Adaptive Constrained Optimization for Neural Vehicle Routing

Anonymous Authors'

Abstract

Neural solvers have shown remarkable success in
tackling Vehicle Routing Problems (VRPs). How-
ever, their application to scenarios with complex
real-world constraints is still at an early stage. Re-
cent works successfully employ variants of the
Lagrange multiplier method to handle such con-
straints, but their limitation lies in the use of a uni-
form dual variable across all problem instances,
overlooking the fact that the difficulty of satis-
fying constraints varies significantly across in-
stances. To address this limitation, we propose an
instance-level adaptive constrained optimization
framework that reformulates the Lagrangian dual
problem by assigning each instance its own dual
variable. To efficiently optimize this new prob-
lem, we design a dual variable-conditioned policy
that solves instances with a controllable level of
constraint awareness, which effectively decouples
policy optimization from the optimization of dual
variables. By leveraging this conditioned policy,
we customize the optimization of dual variables
for each test instance by adapting to its particular
constraint violations. Experimental results on the
Travelling Salesman Problem with Time Window
(TSPTW) and TSP with Draft Limit (TSPDL)
show that our method exhibits advantages com-
pared to the strong solver LKH3 and significantly
outperforms state-of-the-art neural methods.

1. Introduction

The Vehicle routing problem (VRP) is a classic kind of NP-
hard combinatorial optimization problem with broad real-
world applications in manufacturing (Treitl et al., 2014),
transportation (Stein, 1978), and logistics (Konstantakopou-
los et al., 2022). VRP solvers in the Operational Re-
search (OR) community, which are typically based on heuris-

! Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

tic search (Helsgaun, 2000) and integer programming (Ap-
plegate et al., 2006), have achieved remarkable success in
the past but are often limited by high computational over-
heads. To address this, neural networks have been lever-
aged to develop efficient, data-driven heuristics for solving
VRPs (Vinyals et al., 2015; Joshi et al., 2019; Kool et al.,
2019; Ma et al., 2021; Kim et al., 2021; Jiang et al., 2022;
Cappart et al., 2023; Ye et al., 2024; Liu et al., 2024), demon-
strating faster solving speeds and competitive solution qual-
ity against strong OR solvers. A prominent approach among
these neural solvers is utilizing reinforcement learning-
based policies to sequentially construct solutions (Bello
et al., 2017), which has shown effectiveness on canonical
problems like TSP and Capacitated VRP (CVRP) (Kwon
et al., 2020; Drakulic et al., 2023; Luo et al., 2023).

Real-world applications of VRP, however, often involve con-
straints that are more complex than those in the canonical
problems. For example, in many business scenarios such
as public transportation (Cattaruzza et al., 2017; Shahin
et al., 2024) and dial-a-ride systems (Cordeau & Laporte,
2003), the arrival time of vehicle must fall into a customer-
requested time window, known as the time window con-
straint. This constraint significantly restricts the feasible
region such that even finding a feasible solution is proved
to be NP-complete (Savelsbergh, 1985), which can pose
great challenges to most existing solvers. Other examples of
complex constraints in VRPs include the global priority rule
in disaster relief (Panchamgam, 2011) and the draft limits
in maritime transportation (Glomvik Rakke et al., 2012). To
handle these hard constraints, classical OR solvers often
employ techniques like penalty functions to incorporate con-
straint violations into the objective function. In the strong
solver LKH3 (Helsgaun, 2017), the penalty function is prior-
itized over the original distance cost, highlighting its empha-
sis on handling constraints. However, as shown in pervious
works (Bi et al., 2024) and our experiments (see Table 1),
the feasibility rate obtained by the traditional solvers is still
unsatisfactory when runtime budgets are limited.

Neural solvers have achieved remarkable performance on
various VRPs, even surpassing LKH3 on large-scale prob-
lems (Luo et al., 2024) and specific problem variants (Zheng
et al., 2024). However, the research of their extension to
VRPs with complex constraints is still at an early stage. To
better handle complex constraints, existing studies have re-

Submission and Formatting Instructions for ICML 2025

- - - Expected violation degree of the single 1

Low violations Medium violations

High violations

1
Instance 8
Instance 71
Instance 6

Instance 5 {

Instance 3

Instance 2

1
1
1
1
1
1
Instance 4{ 1
1
1
1
I
1

Instance 1 {

Constraint Violations

Figure 1. An illustration of the drawback inherent in single-dual
variable (\) methods. Constraint violations of different problem
instances are plotted. The single- neural solver tends to overem-
phasize (insufficiently emphasize) constraints on some instances
with relatively low (high) constraint violations.

fined neural methods from several perspectives, including
constraint-aware feature design (Chen et al., 2024), improve-
ment in network architecture (Falkner & Schmidt-Thieme,
2020), modifications to the objective function (Zhang et al.,
2020b; Chen et al., 2022; Tang et al., 2022), and develop-
ment of novel masking mechanisms (Bi et al., 2024). For
instance, Chen et al. (2024) introduced a multi-step look-
ahead strategy, integrating the future time window informa-
tion to enhance constraint-related features. Similarly, Bi
et al. (2024) designed a look-ahead-based mask mechanism
to proactively exclude actions that would violate constraints
in future steps. From the perspective of constrained opti-
mization, Tang et al. (2022) adopted the Lagrange multiplier
method to explicitly optimize constraint violations together
with the route distance. Notably, the most recent Lagrange
multiplier-based method proposed by Bi et al. (2024) has
achieved state-of-the-art performance on common bench-
marks, regarded as a general and effective solution for com-
plex VRPs. However, these Lagrangian-based methods
directly apply the canonical Lagrange multiplier method to
neural solvers by using a uniform dual variable across all
instances, overlooking the variation in constraint violations
among instances, as illustrated in Figure 1. This drawback
may severely limit the adaptability of neural models, ulti-
mately leading to performance that is far from optimal.

To address this issue, we introduce a new formulation of the
Lagrangian dual problem that assigns each training instance
a specific dual variable, enabling adaptive constrained op-
timization at the instance level. Unlike methods that rely
on a single dual variable, this instance-specific formulation
offers greater flexibility by optimizing the trade-off between
solution quality and constraint satisfaction for each instance.
However, directly optimizing the instance-specific dual vari-
ables for millions of training instances (e.g., the number
of instances is over one hundred millions in the training
of POMO (Kwon et al., 2020)) poses significant computa-
tional challenges. To mitigate this issue, we develop a dual

variable-conditioned policy, which decouples policy opti-
mization from the optimization of dual variables, thereby
reformulating the dual problem into two separate subprob-
lems. First, we focus on solving the inner maximization
subproblem by training a dual variable-conditioned policy
that is capable of accommodating varying degrees of con-
straint awareness. This is achieved through a two-stage
training strategy: A pre-training stage aimed at fostering
adaptability to a wide range of dual variable (\) values, and
a fine-tuning stage designed to refine the alignment between
A values and the hardness of individual instances. Based
on the trained \-conditioned policy, we solve the outer sub-
problem in the inference stage by tailoring the optimization
of)\ for each test instance. Through iterative update of A,
we push the policy to strike an appropriate trade-off between
the objective value and constraint violations.

We conduct experiments on two challenging constrained
VRPs: Travelling Salesman Problems with Time Win-
dow (TSPTW) and TSP with Draft Limit (TSPDL). No-
tably, these two problems pose greater challenges in sat-
isfying constraints compared to CVRPTW and CVRPDL,
as the constraint violations of the latter can be addressed
more easily by assigning additional vehicles to the vio-
lated nodes. The experimental results demonstrate that
our adaptive optimization approach significantly outper-
forms the state-of-the-art neural method (Bi et al., 2024)
that relies on a single dual variable. For example, the
performance comparison of optimality gap and infeasibil-
ity rate on TSPDL is illustrated in Figure 2. Moveover,
compared to the strong solver LKH3 within the same run-
time budget, our neural method reduces the infeasibility
rate by 95.56% — 1.33% = 94.23% on TSPTW100 (i.e.,
TSPTW with 100 nodes) and 7.02% — 0.91% = 6.11%
on TSPDL100, while achieving competitive optimality gap.
This suggests that neural methods can be a promising direc-
tion besides OR solvers for tackling constrained VRPs.

»
N
o

LKH3 (same budget)

Single-A model with A = 0.5
A Single-A model with A =1.0

Single-A model with A =2.0
Y Our proposed method

w w »
T N o
o a)

Average Optimality Gap (%)
w
N
wv

3.00
2.75
2.50
525 * A
0 1 4 5 6 7

2 3
Infeasibility Rate (%)

Figure 2. Performance comparison of LKH3, single-\ models and
our proposed method, on TSPDL with 50 nodes.

Submission and Formatting Instructions for ICML 2025

2. Background
2.1. Constrained VRPs

The objective of VRPs (Dantzig & Ramser, 1959) is to de-
termine a tour that minimizes the total travel distance while
visiting all the customer nodes. Formally, a VRP instance is
defined on a graph G = (V, E), where V represents the set
of all customer nodes along with a depot node, E denotes
the set of directed edges between each pair of nodes (i.e.,
the graph is fully connected). The vehicles are required to
start and end their tours at the depot node. In this paper,
we focus on the TSP with two types of constraints: Time
window constraint and draft limit constraint.

Time window. The time window constraint nartually
arises in many business scenarios that require flexible time
scheduling (Toth & Vigo, 2014). In this context, each node
is accosiated with a time window [I;, u;] that defines the
earlist time /; and the latest time u; of visiting that node.
The time window constraint ensures the arrival time at each
node does not exceed the end of its designated time win-
dow. If the arrival time t; is earlier than the start time (i.e.,
t; < l;), the vehicle must wait until the time window starts.
Formally, a problem instance [is expressed as:

Z dr(u,v),

(u,v)eT

min f;(7) =

n—1

s.t. gr(t) = Zmax{ti —u;,0} <0,
i=0

where 7 represents the tour, and dj(u, v) denotes the travel
distance between nodes u and v. The goal is to find a tour 7
that minimizes the total distance f;(7) while satisfying the
time window constraint gy (7) < 0.

Draft limit. The draft limit in ports is an important factor
that influences the routing actions in maritime transporta-
tion (Glomvik Rakke et al., 2012). The draft of a ship is the
distance between the waterline and the bottom of the ship,
affected by the cumulative load. The draft limits in ports are
designed to avoid overloaded ships entering these ports. In
this context, each node represents a port with a maximum
draft m; and a non-negative demand ¢;. The constraint re-
quires that the cumulative load, ¢; = 22;11 6Tj, over the
last 2 — 1 steps must not exceed the maximum draft m; of
the i-th visited port. Formally, this can be expressed as

n—1

gr(t) = Zmax{ci —my;, 0} <0.
i=0

2.2. Lagrange Multiplier Method

To solve constrained VRPs, the constraint violation can be
integrated into the objective function through the formula-

tion of the Lagrangian dual problem (Bertsekas, 2014):

mazxmin(f7(7) + A~ g(7)],
where) is a non-negative dual variable, quantifing the
impact of a constraint on the objective function. The La-
grangian dual problem can be optimized by alternatively
updating the primal and dual variables. This involves solv-
ing the primal problem for a fixed dual variable, which can
be addressed using a classical VRP solver, followed by up-
dating the dual variable based on the observed constraint
violations (Kohl & Madsen, 1997). The update of the dual
variable is often realized using subgradient descent as:

A= A+a-gi(n),

where « is the learning rate. Through the iterative adjust-
ment, the dual variable is continuously refined according to
the current level of constraint violation, enabling a better
balance between solution quality and constraint satisfac-
tion. More iterative update methods for the dual variable
include quadratic method (Hestenes, 1969) and proportional-
integral-derivative control (Stooke et al., 2020).

Compared to traditional penalty function-based methods,
the Lagrange multiplier method avoids reliance on fixed
penalty parameters, providing greater flexibility in handling
constraints. Furthermore, it has the potential to yield more
optimal solution if the strong duality holds (Boyd & Van-
denberghe, 2014). However, the Lagrange multiplier-based
method is designed to optimize an individual problem in-
stance. Nartually, a gap arises when it is applied to the
training process involving a larger number of instances.

2.3. Lagrange Multiplier-based Training Methods for
Neural Vehicle Routing

When reinforcement learning (RL) is applied to train neural
networks capable of constructing solutions for VRPs (Bello
etal., 2017), the expected return of the RL policy 7y on an in-
stance [is defined as J (7g, I) = E;wry(.ir)[—f1(7)], and
the expected constraint violation is given by J¢(mg,I) =
E: (1) [—91(7)]. Using these definitions, the Lagrangian
dual problem of policy optimization is formulated as,

r)\ng{)lmngE[ND[j(ﬂg,I) + A To(mg, 1))

Unlike typical constrained RL (Achiam et al., 2017; Yao
et al., 2023; Gu et al., 2024), where the focus is on solving
a specific instance, the trained policy in this framework is
designed to generalize to unseen instances from the same
problem class. To achieve this, the optimization objective
during training involves maximizing the expected perfor-
mance over a distribution of instances. In practice, the
training process is conducted on a dataset D that contains a
large number of synthetic problem instances.

Submission and Formatting Instructions for ICML 2025

To optimize a similar dual problem, Tang et al. (2022)
proposed an approach that alternatively updates the pol-
icy mp and the dual variable A. Specifically, the policy
Ty is optimized by policy gradient algorithms such as RE-
INFORCE (Williams, 1992), while the dual variable \ is
optimized by subgradient descent. This method balances
the trade-off between minimizing the objective and reduc-
ing constraint violations by dynamically adjusting A\. More
recently, Bi et al. (2024) observed that optimizing A may in-
cur significant computational overhead due to the additional
iterations required for updating A. Therefore, they fixed A
to a pre-defined constant throughout the training process.

Limitations of Lagrangian-based training. The La-
grange multiplier method was originally designed for op-
timizing a single instance. However, existing approaches
directly extend this method to the training process of neural
solvers by utilizing a single shared dual variable for a large
number of training instances. This simplification overlooks
the fact that different instances can exhibit significantly
varying levels of constraint violations, as demonstrated in
Figure 1, thereby resulting in suboptimal performance.

3. Method

To address the aforementioned limitations, we propose an
Instance-level adaptive Constrained Optimization (ICO)
method. A graphical illustration of our method is shown in
Figure 3. In this section, we first provide an overview of the
proposed ICO approach, followed by a detailed description
of its training process and network architecture.

3.1. Instance-level Adaptive Constrained Optimization

We leverage instance-specific dual variables to effectively
handle the varying degrees of constraint violations across in-
stances, which can enable a more flexible trade-off between
optimizing the objective and satisfying the constraints. For-
mally, the new dual problem is formulated as

N
. 717;)\7' 71727 1
i g)_[T(m0. 1) + X Te(mo. I (1)

where N is the number of training instances and); is the
dual variable specific to instance ;. This dual formula-
tion potentially leads to enhanced performance in both so-
lution quality and constraint satisfaction if the prime and
dual variables are both optimized properly. However, it is
extermely challenging and computationally expensive to
optimize the instance-specific dual variables for millions
of training instances. In the common training method of
neural solvers (Kwon et al., 2020), more than one hundred
million training instances are generated on the fly, and each
instance is only used once during training without addi-
tional iterations to refine its corresponding dual variable.

This training process necessitates an efficient and scalable
approach to adaptively manage instance-specific dual vari-
ables. Therefore, we discard the expensive iterative method
and decouple the original bi-level optimization problem into
two separate subproblems: Solve the inner subproblem of
Eq. (1) as phase 1 and solve the outer subproblem based on
the inner results as phase 2.

Phase 1: Solve the inner subproblem. In the first phase,
we solve the inner maximization problem separately while
considering varying values of A, aiming to obtain a manifold
of policies capable of solving instances with continuously
varying levels of constraint awareness. To achieve this, we
propose training a A-conditioned policy 7y (-|\) that takes A
as input and performs as trained using the specified J, i.e.,

N
WO('I)‘) ~ argmaxZ[j(W, L)+ A Jo(m, Ii)]’

i i=1

where the right side represents the optimal policy corre-
sponding to the given A. With this condition mechanism,
the constraint sensitivity of the policy can be seamlessly
controlled by adjusting the input value of A\, without requir-
ing any modification to the network parameters. This can
effectively decouple the policy optimization process from
the optimization of the dual variables, thereby enhancing
scalability of the Lagrangian-based training method. The
detailed training algorithm and network architecture for the
A-conditioned policy are provided in Section 3.2.

Phase 2: Solve the outer subproblem. The second phase
is performed during the inference stage, where instance-
specific \ values are optimized based on the feedback pro-
vided by the trained A-conditioned policy. For each new
instance, we iteratively update A by subgradient descent to
minimize its specific constraint violations, thereby adjusting
the policy to achieve an appropriate trade-off. This pro-
cess alternates between sampling a solution using the policy
mg(-|\) and updating \ based on the observed constraint
violations of the sampled solution. Formally, the process is
described as follows:

Ti—1 ~ ([N1, 1), A =M1 +a-gr(m—1),

where ¢ denotes the iteration timestep, and g7 (7;—1) is the
constraint violation of the sampled solution. Note that we
initialize all A values using an identical)\y. Furthermore,
we also explore to utilize Proportional-Integral-Derivative
(PID) control to adjust the A-value as suggested by Stooke
et al. (2020), detailed in Appendix E.2.

3.2. Dual Variable-Conditioned Policy

The A-conditioned policy serves as a key component in opti-
mizing the decoupled dual problem. We design a two-stage

Submission and Formatting Instructions for ICML 2025

Phase 1: Solve the inner subproblem in training

Phase 2: Solve the outer

Pre-training stage Fine-tuning stage

subproblem in inference
Inference stage

7 Problem instances ",

ST N
Problem instances \
= | Input | Conditioned
ot o _—
S 1 i
oo ! policy
Infeasible part 4
: Update |
1 |
Random 4 ! !
1
| Rewards
’

(sampled from D(2))

I
1
H 1
: Instance-specific 4 ‘
1

. \ /
. Solve and Semmmf =T

| Evaluate

1 Update A andretain

: the infeasible part

v

'
: Gegsio Inféasible part

i 00 °]

1 °0° 1 Input

| _
i

i

Infeasible part

Constraint violation

: T g

i values

7 Problem instances '\
Infebsible part
Conditioned

X Conditioned
policy

]
I Input
] .
policy

'
i
1
1
i
i
: Instance-specific 4 :
\

Solve and

olicy | Evaluate
poliey : Evaluate

Update A by

t
Update i ‘ Solve and
subgradient

Constraint violation

Figure 3. An illustration overview of the proposed method. The bi-level Lagrangian problem for constrained optimization is decoupled
into two phases. Left (phase 1): Solve the inner subproblem in training. Right (phase 2): Solve the outer subproblem in inference.

training algorithm for the A-conditioned policy, consisting
of a pre-training stage to develop adaptability to diverse
A values and a fine-tuning stage to achieve a more precise
alignment between A values and instance hardness. Detailed
description of the two training stages is as follows.

Pre-training stage. The pre-training stage is conducted
on randomly sampled A values, thereby enabling the model
to generalize effectively across varying A conditions. The
training objective can be expressed as
max B pEx~p, [T (70 ([A), 1) + AT (ma([A), 1))

Specifically, we randomly sample \; from a pre-defined
distribution D) for each training instance [;, constituting
a pair sample (\;, ;). The reward function of the instance
I; is reweighted by its own dual variable \;. Following
the shared baseline method (Kwon et al., 2020), we sample
multiple solutions {77}, for each ();, I;) pair and esti-
mate the baseline by the average reward of these solutions.
Then, we compute the policy gradient Vy.J(6) using the
REINFORCE (Williams, 1992) algorithm as

R = —(fr.(7) + Xilgr.(77) + e1,(77))), ¥j € [P],
1 & 1 &
VoJ(0 fZ fZ Ylog ma (77| Ni, I;),

where [P] denotes {1, ..., P}, and cr, (77) is the number of
timeout nodes, which we use as a heuristic penalty reward,
following the reward design of (Bi et al., 2024). The factor
RI — P kP 1 RF represents the advantage that measures
relative reward improvement over the shared baseline. In-
tuitively, the training algorithm reinforces the probability
of generating positive advantage trajectories (i.e., solutions)
while decreasing the probability of generating negative ones.
Through this training process with random A, the condi-
tioned policy obtains the adaptability to different levels of
constraint awareness. The pseudo code of the pre-training
process is provided in Appendix A.

Fine-tuning stage. To achieve an effective alignment be-
tween)\ values and instance hardness, we further fine-tune
the pre-trained policy using iteratively updated A values. In
this stage, we initialize a uniform and small initial value
A9 for all instances and alternate between optimizing the
policy and updating the dual variables strictly following the
original formulation in Eq. (1). For policy optimization,
we continue to employ the REINFORCE algorithm with
an average baseline, as used in the pre-training stage. For
updating the dual variables, the subgradient is computed
based on the minimal constraint violation value across a set
of sampled solutions {77}'_ . Formally, the X values are
updated by the following rule:

)x(t))x(t D + a min (g7, (TJ) + ey, (7'7))

Jj€lpP]

where « is the learning rate. After each iteration, we retain
the infeasible instances and their corresponding A values in
the batch while replacing the feasible instances with new
ones. It is important to note that the pre-trained policy is
already capable of finding feasible solutions for the ma-
jority of instances. Therefore, the proportion of infeasible
instances in each batch is typically small, ensuring that the
iterations for updating A do not significantly affect compu-
tational efficiency. Moreover, to further enhance training
efficiency and avoid excessive focus on particularly hard
instances, we impose a maximum iteration limit and a cap
on the infeasible instance ratio. The pseudo code of the
fine-tuning process is provided in Appendix A.

Network architecture. The A-conditioned policy solves
instances with a controllable level of constraint awareness,
determined by the condition variable . Similar conditioned
policies have been explored in related works, particularly
for multi-objective optimization (Lin et al., 2022; Wang
et al., 2024) and latent space search (Chalumeau et al.,
2023). Among them, there are two possible ways to in-
corporate the target variable into the policy network: (1)
embedding it into the initial input features or (2) embedding
it into the decoder’s context. In this paper, we adopt the

Submission and Formatting Instructions for ICML 2025

A-conditioned initial embedding, which empirically demon-
strates superior performance in adjusting trade-off behaviors
(see Appendix E.3). Specifically, building on the POMO
model (Kwon et al., 2020), we incorporate a linear trans-
formation of A into the original initial embeddings. The
embedding is computed as:

h,EO) = WA)\ + Wh[xi7yi7 lia ui]—r’

where W* € R¥! and W" € R?** are trainable parame-
ters, and [z;, y;, l;, u;] represents the concatenation of the
node’s coordinates (z;,y;) and its time window bounds
(1, u;). This concatenated feature vector serves as the input

representation for each node. The output hgo) is then used
as the initial embedding for the encoder network, which em-
ploys the multi-head attention mechanism (Vaswani et al.,
2017) to perform message passing and update node embed-
dings. Intuitively, the A-conditioned embedding adjusts the
relative importance of distance-related features (e.g., node
coordinates) and constraint-related features (e.g., time win-
dow bounds) based on the value of)\, thereby enabling a
controllable level of constraint awareness. The rest of the
network architecture closely follows the standard POMO
model (Kwon et al., 2020).

4. Experiments

In this section, we evaluate the effectiveness of our ICO
method through comparison experiments and ablation stud-
ies. The key questions that our experiments will address
are as follows: (1) Does our proposed method outperform
single-\ models trained with different A values? (2) What
advantages can our neural method offer compared to strong
OR solvers, such as LKH3 (Helsgaun, 2017)?

4.1. Experimental Settings

Problem instance generation. We conduct our experi-
ments on two kinds of problems: TSPTW and TSPDL.
Following prior works (Kool et al., 2019), we randomly sam-
ple node coordinates (z;,y;) from a uniform distribution
U (0, 1) within a square. For generating the time windows
and draft limits, we utilize the code of Bi et al. (2024) and
adopt the hard settings, which are sufficiently challenging
to examine state-of-the-art neural and OR solvers.

Implementation details. Our model is implemented
based on the POMO framework (Kwon et al., 2020), incor-
porating the PI mask (Bi et al., 2024) to restrict the search
space. We only employ the PIP decoder to predict masks dur-
ing the training process on TSP instances with n = 100. The
prior distribution of A in the pre-training stage, i.e., D(X), is
set to a triangular distribution 7°(0.1, 0.5, 2.0). The learning
rate for updating A is set to 0.5 for TSPTW and 0.2 for
TSPDL. The common hyperparameters shared between our

method and prior works follow their default settings (Kwon
et al., 2020; Bi et al., 2024). More implementation details
are provided in Appendix D due to space limitation.

Baselines. We compare our proposed method against state-
of-the-art neural methods and OR solvers. For OR solvers,
we include LKH3 (Helsgaun, 2017), one of the strongest
solver specifically designed for VRPs; OR-Tools (Falkner
& Schmidt-Thieme), a general-purpose solver capable of
handling various constraints; and two greedy heuristics,
Greedy-L and Greedy-C. Greedy-L selects the nearest node
at each step, while Greedy-C chooses the node with the
shortest remaining time for TSPTW (or the minimal draft
limit for TSPDL). For neural methods, we consider the
state-of-the-art approaches: AM+PIP and POMO+PIP (Bi
et al., 2024). For TSPTW100 and TSPDL100, we report the
results of the models trained with the PIP decoder. Note that
the POMO+PIP model can be considered as the single-A
policy, serving as a clear ablation of our adpative method.

Metrics. We evaluate performance and efficiency using
four metrics: infeasibility rate, average optimality gap, nor-
malized HyperVolumn (HV) and runtime. Among these,
the HV serves as a comprehensive indicator, capturing both
feasibility and solution quality. A detailed explanation of
these metrics is provided in Appendix D.3.

Evalution configurations. Our method employs x 8 in-
stance augmentation and 16 iterations to update A during the
inference stage. To align the runtime consumption, we use
sampling inference strategy for POMO+PIP and AM+PIP.
Detailed configurations is provided in Appendix D.3.

4.2. Main Results

Comparison with single-\ models. The performance
comparisons on TSPTW and TSPDL across different prob-
lem scales are presented in Table 1. On TSPTW 100, the pro-
posed ICO method reduces the infeasibility rate from 4.33%
(achieved by POMO+PIP with A = 1.0) to an impressive
1.33%, representing a substantial reduction of 3.00%. Sim-
ilarly, on TSPTW50, the infeasibility rate is lowered from
1.56% to just 0.51%. Even when the A value in single-A
models is increased to 2.0, these models still lags behind the
ICO method in terms of feasibility, with the sole exception
being TSPDL100. In addition to improving feasibility rates,
the ICO method consistently outperforms single-\ models
in terms of optimality gaps. For instance, the ICO method
achieves a smaller gap of 9.22% on TSPDL100, compared
to 10.77% achieved by the best POMO+PIP model. More-
over, the ICO method showcases the highest HV scores
on all benchmarks, further highlighting its comprehensive
performance on both feasibility and solution quality. For ex-
ample, on TSPDL100, the HV improves significantly from

Submission and Formatting Instructions for ICML 2025

Table 1. Experimental results on TSPTW and TSPDL. Test instances are generated using the hard settings. The results of Greedy-L,
Greedy-C, full time LKH3 and OR-Tools are drawn from exisiting papers (Bi et al., 2024). LKH3 (less time) and OR-Tools (less time)
denote the OR methods with reduced runtime budgets to align with neural solvers. For AM+PIP and POMO+PIP, we report the results
obtained by using the sampling inference. The best and the runner-up results are highlighted in Blue and Violet, respectively.

Methods | TSPTW (n = 50)

| TSPTW (n = 100)

| Inf. Rate | Avg. Gap| HV 1 Time| | Inf. Rate | Avg. Gap| HV 1 Time |
LKH3 0.12% 0.0% 1.00 7h 0.07% 0.0% 1.00 1.4d
OR-Tools 65.72% 0.0% 0.34 2.4h 89.07% 0.0% 0.11 1.6d
Greedy-L 100.0% / / 21.8s 100.0% / / 1.3m
Greedy-C 72.55% 1.53% 0.19 4.5s 93.38% 1.43% 0.05 11.1s
LKH3 (less time) 57.34% 0.01% 043 100s 95.56% 0.03% 0.04 8m
OR-Tools (less time) 65.72% 0.02% 0.34 99s 89.07% 0.51% 0.10 8m
AM +PIP (A = 1.0) 2.99% 0.34% 0.90 105s 7.80% 0.70% 0.79 8m
POMO + PIP (A = 0.5) 1.95% 0.08% 0.96 108s 4.90% 0.17% 0.92 9m
POMO + PIP (A = 1.0) 1.56% 0.16% 0.95 108s 4.33% 0.25% 0.91 9m
POMO + PIP (A = 2.0) 1.41% 0.19% 0.95 108s 4.71% 0.39% 0.88 9m
ICO (Ours) 0.51% 0.07% 0.98 91s 1.33% 0.14% 0.96 8m
Methods | TSPDL (n = 50) | TSPDL (n = 100)
‘ Inf. Rate | Avg. Gap] HV 1T Timel] ‘ Inf. Rate | Avg.Gap] HV 7T Time]|

LKH3 0.0% 0.0% 1.00 6.8h 0.0% 0.0% 1.00 1.2d
OR-Tools 100.0% / / 10.6s 100.0% / / 56.8s
Greedy-L 100.0% / / 2.4m 100.0% / / 9.4m
Greedy-C 0.0% 99.73% / 10.9s 0.0% 156.37% / 25s
LKH3 (less time) 7.42% 4.23% 0.20 70s 7.02% 6.76% 0.20 6m
OR-Tools (less time) 100.0% / / 3s 100.0% / / 29s
POMO + PIP (A = 0.5) 3.44% 2.36% 0.58 71s 62.94% 20.95% / Sm
POMO + PIP (A = 1.0) 1.18% 2.33% 0.78 71s 3.23% 10.77% 0.31 Sm
POMO + PIP (A = 2.0) 0.12% 2.89% 0.85 71s 0.11% 12.24% 0.38 5m
ICO (Ours) 0.01% 2.32% 0.88 69s 0.91% 9.22% 0.49 Sm

0.38 to 0.49, while on TSPTW100, it increases from 0.92
to 0.96. These results demonstrate that the ICO method is
capable of generating high-quality solutions while maintain-
ing a higher level of feasibility. For further comparisons, we
also present the anytime performance in Appendix E.5 .

Comparion with strong OR solvers. In Table 1, we also
compare our neural methods with strong OR solvers, LKH3
and OR-Tools, under aligned runtime conditions. The re-
sults show that our ICO method achieves a dramatic im-
provement in infeasibility rates, reducing them from 95.56%
to 1.33% (a 94.23% reduction) on TSPTW100 and from
7.02% to 0.91% (a 6.11% reduction) on TSPDL100. Re-
garding solution quality, our method consistently outper-
forms OR-Tools across all benchmarks and even surpasses
LKH3 on TSPDL50 in terms of average gap. While the
solution quality of our neural approach on the other three
benchmarks still lags behind LKH3, the substantial improve-

ments in feasibility and competitive performance overall un-
derscore the strengths of neural methods compared to strong
OR solvers. Note that the full time LKH3 still achieves
the best performance among all methods in terms of both
infeasibility rate and average gap; however, its runtime is ex-
termely long, even exceeding an entire day on TSPTW100
and TSPDL100. Additionally, it is observed that the Greedy-
C algorithm obtains near-zero infeasibility rates on TSPDL,
but its average gaps remain significantly poor.

4.3. Additional Study

In this subsection, we present a series of experiments to
investigate the impact of training stages, the update rules for
A, and different network architectures. Other analyses re-
garding the distribution D () and the anytime performance,
are provided in Appendix E due to space limitation.

Submission and Formatting Instructions for ICML 2025

Analysis of the training stages. Figure 4 illustrates the
performance of POMO+PIP (with A = 1), the pre-trained
policy, and the fine-tuned policy. The comparison between
the pre-trained and fine-tuned policies reveals that the fine-
tuning process leads to a substantial reduction in both infea-
sibility rate and average gap, thereby demonstrating its ef-
fectiveness in enhancing model performance. Notably, even
the pre-trained policy alone surpasses the single-A model
(POMO+PIP), further highlighting the advantages of the
proposed training approach. Results on other benchmarks
are detailed in Appendix E.1 due to space limitation.

TSPTW100 Results TSPDL100 Results
== POMO+PIP == POMO+PIP

mmm Pre-trained policy |10{ WEE Pre-trained policy

Fine-tuned policy Fine-tuned policy

O infeasibility rate O infeasibility rate

Average gap
Metrics Metrics

Average gap

Figure 4. Comparison of the pre-trained policy and fine-tuned pol-
icy on TSPTW100 and TSPDL100.

Analysis of update rules for)\ in inference stage. In
Appendix E.2, we evaluate the performance of the proposed
ICO method under different strategies for updating A values
in inference stage: fixed A values (0.5, 1.0, and 2.0), ran-
domly sampled A values, the subgradient descent method
and the PID control method (Stooke et al., 2020). For the
random sampling strategy, A values are drawn randomly
from the uniform distribution U (0.1, 2.0) at each iteration.
The results in the last three rows indicate that both the
subgradient descent method and the PID control method
generally outperform the random sampling strategy, with
particularly improvements in reducing the infeasibility rate.
Notably, it is observed that the random sampling is also a
performant strategy, demonstrating that just randomly vary-
ing A values for each instance is effective. Moreover, as
evidenced in the first three rows, employing fixed A values
leads to significantly inferior performance compared to the
adaptive variation of A, underscoring the critical importance
of dynamically adjusting A for each instance.

Analysis of the network architecture. In Appendix E.3,
we compare the performance of the network with condi-
tioned context and network with conditioned embeddings.
The experimental results demonstrate that the conditioned
embedding method achieves significantly superior perfor-
mance in both infeasibility rate and average optimality gap.
This performance advantage can be attributed to the fact that
the conditioned embedding method can utilize the capacity
of the entire network to process A-related information.

5. Related works

Prevalent paradigms of neural VRP. Many researchers
have focused on end-to-end neural methods that learn to
generate solutions through deep neural networks (Bengio
et al., 2021; Cappart et al., 2023). These neural solvers can
be categorized into three paradigms (Ma et al., 2023): learn-
to-construct methods (Nazari et al., 2018), learn-to-predict
methods (Joshi et al., 2019; Sun & Yang, 2023) and learn-to-
search methods (Ma et al., 2021). Detailed introduction of
these paradigms are in Appendix B due to space limitation.

Recent advances in neural VRP. Recent advancements
in neural methods for solving VRPs focus on improving scal-
ability (Fu et al., 2021; Luo et al., 2023; Ye et al., 2024; Gao
et al., 2024a; Fang et al., 2024) and robustness (Jiang et al.,
2022; Bi et al., 2022; Zhou et al., 2023; Jiang et al., 2023)
through innovative architectures and learning strategies. De-
tailed description of these related works are provided in
Appendix B due to space limitation. Besides these efforts,
this paper focuses on complex constrained VRPs, which are
common in real-world applications (Cattaruzza et al., 2017;
Glomvik Rakke et al., 2012) but have not received much at-
tention in the research community. Only a few works (Tang
et al., 2022; Chen et al., 2024; Bi et al., 2024) try to ad-
dress it through feature enhancement or Lagrange multiplier
method. In this context, we introduce a novel instance-level
adpative framework for Lagrangian-based neural methods,
reducing the infeasiblity rate significantly.

6. Conclusion

In this paper, we propose a novel approach ICO to address
the limitations of existing Lagrangian-based neural meth-
ods in solving complex constained VRPs. Unlike prior
methods that rely on a single, uniform dual variable across
all problem instances, ICO leverages instance-specific dual
variables to improve adaptability and optimize the trade-off
between solution quality and constraint satisfaction for every
problem instance. Experimental results on two challenging
constrained VRP benchmarks, TSPTW and TSPDL, demon-
strate that ICO significantly reduces infeasibility rates com-
pared to both state-of-the-art neural methods and strong OR
solvers like LKH3, while achieving competitive or improved
solution quality under aligned runtime budgets. These em-
pirical findings suggest that our ICO framework can be
a promising alternative for strong OR solvers when tack-
ling constrained combinatorial problems. Notably, the ICO
framework is not confined to the VRP domain but can be
extended to other areas such as scheduling, packing, and
general constrained optimization. Future works could focus
on predicting optimal A values based on instance features,
refining training strategies of the conditioned policy, and en-
abling the generalization ability across various constraints.

Submission and Formatting Instructions for ICML 2025

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References

Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained
policy optimization. In Proceedings of the 34th Inter-
national Conference on Machine Learning (ICML), vol-
ume 70, pp. 22-31, Sydney, Australia, 2017.

Applegate, D., Bixby, R., Chvatal, V., and Cook, W. Con-

corde TSP solver. http://www.math.uwaterloo.

ca/tsp/concorde/m, 2006.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio,
S. Neural combinatorial optimization with reinforce-
ment learning. In Proceedings of the 5th International
Conference on Learning Representations (ICLR), Toulon,
France, 2017.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: A methodological tour
d’horizon. European Journal of Operational Research,
290(2):405-421, 2021.

Bertsekas, D. P. Constrained optimization and Lagrange
multiplier methods. Academic press, 2014.

Bi, J., Ma, Y., Wang, J., Cao, Z., Chen, J., Sun, Y., and
Chee, Y. M. Learning generalizable models for vehicle
routing problems via knowledge distillation. In Advances
in Neural Information Processing Systems 35 (NeurIPS),
pp- 31226-31238, New Orleans, LA, 2022.

Bi, J., Ma, Y., Zhou, J., Song, W., Cao, Z., Wu, Y., and
Zhang, J. Learning to handle complex constraints for
vehicle routing problems. In Advances in Neural Infor-
mation Processing Systems 37 (NeurIPS), 2024.

Boyd, S. P. and Vandenberghe, L. Convex Optimization.
Cambridge University Press, 2014.

Cappart, Q., Chételat, D., Khalil, E. B., Lodi, A., Morris, C.,
and Velickovi¢, P. Combinatorial optimization and rea-
soning with graph neural networks. Journal of Machine
Learning Research, 24(130):1-61, 2023.

Cattaruzza, D., Absi, N., Feillet, D., and Gonzalez-Feliu, J.
Vehicle routing problems for city logistics. EURO Journal
on Transportation and Logistics, 6(1):51-79, 2017.

Chalumeau, F., Surana, S., Bonnet, C., Grinsztajn, N., Pre-
torius, A., Laterre, A., and Barrett, T. Combinatorial
optimization with policy adaptation using latent space

search. In Advances in Neural Information Processing
Systems 36 (NeurIPS), pp. 7947-7959, New Orleans, LA,
2023.

Chen, J., Huang, H., Zhang, Z., and Wang, J. Deep rein-
forcement learning with two-stage training strategy for
practical electric vehicle routing problem with time win-
dows. In Proceedings of the 17th International Confer-
ence on Parallel Problem Solving from Nature (PPSN),
volume 13398, pp. 356370, Dortmund, Germany, 2022.

Chen, J., Gong, Z., Liu, M., Wang, J., Yu, Y., and
Zhang, W. Looking ahead to avoid being late:
Solving hard-constrained traveling salesman problem.
arxiv:2403.05318, 2024.

Cordeau, J.-F. and Laporte, G. The dial-a-ride problem
(DARP): Variants, modeling issues and algorithms. Quar-
terly Journal of the Belgian, French and Italian Opera-
tions Research Societies, 1:89-101, 2003.

da Silva, R. F. and Urrutia, S. A general VNS heuristic
for the traveling salesman problem with time windows.
Discrete Optimization, 7(4):203-211, 2010.

Dantzig, G. B. and Ramser, J. H. The truck dispatching
problem. Management Science, 6(1):80-91, 1959.

Drakulic, D., Michel, S., Mai, F., Sors, A., and Andreoli, J.-
M. BQ-NCO: Bisimulation quotienting for generalizable
neural combinatorial optimization. In Advances in Neural
Information Processing Systems 36 (NeurIPS), pp. 77416—
77429, New Orleans, LA, 2023.

Falkner, J. K. and Schmidt-Thieme, L. OR-Tools rout-
ing library. URL https://developers.google.
com/optimization/routing/.

Falkner, J. K. and Schmidt-Thieme, L. Learning to solve
vehicle routing problems with time windows through joint
attention. arXiv:2006.09100, 2020.

Fang, H., Song, Z., Weng, P., and Ban, Y. INViT: A general-
izable routing problem solver with invariant nested view
transformer. In Proceedings of the 41st International Con-
ference on Machine Learning (ICML), pp. 12973-12992,
Vienna, Austria, 2024.

Fu, Z.-H., Qiu, K.-B., and Zha, H. Generalize a small
pre-trained model to arbitrarily large TSP instances. In
Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAI), pp. 74747482, Virtual, 2021.

Gao, C., Shang, H., Xue, K., Li, D., and Qian, C. To-
wards generalizable neural solvers for vehicle routing
problems via ensemble with transferrable local policy. In
Proceedings of the 33rd International Joint Conference
on Artificial Intelligence (IJCAI), pp. 6914-6922, Jeju,
Korea, 2024a.

http://www.math.uwaterloo.ca/tsp/concorde/m
http://www.math.uwaterloo.ca/tsp/concorde/m
https://developers.google.com/optimization/routing/
https://developers.google.com/optimization/routing/

Submission and Formatting Instructions for ICML 2025

Gao, C., Shang, H., Xue, K., and Qian, C. Neu-
ral solver selection for combinatorial optimization.
arXiv:2410.09693, 2024b.

Glomvik Rakke, J., Christiansen, M., Fagerholt, K., and
Laporte, G. The traveling salesman problem with draft
limits. Computers & Operations Research, 39(9):2161—
2167, 2012.

Grinsztajn, N., Furelos-Blanco, D., Surana, S., Bonnet,
C., and Barrett, T. Winner takes it all: Training per-
formant RL populations for combinatorial optimization.
In Advances in Neural Information Processing Systems
36 (NeurIPS), pp. 4848548509, New Orleans, LA, 2023.

Gu, S., Yang, L., Du, Y., Chen, G., Walter, F., Wang, J.,
and Knoll, A. A review of safe reinforcement learning:
Methods, Theories, and Applications. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 46(12):
11216-11235, 2024.

Helsgaun, K. An effective implementation of the Lin—
Kernighan traveling salesman heuristic. European Jour-
nal of Operational Research, 126(1):106—130, 2000.

Helsgaun, K. An extension of the Lin-Kernighan-Helsgaun
TSP solver for constrained traveling salesman and vehicle
routing problems. Technical report, 2017.

Hestenes, M. R. Multiplier and gradient methods. Journal
of optimization theory and applications, 4(5):303-320,
1969.

Jiang, Y., Wu, Y., Cao, Z., and Zhang, J. Learning to solve
routing problems via distributionally robust optimization.
In Proceedings of the 36th AAAI Conference on Artificial
Intelligence (AAAI), pp. 9786-9794, Virtual, 2022.

Jiang, Y., Cao, Z., Wu, Y., Song, W., and Zhang, J.
Ensemble-based deep reinforcement learning for vehi-
cle routing problems under distribution shift. pp. 53112—
53125, New Orleans, LA, 2023.

Joshi, C. K., Laurent, T., and Bresson, X. An efficient
graph convolutional network technique for the travelling
salesman problem. arXiv:1906.01227,2019.

Kim, M., Park, J., and kim, j. Learning collaborative policies
to solve NP-hard routing problems. In Advances in Neural
Information Processing Systems 34 (NeurIPS), pp. 10418-
10430, Virtual, 2021.

Kohl, N. and Madsen, O. B. An optimization algorithm
for the vehicle routing problem with time windows based
on lagrangian relaxation. Operations Research, 45(3):
395-406, 1997.

10

Konstantakopoulos, G. D., Gayialis, S. P., and Kechagias,
E. P. Vehicle routing problem and related algorithms for
logistics distribution: A literature review and classifica-
tion. Operational Research, 22(3):2033-2062, 2022.

Kool, W., van Hoof, H., and Welling, M. Attention, learn
to solve routing problems! In Proceedings of the 7th
International Conference on Learning Representations
(ICLR), New Orleans, LA, 2019.

Kwon, Y.-D., Choo, J., Kim, B., Yoon, 1., Gwon, Y., and
Min, S. POMO: Policy optimization with multiple op-
tima for reinforcement learning. In Advances in Neural
Information Processing Systems 33 (NeurIPS), pp. 21188-
21198, Virtual, 2020.

Lai, Y., Mu, Y., and Luo, P. MaskPlace: Fast chip placement
via reinforced visual representation learning. In Advances
in Neural Information Processing Systems 35 (NeurIPS),
New Orleans, LA, 2022.

Li, Y., Guo,J., Wang, R., and Yan, J. T2T: From distribution
learning in training to gradient search in testing for combi-
natorial optimization. In Advances in Neural Information
Processing Systems 36 (NeurIPS), pp. 50020-50040, New
Orleans, LA, 2023.

Lin, X., Yang, Z., and Zhang, Q. Pareto set learning for
neural multi-objective combinatorial optimization. In Pro-
ceedings of the 10th International Conference on Learn-
ing Representations (ICLR), Virtual, 2022.

Liu, F, Lin, X., Wang, Z., Zhang, Q., Tong, X., and Yuan,
M. Multi-task learning for routing problem with cross-
problem zero-shot generalization. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining (KDD), pp. 1898—1908, Barcelona,
Spain, 2024.

Lu, H,, Zhang, X., and Yang, S. A learning-based iterative
method for solving vehicle routing problems. In Pro-
ceedings of the 7th International Conference on Learning
Representations (ICLR), New Orleans, LA, 2019.

Luo, F, Lin, X., Liu, F., Zhang, Q., and Wang, Z. Neural
combinatorial optimization with heavy decoder: Toward
large scale generalization. In Advances in Neural Infor-
mation Processing Systems 36 (NeurIPS), pp. 8845-8864,
New Orleans, LA, 2023.

Luo, F, Lin, X., Wang, Z., Tong, X., Yuan, M., and Zhang,
Q. Self-improved learning for scalable neural combinato-
rial optimization. arXiv:2403.19561, 2024.

Ma, Y., Li, J., Cao, Z., Song, W., Zhang, L., Chen, Z., and
Tang, J. Learning to iteratively solve routing problems
with dual-aspect collaborative transformer. In Advances
in Neural Information Processing Systems 34 (NeurIPS),
pp- 11096-11107, Virtual, 2021.

Submission and Formatting Instructions for ICML 2025

Ma, Y., Cao, Z., and Chee, Y. M. Learning to search feasible
and infeasible regions of routing problems with flexible
neural k-Opt. In Advances in Neural Information Pro-
cessing Systems 36 (NeurlPS), pp. 49555-49578, New
Orleans, LA, 2023.

Nazari, M., Oroojlooy, A., Taka¢, M., and Snyder, L. V.
Reinforcement learning for solving the vehicle routing
problem. In Advances in Neural Information Processing
Systems 31 (NeurIPS), pp. 9861-9871, Montréal, Canada,
2018.

Panchamgam, K. V. Essays in retail operations and human-
itarian logistics. PhD thesis, Robert H. Smith School of
Business, University of Maryland, College Park, 2011.

Savelsbergh, M. W. Local search in routing problems with
time windows. Annals of Operations Research, 4:285—
305, 1985.

Shahin, R., Hosteins, P., Pellegrini, P., Vandanjon, P.-O., and
Quadrifoglio, L. A survey of flex-route transit problem
and its link with vehicle routing problem. Transportation
Research Part C: Emerging Technologies, 158:104437,
2024.

Stein, D. M. Scheduling dial-a-ride transportation systems.
Transportation Science, 12(3):232-249, 1978.

Stooke, A., Achiam, J., and Abbeel, P. Responsive safety
in reinforcement learning by PID lagrangian methods.
In Proceedings of the 37th International Conference on
Machine Learning (ICML), volume 119, pp. 9133-9143,
Virtual Event, 2020.

Sun, Z. and Yang, Y. DIFUSCO: Graph-based diffusion
solvers for combinatorial optimization. In Advances in
Neural Information Processing Systems 36 (NeurIPS), pp.
3706-3731, New Orleans, LA, 2023.

Tang, Q., Kong, Y., Pan, L., and Lee, C. Learning to solve
soft-constrained vehicle routing problems with lagrangian
relaxation. arXiv:2207.09860, 2022.

Toth, P. and Vigo, D. Vehicle routing: problems, methods,
and applications. SIAM, 2014.

Treitl, S., Nolz, P. C., and Jammernegg, W. Incorporating
environmental aspects in an inventory routing problem.
a case study from the petrochemical industry. Flexible
Services and Manufacturing Journal, 26:143-169, 2014.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N, Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems 30 (NeurIPS), pp. 5998-6008, Long
Beach, CA, 2017.

11

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks.
In Advances in Neural Information Processing Systems
28 (NeurlPS), pp. 2692-2700, Montreal, Canada, 2015.

Wang, Z., Yao, S., Li, G., and Zhang, Q. Multiobjective
combinatorial optimization using a single deep reinforce-
ment learning model. IEEE Transactions on Cybernetics,
54(3):1984-1996, 2024.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8(3):229-256, 1992.

Yao, Y., Liu, Z., Cen, Z., Zhu, J., Yu, W., Zhang, T., and
Zhao, D. Constraint-conditioned policy optimization for
versatile safe reinforcement learning. In Advances in
Neural Information Processing Systems 36 (NeurlPS),
New Orleans, LA, 2023.

Ye, H., Wang, J., Liang, H., Cao, Z., Li, Y., and Li, F.
GLOP: Learning global partition and local construction
for solving large-scale routing problems in real-time. In
Proceedings of the 38th AAAI Conference on Artificial
Intelligence, pp. 20284-20292, Vancouver, Canada, 2024.

Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P. S., and
Chi, X. Learning to dispatch for job shop scheduling
via deep reinforcement learning. In Advances in Neural
Information Processing Systems 33 (NeurIPS), pp. 1621-
1632, Vancouver, Canada, 2020a.

Zhang, R., Prokhorchuk, A., and Dauwels, J. Deep rein-
forcement learning for traveling salesman problem with
time windows and rejections. In Proceedings of the Inter-
national Joint Conference on Neural Networks (IJCNN),
pp. 1-8, Glasgow, United Kingdom, 2020b.

Zheng, Z., Yao, S., Wang, Z., Xialiang, T., Yuan, M., and
Tang, K. DPN: Decoupling partition and navigation for
neural solvers of min-max vehicle routing problems. In
Proceedings of the 41st International Conference on Ma-
chine Learning (ICML), Vienna, Austria, 2024.

Zhou, C., Lin, X., Wang, Z., Tong, X., Yuan, M., and
Zhang, Q. Instance-conditioned adaptation for large-
scale generalization of neural combinatorial optimization.
arXiv:2405.01906, 2024a.

Zhou, J., Wu, Y., Song, W., Cao, Z., and Zhang, J. Towards
omni-generalizable neural methods for vehicle routing
problems. In Proceedings of the 40th International Con-
ference on Machine Learning (ICML), pp. 42769-42789,
Honolulu, HI, 2023.

Zhou, J., Cao, Z., Wu, Y., Song, W., Ma, Y., Zhang, J.,
and Xu, C. MVMOoE: Multi-task vehicle routing solver
with mixture-of-experts. In Proceedings of the 41th Inter-
national Conference on Machine Learning (ICML), pp.
61804-61824, Vienna, Austria, 2024b.

Submission and Formatting Instructions for ICML 2025

Zhou, J., Wu, Y., Cao, Z., Song, W., Zhang, J., and Shen, Z.
Collaboration! towards robust neural methods for routing
problems. In Advances in Neural Information Processing
Systems 37 (NeurIPS), Vancouver, Canada, 2024c.

12

Submission and Formatting Instructions for ICML 2025

A. Pseudo Code of the Training Process

Algorithm 1 Pre-training of the A-conditioned policy

Input: Distribution D), number of training batches 7', batch size B, number of parallel sampling P

Initialize policy network parameters 0

fort =0to 7T — 1do
Generate a batch of instances {I;}2
Sample dual variables \; ~ Dy, Vi e {1,..., B}
Sample multiple solutions {7} }le ~mo(-|hi, I;), Yie{l,.., B}
Compute baseline b; < Zle —(fr,(7]) + Nigr, (1)), Vi = {1, ""B}, '
Compute policy gradient Vo.J(0) + B—lp f;l Z;;l(—(f[i (17) 4+ Xigr, (77)) — bi) Ve log mo (77 | Niy I;)
Update parameters 6 < 0 + aVyJ(6)

end for

Output: 0

Algorithm 2 Fine-tuning of the A-conditioned policy
Input: Number of training batches 7', batch size B, number of parallel sampling P, dual variable learning rate oy, policy
learning rate v, maximum number of itertations K, maximum infeasible ratio §
Initialize policy network parameters 6
Generate a batch of instances {I,;}2 ,
Initialize dual variables)\; < A(?), Vi e {1,..., B}
Initialize iteration counts k; < 0, Vi € {1,..., B}
fort=0toT —1do _
Sample multiple solutions {7] le ~mo(-|Ai, I;), Yie{l,.., B}
Compute baseline b; < Zle —(fr,(7)) + Nigr, (77)), Vie{1,.., B}
Compute policy gradient V.J(0) « 55 le Zle(—(f]i (7Y + Nigr, (77)) — b)) Ve log o () | \i, I)
Update parameters 6 < 6 + aVyJ(6)
Adjust the maximum number of iterations K according to the current infeasibility ratio, ensuring the ratio of retained
infeasible instances does not exceed the maximum ratio &
for each instance I; without feasible solutions do
Update \j < A\; + ax ming,e(p) (g1, (7)) + c1,(7]"))
Increment k; < k; + 1
end for
for each instance I; with zero k; or k; > K do
Generate a new instance to replace I
Initialize A; < A(?) and k; < 0
end for
end for
Output: 0

B. Related Works

Prevalent paradigms of neural VRP. Many researchers have focused on end-to-end neural methods that learn to generate
solutions through deep neural networks (Bengio et al., 2021; Cappart et al., 2023). These neural solvers can be categorized
into three paradigms (Ma et al., 2023): (1) Learn-to-Construct (L2C) methods sequentially extends solutions from scratch
in an autoregressive manner, typically trained via reinforcement learning (Nazari et al., 2018) or imitation learning (Drakulic
et al., 2023). These L2C methods have proven to be applicable to a variety of combinatorial problems (Zhang et al., 2020a)
and industrial applications (Lai et al., 2022). (2) Learn-to-Predict (L.2P) methods operate under a variable-independent
assumption, directly predicting the entire solution without conditional dependence (Joshi et al., 2019). While computationally
efficient, L2P methods often suffer from limited expressiveness. To address this issue, recent research has introduced
diffusion models to enhance the L2P paradigm by leveraging their ability to generate multimodal distributions of optimal

13

Submission and Formatting Instructions for ICML 2025

solutions (Sun & Yang, 2023; Li et al., 2023). (3) Learn-to-Search (L2S) methods adopt the iterative framework of
traditional search heuristics. During the search process, L2S methods usually leverage a RL policy to control or select search
operators (Ma et al., 2021; Lu et al., 2019), thereby guiding the search directions towards near-optimal solutions.

Recent advances in neural VRP. Recent advancements in neural methods for solving VRPs focus on improving scalability
and robustness through innovative architectures and learning strategies. For example, the large-scale performance is improved
by employing divide-and-conquer strategies (Fu et al., 2021; Ye et al., 2024), leveraging heavy decoder architectures (Luo
et al., 2023), incorporating distance-related bias (Zhou et al., 2024a), and exploiting local transferability (Gao et al.,
2024a; Fang et al., 2024); the robustness against distribution shifts is improved by distributional robust optimization (Jiang
et al., 2022), multi-distribution knowledge distillation (Bi et al., 2022), meta learning (Zhou et al., 2023) and ensemble
learning (Jiang et al., 2023). Furthermore, it is observed that the performance of neural solvers can be enhanced by utilizing
a population of complementary models (Grinsztajn et al., 2023; Zhou et al., 2024c; Gao et al., 2024b). Moveover, Liu et al.
(2024) proposed to develop a foundation model for a class of VRP variants, leveraging the shared problem structure to
achiece better performance. Building on this, Zhou et al. (2024b) further improved model capability by introducing the
mixture-of-experts structure. Besides these efforts, this paper focuses on complex constrained VRPs, which are common in
real-world applications (Cattaruzza et al., 2017; Glomvik Rakke et al., 2012) but have not received much attention in the
research community. Only a few works (Tang et al., 2022; Chen et al., 2024; Bi et al., 2024) try to address it through feature
enhancement or Lagrange multiplier method. In this context, we introduce a novel instance-level adpative framework for
Lagrangian-based neural methods, reducing the infeasiblity rate significantly.

C. Instance Generation

In our experiments, we consider two categories of problem, TSPTW and TSPDL. Following prior works (Kool et al., 2019),
we randomly sample coordinates (z;,y;) for each node ¢ (including the depot) from a uniform distribution U (0, 1) within
a square. For generating the time windows and draft limits, we utilize the code of Bi et al. (2024) and adopt the hard
settings, which are sufficiently challenging to examine state-of-the-art neural and OR solvers. The generation process of
time windows and draft limits is detailed as follows.

Time windows. After generating the node coordinates, the pairwise travel times are calculated based on the Euclidean
distance between any two nodes. For the generation of time windows, we adopt the configuration of a widely recognized
benchmark (da Silva & Urrutia, 2010) in our experiments. Specifically, the process begins with the construction of a
random tour 7 (i.e., a random permutation of the nodes). Subsequently, the time window [I;, u;] for each node i is iteratively
generated, where the lower bound [/; and upper bound u; are uniformly sampled from a range determined by the cumulative
travel distance ¢; of the partial solution up to node 4 and the maximum window size 2. More formally, I; ~ U[p; — 1, ¢;]
and u; ~ Ul;, ¢; + n]. This procedure guarantees the existence of at least one feasible solution for each instance, and the
tight coupling between the time windows and the randomized tours introduces significant complexity to the problem, thereby
increasing the computational difficulty of satisfying constraints. In this paper, the maximum window size 7 is set to 50, and
we employ a scale factor p = 100 to normalize the node coordinates and time windows according to (Bi et al., 2024).

Draft limits. In the context of TSPDL, each node is associated with a demand value and a maximum draft limit, which
is designed to avoid overloaded ships entering these ports (i.e., nodes). From an initial feasible setting, the draft limit of
each node is set to the summarized demands of other nodes, thereby ensuring that any node demand can not exceed its own
draft limit. Subsequently, a fraction parameter, denoted as p%, is introduced to adjust the draft limits of non-depot nodes.
Specifically, p% of the non-depot nodes are randomly selected, and each of them is assigned a draft limit drawn as a random
integer from the range [d;, Y .-, d;], where §; is the demand of the i-th node. Finally, a feasibility validation is conducted
(e.g., utilizing bin-counting constraints) to ensure that the assigned draft limits do not lead to instances without feasible
solutions. In our experiment, the node demands are set to 1 and the fraction parameter p% is set to 90%.

D. Implementation Details
D.1. Training Details

The training procedure of our ICO method contains two stages: a pre-training stage and a fine-tuning stage. The pre-training
stage involves a total of 10, 000 epochs, while the fine-tuning stage comprises 1, 000 epochs. Each training epoch processes

14

Submission and Formatting Instructions for ICML 2025

10,000 synthetic problem instances. For both stages, we select the model checkpoint that achieves the best inference
performance on a validation dataset as the final model. It is worth noting that the training process of our ICO method
includes 1, 000 more epochs compared to the training process of POMO+PIP. To ensure a fair comparison, we extend the
training of the provided POMO+PIP checkpoints by an additional 1, 000 epochs.

The fine-tuning stage involves the iterative updating of \ values. In this process, the initial values A() is uniformly set to
0.1 for all problem instances. If the policy fails to find feasible solutions on a specific instance, the A value corresponding
to this instance is updated based on the constraint violation, where the learning rate of A is set to 0.5 for TSPTW and
0.2 for TSPDL, since the scales of constraint violations on TSPTW and TSPDL are different. These hyperparameters in
updating A\ are aligned with the corresponding hyperparameters in the inference stage, narrowing the gap of training and
inference. To improve computational efficiency and mitigate the risk of overfocusing on challenging instances, the number
of iterations is limited to a maximum of 4, and the ratio of infeasible instances within a batch must not exceed 25%. During
the fine-tuning on TSPDL50, we observe that the fine-tuned policy tends to overemphasize the constraints, resulting in a
near zero infeasibility rate but a significant deterioration in objective values. To mitigate this issue, we adjust the learning
rate of fine-tuning process on TSPDL50 to 1 x 10~%, while learning rates of other training process remain the default setting
(.e.,1x107%).

D.2. Inference Details

The instance-specific A values are iteratively updated based on constraint violations during the inference stage. In this
process, the A values are initialized as 0.1 for all instances except instances of TSPDL100, since it is observed that the
conditioned policy fails to obtain feasible solutions for most instances of TSPDL100 when using A = 0.1. Consequently,
the intial X\ value for TSPDL100 is increased to 0.5. During the updating process of A, the learning rate is configured as
0.5 for TSPTW and 0.2 for TSPDL. These different learning rates are to accommodate the different scales of constraint
violations on these two problem types. In the comparison experiments, the number of iterations for updating A is set to 16.

D.3. Experimental Settings

Metrics. Four metrics are applied: Infeasibility rate, average optimality gap, normalized HyperVolumn (HV) and runtime.
The instance-level infeasibility rate measures the proportion of instances where the solver fails to find any feasible solution.
These metrics are calculated on a test dataset containing 10,000 instances. To compute the optimality gap, we use the
solutions obtained by LKH3 through full-time search as reference solutions. Unlike some prior works that compute the
optimality gap directly from the average objective (Kool et al., 2019), we calculate the optimality gap on an instance-by-
instance basis and then average these values. It is important to note that the calculation of objective values and optimality
gaps only includes instances with feasible solutions. Therefore, the average objective value may not serve as a fully reliable
metric for performance comparison, as the sets of instances with feasible solutions can vary across different methods. To
measure the comprehensive performance of both solution quality and feasibility, we further compute the normalized HV
based on the infeasibility rate and average optimality gap. The reference point for computing HV is set to (100%, 5%)
for TSPTW and (10%, 20%) for TSPDL, where the first number represent the infeasibility rate and the other denotes the
average gap. To evaluate the computational efficiency, we compare the total runtime of solving 10,000 instances with batch
parallelism on a single GPU (NVIDIA RTX 4090 Ti). For OR solvers like LKH3 and OR-Tools, we record the runtime of
parallel computation on 16 CPU cores.

Evalution configurations of baselines. To align the runtime consumption, POMO+PIP employs x28 sampling for
intances with n = 50 and x20 sampling for instances with n = 100, where AM+PIP adopts %200 sampling for both
n = 50 and n = 100 instances. These different sampling configurations are to align with the additional runtime caused by
the computation of A\-conditioned embeddings in our ICO method. The evaluation batch sizes for both POMO-PIP and our
ICO method are set to 2,500 for instances with n = 50 and 1000 for instances with n = 100.

E. Additional Results

E.1. Analysis of Training Strategies

We design a two-stage training strategy that comprises a pre-training stage that makes the policy capable of solving instances
with varying degrees of constraint awareness, and a fine-tuning stage that aligns the \ values with instance hardness. To

15

Submission and Formatting Instructions for ICML 2025

evaluate the effectiveness of these two stages, results of the single- policy (i.e., POMO+PIP with A = 1), the pre-trained
policy and final fine-tuned policy are plotted and compared in Figure 5. The results indicate that both the pre-trained policy
and the fine-tuned policy achieve superior performance compared to the single-\ approach, particularly with respect to the
infeasibility rate. Furthermore, the comparison between the pre-trained and fine-tuned policies reveals that the fine-tuning
process significantly enhances overall performance, except the slight degeneration in terms of the average gap on TSPDL50.
This overall improvement can be attributed to the iterative adjustment of A values, which effectively aligns them with the
hardness of specific problem instances.

TSPTW50 Results TSPTW100 Results TSPDL50 Results TSPDL100 Results
2.00
s POMO+PIP s POMO+PIP s POMO+PIP s POMO+PIP
EEm Pre-trained policy 4 EEm Pre-trained policy EEm Pre-trained policy 10{ MW Pre-trained policy

I Fine-tuned policy B Fine-tuned policy 2.0{ M= Fine-tuned policy B Fine-tuned policy

00 nfeasibility rate Average gap

etrics Metrics Metrics etrics

0-00 feasibility rate Average gap

O nfeasibility rate Average gap

O nfeasibility rate Average gap
Metri

Figure 5. Comparison of the pre-trained policy and fine-tuned policy.

E.2. Analysis of Different Update Rules for A

Proportional-Integral-Derivative (PID) control for updating A. From the perspective of control theory, the subgradient
descent process of A behaves as integral control, while Stooke et al. (2020) proposed to further incorporate proportional and
derivative control into the update rule, avoiding oscillations encountered by the integral-only controller. The proportional
control is to hasten the constraint satisfaction in response to the immediate constraint violation. The derivative control
prevents the oscillations by monitoring the variation tendency of constraint violations. By adding the terms of proportional,
integral and derivative control, the update rule of PID control is expressed as:

Ay :gI(Tt)7

Iy = It 1 + g1(71),

0 = max{gr(m¢) — gr(1t—1),0},
M=Kp - A+ K;-I; + Kp - 6,

where A, represents the proportional term of time step ¢, I; denotes the ¢-th step integral term that accumulates the constraint
violations of previous steps, §; computes the derivative term of the constraint violation, and Kp, K, Kp are tuning
parameters that measure the weights of three terms. Intuitively, this PID method provides a richer set of controllers than
subgradient descent, but it also introduces more hyperparameters that require manual tuning. In our experiments, K p is set
to 0.1 and K p is set to 1.0 on both problem types, and K7 is set to 0.5 on TSPTW and 0.01 on TSPDL.

In Table 2, we compare the performance of different update rules of A in inference stage: fixed A values (A € {0.5,1.0,2.0}),
randomly sampled X values, the subgradient descent method and the PID control method (Stooke et al., 2020). For the
random sampling strategy, A values are drawn randomly from the uniform distribution U (0.1, 2.0) at each iteration.

The results in the last three rows indicate that both the subgradient descent method and the PID control method generally
outperform the random sampling strategy, with particularly improvements in reducing the infeasibility rate. It is worth
noting that the random sampling approach also demonstrates competitive performance, indicating that simply varying the A
values randomly for each instance can be an effective strategy. Moreover, as evidenced in the first three rows, employing
fixed A values leads to significantly inferior performance compared to the adaptive variation of A, underscoring the critical
importance of dynamically adjusting A for each instance. By comparing the results of the last two rows, it is observed that
the PID control method does not achieve superior performance as expected, which can be attributed to two factors: (1) the
hyperparameters of PID are challenging to tune; (2) the subgradient descent method is already involved in the fine-tuning
process, while the PID control is not integrated into the training, limiting its effectiveness.

16

Submission and Formatting Instructions for ICML 2025

Table 2. Additional results of different update rules of A on TSPTW and TSPDL. The best results are highlighted in bold.

| TSPTW (n=50) | TSPTW (n=100) | TSPDL (n=50) | TSPDL (n = 100)

Methods
‘ Inf. rate Avg. Gap ‘ Inf. rate Avg. Gap ‘ Inf. rate Avg. Gap ‘ Inf. rate Avg. Gap

ICO (A =0.5) 1.43% 0.19% 4.34% 0.26% 2.63% 2.50% 42.14% 13.16%
ICO (A =1.0) 1.52% 0.23% 4.03% 0.36% 0.23% 2.77% 2.01% 10.79%
ICO (A =2.0) 1.55% 0.24% 4.27% 0.38% 0.07% 3.15% 0.38% 11.62%
ICO (random) 0.55% 0.07% 2.40% 0.14% 0.12% 2.28% 0.40% 10.73%
ICO (subgradient) | 0.51% 0.07% 1.33% 0.14% 0.01% 2.32% 0.91% 9.22%
ICO (PID control) | 0.55% 0.07% 1.39% 0.14% 0.05% 2.36% 0.26 % 9.25%

E.3. Analysis of Network Architectures

The A-conditioned policy network is a key component in our ICO framework, which decouples the policy optimization
from the optimization of dual variables. This network should take A as the condition varibable and effectively adjust the
constraint awareness according to the varying value of A. Among existing network architectures in other domains (Wang
et al., 2024; Lin et al., 2022), there are two alternative approaches to implement the conditioned policy: (1) condition A
in the initial embeddings; (2) condition A in the decoder’s context. The second approach, referred to as the A-conditioned
context method, is detailed as follows.

A-conditioned context. Building upon the POMO model (Kwon et al., 2020), the conditioned context method integrates a
linear embedding of)\ into the decoder’s context embedding, formulated as g = WAN + W [h€,t°]. Here, W e Rix1
and W4 € R%*? are trainable parameters, and [, t¢] denotes the concatenation of the current node embedding h¢ and the
current time t°, together forming the context used for selecting candidate nodes. The resulting output, g, functions as the
query input for the subsequent multi-head attention layer in the decoder. This conditioned context approach incorporates the
information of X into the core component of the decoder, enabling an efficient adjustment of the policy’s behavior.

Table 3. Additional results of different network architectures on TSPTW and TSPDL. The best results are highlighted in bold.

| TSPTW (n=100) | TSPDL (n = 100)
‘ Inf. rate Avg. Gap ‘ Inf. rate Avg. Gap

Network with A-conditioned context 2.83% 0.30% 2.31% 13.34%
Network with A-conditioned embeddings | 2.28% 0.17% 1.14% 10.01%

Methods

In Table 3, we compare the performance of the network with A-conditioned context and network with A-conditioned
embeddings on TSPTW100 and TSPDL100. Here we report the results of the pre-trained policies. The experimental results
demonstrate that the A-conditioned embedding method achieves significantly superior performance in both infeasibility rate
and average optimality gap. This performance advantage can be attributed to the fact that the A-conditioned embedding
utilizes the full capacity of the entire network to process A-related information, while the conditioned context approach
restricts the processing of A-related information to the decoder, thereby limiting its effectiveness.

E.4. Analysis of Distribution D(\)

In the pre-training stage of the conditioned policy, random values of A are sampled from a pre-defined distribution D () for
training. Empirically, the distribution D(\) has a non-negligible influence on the performance of the pre-trained policy. A
natural and straightforward option for D(\) is the uniform distribution within an appropriate range. However, as shown
in Figure 6, the trained policy just silghtly violates constraints on the majority of instances, where only a small subset
of instances in the long tail experience significant constraint violations. Therefore, we adopt a triangular distribution
7(0.1,0.5,2.0), which biases the sampling towards smaller A values, thereby prioritizing the optimization of instances with
low constraint violations. Figure 7 compares the performance of the policy trained with a uniform distribution U (0.1, 2.0)

17

Submission and Formatting Instructions for ICML 2025

and the policy trained with a triangular distribution 7°(0.1, 0.5, 2.0) on the TSPTW50 dataset. The results demonstrate that
the triangular distribution leads to superior overall performance as expected.

TSPTW50 Results

12 B uniform U(0.1,2)
W triangular T(0.1, 0.5, 2.0)
1.0
0.8
§ = 0.6
i >

I R o o ry 0.0 Infeasibility rate Average gap
Constraint violations Metrics
Figure 6. Histogram of constraint violation statistics on the Figure 7. Performance of using two different D()) configura-
validation dataset. tions during the pre-training stage.

E.5. Analysis of anytime performance

During the inference stage, our ICO method iteratively samples new solutions and updates the A\ values based on the
current constraint violations. Consequently, the anytime performance throughout the iterative process becomes a critical
factor. Figure 8 presents the convergence curves of three metrics—hypervolume (HV), infeasibility rate, and average
optimality gap—on TSPTW50 and TSPTW100. The results indicate that, while the proposed ICO method exhibits the
highest infeasibility rate at the initial stage, it demonstrates a rapid convergence rate and achieves superior performance
compared to single-A models in subsequent iterations. Moreover, in terms of HV and optimality gap, the ICO method
consistently outperforms single-A models throughout the entire iterative process.

TSPTW50 TSPTW50 TSPTW50

)

HyperVolumn

Infeasibility rate (%

s
E
5
2

Average optimality gap (%)

' ’ “ Runtime (5 ' ' " Runtime (5 “ Runtime (s)
POMO+PIP (A=0.5) —— POMO+PIP (A=1.0) —— POMO-+PIP (1 =2.0) ico
TSPTW100 TSPTW100 TSPTW100
B - \
£ o _ g
3 e g
2 oo v °
g /’/j g, 2
o z g 030
: N : I
= g o o
S - D o
= //_/_’_— <
' “ Runtime (5 “ Runtime (5) ™ Runtime ()
POMO+PIP (A=0.5) —— POMO+PIP(A=1.0) —— POMO+PIP (1 =2.0) ico

Figure 8. Any-performance comparion between our ICO method and the single-\ methods. The figures, from top to bottom, represent the
convergence curves on TSPTW50 and TSPTW 100, respectively.

18

