a
ranked list of items conditioned on a query chosen by the environment. Since they do not choose the
queries, they cannot solve our problem.

Synthetic experiment 1 (absolute feedback): We have L = 400 questions and represent them by
random vectors qi ∈ [−1, 1]6. Each question has K = 4 answers. For each question, we generate K
random answers ai,k ∈ [−1, 1]6. Both the question and answer vectors are normalized to unit length.

9

For each question-answer pair (i, k), the feature vector is xi,k = vec(qia
⊤
i,k) and has length d = 36.

The outer product captures cross-interaction terms of the question and answer representations. A
similar technique has been used for feature preprocessing of the Yahoo! Front Page Today Module
User Click Log Dataset [50, 51, 103, 7]. We choose a random θ∗ ∈ [0, 1]d. The absolute feedback is
generated as in (1). Our results are reported in Figure 1(a). We note that the ranking loss of Dope
decreases the fastest among all methods, with Unif, Avg-Design, and APO being close second.

Synthetic experiment 2 (ranking feedback): This experiment is similar to the first experiment,
except that the feedback is generated by the PL model in (2). Our results are reported in Figure 1(b)
and we observe again that the ranking loss of Dope decreases the fastest. The closest baselines are
Unif, Avg-Design, and APO. Their lowest ranking loss (n = 100) is attained by Dope at n = 60,
which is nearly a two-fold reduction in sample size. In Appendix E, we conduct additional studies
on this problem. We vary the number of lists L and items K, and report the computation time and
ranking loss.

Experiment 3 (Nectar dataset): The Nectar dataset [101] is a dataset of 183k questions, each with 7
answers. We take a subset of this dataset: L = 2000 questions and K = 5 answers. The answers are
generated by GPT-4, GPT-4-0613, GPT-3.5-turbo, GPT-3.5-turbo-instruct, and Anthropic models.
We embed the questions and answers in 768 dimensions using Instructor embeddings [79]. Then we
project them to R10 using a random projection matrix. The feature vector of answer k to question
i is xi,k = vec(qia

⊤
i,k), where qi and ai,k are the projected embeddings of question i and answer

k, respectively. Hence d = 100. The ranking feedback is simulated using the PL model in (2). We
estimate its parameter θ∗ ∈ Rd from the ranking feedback in the dataset using the MLE in (10). Our
results are reported in Figure 1(c). We observe that the ranking loss of Dope is the lowest. The closest
baseline is APO. Its lowest ranking loss (n = 500) is attained by Dope at n = 150, which is more
than a three-fold reduction in sample size.

Experiment 4 (Anthropic dataset): The Anthropic dataset [8] is a dataset of 161k questions with
two answers per question. We take a subset of L = 2000 questions. We embed the questions and
answers in 768 dimensions using Instructor embeddings [79]. Then we project them to R6 using a
random projection matrix. The feature vector of answer k to question i is xi,k = vec(qia

⊤
i,k), where

qi and ai,k are the projected embeddings of question i and answer k, respectively. Hence d = 36.
The ranking feedback is simulated using the PL model in (2). We estimate its parameter θ∗ ∈ Rd

from the feedback in the dataset using the MLE in (10). Our results are reported in Figure 1(d). We
note again that the ranking loss of Dope is the lowest. The closest baselines are Unif, Avg-Design,
and APO. Their lowest ranking loss (n = 1000) is attained by Dope at n = 300, which is more than
a three-fold reduction in sample size.

7 Conclusions

We study the problem of optimal human preference elicitation for learning preference models. The
problem is formalized as learning to rank K answers to L questions under a budget on the number of
asked questions. We consider two feedback models: absolute and ranking. The absolute feedback is
motivated by how humans assign relevance judgments in search [30, 57]. The ranking feedback is
motivated by learning reward models in RLHF [39, 68, 36, 15, 77, 17]. We address both settings in
a unified way. The key idea in our work is to generalize optimal designs [41, 45], a methodology
for computing optimal information-gathering policies, to ranked lists. After the human feedback is
collected, we learn preference models using existing estimators. Our method is statistically efficient,
computationally efficient, and can be analyzed. We bound its prediction errors and ranking losses, in
both absolute and ranking feedback models, and evaluate it empirically to show that it is practical.

Our work can be extended in several directions. First, we study only two models of human feedback:
absolute and ranking. However, many feedback models exist [34]. One common property of these
models is that learning of human preferences can be formulated as likelihood maximization. In such
cases, an optimal design exists and can be used for human preference elicitation, exactly as in our
work. Second, while we bound the prediction errors and ranking losses of Dope, we do not derive
matching lower bounds. Therefore, although we believe that Dope is near optimal, we do not prove it.
Third, we want to extend our methodology to the fixed-confidence setting. Finally, we want to apply
our approach to learning reward models in LLMs and evaluate it.

10

References
[1] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear

stochastic bandits. Advances in neural information processing systems, 24, 2011.

[2] Riad Akrour, Marc Schoenauer, and Michèle Sebag. April: Active preference learning-
based reinforcement learning. In Machine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2012, Bristol, UK, September 24-28, 2012. Proceedings,
Part II 23, pages 116–131. Springer, 2012.

[3] Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Sham Kakade. Gone fishing: Neural
active learning with fisher embeddings. Advances in Neural Information Processing Systems,
34, 2021.

[4] Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal.
Deep batch active learning by diverse, uncertain gradient lower bounds. arXiv preprint
arXiv:1906.03671, 2019.

[5] Jean-Yves Audibert, Sebastien Bubeck, and Remi Munos. Best arm identification in multi-
armed bandits. In Proceedings of the 23rd Annual Conference on Learning Theory, pages
41–53, 2010.

[6] Mohammad Javad Azizi, Branislav Kveton, and Mohammad Ghavamzadeh. Fixed-budget
best-arm identification in structured bandits. In Proceedings of the 31st International Joint
Conference on Artificial Intelligence, 2022.

[7] Jackie Baek and Vivek Farias. Ts-ucb: Improving on thompson sampling with little to no
additional computation. In International Conference on Artificial Intelligence and Statistics,
pages 11132–11148. PMLR, 2023.

[8] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

[9] Viktor Bengs, Róbert Busa-Fekete, Adil El Mesaoudi-Paul, and Eyke Hüllermeier. Preference-
based online learning with dueling bandits: A survey. The Journal of Machine Learning
Research, 22(1):278–385, 2021.

[10] Erdem Bıyık, Nicolas Huynh, Mykel J Kochenderfer, and Dorsa Sadigh. Active preference-
based gaussian process regression for reward learning. arXiv preprint arXiv:2005.02575,
2020.

[11] Stephane Boucheron, Gabor Lugosi, and Pascal Massart. Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford University Press, 2013.

[12] Ralph Allan Bradley and Milton Terry. Rank analysis of incomplete block designs: I. the
method of paired comparisons. Biometrika, 39(3-4):324–345, 1952.

[13] Sebastien Bubeck, Remi Munos, and Gilles Stoltz. Pure exploration in multi-armed bandits
problems. In Proceedings of the 20th International Conference on Algorithmic Learning
Theory, pages 23–37, 2009.

[14] Christopher Burges. From RankNet to LambdaRank to LambdaMART: An overview. Technical
Report MSR-TR-2010-82, Microsoft Research, 2010.

[15] Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open problems
and fundamental limitations of reinforcement learning from human feedback. arXiv preprint
arXiv:2307.15217, 2023.

[16] Xiaoyu Chen, Han Zhong, Zhuoran Yang, Zhaoran Wang, and Liwei Wang. Human-in-
the-loop: Provably efficient preference-based reinforcement learning with general function
approximation. In International Conference on Machine Learning, pages 3773–3793. PMLR,
2022.

[17] Zhuotong Chen, Yifei Ma, Branislav Kveton, and Anoop Deoras. Active learning with crowd
sourcing improves information retrieval. In ICML 2023 Workshop on Interactive Learning
with Implicit Human Feedback, 2023.

11

[18] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

[19] Aleksandr Chuklin, Ilya Markov, and Maarten De Rijke. Click models for web search. Springer
Nature, 2022.

[20] Nirjhar Das, Souradip Chakraborty, Aldo Pacchiano, and Sayak Ray Chowdhury. Active
preference optimization for sample efficient RLHF. CoRR, abs/2402.10500, 2024. URL
https://arxiv.org/abs/2402.10500.

[21] Steven Diamond and Stephen Boyd. CVXPY: A Python-embedded modeling language for
convex optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[22] Miroslav Dudik, Dumitru Erhan, John Langford, and Lihong Li. Doubly robust policy
evaluation and optimization. Statistical Science, 29(4):485–511, 2014.

[23] Beyza Ermis, Patrick Ernst, Yannik Stein, and Giovanni Zappella. Learning to rank in the
position based model with bandit feedback. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management, pages 2405–2412, 2020.

[24] Valerii Vadimovich Fedorov. Theory of optimal experiments. Elsevier, 2013.

[25] Tanner Fiez, Lalit Jain, Kevin G Jamieson, and Lillian Ratliff. Sequential experimental design
for transductive linear bandits. Advances in neural information processing systems, 32, 2019.

[26] Sarah Filippi, Olivier Cappe, Aurelien Garivier, and Csaba Szepesvari. Parametric bandits:
The generalized linear case. In Advances in Neural Information Processing Systems 23, pages
586–594, 2010.

[27] Johannes Fürnkranz and Eyke Hüllermeier. Pairwise preference learning and ranking. In
European conference on machine learning, pages 145–156. Springer, 2003.

[28] Alyssa Glass. Explaining preference learning, 2006.

[29] Joey Hejna and Dorsa Sadigh. Inverse preference learning: Preference-based rl without a
reward function. arXiv preprint arXiv:2305.15363, 2023.

[30] Katja Hofmann, Shimon Whiteson, and Maarten de Rijke. Fidelity, soundness, and efficiency
of interleaved comparison methods. ACM Transactions on Information Systems, 31(4):1–43,
2013.

[31] Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active learning
for classification and preference learning. arXiv preprint arXiv:1112.5745, 2011.

[32] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In Interna-
tional conference on machine learning, pages 427–435. PMLR, 2013.

[33] Kevin Jamieson and Lalit Jain. Interactive machine learning. 2022.

[34] Hong Jun Jeon, Smitha Milli, and Anca Dragan. Reward-rational (implicit) choice: A unifying
formalism for reward learning. In Advances in Neural Information Processing Systems 33,
2020.

[35] Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pages 5084–5096. PMLR, 2021.

[36] Yachen Kang, Diyuan Shi, Jinxin Liu, Li He, and Donglin Wang. Beyond reward: Offline
preference-guided policy optimization, 2023.

[37] Julian Katz-Samuels, Lalit Jain, Kevin G Jamieson, et al. An empirical process approach to the
union bound: Practical algorithms for combinatorial and linear bandits. Advances in Neural
Information Processing Systems, 33:10371–10382, 2020.

[38] Julian Katz-Samuels, Jifan Zhang, Lalit Jain, and Kevin Jamieson. Improved algorithms for
agnostic pool-based active classification. In International Conference on Machine Learning,
pages 5334–5344. PMLR, 2021.

[39] Timo Kaufmann, Paul Weng, Viktor Bengs, and Eyke Hüllermeier. A survey of reinforcement
learning from human feedback, 2024.

[40] Maurice George Kendall. Rank correlation methods. 1948.

12

https://arxiv.org/abs/2402.10500

[41] Jack Kiefer and Jacob Wolfowitz. The equivalence of two extremum problems. Canadian
Journal of Mathematics, 12:363–366, 1960.

[42] Johannes Kirschner and Andreas Krause. Bias-robust Bayesian optimization via dueling
bandits. In Proceedings of the 38th International Conference on Machine Learning, 2021.

[43] Branislav Kveton, Csaba Szepesvari, Zheng Wen, and Azin Ashkan. Cascading bandits:
Learning to rank in the cascade model. In Proceedings of the 32nd International Conference
on Machine Learning, 2015.

[44] Paul Lagree, Claire Vernade, and Olivier Cappe. Multiple-play bandits in the position-based
model. In Advances in Neural Information Processing Systems 29, pages 1597–1605, 2016.

[45] Tor Lattimore and Csaba Szepesvari. Bandit Algorithms. Cambridge University Press, 2019.

[46] Tor Lattimore, Branislav Kveton, Shuai Li, and Csaba Szepesvari. TopRank: A practical
algorithm for online stochastic ranking. In Advances in Neural Information Processing Systems
31, pages 3949–3958, 2018.

[47] Kimin Lee, Laura Smith, Anca Dragan, and Pieter Abbeel. B-pref: Benchmarking preference-
based reinforcement learning. arXiv preprint arXiv:2111.03026, 2021.

[48] Tyler Lekang and Andrew Lamperski. Simple algorithms for dueling bandits. arXiv preprint
arXiv:1906.07611, 2019.

[49] John R Lepird, Michael P Owen, and Mykel J Kochenderfer. Bayesian preference elicitation
for multiobjective engineering design optimization. Journal of Aerospace Information Systems,
12(10):634–645, 2015.

[50] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th international conference
on World wide web, pages 661–670, 2010.

[51] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased offline evaluation of
contextual-bandit-based news article recommendation algorithms. In Proceedings of the fourth
ACM international conference on Web search and data mining, pages 297–306, 2011.

[52] Lihong Li, Yu Lu, and Dengyong Zhou. Provably optimal algorithms for generalized linear
contextual bandits. In Proceedings of the 34th International Conference on Machine Learning,
pages 2071–2080, 2017.

[53] Shuai Li, Baoxiang Wang, Shengyu Zhang, and Wei Chen. Contextual combinatorial cascading
bandits. In Proceedings of the 33rd International Conference on Machine Learning, pages
1245–1253, 2016.

[54] Robert Duncan Luce. Individual Choice Behavior: A Theoretical Analysis. Dover Publications,
2005.

[55] Blake Mason, Kwang-Sung Jun, and Lalit Jain. An experimental design approach for re-
gret minimization in logistic bandits. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2022.

[56] Viraj Mehta, Vikramjeet Das, Ojash Neopane, Yijia Dai, Ilija Bogunovic, Jeff Schneider, and
Willie Neiswanger. Sample efficient reinforcement learning from human feedback via active
exploration. CoRR, abs/2312.00267, 2023. URL https://arxiv.org/abs/2312.00267.

[57] MS MARCO. MS MARCO Dataset. https://microsoft.github.io/msmarco/, 2016.

[58] Subhojyoti Mukherjee, Ardhendu S Tripathy, and Robert Nowak. Chernoff sampling for
active testing and extension to active regression. In International Conference on Artificial
Intelligence and Statistics, pages 7384–7432. PMLR, 2022.

[59] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

[60] Ellen Novoseller, Yibing Wei, Yanan Sui, Yisong Yue, and Joel Burdick. Dueling posterior
sampling for preference-based reinforcement learning. In Conference on Uncertainty in
Artificial Intelligence, pages 1029–1038. PMLR, 2020.

[61] Kweku A Opoku-Agyemang. Randomized controlled trials via reinforcement learning from
human feedback. 2023.

13

https://arxiv.org/abs/2312.00267

[62] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models
to follow instructions with human feedback. Advances in Neural Information Processing
Systems, 35:27730–27744, 2022.

[63] Barna Pasztor, Parnian Kassraie, and Andreas Krause. Bandits with preference feedback: A
stackelberg game perspective. CoRR, abs/2406.16745, 2024. URL https://arxiv.org/abs/2406.
16745.

[64] Kaare Petersen and Michael Pedersen. The matrix cookbook. http://www2.compute.dtu.dk/
pubdb/pubs/3274-full.html, 2012.

[65] Robin Lewis Plackett. The analysis of permutations. Journal of the Royal Statistical Society:
Series C (Applied Statistics), 24(2):193–202, 1975.

[66] Friedrich Pukelsheim. Optimal Design of Experiments. Society for Industrial and Applied
Mathematics, 2006.

[67] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. Learning diverse rankings with
multi-armed bandits. In Proceedings of the 25th International Conference on Machine Learn-
ing, pages 784–791, 2008.

[68] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward
model. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=HPuSIXJaa9.

[69] Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline
reinforcement learning and imitation learning: A tale of pessimism. Advances in Neural
Information Processing Systems, 34:11702–11716, 2021.

[70] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Brij B Gupta, Xiaojiang
Chen, and Xin Wang. A survey of deep active learning. ACM Computing Surveys (CSUR), 54
(9):1–40, 2021.

[71] Dorsa Sadigh, Anca Dragan, Shankar Sastry, and Sanjit Seshia. Active preference-based
learning of reward functions. 2017.

[72] Aadirupa Saha. Optimal algorithms for stochastic contextual preference bandits. In Advances
in Neural Information Processing Systems 34, 2021.

[73] Aadirupa Saha and Pierre Gaillard. Versatile dueling bandits: Best-of-both-world analyses for
online learning from preferences. arXiv preprint arXiv:2202.06694, 2022.

[74] Aadirupa Saha and Akshay Krishnamurthy. Efficient and optimal algorithms for contextual
dueling bandits under realizability. In Proceedings of the 33rd International Conference on
Algorithmic Learning Theory, 2022.

[75] Aadirupa Saha, Aldo Pacchiano, and Jonathan Lee. Dueling rl: Reinforcement learning with
trajectory preferences. In International Conference on Artificial Intelligence and Statistics,
pages 6263–6289. PMLR, 2023.

[76] Ayush Sekhari, Karthik Sridharan, Wen Sun, and Runzhe Wu. Contextual bandits and imitation
learning with preference-based active queries. Advances in Neural Information Processing
Systems, 36, 2024.

[77] Tianhao Shen, Renren Jin, Yufei Huang, Chuang Liu, Weilong Dong, Zishan Guo, Xinwei
Wu, Yan Liu, and Deyi Xiong. Large language model alignment: A survey. arXiv preprint
arXiv:2309.15025, 2023.

[78] Marta Soare, Alessandro Lazaric, and Remi Munos. Best-arm identification in linear bandits.
In Advances in Neural Information Processing Systems 27, pages 828–836, 2014.

[79] Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, Yushi Hu, Mari Ostendorf, Wen-tau Yih,
Noah A. Smith, Luke Zettlemoyer, and Tao Yu. One embedder, any task: Instruction-finetuned
text embeddings. 2022. URL https://arxiv.org/abs/2212.09741.

[80] Yanan Sui, Masrour Zoghi, Katja Hofmann, and Yisong Yue. Advancements in dueling bandits.
In IJCAI, pages 5502–5510, 2018.

[81] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

14

https://arxiv.org/abs/2406.16745
https://arxiv.org/abs/2406.16745
http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html
http://www2.compute.dtu.dk/pubdb/pubs/3274-full.html
https://openreview.net/forum?id=HPuSIXJaa9
https://arxiv.org/abs/2212.09741

[82] Adith Swaminathan and Thorsten Joachims. Counterfactual risk minimization: Learning from
logged bandit feedback. In Proceedings of the 32nd International Conference on Machine
Learning, pages 814–823, 2015.

[83] Balázs Szörényi, Róbert Busa-Fekete, Adil Paul, and Eyke Hüllermeier. Online rank elicitation
for plackett-luce: A dueling bandits approach. Advances in neural information processing
systems, 28, 2015.

[84] Shion Takeno, Masahiro Nomura, and Masayuki Karasuyama. Towards practical preferential
Bayesian optimization with skew Gaussian processes. In Proceedings of the 40th International
Conference on Machine Learning, 2023.

[85] EM Voorhees. Proceedings of the 8th text retrieval conference. TREC-8 Question Answering
Track Report, pages 77–82, 1999.

[86] Yining Wang, Liwei Wang, Yuanzhi Li, Di He, and Tie-Yan Liu. A theoretical analysis of
ndcg type ranking measures. In Conference on learning theory, pages 25–54. PMLR, 2013.

[87] Yuanhao Wang, Qinghua Liu, and Chi Jin. Is rlhf more difficult than standard rl? a theoretical
perspective. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[88] Christian Wirth, Riad Akrour, Gerhard Neumann, Johannes Fürnkranz, et al. A survey of
preference-based reinforcement learning methods. Journal of Machine Learning Research, 18
(136):1–46, 2017.

[89] R. Wolke and H. Schwetlick. Iteratively reweighted least squares: Algorithms, convergence
analysis, and numerical comparisons. SIAM Journal on Scientific and Statistical Computing, 9
(5):907–921, 1988.

[90] Runzhe Wu and Wen Sun. Making rl with preference-based feedback efficient via randomiza-
tion. arXiv preprint arXiv:2310.14554, 2023.

[91] Wei Xiong, Hanze Dong, Chenlu Ye, Han Zhong, Nan Jiang, and Tong Zhang. Gibbs
sampling from human feedback: A provable kl-constrained framework for rlhf. arXiv preprint
arXiv:2312.11456, 2023.

[92] Wenjie Xu, Wenbin Wang, Yuning Jiang, Bratislav Svetozarevic, and Colin Jones. Principled
preferential Bayesian optimization. In Proceedings of the 41th International Conference on
Machine Learning, 2024.

[93] Yichong Xu, Aparna Joshi, Aarti Singh, and Artur Dubrawski. Zeroth order non-convex opti-
mization with dueling-choice bandits. In Proceedings of the 36th Conference on Uncertainty
in Artificial Intelligence, 2020.

[94] Yichong Xu, Ruosong Wang, Lin Yang, Aarti Singh, and Artur Dubrawski. Preference-based
reinforcement learning with finite-time guarantees. Advances in Neural Information Processing
Systems, 33:18784–18794, 2020.

[95] Junwen Yang and Vincent Tan. Minimax optimal fixed-budget best arm identification in linear
bandits. In Advances in Neural Information Processing Systems 35, 2022.

[96] Michelle Yuan, Hsuan-Tien Lin, and Jordan Boyd-Graber. Cold-start active learning through
self-supervised language modeling. arXiv preprint arXiv:2010.09535, 2020.

[97] Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling
bandits problem. Journal of Computer and System Sciences, 78(5):1538–1556, 2012.

[98] Andrea Zanette, Martin J Wainwright, and Emma Brunskill. Provable benefits of actor-critic
methods for offline reinforcement learning. Advances in neural information processing systems,
34:13626–13640, 2021.

[99] Wenhao Zhan, Masatoshi Uehara, Wen Sun, and Jason Lee. Provable reward-agnostic
preference-based reinforcement learning. In Proceedings of the 12th International Conference
on Learning Representations, 2024.

[100] Tianchen Zhou, Jia Liu, Yang Jiao, Chaosheng Dong, Yetian Chen, Yan Gao, and Yi Sun.
Bandit learning to rank with position-based click models: Personalized and equal treatments.
arXiv preprint arXiv:2311.04528, 2023.

[101] Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu, and Jiantao Jiao. Starling-7b: Improving
llm helpfulness & harmlessness with rlaif, November 2023.

15

[102] Banghua Zhu, Jiantao Jiao, and Michael Jordan. Principled reinforcement learning with
human feedback from pairwise or K-wise comparisons. CoRR, abs/2301.11270, 2023. URL
https://arxiv.org/abs/2301.11270.

[103] Yinglun Zhu, Dongruo Zhou, Ruoxi Jiang, Quanquan Gu, Rebecca Willett, and Robert Nowak.
Pure exploration in kernel and neural bandits. Advances in neural information processing
systems, 34:11618–11630, 2021.

[104] Masrour Zoghi, Tomas Tunys, Mohammad Ghavamzadeh, Branislav Kveton, Csaba Szepesvari,
and Zheng Wen. Online learning to rank in stochastic click models. In Proceedings of the 34th
International Conference on Machine Learning, 2017.

[105] Shi Zong, Hao Ni, Kenny Sung, Nan Rosemary Ke, Zheng Wen, and Branislav Kveton.
Cascading bandits for large-scale recommendation problems. In Proceedings of the 32nd
Conference on Uncertainty in Artificial Intelligence, 2016.

16

https://arxiv.org/abs/2301.11270

A Proofs

This section contains proofs of our main claims.

A.1 Proof of Theorem 1

We follow the sketch of the proof in Section 21.1 of Lattimore and Szepesvari [45] and adapt it to
matrices. Before we start, we prove several helpful claims.

First, using (43) in Petersen and Pedersen [64], we have

∂

∂π(i)
f(π) =

∂

∂π(i)
log det(Vπ) = tr

(
V−1

π

∂

∂π(i)
Vπ

)
= tr(V−1

π AiA
⊤
i) = tr(A⊤

i V
−1
π Ai) .

In the last step, we use the cyclic property of the trace. We define the gradient of f(π) with respect to
π as∇f(π) = (tr(A⊤

i V
−1
π Ai))

L
i=1. Second, using basic properties of the trace, we have

L∑
i=1

π(i) tr(A⊤
i V

−1
π Ai) =

L∑
i=1

π(i) tr(V−1
π AiA

⊤
i) = tr

(
L∑

i=1

π(i)V−1
π AiA

⊤
i

)
(12)

= tr

(
V−1

π

L∑
i=1

π(i)AiA
⊤
i

)
= tr(Id) = d .

Finally, for any distribution π, (12) implies

g(π) = max
i∈[L]

tr(A⊤
i V

−1
π Ai) ≥

L∑
i=1

π(i) tr(A⊤
i V

−1
π Ai) = d . (13)

Now we are ready to start the proof.

(b)⇒ (a): Let π∗ be a maximizer of f(π). By first-order optimality conditions, for any distribution
π, we have

0 ≥ ⟨∇f(π∗), π − π∗⟩ =
L∑

i=1

π(i) tr(A⊤
i V

−1
π∗

Ai)−
L∑

i=1

π∗(i) tr(A
⊤
i V

−1
π∗

Ai)

=

L∑
i=1

π(i) tr(A⊤
i V

−1
π∗

Ai)− d .

In the last step, we use (12). Since this inequality holds for any distribution π, including Dirac at i
for any i ∈ [L], we have d ≥ maxi∈[L] tr(A

⊤
i V

−1
π∗

Ai) = g(π∗). Finally, by (13), g(π) ≥ d holds
for any distribution π. Therefore, π∗ must be a minimizer of g(π) and g(π∗) = d.

(c)⇒ (b): Note that

⟨∇f(π∗), π − π∗⟩ =
L∑

i=1

π(i) tr(A⊤
i V

−1
π∗

Ai)− d ≤ max
i∈[L]

tr(A⊤
i V

−1
π∗

Ai)− d = g(π∗)− d

holds for any distributions π and π∗. Since g(π∗) = d, we have ⟨∇f(π∗), π − π∗⟩ ≤ 0. Therefore,
by first-order optimality conditions, π∗ is a maximizer of f(π).

(a)⇒ (c): This follows from the same argument as in (b)⇒ (a). In particular, any maximizer π∗ of
f(π) is a minimizer of g(π), and g(π∗) = d.

To prove that |supp (π∗) | ≤ d(d+ 1)/2, we argue that π∗ can be substituted for a distribution with a
lower support whenever |supp (π∗) | > d(d+ 1)/2. The claim then follows by induction.

Let S = supp (π∗) and suppose that |S| > d(d+ 1)/2. We start with designing a suitable family of
optimal solutions. Since the space of d× d symmetric matrices has d(d+ 1)/2 dimensions, there
must exist an L-dimensional vector η such that supp (η) ⊆ S and∑

i∈S

η(i)AiA
⊤
i = 0d,d , (14)

17

where 0d,d is a d× d zero matrix. Let πt = π∗ + tη for t ≥ 0. An important property of πt is that

log det(Vπt
) = log det

(
Vπ∗ + t

∑
i∈S

η(i)AiA
⊤
i

)
= log det(Vπ∗) .

Therefore, any πt is an optimal solution. However, it may not be a distribution.

We prove that πt ∈ ∆L, for some t > 0, as follows. First, note that tr(A⊤
i V

−1
π∗

Ai) = d holds for all
i ∈ S. Otherwise π∗ could be improved. Using this observation, we have

d
∑
i∈S

η(i) =
∑
i∈S

η(i) tr(A⊤
i V

−1
π∗

Ai) =
∑
i∈S

η(i) tr(V−1
π∗

AiA
⊤
i)

= tr

(
V−1

π∗

∑
i∈S

η(i)AiA
⊤
i

)
= 0 ,

where the last equality follows from (14). This implies that
∑

i∈S η(i) = 0 and that πt ∈ ∆L, for as
long as πt ≥ 0L.

Finally, we take the largest feasible t, τ = max{t > 0 : πt ∈ ∆L}, and note that πτ has at least one
more non-zero entry than π∗ while having the same value. This concludes the proof.

A.2 Proof of Lemma 2

We note that for any list i ∈ [L],

∑
a∈Ai

∥a∥2
Σ̄−1

n
= tr(A⊤

i Σ̄
−1
n Ai) = tr

A⊤
i

(
n∑

t=1

K∑
k=1

xIt,kx
⊤
It,k

)−1

Ai


=

1

n
tr

A⊤
i

(
L∑

i=1

π∗(i)

K∑
k=1

xi,kx
⊤
i,k

)−1

Ai

 =
1

n
tr(A⊤

i V
−1
π∗

Ai) .

The third equality holds because all nπ∗(i) are integers and n > 0. In this case, the optimal design
is exact and Σ̄n invertible, because all of its eigenvalues are positive. Now we use the definition of
g(π∗), apply Theorem 1, and get that

max
i∈[L]

tr(A⊤
i V

−1
π∗

Ai) = g(π∗) = d .

This concludes the proof.

A.3 Proof of Theorem 3

For any list i ∈ [L], we have

tr(A⊤
i (θ̂n − θ∗)(θ̂n − θ∗)

⊤Ai) =
∑
a∈Ai

(a⊤(θ̂n − θ∗))
2 =

∑
a∈Ai

(a⊤Σ̄−1/2
n Σ̄1/2

n (θ̂n − θ∗))
2

≤
∑
a∈Ai

∥a∥2
Σ̄−1

n
∥θ̂n − θ∗∥2Σ̄n

,

where the last step follows from the Cauchy-Schwarz inequality. Therefore,

max
i∈[L]

tr(A⊤
i (θ̂n − θ∗)(θ̂n − θ∗)

⊤Ai) ≤ max
i∈[L]

∑
a∈Ai

∥a∥2
Σ̄−1

n
∥θ̂n − θ∗∥2Σ̄n

= max
i∈[L]

∑
a∈Ai

∥a∥2
Σ̄−1

n︸ ︷︷ ︸
Part I

n∥θ̂n − θ∗∥2Σn︸ ︷︷ ︸
Part II

,

where we use Σ̄n = nΣn in the last step.

18

Part I captures the efficiency of data collection and depends on the optimal design. By Lemma 2,

max
i∈[L]

∑
a∈Ai

∥a∥2
Σ̄−1

n
=

d

n
.

Part II measures how the estimated model parameter θ̂n differs from the true model parameter θ∗,
under the empirical covariance matrix Σn. To bound this term, we use Lemma 7 and get that

∥θ̂n − θ∗∥2Σn
≤ 16d+ 8 log(1/δ)

n

holds with probability at least 1− δ. The main claim follows from combining the upper bounds on
Parts I and II.

A.4 Proof of Theorem 4

From the definition of ranking loss, we have

E[Rn] =

L∑
i=1

K∑
j=1

K∑
k=j+1

E[1{σ̂n,i(j) > σ̂n,i(k)}] =
L∑

i=1

K∑
j=1

K∑
k=j+1

P
(
x⊤
i,j θ̂n < x⊤

i,kθ̂n

)
.

In the rest of the proof, we bound each term separately. Specifically, for any list i ∈ [L] and items
(j, k) ∈ Π2(K) in it, we have

P
(
x⊤
i,j θ̂n < x⊤

i,kθ̂n

)
= P

(
x⊤
i,kθ̂n − x⊤

i,j θ̂n > 0
)

= P
(
x⊤
i,kθ̂n − x⊤

i,j θ̂n +∆i,j,k > ∆i,j,k

)
= P

(
x⊤
i,kθ̂n − x⊤

i,j θ̂n + x⊤
i,jθ∗ − x⊤

i,kθ∗ > ∆i,j,k

)
= P

(
x⊤
i,k(θ̂n − θ∗) + x⊤

i,j(θ∗ − θ̂n) > ∆i,j,k

)
≤ P

(
x⊤
i,k(θ̂n − θ∗) >

∆i,j,k

2

)
+ P

(
x⊤
i,j(θ∗ − θ̂n) >

∆i,j,k

2

)
.

In the third equality, we use that ∆i,j,k = (xi,j − xi,k)
⊤θ∗. The last step follows from the fact that

event A+B > c occurs only if A > c/2 or B > c/2.

Now we bound P
(
x⊤
i,k(θ̂n − θ∗) > ∆i,j,k/2

)
and note that the other term can be bounded analo-

gously. Specifically, we apply Lemmas 2 and 8, and get

P
(
x⊤
i,k(θ̂n − θ∗) >

∆i,j,k

2

)
≤ exp

[
−

∆2
i,j,k

8∥xi,k∥2Σ̄−1
n

]
≤ exp

[
−
∆2

i,j,kn

8d

]
.

This concludes the proof.

The above approach relies on the concentration of x⊤
i,k(θ̂n − θ∗), which is proved in Lemma 8. A

similar result can be obtained using the Cauchy-Schwarz inequality. This is especially useful when a
high-probability bound on ∥θ̂n − θ∗∥2Σn

already exists, such as in Appendix A.6. Specifically, by the
Cauchy-Schwarz inequality,

P
(
x⊤
i,k(θ̂n − θ∗) >

∆i,j,k

2

)
≤ P

(
∥xi,k∥Σ−1

n
∥θ̂n − θ∗∥Σn

>
∆i,j,k

2

)
= P

(
∥xi,k∥2Σ−1

n
∥θ̂n − θ∗∥2Σn

>
∆2

i,j,k

4

)

≤ P

(
∥θ̂n − θ∗∥2Σn

>
∆2

i,j,k

4d

)
.

19

In the second inequality, we use that ∥xi,k∥2Σ−1
n

= n∥xi,k∥2Σ̄−1
n
≤ d, which follows from Lemma 2.

Finally, Lemma 7 says that

P
(
∥θ̂n − θ∗∥2Σn

≥ 16d+ 8 log(1/δ)

n

)
≤ δ

holds for any δ > 0. To apply this bound, we let

16d+ 8 log(1/δ)

n
=

∆2
i,j,k

4d

and express δ. This leads to

P

(
∥θ̂n − θ∗∥2Σn

>
∆2

i,j,k

4d

)
≤ δ = exp

[
−
∆2

i,j,kn

32d
+ 2d

]
,

which concludes the alternative proof.

A.5 Proof of Theorem 5

Following the same steps as in Appendix A.3, we have

max
i∈[L]

tr(A⊤
i (θ̂n − θ∗)(θ̂n − θ∗)

⊤Ai) ≤ max
i∈[L]

∑
a∈Ai

∥a∥2
Σ̄−1

n︸ ︷︷ ︸
Part I

K(K − 1)n

2
∥θ̂n − θ∗∥2Σn︸ ︷︷ ︸

Part II

.

Part I captures the efficiency of data collection and depends on the optimal design. By Lemma 2,

max
i∈[L]

∑
a∈Ai

∥a∥2
Σ̄−1

n
=

d

n
.

Part II measures how the estimated model parameter θ̂n differs from the true model parameter θ∗,
under the empirical covariance matrix Σn. To bound this term, we use Lemma 9 (a restatement of
Theorem 4.1 in Zhu et al. [102]) and get that

∥θ̂n − θ∗∥2Σn
≤ CK4(d+ log(1/δ))

n

holds with probability at least 1− δ, where C > 0 is some constant. The main claim follows from
combining the upper bounds on Parts I and II.

A.6 Proof of Theorem 6

Following the same steps as in Appendix A.4, we get

P
(
x⊤
i,j θ̂n < x⊤

i,kθ̂n

)
= P

(
x⊤
i,k(θ̂n − θ∗) + x⊤

i,j(θ∗ − θ̂n) > ∆i,j,k

)
= P

(
z⊤i,j,k(θ∗ − θ̂n) > ∆i,j,k

)
≤ P

(
∥zi,j,k∥Σ−1

n
∥θ̂n − θ∗∥Σn > ∆i,j,k

)
= P

(
∥zi,j,k∥2Σ−1

n
∥θ̂n − θ∗∥2Σn

> ∆2
i,j,k

)
≤ P

(
∥θ̂n − θ∗∥2Σn

>
∆2

i,j,k

d

)
.

In the first inequality, we use the Cauchy-Schwarz inequality. In the second inequality, we use that
∥zi,j,k∥2Σ−1

n
= n∥zi,j,k∥2Σ̄−1

n
≤ d, which follows from Lemma 2. Finally, Lemma 9 says that

P
(
∥θ̂n − θ∗∥2Σn

≥ CK4(d+ log(1/δ))

n

)
≤ δ

20

holds for any δ > 0. To apply this bound, we let

CK4(d+ log(1/δ))

n
=

∆2
i,j,k

d

and express δ. This leads to

P

(
∥θ̂n − θ∗∥2Σn

>
∆2

i,j,k

d

)
≤ δ = exp

[
−
∆2

i,j,kn

CK4d
+ d

]
,

which concludes the proof.

B Supporting Lemmas

This section contains our supporting lemmas and their proofs.
Lemma 7. Consider the absolute feedback model in Section 4. Fix δ ∈ (0, 1). Then

∥θ̂n − θ∗∥2Σn
≤ 16d+ 8 log(1/δ)

n

holds with probability at least 1− δ.

Proof. Let X ∈ RKn×d be a matrix of Kn feature vectors in (7) and y ∈ RKn be a vector of the
corresponding Kn observations. Under 1-sub-Gaussian noise in (1), we can rewrite θ̂n − θ∗ as

θ̂n − θ∗ = (X⊤X)−1X⊤(y −Xθ∗) = (X⊤X)−1X⊤η ,

where η ∈ RKn is a vector of independent 1-sub-Gaussian noise. Now note that a⊤(X⊤X)−1X⊤ is
a fixed vector of length Kn for any fixed a ∈ Rd. Therefore, a⊤(θ̂n − θ∗) is a sub-Gaussian random
variable with a variance proxy

a⊤(X⊤X)−1X⊤X(X⊤X)−1a = a⊤(X⊤X)−1a = ∥a∥2(X⊤X)−1 = ∥a∥2
Σ−1

n
/n .

From standard concentration inequalities for sub-Gaussian random variables [11],

P

a⊤(θ̂n − θ∗) ≥

√
2∥a∥2

Σ−1
n

log(1/δ)

n

 ≤ δ (15)

holds for any fixed a ∈ Rd.

To bound ∥θ̂n − θ∗∥Σn
, we take advantage of the fact that

∥θ̂n − θ∗∥Σn
= ⟨θ̂n − θ∗,Σ

1/2
n A⟩ , A =

Σ
1/2
n (θ̂n − θ∗)

∥θ̂n − θ∗∥Σn

. (16)

While A ∈ Rd is random, it has two important properties. First, its length is 1. Second, if it was fixed,
we could apply (15) and would get

P

(
⟨θ̂n − θ∗,Σ

1/2
n A⟩ ≥

√
2 log(1/δ)

n

)
≤ δ .

To eliminate the randomness in A, we use a coverage argument.

Let S = {a ∈ Rd : ∥a∥2 = 1} be a unit sphere. Lemma 20.1 in Lattimore and Szepesvari [45] says
that there exists an ε-cover Cε ⊂ Rd of S that has at most |Cε| ≤ (3/ε)d points. Specifically, for any
a ∈ S , there exists y ∈ Cε such that ∥a− y∥2 ≤ ε. By a union bound applied to all points in Cε, we
have that

P

(
∃y ∈ Cε : ⟨θ̂n − θ∗,Σ

1/2
n y⟩ ≥

√
2 log(|Cε|/δ)

n

)
≤ δ . (17)

21

Now we are ready to complete the proof. Specifically, note that

∥θ̂n − θ∗∥Σn

(a)
= max

a∈S
⟨θ̂n − θ∗,Σ

1/2
n a⟩

= max
a∈S

min
y∈Cε

[
⟨θ̂n − θ∗,Σ

1/2
n (a− y)⟩+ ⟨θ̂n − θ∗,Σ

1/2
n y⟩

]
(b)
≤ max

a∈S
min
y∈Cε

[
∥θ̂n − θ∗∥Σn

∥a− y∥2 +
√

2 log(|Cε|/δ)
n

]
(c)
≤ ε∥θ̂n − θ∗∥Σn

+

√
2 log(|Cε|/δ)

n

holds with probability at least 1− δ. In this derivation, (a) follows from (16), (b) follows from the
Cauchy-Schwarz inequality and (17), and (c) follows from the definition of ε-cover Cε. Finally, we
rearrange the terms, choose ε = 1/2, and get that

∥θ̂n − θ∗∥Σn
≤ 2

√
2 log(|Cε|/δ)

n
≤ 2

√
(2 log 6)d+ 2 log(1/δ)

n
.

This concludes the proof.

Lemma 8. Consider the absolute feedback model in Section 4. Fix x ∈ Rd and ∆ > 0. Then

P
(
x⊤(θ̂n − θ∗) > ∆

)
≤ exp

[
− ∆2

2∥x∥2
Σ̄−1

n

]
.

Proof. The proof is from Section 2.2 in Jamieson and Jain [33]. Let X ∈ RKn×d be a matrix of
Kn feature vectors in (7) and y ∈ RKn be a vector of the corresponding Kn observations. Under
1-sub-Gaussian noise in (1), we can rewrite x⊤(θ̂n − θ∗) as

x⊤(θ̂n − θ∗) = x⊤(X⊤X)−1X⊤︸ ︷︷ ︸
w

η = w⊤η =

Kn∑
t=1

wtηt ,

where w ∈ RKn is a fixed vector and η ∈ RKn is a vector of independent sub-Gaussian noise. Then,
for any ∆ > 0 and λ > 0, we have

P
(
x⊤(θ̂n − θ∗) > ∆

)
= P

(
w⊤η > ∆

)
= P

(
exp[λw⊤η] > exp[λ∆]

)
(a)
≤ exp[−λ∆]E

[
exp

[
λ

Kn∑
t=1

wtηt

]]
(b)
≤ exp[−λ∆]

Kn∏
t=1

E[exp[λwtηt]]

(c)
≤ exp[−λ∆]

Kn∏
t=1

exp[λ2w2
t /2] = exp[−λ∆+ λ2∥w∥22/2]

(d)
≤ exp

[
− ∆2

2∥w∥22

]
(e)
= exp

[
− ∆2

2x⊤(X⊤X)−1x

]
= exp

[
− ∆2

2∥x∥2
Σ̄−1

n

]
.

In this derivation, (a) follows from Markov’s inequality, (b) is due to independent noise, (c) follows
from sub-Gaussianity, (d) is due to setting λ = ∆/∥w∥22, and (e) follows from

∥w∥22 = x⊤(X⊤X)−1X⊤X(X⊤X)−1x = x⊤(X⊤X)−1x .

This concludes the proof.

Lemma 9. Consider the ranking feedback model in Section 5. Fix δ ∈ (0, 1). Then there exists a
constant C > 0 such that

∥θ̂n − θ∗∥2Σn
≤ CK4(d+ log(1/δ))

n
holds with probability at least 1− δ.

22

Proof. The proof has two main steps.

Step 1: We first prove that ℓn(θ) is strongly convex with respect to the norm ∥ · ∥Σn
at θ∗. This

means that there exists γ > 0 such that

ℓn(θ∗ +∆) ≥ ℓn(θ∗) + ⟨∇ℓn(θ∗),∆⟩+ γ∥∆∥2Σn

holds for any perturbation ∆ such that θ∗ +∆ ∈ Θ. To show this, we derive the Hessian of ℓn(θ),

∇2ℓn(θ) =
1

n

n∑
t=1

K∑
j=1

K∑
k=j

K∑
k′=j

exp[x⊤
It,σt(k)

θ + x⊤
It,σt(k′)θ]

2
(∑K

ℓ=j exp[x
⊤
It,σt(ℓ)

θ]
)2 zIt,σt(k),σt(k′)z

⊤
It,σt(k),σt(k′) .

Since ∥x∥ ≤ 1 and ∥θ∥ ≤ 1, we have exp[x⊤θ] ∈ [e−1, e], and thus

exp[x⊤
It,σt(k)

θ + x⊤
It,σt(k′)θ](∑K

ℓ=j exp[x
⊤
It,σt(ℓ)

θ]
)2 ≥ e−4

(K − j)2
≥ e−4

K2
≥ e−4

2K(K − 1)
.

We further have for any t ∈ [n] that
K∑
j=1

K∑
k=j

K∑
k′=j

zIt,σt(k),σt(k′)z
⊤
It,σt(k),σt(k′) ⪰

K∑
k=1

K∑
k′=1

zIt,σt(k),σt(k′)z
⊤
It,σt(k),σt(k′)

⪰ 2

K∑
k=1

K∑
k′=k+1

zIt,k,k′z⊤It,k,k′ .

The last step follows from the fact that σt is a permutation. Simply put, we replace the sum of K2

outer products by all but the ones between the same vectors. Now we combine all claims and get

∇2ℓn(θ) ⪰
e−4

2K(K − 1)n

n∑
t=1

K∑
j=1

K∑
k=j+1

zIt,j,kz
⊤
It,j,k = γΣn

for γ = e−4/4. Therefore, ℓn(θ) is strongly convex at θ∗ with respect to the norm ∥ · ∥Σn .

Step 2: Let θ̂ = θ∗ +∆. Now we rearrange the strong convexity inequality and get

γ∥∆∥2Σn
≤ ℓn(θ∗ +∆)− ℓn(θ∗)− ⟨∇ℓn(θ∗),∆⟩ ≤ −⟨∇ℓn(θ∗),∆⟩ (18)

≤ ∥∇ℓn(θ∗)∥Σ−1
n
∥∆∥Σn

.

In the second inequality, we use that θ̂ minimizes ℓn, and thus ℓn(θ∗ +∆)− ℓn(θ∗) ≤ 0. In the last
inequality, we use the Cauchy-Schwarz inequality.

Next we derive the gradient of the loss function

∇ℓn(θ) = −
1

n

n∑
t=1

K∑
j=1

K∑
k=j

exp[x⊤
It,σt(k)

θ]∑K
ℓ=j exp[x

⊤
It,σt(ℓ)

θ]
zIt,σt(j),σt(k) .

Zhu et al. [102] note that is a sub-Gaussian random variable and prove that

∥∇ℓn(θ∗)∥2Σ−1
n
≤ CK4(d+ log(1/δ))

n

holds with probability at least 1− δ, where C > 0 is a constant. Finally, we plug the above bound
into (18) and get that

γ∥∆∥2Σn
≤
√

CK4(d+ log(1/δ))

n
∥∆∥Σn

holds with probability at least 1− δ. We rearrange the inequality and since γ is a constant,

∥θ̂n − θ∗∥2Σn
= ∥∆∥2Σn

≤ CK4(d+ log(1/δ))

n

holds with probability at least 1− δ for some C > 0. This concludes the proof.

23

Method Maximum prediction error Ranking loss
Dope (ours) 15.79± 1.08 0.107± 0.002
Plug-in (400) 19.75± 1.48 0.104± 0.003
Plug-in (300) 30.52± 3.00 0.103± 0.002
Plug-in (200) 65.75± 13.71 0.114± 0.003
Plug-in (100) 100.39± 10.72 0.142± 0.003
Optimal 9.22± 0.82 0.092± 0.002

Table 1: Comparison of Dope with plug-in designs and optimal solution.

C Optimal Design for Ranking Feedback

The optimal design for (10) is derived as follows. First, we compute the Hessian of ℓn(θ),

∇2ℓn(θ) =
1

n

n∑
t=1

K∑
j=1

K∑
k=j

K∑
k′=j

exp[x⊤
It,σt(k)

θ + x⊤
It,σt(k′)θ]

2
(∑K

ℓ=j exp[x
⊤
It,σt(ℓ)

θ]
)2 zIt,σt(k),σt(k′)z

⊤
It,σt(k),σt(k′) .

Its exact optimization is impossible because θ∗ is unknown. This can be addressed in two ways.

Worst-case design: Solve an approximation where θ∗-dependent terms are replaced with a lower
bound. We take this approach. Specifically, we show in the proof of Lemma 9 that

∇2ℓn(θ) ⪰
e−4

2K(K − 1)n

n∑
t=1

K∑
j=1

K∑
k=j+1

zIt,j,kz
⊤
It,j,k = γΣn

for γ = e−4/4. Then we maximize the log determinant of a relaxed problem. This solution is sound
and justified, because we maximize a lower bound on the original objective.

Plug-in design: Solve an approximation where θ∗ is replaced with a plug-in estimate.

We discuss the pluses and minuses of both approaches next.

Prior works: Mason et al. [55] used a plug-in estimate to design a cumulative regret minimization
algorithm for logistic bandits. Recent works on preference-based learning [102, 20, 99], which are
closest related works, used worst-case designs. Interestingly, Das et al. [20] analyzed an algorithm
with a plug-in estimate but empirically evaluated a worst-case design. This indicates that their plug-in
design is not practical.

Ease of implementation: Worst-case designs are easier to implement. This is because the plug-in
estimate does not need to be estimated. Note that this requires solving an exploration problem with
additional hyper-parameters, such as the number of exploration rounds for the plug-in estimation.

Theory: Worst-case designs can be analyzed similarly to linear models. Plug-in designs require an
analysis of how the plug-in estimate concentrates. The logging policy for the plug-in estimate can be
non-trivial as well. For instance, the plug-in estimate exploration in Mason et al. [55] is over Õ(d)
special arms, simply to get pessimistic per-arm estimates. Their exploration budget is reported in
Table 1. The lowest one, for a 3-dimensional problem, is 6 536 rounds. This is an order of magnitude
more than in our Figure 1(b) for a larger 36-dimensional problem.

Based on the above discussion, we believe that worst-case designs strike a good balance between
practicality and theory. Nevertheless, plug-in designs are appealing because they may perform well
with a good plug-in estimate. To investigate this, we repeat Experiment 2 in Section 6 with K = 2
(logistic regression). We compare three methods:

(1) Dope: This is our method. The exploration policy is π∗ in (6).

(2) Plug-in (m): This is a plug-in baseline. For the first m rounds, it explores using policy π∗ in (6).
After that, we compute the plug-in estimate of θ∗ using (10) and solve the D-optimal design with
it. The resulting policy explores for the remaining n−m rounds. Finally, θ∗ is estimated from all
feedback using (10).

(3) Optimal: The exploration policy π∗ is computed using the D-optimal design with the unknown
θ∗. This validates our implementation and also shows the gap from the optimal solution.

24

We report both the prediction errors and ranking losses at n = 500 rounds in Table 1. The results are
averaged over 100 runs. We observe that the prediction error of Dope is always smaller than that of
Plug-in (6 times at m = 100). Optimal outperforms Dope but cannot be implemented in practice.
The gap between Optimal and Plug-in shows that an optimal design with a plug-in estimate of θ∗ can
be much worse than that with θ∗. Dope has a comparable ranking loss to Plug-in at m = 300 and
m = 400. Plug-in has a higher ranking loss otherwise.

Based on our discussion and experiments, we do not see any strong evidence to adopt plug-in designs.
They would be more complex than worst-case designs, harder to analyze, and we do not see benefits
in our experiments. This also follows the principle of Occam’s razor, which tells us to design with a
minimal needed complexity.

D Related Work

The two closest related works are Mehta et al. [56] and Das et al. [20]. They proposed algorithms for
learning to rank L pairs of items from pairwise feedback. Their optimized metric is the maximum
gap over L pairs. We learn to rank L lists of K items from K-way ranking feedback. We bound the
maximum prediction error, which is a similar metric to these related works, and the ranking loss in
(3), which is novel. Algorithm APO in Das et al. [20] is the closest related algorithmic design. APO
greedily minimizes the maximum error in pairwise ranking of L lists of length K = 2. Therefore,
Dope with ranking feedback (Section 5.1) can be viewed as a generalization of Das et al. [20] to lists
of length K ≥ 2. APO can be compared to Dope by applying it to all possible

(
K
2

)
L lists of length 2

created from our lists of length K. We do that in Section 6. The last difference from Das et al. [20]
is that they proposed two variants of APO: analyzed and practical. We propose a single algorithm,
which is both analyzable and practical.

Our problem can be generally viewed as learning preferences from human feedback [27, 28, 31]. The
two most common forms of feedback are pairwise, where the agent observes a preference over two
items [12]; and ranking, where the agent observes a ranking of the items [65, 54]. Online learning
from human feedback has been studied extensively. In online learning to rank [67, 104], the agent
recommends a list of K items and the human provides absolute feedback, in the form of clicks, on all
recommended items or their subset. Two popular feedback models are cascading [43, 105, 53] and
position-based [44, 23, 100] models. The main difference in Section 4 is that we do not minimize
cumulative regret or try to identify the best list of K items. We learn to rank L lists of K items within
a budget of n observations. Due to the budget, our work is related to fixed-budget BAI [13, 5, 6, 95].
The main difference is that we do not aim to identify the best arm.

Online learning from preferential feedback has been studied extensively [9] and is often formulated as
a dueling bandit [97, 48, 93, 42, 63, 72, 74, 73, 75, 84, 92]. Our work on ranking feedback (Section 5)
differs from these works in three main aspects. First, most dueling bandit papers consider pairwise
feedback (K = 2) while we study a more general setting of K ≥ 2. Second, a typical objective in
dueling bandits is to minimize regret with respect to the best arm, sometimes in context; either in the
cumulative or simple regret setting. We do not minimize cumulative or simple regret. We learn to
rank L lists of K items. Finally, the acquisition function in dueling bandits is adaptive and updated in
each round. Dope is a static design where the exploration policy is precomputed.

Preference-based learning has also been studied in a more general setting of reinforcement learning
[88, 60, 94, 29]. Preference-based RL differs from classic RL by learning human preferences through
non-numerical rewards [18, 47, 16]. Our work can be also viewed as collecting human feedback for
learning policies offline [35, 69, 98, 76]. One of the main challenges of offline learning is insufficient
data coverage. We address this by collecting diverse data using optimal designs [66, 24].

Finally, we wanted to compare the ranking loss in (3) to other objectives. There is no reduction to
dueling bandits. A classic objective in dueling bandits is to minimize regret with respect to the best
arm from dueling feedback. Our goal is to rank L lists. One could think that our problem can be
solved as a contextual dueling bandit, where each list is represented as a context. This is not possible
because the context is controlled by the environment. In our setting, the agent controls the chosen list,
similarly to APO in Das et al. [20]. Our objective also cannot be reduced to fixed-budget BAI. Our
comparisons to Azizi et al. [6] (Sections 4.3 and 5.3) focus on similarities in high-probability bounds.
The dependence on n and d is expected to be similar because the probabilities of making a mistake in

25

Number of lists L 100 200 300 400 500 600 700 800
Time (seconds) 4.71 8.31 15.63 21.00 26.60 35.00 41.25 49.72

Table 2: Computation time of policy π∗ in (6) as a function of the number of lists L.

L = 50 L = 100 L = 200 L = 500
K = 2 0.12± 0.06 0.28± 0.12 0.37± 0.14 0.57± 0.21
K = 3 0.14± 0.06 0.24± 0.10 0.37± 0.15 0.50± 0.19
K = 4 0.13± 0.05 0.24± 0.08 0.35± 0.14 0.47± 0.18
K = 5 0.12± 0.04 0.21± 0.08 0.34± 0.12 0.45± 0.15

Table 3: The ranking loss of Dope as a function of the number of lists L and items K.

our work and Azizi et al. [6] depend on how well the generalization model is estimated, which is the
same in both works.

E Ablation Studies

We conduct two ablation studies on Experiment 2 in Section 6.

In Table 2, we report the computation time of policy π∗ in (6). We vary the number of lists L and use
CVXPY [21] to solve (6). For L = 100, the computation takes 5 seconds; and for L = 800, it takes
50. Therefore, it scales roughly linearly with the number of lists L.

In Table 3, we vary the number of lists L and items K, and report the ranking loss of Dope. We
observe that the problems get harder as L increases (more lists to rank) and easier as K increases
(longer lists with more feedback).

26

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly state all contributions and point to them from Section 1.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of our work, such as non-adaptive designs and the lack of lower
bounds, are discussed throughout the paper.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All claims are proved in Appendices A and B.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The pseudo-code of the proposed algorithm Dope is given. Experiments are
described in a sufficient detail to be reproducible.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We did not get a permission to release the code.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details are provided in Section 6 and Appendix E.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Standard errors are reported in all plots.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computation time is discussed in Section 3 and Appendix E.

9. Code Of Ethics

27

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We follow the ethics guidelines.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is algorithmic and not tied to any particular application.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This is not applicable to this paper.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All used assets are stated and cited.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This is not applicable to this paper.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This is not applicable to this paper.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This is not applicable to this paper.

28

https://neurips.cc/public/EthicsGuidelines

	Introduction
	Setting
	Optimal Design and Matrix Kiefer-Wolfowitz
	Learning with Absolute Feedback
	Algorithm Dope
	Maximum Prediction Error Under Absolute Feedback
	Ranking Loss Under Absolute Feedback

	Learning with Ranking Feedback
	Algorithm Dope
	Maximum Prediction Error Under Ranking Feedback
	Ranking Loss Under Ranking Feedback

	Experiments
	Conclusions
	Proofs
	Proof of thm:matrix kiefer-wolfowitz
	Proof of lem:optimal design
	Proof of thm:prediction error absolute
	Proof of thm:ranking loss absolute
	Proof of thm:prediction error ranking
	Proof of thm:ranking loss ranking

	Supporting Lemmas
	Optimal Design for Ranking Feedback
	Related Work
	Ablation Studies

