
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Adaptive Constrained Optimization for Neural Vehicle Routing

Anonymous Authors1

Abstract

Neural solvers have shown remarkable success in
tackling Vehicle Routing Problems (VRPs). How-
ever, their application to scenarios with complex
real-world constraints is still at an early stage. Re-
cent works successfully employ variants of the
Lagrange multiplier method to handle such con-
straints, but their limitation lies in the use of a uni-
form dual variable across all problem instances,
overlooking the fact that the difficulty of satis-
fying constraints varies significantly across in-
stances. To address this limitation, we propose an
instance-level adaptive constrained optimization
framework that reformulates the Lagrangian dual
problem by assigning each instance its own dual
variable. To efficiently optimize this new prob-
lem, we design a dual variable-conditioned policy
that solves instances with a controllable level of
constraint awareness, which effectively decouples
policy optimization from the optimization of dual
variables. By leveraging this conditioned policy,
we customize the optimization of dual variables
for each test instance by adapting to its particular
constraint violations. Experimental results on the
Travelling Salesman Problem with Time Window
(TSPTW) and TSP with Draft Limit (TSPDL)
show that our method exhibits advantages com-
pared to the strong solver LKH3 and significantly
outperforms state-of-the-art neural methods.

1. Introduction
The Vehicle routing problem (VRP) is a classic kind of NP-
hard combinatorial optimization problem with broad real-
world applications in manufacturing (Treitl et al., 2014),
transportation (Stein, 1978), and logistics (Konstantakopou-
los et al., 2022). VRP solvers in the Operational Re-
search (OR) community, which are typically based on heuris-

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

tic search (Helsgaun, 2000) and integer programming (Ap-
plegate et al., 2006), have achieved remarkable success in
the past but are often limited by high computational over-
heads. To address this, neural networks have been lever-
aged to develop efficient, data-driven heuristics for solving
VRPs (Vinyals et al., 2015; Joshi et al., 2019; Kool et al.,
2019; Ma et al., 2021; Kim et al., 2021; Jiang et al., 2022;
Cappart et al., 2023; Ye et al., 2024; Liu et al., 2024), demon-
strating faster solving speeds and competitive solution qual-
ity against strong OR solvers. A prominent approach among
these neural solvers is utilizing reinforcement learning-
based policies to sequentially construct solutions (Bello
et al., 2017), which has shown effectiveness on canonical
problems like TSP and Capacitated VRP (CVRP) (Kwon
et al., 2020; Drakulic et al., 2023; Luo et al., 2023).

Real-world applications of VRP, however, often involve con-
straints that are more complex than those in the canonical
problems. For example, in many business scenarios such
as public transportation (Cattaruzza et al., 2017; Shahin
et al., 2024) and dial-a-ride systems (Cordeau & Laporte,
2003), the arrival time of vehicle must fall into a customer-
requested time window, known as the time window con-
straint. This constraint significantly restricts the feasible
region such that even finding a feasible solution is proved
to be NP-complete (Savelsbergh, 1985), which can pose
great challenges to most existing solvers. Other examples of
complex constraints in VRPs include the global priority rule
in disaster relief (Panchamgam, 2011) and the draft limits
in maritime transportation (Glomvik Rakke et al., 2012). To
handle these hard constraints, classical OR solvers often
employ techniques like penalty functions to incorporate con-
straint violations into the objective function. In the strong
solver LKH3 (Helsgaun, 2017), the penalty function is prior-
itized over the original distance cost, highlighting its empha-
sis on handling constraints. However, as shown in pervious
works (Bi et al., 2024) and our experiments (see Table 1),
the feasibility rate obtained by the traditional solvers is still
unsatisfactory when runtime budgets are limited.

Neural solvers have achieved remarkable performance on
various VRPs, even surpassing LKH3 on large-scale prob-
lems (Luo et al., 2024) and specific problem variants (Zheng
et al., 2024). However, the research of their extension to
VRPs with complex constraints is still at an early stage. To
better handle complex constraints, existing studies have re-

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2025

Insufficient emphasis

Suitable emphasis

Overemphasis

Expected violation degree of the single 𝜆
High violations Low violations Medium violations

Figure 1. An illustration of the drawback inherent in single-dual
variable (λ) methods. Constraint violations of different problem
instances are plotted. The single-λ neural solver tends to overem-
phasize (insufficiently emphasize) constraints on some instances
with relatively low (high) constraint violations.

fined neural methods from several perspectives, including
constraint-aware feature design (Chen et al., 2024), improve-
ment in network architecture (Falkner & Schmidt-Thieme,
2020), modifications to the objective function (Zhang et al.,
2020b; Chen et al., 2022; Tang et al., 2022), and develop-
ment of novel masking mechanisms (Bi et al., 2024). For
instance, Chen et al. (2024) introduced a multi-step look-
ahead strategy, integrating the future time window informa-
tion to enhance constraint-related features. Similarly, Bi
et al. (2024) designed a look-ahead-based mask mechanism
to proactively exclude actions that would violate constraints
in future steps. From the perspective of constrained opti-
mization, Tang et al. (2022) adopted the Lagrange multiplier
method to explicitly optimize constraint violations together
with the route distance. Notably, the most recent Lagrange
multiplier-based method proposed by Bi et al. (2024) has
achieved state-of-the-art performance on common bench-
marks, regarded as a general and effective solution for com-
plex VRPs. However, these Lagrangian-based methods
directly apply the canonical Lagrange multiplier method to
neural solvers by using a uniform dual variable across all
instances, overlooking the variation in constraint violations
among instances, as illustrated in Figure 1. This drawback
may severely limit the adaptability of neural models, ulti-
mately leading to performance that is far from optimal.

To address this issue, we introduce a new formulation of the
Lagrangian dual problem that assigns each training instance
a specific dual variable, enabling adaptive constrained op-
timization at the instance level. Unlike methods that rely
on a single dual variable, this instance-specific formulation
offers greater flexibility by optimizing the trade-off between
solution quality and constraint satisfaction for each instance.
However, directly optimizing the instance-specific dual vari-
ables for millions of training instances (e.g., the number
of instances is over one hundred millions in the training
of POMO (Kwon et al., 2020)) poses significant computa-
tional challenges. To mitigate this issue, we develop a dual

variable-conditioned policy, which decouples policy opti-
mization from the optimization of dual variables, thereby
reformulating the dual problem into two separate subprob-
lems. First, we focus on solving the inner maximization
subproblem by training a dual variable-conditioned policy
that is capable of accommodating varying degrees of con-
straint awareness. This is achieved through a two-stage
training strategy: A pre-training stage aimed at fostering
adaptability to a wide range of dual variable (λ) values, and
a fine-tuning stage designed to refine the alignment between
λ values and the hardness of individual instances. Based
on the trained λ-conditioned policy, we solve the outer sub-
problem in the inference stage by tailoring the optimization
of λ for each test instance. Through iterative update of λ,
we push the policy to strike an appropriate trade-off between
the objective value and constraint violations.

We conduct experiments on two challenging constrained
VRPs: Travelling Salesman Problems with Time Win-
dow (TSPTW) and TSP with Draft Limit (TSPDL). No-
tably, these two problems pose greater challenges in sat-
isfying constraints compared to CVRPTW and CVRPDL,
as the constraint violations of the latter can be addressed
more easily by assigning additional vehicles to the vio-
lated nodes. The experimental results demonstrate that
our adaptive optimization approach significantly outper-
forms the state-of-the-art neural method (Bi et al., 2024)
that relies on a single dual variable. For example, the
performance comparison of optimality gap and infeasibil-
ity rate on TSPDL is illustrated in Figure 2. Moveover,
compared to the strong solver LKH3 within the same run-
time budget, our neural method reduces the infeasibility
rate by 95.56% − 1.33% = 94.23% on TSPTW100 (i.e.,
TSPTW with 100 nodes) and 7.02% − 0.91% = 6.11%
on TSPDL100, while achieving competitive optimality gap.
This suggests that neural methods can be a promising direc-
tion besides OR solvers for tackling constrained VRPs.

0 1 2 3 4 5 6 7
Infeasibility Rate (%)

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

A)
e%

ag
e

Op
tim

a
ity

 G
ap

 (%
)

LKH3 (same b(dget)
Sing e-λ mode with λ= 0.5
Sing e-λ mode with λ= 1.0
Sing e-λ mode with λ= 2.0
O(% p%oposed method

Figure 2. Performance comparison of LKH3, single-λ models and
our proposed method, on TSPDL with 50 nodes.

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2025

2. Background
2.1. Constrained VRPs

The objective of VRPs (Dantzig & Ramser, 1959) is to de-
termine a tour that minimizes the total travel distance while
visiting all the customer nodes. Formally, a VRP instance is
defined on a graph G = (V,E), where V represents the set
of all customer nodes along with a depot node, E denotes
the set of directed edges between each pair of nodes (i.e.,
the graph is fully connected). The vehicles are required to
start and end their tours at the depot node. In this paper,
we focus on the TSP with two types of constraints: Time
window constraint and draft limit constraint.

Time window. The time window constraint nartually
arises in many business scenarios that require flexible time
scheduling (Toth & Vigo, 2014). In this context, each node
is accosiated with a time window [li, ui] that defines the
earlist time li and the latest time ui of visiting that node.
The time window constraint ensures the arrival time at each
node does not exceed the end of its designated time win-
dow. If the arrival time ti is earlier than the start time (i.e.,
ti < li), the vehicle must wait until the time window starts.
Formally, a problem instance I is expressed as:

min
τ

fI(τ) =
∑

(u,v)∈τ

dI(u, v),

s.t. gI(τ) =

n−1∑
i=0

max{ti − ui, 0} ≤ 0,

where τ represents the tour, and dI(u, v) denotes the travel
distance between nodes u and v. The goal is to find a tour τ
that minimizes the total distance fI(τ) while satisfying the
time window constraint gI(τ) ≤ 0.

Draft limit. The draft limit in ports is an important factor
that influences the routing actions in maritime transporta-
tion (Glomvik Rakke et al., 2012). The draft of a ship is the
distance between the waterline and the bottom of the ship,
affected by the cumulative load. The draft limits in ports are
designed to avoid overloaded ships entering these ports. In
this context, each node represents a port with a maximum
draft mi and a non-negative demand δi. The constraint re-
quires that the cumulative load, ci =

∑i−1
j=1 δτj , over the

last i− 1 steps must not exceed the maximum draft mi of
the i-th visited port. Formally, this can be expressed as

gI(τ) =

n−1∑
i=0

max{ci −mi, 0} ≤ 0.

2.2. Lagrange Multiplier Method

To solve constrained VRPs, the constraint violation can be
integrated into the objective function through the formula-

tion of the Lagrangian dual problem (Bertsekas, 2014):

max
λ≥0

min
τ

[fI(τ) + λ · gI(τ)],

where λ is a non-negative dual variable, quantifing the
impact of a constraint on the objective function. The La-
grangian dual problem can be optimized by alternatively
updating the primal and dual variables. This involves solv-
ing the primal problem for a fixed dual variable, which can
be addressed using a classical VRP solver, followed by up-
dating the dual variable based on the observed constraint
violations (Kohl & Madsen, 1997). The update of the dual
variable is often realized using subgradient descent as:

λ← λ+ α · gI(τ),

where α is the learning rate. Through the iterative adjust-
ment, the dual variable is continuously refined according to
the current level of constraint violation, enabling a better
balance between solution quality and constraint satisfac-
tion. More iterative update methods for the dual variable
include quadratic method (Hestenes, 1969) and proportional-
integral-derivative control (Stooke et al., 2020).

Compared to traditional penalty function-based methods,
the Lagrange multiplier method avoids reliance on fixed
penalty parameters, providing greater flexibility in handling
constraints. Furthermore, it has the potential to yield more
optimal solution if the strong duality holds (Boyd & Van-
denberghe, 2014). However, the Lagrange multiplier-based
method is designed to optimize an individual problem in-
stance. Nartually, a gap arises when it is applied to the
training process involving a larger number of instances.

2.3. Lagrange Multiplier-based Training Methods for
Neural Vehicle Routing

When reinforcement learning (RL) is applied to train neural
networks capable of constructing solutions for VRPs (Bello
et al., 2017), the expected return of the RL policy πθ on an in-
stance I is defined as J (πθ, I) = Eτ∼πθ(·|I)[−fI(τ)], and
the expected constraint violation is given by JC(πθ, I) =
Eτ∼πθ(·|I)[−gI(τ)]. Using these definitions, the Lagrangian
dual problem of policy optimization is formulated as,

min
λ≥0

max
θ

EI∼D[J (πθ, I) + λ · JC(πθ, I)].

Unlike typical constrained RL (Achiam et al., 2017; Yao
et al., 2023; Gu et al., 2024), where the focus is on solving
a specific instance, the trained policy in this framework is
designed to generalize to unseen instances from the same
problem class. To achieve this, the optimization objective
during training involves maximizing the expected perfor-
mance over a distribution of instances. In practice, the
training process is conducted on a dataset D that contains a
large number of synthetic problem instances.

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2025

To optimize a similar dual problem, Tang et al. (2022)
proposed an approach that alternatively updates the pol-
icy πθ and the dual variable λ. Specifically, the policy
πθ is optimized by policy gradient algorithms such as RE-
INFORCE (Williams, 1992), while the dual variable λ is
optimized by subgradient descent. This method balances
the trade-off between minimizing the objective and reduc-
ing constraint violations by dynamically adjusting λ. More
recently, Bi et al. (2024) observed that optimizing λ may in-
cur significant computational overhead due to the additional
iterations required for updating λ. Therefore, they fixed λ
to a pre-defined constant throughout the training process.

Limitations of Lagrangian-based training. The La-
grange multiplier method was originally designed for op-
timizing a single instance. However, existing approaches
directly extend this method to the training process of neural
solvers by utilizing a single shared dual variable for a large
number of training instances. This simplification overlooks
the fact that different instances can exhibit significantly
varying levels of constraint violations, as demonstrated in
Figure 1, thereby resulting in suboptimal performance.

3. Method
To address the aforementioned limitations, we propose an
Instance-level adaptive Constrained Optimization (ICO)
method. A graphical illustration of our method is shown in
Figure 3. In this section, we first provide an overview of the
proposed ICO approach, followed by a detailed description
of its training process and network architecture.

3.1. Instance-level Adaptive Constrained Optimization

We leverage instance-specific dual variables to effectively
handle the varying degrees of constraint violations across in-
stances, which can enable a more flexible trade-off between
optimizing the objective and satisfying the constraints. For-
mally, the new dual problem is formulated as

min
{λi}N

i=1

max
θ

N∑
i=1

[J (πθ, Ii) + λi · JC(πθ, Ii)], (1)

where N is the number of training instances and λi is the
dual variable specific to instance Ii. This dual formula-
tion potentially leads to enhanced performance in both so-
lution quality and constraint satisfaction if the prime and
dual variables are both optimized properly. However, it is
extermely challenging and computationally expensive to
optimize the instance-specific dual variables for millions
of training instances. In the common training method of
neural solvers (Kwon et al., 2020), more than one hundred
million training instances are generated on the fly, and each
instance is only used once during training without addi-
tional iterations to refine its corresponding dual variable.

This training process necessitates an efficient and scalable
approach to adaptively manage instance-specific dual vari-
ables. Therefore, we discard the expensive iterative method
and decouple the original bi-level optimization problem into
two separate subproblems: Solve the inner subproblem of
Eq. (1) as phase 1 and solve the outer subproblem based on
the inner results as phase 2.

Phase 1: Solve the inner subproblem. In the first phase,
we solve the inner maximization problem separately while
considering varying values of λ, aiming to obtain a manifold
of policies capable of solving instances with continuously
varying levels of constraint awareness. To achieve this, we
propose training a λ-conditioned policy πθ(·|λ) that takes λ
as input and performs as trained using the specified λ, i.e.,

πθ(·|λ) ≈ argmax
π

N∑
i=1

[J (π, Ii) + λ · JC(π, Ii)],

where the right side represents the optimal policy corre-
sponding to the given λ. With this condition mechanism,
the constraint sensitivity of the policy can be seamlessly
controlled by adjusting the input value of λ, without requir-
ing any modification to the network parameters. This can
effectively decouple the policy optimization process from
the optimization of the dual variables, thereby enhancing
scalability of the Lagrangian-based training method. The
detailed training algorithm and network architecture for the
λ-conditioned policy are provided in Section 3.2.

Phase 2: Solve the outer subproblem. The second phase
is performed during the inference stage, where instance-
specific λ values are optimized based on the feedback pro-
vided by the trained λ-conditioned policy. For each new
instance, we iteratively update λ by subgradient descent to
minimize its specific constraint violations, thereby adjusting
the policy to achieve an appropriate trade-off. This pro-
cess alternates between sampling a solution using the policy
πθ(·|λ) and updating λ based on the observed constraint
violations of the sampled solution. Formally, the process is
described as follows:

τt−1 ∼ πθ(·|λt−1, I), λt = λt−1 + α · gI(τt−1),

where t denotes the iteration timestep, and gI(τt−1) is the
constraint violation of the sampled solution. Note that we
initialize all λ values using an identical λ0. Furthermore,
we also explore to utilize Proportional-Integral-Derivative
(PID) control to adjust the λ-value as suggested by Stooke
et al. (2020), detailed in Appendix E.2.

3.2. Dual Variable-Conditioned Policy

The λ-conditioned policy serves as a key component in opti-
mizing the decoupled dual problem. We design a two-stage

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2025

Instance-specific 𝝀

Infeasible part

Conditioned
policy

Solve and
Evaluate

Update
policyUpdate 𝜆 andretain

the infeasible part
Constraint violation

Infeasible values

Problem instances

Input

Rewards

Conditioned
policy

Solve and
Evaluate

Update
policy

Problem instances
Input

Rewards

Phase 1: Solve the inner subproblem in training Phase 2: Solve the outer
subproblem in inference

Random 𝝀
(sampled from 𝐷(𝜆))

Pre-training stage Fine-tuning stage

Instance-specific 𝝀

Conditioned
policy

Solve and
Evaluate

Update 𝜆 by
subgradient

Constraint violation

Problem instances

Input

Inference stage

Infeasible part Infeasible part

Infeasible part

depot

depot
depot

Figure 3. An illustration overview of the proposed method. The bi-level Lagrangian problem for constrained optimization is decoupled
into two phases. Left (phase 1): Solve the inner subproblem in training. Right (phase 2): Solve the outer subproblem in inference.

training algorithm for the λ-conditioned policy, consisting
of a pre-training stage to develop adaptability to diverse
λ values and a fine-tuning stage to achieve a more precise
alignment between λ values and instance hardness. Detailed
description of the two training stages is as follows.

Pre-training stage. The pre-training stage is conducted
on randomly sampled λ values, thereby enabling the model
to generalize effectively across varying λ conditions. The
training objective can be expressed as

max
θ

EI∼DEλ∼Dλ
[J (πθ(·|λ), I) + λJC(πθ(·|λ), I)].

Specifically, we randomly sample λi from a pre-defined
distribution Dλ for each training instance Ii, constituting
a pair sample (λi, Ii). The reward function of the instance
Ii is reweighted by its own dual variable λi. Following
the shared baseline method (Kwon et al., 2020), we sample
multiple solutions {τ j}Pj=1 for each (λi, Ii) pair and esti-
mate the baseline by the average reward of these solutions.
Then, we compute the policy gradient ∇θJ(θ) using the
REINFORCE (Williams, 1992) algorithm as

Rj = −(fIi(τ j) + λi(gIi(τ
j) + cIi(τ

j))),∀j ∈ [P],

∇θJ(θ) =
1

P

P∑
j=1

(Rj − 1

P

P∑
k=1

Rk) log πθ(τ
j |λi, Ii),

where [P] denotes {1, ..., P}, and cIi(τ
j) is the number of

timeout nodes, which we use as a heuristic penalty reward,
following the reward design of (Bi et al., 2024). The factor
Rj − 1

P

∑P
k=1 R

k represents the advantage that measures
relative reward improvement over the shared baseline. In-
tuitively, the training algorithm reinforces the probability
of generating positive advantage trajectories (i.e., solutions)
while decreasing the probability of generating negative ones.
Through this training process with random λ, the condi-
tioned policy obtains the adaptability to different levels of
constraint awareness. The pseudo code of the pre-training
process is provided in Appendix A.

Fine-tuning stage. To achieve an effective alignment be-
tween λ values and instance hardness, we further fine-tune
the pre-trained policy using iteratively updated λ values. In
this stage, we initialize a uniform and small initial value
λ(0) for all instances and alternate between optimizing the
policy and updating the dual variables strictly following the
original formulation in Eq. (1). For policy optimization,
we continue to employ the REINFORCE algorithm with
an average baseline, as used in the pre-training stage. For
updating the dual variables, the subgradient is computed
based on the minimal constraint violation value across a set
of sampled solutions {τ j}Pj=1. Formally, the λ values are
updated by the following rule:

λ
(t)
i = λ

(t−1)
i + α min

j∈[P]
(gIi(τ

j) + cIi(τ
j)),

where α is the learning rate. After each iteration, we retain
the infeasible instances and their corresponding λ values in
the batch while replacing the feasible instances with new
ones. It is important to note that the pre-trained policy is
already capable of finding feasible solutions for the ma-
jority of instances. Therefore, the proportion of infeasible
instances in each batch is typically small, ensuring that the
iterations for updating λ do not significantly affect compu-
tational efficiency. Moreover, to further enhance training
efficiency and avoid excessive focus on particularly hard
instances, we impose a maximum iteration limit and a cap
on the infeasible instance ratio. The pseudo code of the
fine-tuning process is provided in Appendix A.

Network architecture. The λ-conditioned policy solves
instances with a controllable level of constraint awareness,
determined by the condition variable λ. Similar conditioned
policies have been explored in related works, particularly
for multi-objective optimization (Lin et al., 2022; Wang
et al., 2024) and latent space search (Chalumeau et al.,
2023). Among them, there are two possible ways to in-
corporate the target variable into the policy network: (1)
embedding it into the initial input features or (2) embedding
it into the decoder’s context. In this paper, we adopt the

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2025

λ-conditioned initial embedding, which empirically demon-
strates superior performance in adjusting trade-off behaviors
(see Appendix E.3). Specifically, building on the POMO
model (Kwon et al., 2020), we incorporate a linear trans-
formation of λ into the original initial embeddings. The
embedding is computed as:

h
(0)
i = Wλλ+Wh[xi, yi, li, ui]

⊤,

where Wλ ∈ Rd×1 and Wh ∈ Rd×4 are trainable parame-
ters, and [xi, yi, li, ui] represents the concatenation of the
node’s coordinates (xi, yi) and its time window bounds
(li, ui). This concatenated feature vector serves as the input
representation for each node. The output h(0)

i is then used
as the initial embedding for the encoder network, which em-
ploys the multi-head attention mechanism (Vaswani et al.,
2017) to perform message passing and update node embed-
dings. Intuitively, the λ-conditioned embedding adjusts the
relative importance of distance-related features (e.g., node
coordinates) and constraint-related features (e.g., time win-
dow bounds) based on the value of λ, thereby enabling a
controllable level of constraint awareness. The rest of the
network architecture closely follows the standard POMO
model (Kwon et al., 2020).

4. Experiments
In this section, we evaluate the effectiveness of our ICO
method through comparison experiments and ablation stud-
ies. The key questions that our experiments will address
are as follows: (1) Does our proposed method outperform
single-λ models trained with different λ values? (2) What
advantages can our neural method offer compared to strong
OR solvers, such as LKH3 (Helsgaun, 2017)?

4.1. Experimental Settings

Problem instance generation. We conduct our experi-
ments on two kinds of problems: TSPTW and TSPDL.
Following prior works (Kool et al., 2019), we randomly sam-
ple node coordinates (xi, yi) from a uniform distribution
U(0, 1) within a square. For generating the time windows
and draft limits, we utilize the code of Bi et al. (2024) and
adopt the hard settings, which are sufficiently challenging
to examine state-of-the-art neural and OR solvers.

Implementation details. Our model is implemented
based on the POMO framework (Kwon et al., 2020), incor-
porating the PI mask (Bi et al., 2024) to restrict the search
space. We only employ the PIP decoder to predict masks dur-
ing the training process on TSP instances with n = 100. The
prior distribution of λ in the pre-training stage, i.e., D(λ), is
set to a triangular distribution T (0.1, 0.5, 2.0). The learning
rate for updating λ is set to 0.5 for TSPTW and 0.2 for
TSPDL. The common hyperparameters shared between our

method and prior works follow their default settings (Kwon
et al., 2020; Bi et al., 2024). More implementation details
are provided in Appendix D due to space limitation.

Baselines. We compare our proposed method against state-
of-the-art neural methods and OR solvers. For OR solvers,
we include LKH3 (Helsgaun, 2017), one of the strongest
solver specifically designed for VRPs; OR-Tools (Falkner
& Schmidt-Thieme), a general-purpose solver capable of
handling various constraints; and two greedy heuristics,
Greedy-L and Greedy-C. Greedy-L selects the nearest node
at each step, while Greedy-C chooses the node with the
shortest remaining time for TSPTW (or the minimal draft
limit for TSPDL). For neural methods, we consider the
state-of-the-art approaches: AM+PIP and POMO+PIP (Bi
et al., 2024). For TSPTW100 and TSPDL100, we report the
results of the models trained with the PIP decoder. Note that
the POMO+PIP model can be considered as the single-λ
policy, serving as a clear ablation of our adpative method.

Metrics. We evaluate performance and efficiency using
four metrics: infeasibility rate, average optimality gap, nor-
malized HyperVolumn (HV) and runtime. Among these,
the HV serves as a comprehensive indicator, capturing both
feasibility and solution quality. A detailed explanation of
these metrics is provided in Appendix D.3.

Evalution configurations. Our method employs × 8 in-
stance augmentation and 16 iterations to update λ during the
inference stage. To align the runtime consumption, we use
sampling inference strategy for POMO+PIP and AM+PIP.
Detailed configurations is provided in Appendix D.3.

4.2. Main Results

Comparison with single-λ models. The performance
comparisons on TSPTW and TSPDL across different prob-
lem scales are presented in Table 1. On TSPTW100, the pro-
posed ICO method reduces the infeasibility rate from 4.33%
(achieved by POMO+PIP with λ = 1.0) to an impressive
1.33%, representing a substantial reduction of 3.00%. Sim-
ilarly, on TSPTW50, the infeasibility rate is lowered from
1.56% to just 0.51%. Even when the λ value in single-λ
models is increased to 2.0, these models still lags behind the
ICO method in terms of feasibility, with the sole exception
being TSPDL100. In addition to improving feasibility rates,
the ICO method consistently outperforms single-λ models
in terms of optimality gaps. For instance, the ICO method
achieves a smaller gap of 9.22% on TSPDL100, compared
to 10.77% achieved by the best POMO+PIP model. More-
over, the ICO method showcases the highest HV scores
on all benchmarks, further highlighting its comprehensive
performance on both feasibility and solution quality. For ex-
ample, on TSPDL100, the HV improves significantly from

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2025

Table 1. Experimental results on TSPTW and TSPDL. Test instances are generated using the hard settings. The results of Greedy-L,
Greedy-C, full time LKH3 and OR-Tools are drawn from exisiting papers (Bi et al., 2024). LKH3 (less time) and OR-Tools (less time)
denote the OR methods with reduced runtime budgets to align with neural solvers. For AM+PIP and POMO+PIP, we report the results
obtained by using the sampling inference. The best and the runner-up results are highlighted in Blue and Violet, respectively.

Methods TSPTW (n = 50) TSPTW (n = 100)

Inf. Rate ↓ Avg. Gap ↓ HV ↑ Time ↓ Inf. Rate ↓ Avg. Gap ↓ HV ↑ Time ↓
LKH3 0.12% 0.0% 1.00 7h 0.07% 0.0% 1.00 1.4d
OR-Tools 65.72% 0.0% 0.34 2.4h 89.07% 0.0% 0.11 1.6d
Greedy-L 100.0% / / 21.8s 100.0% / / 1.3m
Greedy-C 72.55% 1.53% 0.19 4.5s 93.38% 1.43% 0.05 11.1s

LKH3 (less time) 57.34% 0.01% 0.43 100s 95.56% 0.03% 0.04 8m
OR-Tools (less time) 65.72% 0.02% 0.34 99s 89.07% 0.51% 0.10 8m
AM + PIP (λ = 1.0) 2.99% 0.34% 0.90 105s 7.80% 0.70% 0.79 8m
POMO + PIP (λ = 0.5) 1.95% 0.08% 0.96 108s 4.90% 0.17% 0.92 9m
POMO + PIP (λ = 1.0) 1.56% 0.16% 0.95 108s 4.33% 0.25% 0.91 9m
POMO + PIP (λ = 2.0) 1.41% 0.19% 0.95 108s 4.71% 0.39% 0.88 9m
ICO (Ours) 0.51% 0.07% 0.98 91s 1.33% 0.14% 0.96 8m

Methods TSPDL (n = 50) TSPDL (n = 100)

Inf. Rate ↓ Avg. Gap ↓ HV ↑ Time ↓ Inf. Rate ↓ Avg. Gap ↓ HV ↑ Time ↓
LKH3 0.0% 0.0% 1.00 6.8h 0.0% 0.0% 1.00 1.2d
OR-Tools 100.0% / / 10.6s 100.0% / / 56.8s
Greedy-L 100.0% / / 2.4m 100.0% / / 9.4m
Greedy-C 0.0% 99.73% / 10.9s 0.0% 156.37% / 25s

LKH3 (less time) 7.42% 4.23% 0.20 70s 7.02% 6.76% 0.20 6m
OR-Tools (less time) 100.0% / / 3s 100.0% / / 29s
POMO + PIP (λ = 0.5) 3.44% 2.36% 0.58 71s 62.94% 20.95% / 5m
POMO + PIP (λ = 1.0) 1.18% 2.33% 0.78 71s 3.23% 10.77% 0.31 5m
POMO + PIP (λ = 2.0) 0.12% 2.89% 0.85 71s 0.11% 12.24% 0.38 5m
ICO (Ours) 0.01% 2.32% 0.88 69s 0.91% 9.22% 0.49 5m

0.38 to 0.49, while on TSPTW100, it increases from 0.92
to 0.96. These results demonstrate that the ICO method is
capable of generating high-quality solutions while maintain-
ing a higher level of feasibility. For further comparisons, we
also present the anytime performance in Appendix E.5 .

Comparion with strong OR solvers. In Table 1, we also
compare our neural methods with strong OR solvers, LKH3
and OR-Tools, under aligned runtime conditions. The re-
sults show that our ICO method achieves a dramatic im-
provement in infeasibility rates, reducing them from 95.56%
to 1.33% (a 94.23% reduction) on TSPTW100 and from
7.02% to 0.91% (a 6.11% reduction) on TSPDL100. Re-
garding solution quality, our method consistently outper-
forms OR-Tools across all benchmarks and even surpasses
LKH3 on TSPDL50 in terms of average gap. While the
solution quality of our neural approach on the other three
benchmarks still lags behind LKH3, the substantial improve-

ments in feasibility and competitive performance overall un-
derscore the strengths of neural methods compared to strong
OR solvers. Note that the full time LKH3 still achieves
the best performance among all methods in terms of both
infeasibility rate and average gap; however, its runtime is ex-
termely long, even exceeding an entire day on TSPTW100
and TSPDL100. Additionally, it is observed that the Greedy-
C algorithm obtains near-zero infeasibility rates on TSPDL,
but its average gaps remain significantly poor.

4.3. Additional Study

In this subsection, we present a series of experiments to
investigate the impact of training stages, the update rules for
λ, and different network architectures. Other analyses re-
garding the distribution D(λ) and the anytime performance,
are provided in Appendix E due to space limitation.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2025

Analysis of the training stages. Figure 4 illustrates the
performance of POMO+PIP (with λ = 1), the pre-trained
policy, and the fine-tuned policy. The comparison between
the pre-trained and fine-tuned policies reveals that the fine-
tuning process leads to a substantial reduction in both infea-
sibility rate and average gap, thereby demonstrating its ef-
fectiveness in enhancing model performance. Notably, even
the pre-trained policy alone surpasses the single-λ model
(POMO+PIP), further highlighting the advantages of the
proposed training approach. Results on other benchmarks
are detailed in Appendix E.1 due to space limitation.

Infeasibility rate Average gap
Metrics

0

1

2

3

4

Va
lu
es

TSPTW100 Results
POMO+PIP
Pre-trai ed policy
Fi e-tu ed policy

I feasibility rate Average gap
Metrics

0

2

4

6

8

10

TSPDL100 Results
POMO+PIP
Pre-trai ed policy
Fi e-tu ed policy

Figure 4. Comparison of the pre-trained policy and fine-tuned pol-
icy on TSPTW100 and TSPDL100.

Analysis of update rules for λ in inference stage. In
Appendix E.2, we evaluate the performance of the proposed
ICO method under different strategies for updating λ values
in inference stage: fixed λ values (0.5, 1.0, and 2.0), ran-
domly sampled λ values, the subgradient descent method
and the PID control method (Stooke et al., 2020). For the
random sampling strategy, λ values are drawn randomly
from the uniform distribution U(0.1, 2.0) at each iteration.
The results in the last three rows indicate that both the
subgradient descent method and the PID control method
generally outperform the random sampling strategy, with
particularly improvements in reducing the infeasibility rate.
Notably, it is observed that the random sampling is also a
performant strategy, demonstrating that just randomly vary-
ing λ values for each instance is effective. Moreover, as
evidenced in the first three rows, employing fixed λ values
leads to significantly inferior performance compared to the
adaptive variation of λ, underscoring the critical importance
of dynamically adjusting λ for each instance.

Analysis of the network architecture. In Appendix E.3,
we compare the performance of the network with condi-
tioned context and network with conditioned embeddings.
The experimental results demonstrate that the conditioned
embedding method achieves significantly superior perfor-
mance in both infeasibility rate and average optimality gap.
This performance advantage can be attributed to the fact that
the conditioned embedding method can utilize the capacity
of the entire network to process λ-related information.

5. Related works
Prevalent paradigms of neural VRP. Many researchers
have focused on end-to-end neural methods that learn to
generate solutions through deep neural networks (Bengio
et al., 2021; Cappart et al., 2023). These neural solvers can
be categorized into three paradigms (Ma et al., 2023): learn-
to-construct methods (Nazari et al., 2018), learn-to-predict
methods (Joshi et al., 2019; Sun & Yang, 2023) and learn-to-
search methods (Ma et al., 2021). Detailed introduction of
these paradigms are in Appendix B due to space limitation.

Recent advances in neural VRP. Recent advancements
in neural methods for solving VRPs focus on improving scal-
ability (Fu et al., 2021; Luo et al., 2023; Ye et al., 2024; Gao
et al., 2024a; Fang et al., 2024) and robustness (Jiang et al.,
2022; Bi et al., 2022; Zhou et al., 2023; Jiang et al., 2023)
through innovative architectures and learning strategies. De-
tailed description of these related works are provided in
Appendix B due to space limitation. Besides these efforts,
this paper focuses on complex constrained VRPs, which are
common in real-world applications (Cattaruzza et al., 2017;
Glomvik Rakke et al., 2012) but have not received much at-
tention in the research community. Only a few works (Tang
et al., 2022; Chen et al., 2024; Bi et al., 2024) try to ad-
dress it through feature enhancement or Lagrange multiplier
method. In this context, we introduce a novel instance-level
adpative framework for Lagrangian-based neural methods,
reducing the infeasiblity rate significantly.

6. Conclusion
In this paper, we propose a novel approach ICO to address
the limitations of existing Lagrangian-based neural meth-
ods in solving complex constained VRPs. Unlike prior
methods that rely on a single, uniform dual variable across
all problem instances, ICO leverages instance-specific dual
variables to improve adaptability and optimize the trade-off
between solution quality and constraint satisfaction for every
problem instance. Experimental results on two challenging
constrained VRP benchmarks, TSPTW and TSPDL, demon-
strate that ICO significantly reduces infeasibility rates com-
pared to both state-of-the-art neural methods and strong OR
solvers like LKH3, while achieving competitive or improved
solution quality under aligned runtime budgets. These em-
pirical findings suggest that our ICO framework can be
a promising alternative for strong OR solvers when tack-
ling constrained combinatorial problems. Notably, the ICO
framework is not confined to the VRP domain but can be
extended to other areas such as scheduling, packing, and
general constrained optimization. Future works could focus
on predicting optimal λ values based on instance features,
refining training strategies of the conditioned policy, and en-
abling the generalization ability across various constraints.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2025

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Achiam, J., Held, D., Tamar, A., and Abbeel, P. Constrained

policy optimization. In Proceedings of the 34th Inter-
national Conference on Machine Learning (ICML), vol-
ume 70, pp. 22–31, Sydney, Australia, 2017.

Applegate, D., Bixby, R., Chvatal, V., and Cook, W. Con-
corde TSP solver. http://www.math.uwaterloo.
ca/tsp/concorde/m, 2006.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio,
S. Neural combinatorial optimization with reinforce-
ment learning. In Proceedings of the 5th International
Conference on Learning Representations (ICLR), Toulon,
France, 2017.

Bengio, Y., Lodi, A., and Prouvost, A. Machine learning
for combinatorial optimization: A methodological tour
d’horizon. European Journal of Operational Research,
290(2):405–421, 2021.

Bertsekas, D. P. Constrained optimization and Lagrange
multiplier methods. Academic press, 2014.

Bi, J., Ma, Y., Wang, J., Cao, Z., Chen, J., Sun, Y., and
Chee, Y. M. Learning generalizable models for vehicle
routing problems via knowledge distillation. In Advances
in Neural Information Processing Systems 35 (NeurIPS),
pp. 31226–31238, New Orleans, LA, 2022.

Bi, J., Ma, Y., Zhou, J., Song, W., Cao, Z., Wu, Y., and
Zhang, J. Learning to handle complex constraints for
vehicle routing problems. In Advances in Neural Infor-
mation Processing Systems 37 (NeurIPS), 2024.

Boyd, S. P. and Vandenberghe, L. Convex Optimization.
Cambridge University Press, 2014.

Cappart, Q., Chételat, D., Khalil, E. B., Lodi, A., Morris, C.,
and Veličković, P. Combinatorial optimization and rea-
soning with graph neural networks. Journal of Machine
Learning Research, 24(130):1–61, 2023.

Cattaruzza, D., Absi, N., Feillet, D., and González-Feliu, J.
Vehicle routing problems for city logistics. EURO Journal
on Transportation and Logistics, 6(1):51–79, 2017.

Chalumeau, F., Surana, S., Bonnet, C., Grinsztajn, N., Pre-
torius, A., Laterre, A., and Barrett, T. Combinatorial
optimization with policy adaptation using latent space

search. In Advances in Neural Information Processing
Systems 36 (NeurIPS), pp. 7947–7959, New Orleans, LA,
2023.

Chen, J., Huang, H., Zhang, Z., and Wang, J. Deep rein-
forcement learning with two-stage training strategy for
practical electric vehicle routing problem with time win-
dows. In Proceedings of the 17th International Confer-
ence on Parallel Problem Solving from Nature (PPSN),
volume 13398, pp. 356–370, Dortmund, Germany, 2022.

Chen, J., Gong, Z., Liu, M., Wang, J., Yu, Y., and
Zhang, W. Looking ahead to avoid being late:
Solving hard-constrained traveling salesman problem.
arxiv:2403.05318, 2024.

Cordeau, J.-F. and Laporte, G. The dial-a-ride problem
(DARP): Variants, modeling issues and algorithms. Quar-
terly Journal of the Belgian, French and Italian Opera-
tions Research Societies, 1:89–101, 2003.

da Silva, R. F. and Urrutia, S. A general VNS heuristic
for the traveling salesman problem with time windows.
Discrete Optimization, 7(4):203–211, 2010.

Dantzig, G. B. and Ramser, J. H. The truck dispatching
problem. Management Science, 6(1):80–91, 1959.

Drakulic, D., Michel, S., Mai, F., Sors, A., and Andreoli, J.-
M. BQ-NCO: Bisimulation quotienting for generalizable
neural combinatorial optimization. In Advances in Neural
Information Processing Systems 36 (NeurIPS), pp. 77416–
77429, New Orleans, LA, 2023.

Falkner, J. K. and Schmidt-Thieme, L. OR-Tools rout-
ing library. URL https://developers.google.
com/optimization/routing/.

Falkner, J. K. and Schmidt-Thieme, L. Learning to solve
vehicle routing problems with time windows through joint
attention. arXiv:2006.09100, 2020.

Fang, H., Song, Z., Weng, P., and Ban, Y. INViT: A general-
izable routing problem solver with invariant nested view
transformer. In Proceedings of the 41st International Con-
ference on Machine Learning (ICML), pp. 12973–12992,
Vienna, Austria, 2024.

Fu, Z.-H., Qiu, K.-B., and Zha, H. Generalize a small
pre-trained model to arbitrarily large TSP instances. In
Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAI), pp. 7474–7482, Virtual, 2021.

Gao, C., Shang, H., Xue, K., Li, D., and Qian, C. To-
wards generalizable neural solvers for vehicle routing
problems via ensemble with transferrable local policy. In
Proceedings of the 33rd International Joint Conference
on Artificial Intelligence (IJCAI), pp. 6914–6922, Jeju,
Korea, 2024a.

9

http://www.math.uwaterloo.ca/tsp/concorde/m
http://www.math.uwaterloo.ca/tsp/concorde/m
https://developers.google.com/optimization/routing/
https://developers.google.com/optimization/routing/

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Submission and Formatting Instructions for ICML 2025

Gao, C., Shang, H., Xue, K., and Qian, C. Neu-
ral solver selection for combinatorial optimization.
arXiv:2410.09693, 2024b.

Glomvik Rakke, J., Christiansen, M., Fagerholt, K., and
Laporte, G. The traveling salesman problem with draft
limits. Computers & Operations Research, 39(9):2161–
2167, 2012.

Grinsztajn, N., Furelos-Blanco, D., Surana, S., Bonnet,
C., and Barrett, T. Winner takes it all: Training per-
formant RL populations for combinatorial optimization.
In Advances in Neural Information Processing Systems
36 (NeurIPS), pp. 48485–48509, New Orleans, LA, 2023.

Gu, S., Yang, L., Du, Y., Chen, G., Walter, F., Wang, J.,
and Knoll, A. A review of safe reinforcement learning:
Methods, Theories, and Applications. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 46(12):
11216–11235, 2024.

Helsgaun, K. An effective implementation of the Lin–
Kernighan traveling salesman heuristic. European Jour-
nal of Operational Research, 126(1):106–130, 2000.

Helsgaun, K. An extension of the Lin-Kernighan-Helsgaun
TSP solver for constrained traveling salesman and vehicle
routing problems. Technical report, 2017.

Hestenes, M. R. Multiplier and gradient methods. Journal
of optimization theory and applications, 4(5):303–320,
1969.

Jiang, Y., Wu, Y., Cao, Z., and Zhang, J. Learning to solve
routing problems via distributionally robust optimization.
In Proceedings of the 36th AAAI Conference on Artificial
Intelligence (AAAI), pp. 9786–9794, Virtual, 2022.

Jiang, Y., Cao, Z., Wu, Y., Song, W., and Zhang, J.
Ensemble-based deep reinforcement learning for vehi-
cle routing problems under distribution shift. pp. 53112–
53125, New Orleans, LA, 2023.

Joshi, C. K., Laurent, T., and Bresson, X. An efficient
graph convolutional network technique for the travelling
salesman problem. arXiv:1906.01227, 2019.

Kim, M., Park, J., and kim, j. Learning collaborative policies
to solve NP-hard routing problems. In Advances in Neural
Information Processing Systems 34 (NeurIPS), pp. 10418–
10430, Virtual, 2021.

Kohl, N. and Madsen, O. B. An optimization algorithm
for the vehicle routing problem with time windows based
on lagrangian relaxation. Operations Research, 45(3):
395–406, 1997.

Konstantakopoulos, G. D., Gayialis, S. P., and Kechagias,
E. P. Vehicle routing problem and related algorithms for
logistics distribution: A literature review and classifica-
tion. Operational Research, 22(3):2033–2062, 2022.

Kool, W., van Hoof, H., and Welling, M. Attention, learn
to solve routing problems! In Proceedings of the 7th
International Conference on Learning Representations
(ICLR), New Orleans, LA, 2019.

Kwon, Y.-D., Choo, J., Kim, B., Yoon, I., Gwon, Y., and
Min, S. POMO: Policy optimization with multiple op-
tima for reinforcement learning. In Advances in Neural
Information Processing Systems 33 (NeurIPS), pp. 21188–
21198, Virtual, 2020.

Lai, Y., Mu, Y., and Luo, P. MaskPlace: Fast chip placement
via reinforced visual representation learning. In Advances
in Neural Information Processing Systems 35 (NeurIPS),
New Orleans, LA, 2022.

Li, Y., Guo, J., Wang, R., and Yan, J. T2T: From distribution
learning in training to gradient search in testing for combi-
natorial optimization. In Advances in Neural Information
Processing Systems 36 (NeurIPS), pp. 50020–50040, New
Orleans, LA, 2023.

Lin, X., Yang, Z., and Zhang, Q. Pareto set learning for
neural multi-objective combinatorial optimization. In Pro-
ceedings of the 10th International Conference on Learn-
ing Representations (ICLR), Virtual, 2022.

Liu, F., Lin, X., Wang, Z., Zhang, Q., Tong, X., and Yuan,
M. Multi-task learning for routing problem with cross-
problem zero-shot generalization. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining (KDD), pp. 1898–1908, Barcelona,
Spain, 2024.

Lu, H., Zhang, X., and Yang, S. A learning-based iterative
method for solving vehicle routing problems. In Pro-
ceedings of the 7th International Conference on Learning
Representations (ICLR), New Orleans, LA, 2019.

Luo, F., Lin, X., Liu, F., Zhang, Q., and Wang, Z. Neural
combinatorial optimization with heavy decoder: Toward
large scale generalization. In Advances in Neural Infor-
mation Processing Systems 36 (NeurIPS), pp. 8845–8864,
New Orleans, LA, 2023.

Luo, F., Lin, X., Wang, Z., Tong, X., Yuan, M., and Zhang,
Q. Self-improved learning for scalable neural combinato-
rial optimization. arXiv:2403.19561, 2024.

Ma, Y., Li, J., Cao, Z., Song, W., Zhang, L., Chen, Z., and
Tang, J. Learning to iteratively solve routing problems
with dual-aspect collaborative transformer. In Advances
in Neural Information Processing Systems 34 (NeurIPS),
pp. 11096–11107, Virtual, 2021.

10

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Submission and Formatting Instructions for ICML 2025

Ma, Y., Cao, Z., and Chee, Y. M. Learning to search feasible
and infeasible regions of routing problems with flexible
neural k-Opt. In Advances in Neural Information Pro-
cessing Systems 36 (NeurIPS), pp. 49555–49578, New
Orleans, LA, 2023.

Nazari, M., Oroojlooy, A., Takáč, M., and Snyder, L. V.
Reinforcement learning for solving the vehicle routing
problem. In Advances in Neural Information Processing
Systems 31 (NeurIPS), pp. 9861–9871, Montréal, Canada,
2018.

Panchamgam, K. V. Essays in retail operations and human-
itarian logistics. PhD thesis, Robert H. Smith School of
Business, University of Maryland, College Park, 2011.

Savelsbergh, M. W. Local search in routing problems with
time windows. Annals of Operations Research, 4:285–
305, 1985.

Shahin, R., Hosteins, P., Pellegrini, P., Vandanjon, P.-O., and
Quadrifoglio, L. A survey of flex-route transit problem
and its link with vehicle routing problem. Transportation
Research Part C: Emerging Technologies, 158:104437,
2024.

Stein, D. M. Scheduling dial-a-ride transportation systems.
Transportation Science, 12(3):232–249, 1978.

Stooke, A., Achiam, J., and Abbeel, P. Responsive safety
in reinforcement learning by PID lagrangian methods.
In Proceedings of the 37th International Conference on
Machine Learning (ICML), volume 119, pp. 9133–9143,
Virtual Event, 2020.

Sun, Z. and Yang, Y. DIFUSCO: Graph-based diffusion
solvers for combinatorial optimization. In Advances in
Neural Information Processing Systems 36 (NeurIPS), pp.
3706–3731, New Orleans, LA, 2023.

Tang, Q., Kong, Y., Pan, L., and Lee, C. Learning to solve
soft-constrained vehicle routing problems with lagrangian
relaxation. arXiv:2207.09860, 2022.

Toth, P. and Vigo, D. Vehicle routing: problems, methods,
and applications. SIAM, 2014.

Treitl, S., Nolz, P. C., and Jammernegg, W. Incorporating
environmental aspects in an inventory routing problem.
a case study from the petrochemical industry. Flexible
Services and Manufacturing Journal, 26:143–169, 2014.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems 30 (NeurIPS), pp. 5998–6008, Long
Beach, CA, 2017.

Vinyals, O., Fortunato, M., and Jaitly, N. Pointer networks.
In Advances in Neural Information Processing Systems
28 (NeurIPS), pp. 2692–2700, Montreal, Canada, 2015.

Wang, Z., Yao, S., Li, G., and Zhang, Q. Multiobjective
combinatorial optimization using a single deep reinforce-
ment learning model. IEEE Transactions on Cybernetics,
54(3):1984–1996, 2024.

Williams, R. J. Simple statistical gradient-following algo-
rithms for connectionist reinforcement learning. Machine
Learning, 8(3):229–256, 1992.

Yao, Y., Liu, Z., Cen, Z., Zhu, J., Yu, W., Zhang, T., and
Zhao, D. Constraint-conditioned policy optimization for
versatile safe reinforcement learning. In Advances in
Neural Information Processing Systems 36 (NeurIPS),
New Orleans, LA, 2023.

Ye, H., Wang, J., Liang, H., Cao, Z., Li, Y., and Li, F.
GLOP: Learning global partition and local construction
for solving large-scale routing problems in real-time. In
Proceedings of the 38th AAAI Conference on Artificial
Intelligence, pp. 20284–20292, Vancouver, Canada, 2024.

Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P. S., and
Chi, X. Learning to dispatch for job shop scheduling
via deep reinforcement learning. In Advances in Neural
Information Processing Systems 33 (NeurIPS), pp. 1621–
1632, Vancouver, Canada, 2020a.

Zhang, R., Prokhorchuk, A., and Dauwels, J. Deep rein-
forcement learning for traveling salesman problem with
time windows and rejections. In Proceedings of the Inter-
national Joint Conference on Neural Networks (IJCNN),
pp. 1–8, Glasgow, United Kingdom, 2020b.

Zheng, Z., Yao, S., Wang, Z., Xialiang, T., Yuan, M., and
Tang, K. DPN: Decoupling partition and navigation for
neural solvers of min-max vehicle routing problems. In
Proceedings of the 41st International Conference on Ma-
chine Learning (ICML), Vienna, Austria, 2024.

Zhou, C., Lin, X., Wang, Z., Tong, X., Yuan, M., and
Zhang, Q. Instance-conditioned adaptation for large-
scale generalization of neural combinatorial optimization.
arXiv:2405.01906, 2024a.

Zhou, J., Wu, Y., Song, W., Cao, Z., and Zhang, J. Towards
omni-generalizable neural methods for vehicle routing
problems. In Proceedings of the 40th International Con-
ference on Machine Learning (ICML), pp. 42769–42789,
Honolulu, HI, 2023.

Zhou, J., Cao, Z., Wu, Y., Song, W., Ma, Y., Zhang, J.,
and Xu, C. MVMoE: Multi-task vehicle routing solver
with mixture-of-experts. In Proceedings of the 41th Inter-
national Conference on Machine Learning (ICML), pp.
61804–61824, Vienna, Austria, 2024b.

11

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Submission and Formatting Instructions for ICML 2025

Zhou, J., Wu, Y., Cao, Z., Song, W., Zhang, J., and Shen, Z.
Collaboration! towards robust neural methods for routing
problems. In Advances in Neural Information Processing
Systems 37 (NeurIPS), Vancouver, Canada, 2024c.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Submission and Formatting Instructions for ICML 2025

A. Pseudo Code of the Training Process

Algorithm 1 Pre-training of the λ-conditioned policy
Input: Distribution Dλ, number of training batches T , batch size B, number of parallel sampling P
Initialize policy network parameters θ
for t = 0 to T − 1 do

Generate a batch of instances {Ii}Bi=1

Sample dual variables λi ∼ Dλ, ∀i ∈ {1, ..., B}
Sample multiple solutions {τ ji }Pj=1 ∼ πθ(·|λi, Ii), ∀i ∈ {1, ..., B}
Compute baseline bi ← 1

P

∑P
j=1−(fIi(τ

j
i) + λigIi(τ

j
i)), ∀i ∈ {1, ..., B}

Compute policy gradient∇θJ(θ)← 1
BP

∑B
i=1

∑P
j=1(−(fIi(τ

j
i) + λigIi(τ

j
i))− bi)∇θ log πθ(τ

j
i |λi, Ii)

Update parameters θ ← θ + α∇θJ(θ)
end for
Output: θ

Algorithm 2 Fine-tuning of the λ-conditioned policy
Input: Number of training batches T , batch size B, number of parallel sampling P , dual variable learning rate αλ, policy
learning rate α, maximum number of itertations K, maximum infeasible ratio δ
Initialize policy network parameters θ
Generate a batch of instances {Ii}Bi=1

Initialize dual variables λi ← λ(0), ∀i ∈ {1, ..., B}
Initialize iteration counts ki ← 0, ∀i ∈ {1, ..., B}
for t = 0 to T − 1 do

Sample multiple solutions {τ ji }Pj=1 ∼ πθ(·|λi, Ii), ∀i ∈ {1, ..., B}
Compute baseline bi ← 1

P

∑P
j=1−(fIi(τ

j
i) + λigIi(τ

j
i)), ∀i ∈ {1, ..., B}

Compute policy gradient∇θJ(θ)← 1
BP

∑B
i=1

∑P
j=1(−(fIi(τ

j
i) + λigIi(τ

j
i))− bi)∇θ log πθ(τ

j
i |λi, Ii)

Update parameters θ ← θ + α∇θJ(θ)
Adjust the maximum number of iterations K according to the current infeasibility ratio, ensuring the ratio of retained
infeasible instances does not exceed the maximum ratio δ
for each instance Ij without feasible solutions do

Update λj ← λj + αλ minm∈[P](gIj (τ
m
j) + cIj (τ

m
j))

Increment kj ← kj + 1
end for
for each instance Ij with zero kj or kj > K do

Generate a new instance to replace Ij
Initialize λj ← λ(0) and kj ← 0

end for
end for
Output: θ

B. Related Works
Prevalent paradigms of neural VRP. Many researchers have focused on end-to-end neural methods that learn to generate
solutions through deep neural networks (Bengio et al., 2021; Cappart et al., 2023). These neural solvers can be categorized
into three paradigms (Ma et al., 2023): (1) Learn-to-Construct (L2C) methods sequentially extends solutions from scratch
in an autoregressive manner, typically trained via reinforcement learning (Nazari et al., 2018) or imitation learning (Drakulic
et al., 2023). These L2C methods have proven to be applicable to a variety of combinatorial problems (Zhang et al., 2020a)
and industrial applications (Lai et al., 2022). (2) Learn-to-Predict (L2P) methods operate under a variable-independent
assumption, directly predicting the entire solution without conditional dependence (Joshi et al., 2019). While computationally
efficient, L2P methods often suffer from limited expressiveness. To address this issue, recent research has introduced
diffusion models to enhance the L2P paradigm by leveraging their ability to generate multimodal distributions of optimal

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Submission and Formatting Instructions for ICML 2025

solutions (Sun & Yang, 2023; Li et al., 2023). (3) Learn-to-Search (L2S) methods adopt the iterative framework of
traditional search heuristics. During the search process, L2S methods usually leverage a RL policy to control or select search
operators (Ma et al., 2021; Lu et al., 2019), thereby guiding the search directions towards near-optimal solutions.

Recent advances in neural VRP. Recent advancements in neural methods for solving VRPs focus on improving scalability
and robustness through innovative architectures and learning strategies. For example, the large-scale performance is improved
by employing divide-and-conquer strategies (Fu et al., 2021; Ye et al., 2024), leveraging heavy decoder architectures (Luo
et al., 2023), incorporating distance-related bias (Zhou et al., 2024a), and exploiting local transferability (Gao et al.,
2024a; Fang et al., 2024); the robustness against distribution shifts is improved by distributional robust optimization (Jiang
et al., 2022), multi-distribution knowledge distillation (Bi et al., 2022), meta learning (Zhou et al., 2023) and ensemble
learning (Jiang et al., 2023). Furthermore, it is observed that the performance of neural solvers can be enhanced by utilizing
a population of complementary models (Grinsztajn et al., 2023; Zhou et al., 2024c; Gao et al., 2024b). Moveover, Liu et al.
(2024) proposed to develop a foundation model for a class of VRP variants, leveraging the shared problem structure to
achiece better performance. Building on this, Zhou et al. (2024b) further improved model capability by introducing the
mixture-of-experts structure. Besides these efforts, this paper focuses on complex constrained VRPs, which are common in
real-world applications (Cattaruzza et al., 2017; Glomvik Rakke et al., 2012) but have not received much attention in the
research community. Only a few works (Tang et al., 2022; Chen et al., 2024; Bi et al., 2024) try to address it through feature
enhancement or Lagrange multiplier method. In this context, we introduce a novel instance-level adpative framework for
Lagrangian-based neural methods, reducing the infeasiblity rate significantly.

C. Instance Generation
In our experiments, we consider two categories of problem, TSPTW and TSPDL. Following prior works (Kool et al., 2019),
we randomly sample coordinates (xi, yi) for each node i (including the depot) from a uniform distribution U(0, 1) within
a square. For generating the time windows and draft limits, we utilize the code of Bi et al. (2024) and adopt the hard
settings, which are sufficiently challenging to examine state-of-the-art neural and OR solvers. The generation process of
time windows and draft limits is detailed as follows.

Time windows. After generating the node coordinates, the pairwise travel times are calculated based on the Euclidean
distance between any two nodes. For the generation of time windows, we adopt the configuration of a widely recognized
benchmark (da Silva & Urrutia, 2010) in our experiments. Specifically, the process begins with the construction of a
random tour τ (i.e., a random permutation of the nodes). Subsequently, the time window [li, ui] for each node i is iteratively
generated, where the lower bound li and upper bound ui are uniformly sampled from a range determined by the cumulative
travel distance ϕi of the partial solution up to node i and the maximum window size 2η. More formally, li ∼ U [ϕi − η, ϕi]
and ui ∼ U [ϕi, ϕi + η]. This procedure guarantees the existence of at least one feasible solution for each instance, and the
tight coupling between the time windows and the randomized tours introduces significant complexity to the problem, thereby
increasing the computational difficulty of satisfying constraints. In this paper, the maximum window size η is set to 50, and
we employ a scale factor ρ = 100 to normalize the node coordinates and time windows according to (Bi et al., 2024).

Draft limits. In the context of TSPDL, each node is associated with a demand value and a maximum draft limit, which
is designed to avoid overloaded ships entering these ports (i.e., nodes). From an initial feasible setting, the draft limit of
each node is set to the summarized demands of other nodes, thereby ensuring that any node demand can not exceed its own
draft limit. Subsequently, a fraction parameter, denoted as p%, is introduced to adjust the draft limits of non-depot nodes.
Specifically, p% of the non-depot nodes are randomly selected, and each of them is assigned a draft limit drawn as a random
integer from the range [δi,

∑n
i=1 δi], where δi is the demand of the i-th node. Finally, a feasibility validation is conducted

(e.g., utilizing bin-counting constraints) to ensure that the assigned draft limits do not lead to instances without feasible
solutions. In our experiment, the node demands are set to 1 and the fraction parameter p% is set to 90%.

D. Implementation Details
D.1. Training Details

The training procedure of our ICO method contains two stages: a pre-training stage and a fine-tuning stage. The pre-training
stage involves a total of 10, 000 epochs, while the fine-tuning stage comprises 1, 000 epochs. Each training epoch processes

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Submission and Formatting Instructions for ICML 2025

10, 000 synthetic problem instances. For both stages, we select the model checkpoint that achieves the best inference
performance on a validation dataset as the final model. It is worth noting that the training process of our ICO method
includes 1, 000 more epochs compared to the training process of POMO+PIP. To ensure a fair comparison, we extend the
training of the provided POMO+PIP checkpoints by an additional 1, 000 epochs.

The fine-tuning stage involves the iterative updating of λ values. In this process, the initial values λ(0) is uniformly set to
0.1 for all problem instances. If the policy fails to find feasible solutions on a specific instance, the λ value corresponding
to this instance is updated based on the constraint violation, where the learning rate of λ is set to 0.5 for TSPTW and
0.2 for TSPDL, since the scales of constraint violations on TSPTW and TSPDL are different. These hyperparameters in
updating λ are aligned with the corresponding hyperparameters in the inference stage, narrowing the gap of training and
inference. To improve computational efficiency and mitigate the risk of overfocusing on challenging instances, the number
of iterations is limited to a maximum of 4, and the ratio of infeasible instances within a batch must not exceed 25%. During
the fine-tuning on TSPDL50, we observe that the fine-tuned policy tends to overemphasize the constraints, resulting in a
near zero infeasibility rate but a significant deterioration in objective values. To mitigate this issue, we adjust the learning
rate of fine-tuning process on TSPDL50 to 1× 10−6, while learning rates of other training process remain the default setting
(i.e., 1× 10−4).

D.2. Inference Details

The instance-specific λ values are iteratively updated based on constraint violations during the inference stage. In this
process, the λ values are initialized as 0.1 for all instances except instances of TSPDL100, since it is observed that the
conditioned policy fails to obtain feasible solutions for most instances of TSPDL100 when using λ = 0.1. Consequently,
the intial λ value for TSPDL100 is increased to 0.5. During the updating process of λ, the learning rate is configured as
0.5 for TSPTW and 0.2 for TSPDL. These different learning rates are to accommodate the different scales of constraint
violations on these two problem types. In the comparison experiments, the number of iterations for updating λ is set to 16.

D.3. Experimental Settings

Metrics. Four metrics are applied: Infeasibility rate, average optimality gap, normalized HyperVolumn (HV) and runtime.
The instance-level infeasibility rate measures the proportion of instances where the solver fails to find any feasible solution.
These metrics are calculated on a test dataset containing 10,000 instances. To compute the optimality gap, we use the
solutions obtained by LKH3 through full-time search as reference solutions. Unlike some prior works that compute the
optimality gap directly from the average objective (Kool et al., 2019), we calculate the optimality gap on an instance-by-
instance basis and then average these values. It is important to note that the calculation of objective values and optimality
gaps only includes instances with feasible solutions. Therefore, the average objective value may not serve as a fully reliable
metric for performance comparison, as the sets of instances with feasible solutions can vary across different methods. To
measure the comprehensive performance of both solution quality and feasibility, we further compute the normalized HV
based on the infeasibility rate and average optimality gap. The reference point for computing HV is set to (100%, 5%)
for TSPTW and (10%, 20%) for TSPDL, where the first number represent the infeasibility rate and the other denotes the
average gap. To evaluate the computational efficiency, we compare the total runtime of solving 10,000 instances with batch
parallelism on a single GPU (NVIDIA RTX 4090 Ti). For OR solvers like LKH3 and OR-Tools, we record the runtime of
parallel computation on 16 CPU cores.

Evalution configurations of baselines. To align the runtime consumption, POMO+PIP employs ×28 sampling for
intances with n = 50 and ×20 sampling for instances with n = 100, where AM+PIP adopts ×200 sampling for both
n = 50 and n = 100 instances. These different sampling configurations are to align with the additional runtime caused by
the computation of λ-conditioned embeddings in our ICO method. The evaluation batch sizes for both POMO-PIP and our
ICO method are set to 2,500 for instances with n = 50 and 1000 for instances with n = 100.

E. Additional Results
E.1. Analysis of Training Strategies

We design a two-stage training strategy that comprises a pre-training stage that makes the policy capable of solving instances
with varying degrees of constraint awareness, and a fine-tuning stage that aligns the λ values with instance hardness. To

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Submission and Formatting Instructions for ICML 2025

evaluate the effectiveness of these two stages, results of the single-λ policy (i.e., POMO+PIP with λ = 1), the pre-trained
policy and final fine-tuned policy are plotted and compared in Figure 5. The results indicate that both the pre-trained policy
and the fine-tuned policy achieve superior performance compared to the single-λ approach, particularly with respect to the
infeasibility rate. Furthermore, the comparison between the pre-trained and fine-tuned policies reveals that the fine-tuning
process significantly enhances overall performance, except the slight degeneration in terms of the average gap on TSPDL50.
This overall improvement can be attributed to the iterative adjustment of λ values, which effectively aligns them with the
hardness of specific problem instances.

Infeasibility rate Avera e ap
Metrics

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Va
lu
es

TSPTW50 Results
POMO+PIP
Pre-trained polic+
Fine-tuned polic+

Infeasibilit+ rate Avera e ap
Metrics

0

1

2

3

4

TSPTW100 Results
POMO+PIP
Pre-trained polic+
Fine-tuned polic+

Infeasibilit+ rate Avera e ap
Metrics

0.0

0.5

1.0

1.5

2.0

Va
lu
es

TSPDL50 Results
POMO+PIP
Pre-trained polic+
Fine-tuned polic+

Infeasibilit+ rate Avera e ap
Metrics

0

2

4

6

8

10

TSPDL100 Results
POMO+PIP
Pre-trained polic+
Fine-tuned polic+

Figure 5. Comparison of the pre-trained policy and fine-tuned policy.

E.2. Analysis of Different Update Rules for λ

Proportional-Integral-Derivative (PID) control for updating λ. From the perspective of control theory, the subgradient
descent process of λ behaves as integral control, while Stooke et al. (2020) proposed to further incorporate proportional and
derivative control into the update rule, avoiding oscillations encountered by the integral-only controller. The proportional
control is to hasten the constraint satisfaction in response to the immediate constraint violation. The derivative control
prevents the oscillations by monitoring the variation tendency of constraint violations. By adding the terms of proportional,
integral and derivative control, the update rule of PID control is expressed as:

∆t = gI(τt),

It = It−1 + gI(τt),

δt = max{gI(τt)− gI(τt−1), 0},
λt = KP ·∆t +KI · It +KD · δt,

where ∆t represents the proportional term of time step t, It denotes the t-th step integral term that accumulates the constraint
violations of previous steps, δt computes the derivative term of the constraint violation, and KP ,KI ,KD are tuning
parameters that measure the weights of three terms. Intuitively, this PID method provides a richer set of controllers than
subgradient descent, but it also introduces more hyperparameters that require manual tuning. In our experiments, KP is set
to 0.1 and KD is set to 1.0 on both problem types, and KI is set to 0.5 on TSPTW and 0.01 on TSPDL.

In Table 2, we compare the performance of different update rules of λ in inference stage: fixed λ values (λ ∈ {0.5, 1.0, 2.0}),
randomly sampled λ values, the subgradient descent method and the PID control method (Stooke et al., 2020). For the
random sampling strategy, λ values are drawn randomly from the uniform distribution U(0.1, 2.0) at each iteration.

The results in the last three rows indicate that both the subgradient descent method and the PID control method generally
outperform the random sampling strategy, with particularly improvements in reducing the infeasibility rate. It is worth
noting that the random sampling approach also demonstrates competitive performance, indicating that simply varying the λ
values randomly for each instance can be an effective strategy. Moreover, as evidenced in the first three rows, employing
fixed λ values leads to significantly inferior performance compared to the adaptive variation of λ, underscoring the critical
importance of dynamically adjusting λ for each instance. By comparing the results of the last two rows, it is observed that
the PID control method does not achieve superior performance as expected, which can be attributed to two factors: (1) the
hyperparameters of PID are challenging to tune; (2) the subgradient descent method is already involved in the fine-tuning
process, while the PID control is not integrated into the training, limiting its effectiveness.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Submission and Formatting Instructions for ICML 2025

Table 2. Additional results of different update rules of λ on TSPTW and TSPDL. The best results are highlighted in bold.

Methods TSPTW (n = 50) TSPTW (n = 100) TSPDL (n = 50) TSPDL (n = 100)

Inf. rate Avg. Gap Inf. rate Avg. Gap Inf. rate Avg. Gap Inf. rate Avg. Gap

ICO (λ = 0.5) 1.43% 0.19% 4.34% 0.26% 2.63% 2.50% 42.14% 13.16%
ICO (λ = 1.0) 1.52% 0.23% 4.03% 0.36% 0.23% 2.77% 2.01% 10.79%
ICO (λ = 2.0) 1.55% 0.24% 4.27% 0.38% 0.07% 3.15% 0.38% 11.62%

ICO (random) 0.55% 0.07% 2.40% 0.14% 0.12% 2.28% 0.40% 10.73%
ICO (subgradient) 0.51% 0.07% 1.33% 0.14% 0.01% 2.32% 0.91% 9.22%
ICO (PID control) 0.55% 0.07% 1.39% 0.14% 0.05% 2.36% 0.26% 9.25%

E.3. Analysis of Network Architectures

The λ-conditioned policy network is a key component in our ICO framework, which decouples the policy optimization
from the optimization of dual variables. This network should take λ as the condition varibable and effectively adjust the
constraint awareness according to the varying value of λ. Among existing network architectures in other domains (Wang
et al., 2024; Lin et al., 2022), there are two alternative approaches to implement the conditioned policy: (1) condition λ
in the initial embeddings; (2) condition λ in the decoder’s context. The second approach, referred to as the λ-conditioned
context method, is detailed as follows.

λ-conditioned context. Building upon the POMO model (Kwon et al., 2020), the conditioned context method integrates a
linear embedding of λ into the decoder’s context embedding, formulated as q = Wλλ+W q[hc, tc]. Here, Wλ ∈ Rd×1

and W q ∈ Rd×d are trainable parameters, and [hc, tc] denotes the concatenation of the current node embedding hc and the
current time tc, together forming the context used for selecting candidate nodes. The resulting output, q, functions as the
query input for the subsequent multi-head attention layer in the decoder. This conditioned context approach incorporates the
information of λ into the core component of the decoder, enabling an efficient adjustment of the policy’s behavior.

Table 3. Additional results of different network architectures on TSPTW and TSPDL. The best results are highlighted in bold.

Methods TSPTW (n = 100) TSPDL (n = 100)

Inf. rate Avg. Gap Inf. rate Avg. Gap

Network with λ-conditioned context 2.83% 0.30% 2.31% 13.34%
Network with λ-conditioned embeddings 2.28% 0.17% 1.14% 10.01%

In Table 3, we compare the performance of the network with λ-conditioned context and network with λ-conditioned
embeddings on TSPTW100 and TSPDL100. Here we report the results of the pre-trained policies. The experimental results
demonstrate that the λ-conditioned embedding method achieves significantly superior performance in both infeasibility rate
and average optimality gap. This performance advantage can be attributed to the fact that the λ-conditioned embedding
utilizes the full capacity of the entire network to process λ-related information, while the conditioned context approach
restricts the processing of λ-related information to the decoder, thereby limiting its effectiveness.

E.4. Analysis of Distribution D(λ)

In the pre-training stage of the conditioned policy, random values of λ are sampled from a pre-defined distribution D(λ) for
training. Empirically, the distribution D(λ) has a non-negligible influence on the performance of the pre-trained policy. A
natural and straightforward option for D(λ) is the uniform distribution within an appropriate range. However, as shown
in Figure 6, the trained policy just silghtly violates constraints on the majority of instances, where only a small subset
of instances in the long tail experience significant constraint violations. Therefore, we adopt a triangular distribution
T (0.1, 0.5, 2.0), which biases the sampling towards smaller λ values, thereby prioritizing the optimization of instances with
low constraint violations. Figure 7 compares the performance of the policy trained with a uniform distribution U(0.1, 2.0)

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Submission and Formatting Instructions for ICML 2025

and the policy trained with a triangular distribution T (0.1, 0.5, 2.0) on the TSPTW50 dataset. The results demonstrate that
the triangular distribution leads to superior overall performance as expected.

0 10 20 30 40 50 60 70

Constraint violations
0

1000

2000

3000

4000

5000

6000

7000

8000

Fr
eq

ue
nc

y

Figure 6. Histogram of constraint violation statistics on the
validation dataset.

Infeasibility rate Average gap
Metrics

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu
es

TSPTW50 Results
unif rm U(0.1,2)
triangular T(0.1, 0.5, 2.0)

Figure 7. Performance of using two different D(λ) configura-
tions during the pre-training stage.

E.5. Analysis of anytime performance

During the inference stage, our ICO method iteratively samples new solutions and updates the λ values based on the
current constraint violations. Consequently, the anytime performance throughout the iterative process becomes a critical
factor. Figure 8 presents the convergence curves of three metrics—hypervolume (HV), infeasibility rate, and average
optimality gap—on TSPTW50 and TSPTW100. The results indicate that, while the proposed ICO method exhibits the
highest infeasibility rate at the initial stage, it demonstrates a rapid convergence rate and achieves superior performance
compared to single-λ models in subsequent iterations. Moreover, in terms of HV and optimality gap, the ICO method
consistently outperforms single-λ models throughout the entire iterative process.

0 20 40 60 80 100

Runtime (s)

0.955

0.960

0.965

0.970

0.975

0.980

0.985

No
)m

al
iz

d
H.

(
)V
ol
um

n

TSPTW50

0 20 40 60 80 100

Runtim (s)

0.02

0.04

0.06

0.08

0.10

In
f
as
ib
ilit
.
)a
t
 (%

)

TSPTW50

0 20 40 60 80 100

Runti%e (s)

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

Av
)
ag

o(

tim
al
it.

 g
a(

 (%
)

TSPTW50

POMO+PIP (λ=0.5) POMO+PIP (λ=1.0) POMO+PIP (λ=2.0) ICO

100 200 300 400 500

Runtime (s)

0.91

0.92

0.93

0.94

0.95

0.96

0.97

N(
rm

al
i0e

Hy

)e
rV
(l
um

n

TSPTW100

100 200 300 400 500

Runtime (s)

0.02

0.04

0.06

0.08

0.10

0.12

In
fe
as
ib
ilit
y
ra
te
 (%

)

TSPTW100

100 200 300 400 500

Runtime (s)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

A.
er
ag

e
()

tim
a%
ity

 g
a)

 (%
)

TSPTW100

POMO+PIP (λ=0.5) POMO+PIP (λ=1.0) POMO+PIP (λ=2.0) ICO

Figure 8. Any-performance comparion between our ICO method and the single-λ methods. The figures, from top to bottom, represent the
convergence curves on TSPTW50 and TSPTW100, respectively.

18

